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Amyloidosis forms a large family of pathologies associated with amyloid deposit generated by the for-
mation of amyloid fibrils or plaques. The amyloidogenic proteins and peptides involved in these pro-
cesses are targeted against almost all organs. In brain they are associated with neurodegenerative
disease, and the Translocator Protein (TSPO), overexpressed in these inflammatory conditions, is one of
the target for the diagnostic. Moreover, TSPO ligands have been described as promising therapeutic drugs
for neurodegenerative diseases. Type 2 diabetes, another amyloidosis, is due to a beta cell mass decrease
that has been linked to hIAPP (human islet amyloid polypeptide) fibril formation, leading to the
reduction of insulin production. In the present study, in a first approach, we link overexpression of TSPO
and inflammation in potentially prediabetic patients. In a second approach, we observed that TSPO
deficient rats have higher level of insulin secretion in basal conditions and more IAPP fibrils formation
compared with wild type animals. In a third approach, we show that diabetogenic conditions also in-
crease TSPO overexpression and IAPP fibril formation in rat beta pancreatic cell line (INS-1E). These data
open the way for further studies in the field of type 2 diabetes treatment or prevention.
© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The origin and the key factors of the development of several
amyloid diseases resulting in various human pathologies remain
unknown [1]. Amyloidosis share the common characteristics of
amyloid deposit, known as amyloid fibrils or plaques, originating
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from globular proteins. Although many studies have permitted to
describe, in vitro, howmay occur the transformation of monomeric
globular protein into insoluble fibrillar proteins, the process
occurring in vivo is not yet clearly explained [1]. Amyloidogenic
proteins and peptides are synthesized in almost all organs, some of
them are plasma circulating proteins thus targeting several organs,
some others remain in the tissue where they are synthetized [2].
Amyloid fibrils located in the brain have been the subject of intense
studies due to their pivotal participation in neurodegenerative
pathologies, such as Alzheimer's, Parkinson's and Creutzfeld-
Jakob's diseases [3e5]. Similarly, amyloid fibrils located in the
pancreas (composed mainly of hIAPP, human Islet Amyloid Poly-
Peptide) have also been largely studied because of their implication
in type 2 diabetes (T2D) [2]. It has long been described that
inflammation participates in the pathogenesis of T2D [6] as well as
in neurodegenerative diseases [7] and involves oxidative stress
processes [8,9] (Fig. 1). The regulation of the inflammatory pathway
and of reactive oxygen species (ROS) production have become
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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targets for new therapies [10,11]. Among the signalling pathways
and transcriptional factors involved in the inflammation, finding
the right therapeutic target is the most important and difficult
approach for drug design [12]. Targeting simultaneously several
inflammatory pathways has been proposed to be better than
focusing on only one [11]. Conversely to previous therapeutic
strategies enhancing ROS production to kill cancer cells, it has been
proposed to use antioxidant repurposed drugs to clear ROS pro-
duction [13]. A recent review [10] has analysed the various mech-
anisms of antioxidant production in response to stress and
described the potential effect of small molecules in an upcoming
field of therapy in neurodegenerative disorders.

Among the various key sites and factors for the development of
the fibrillation process, plasma membrane and mitochondria have
largely been described [1,14,15]. The latter is essential for cell
function, and its dysfunction has been proposed to generate ROS
that increase fibril formation from amyloid proteins [16]. Among
the proteins involved in ROS down-regulation in mitochondria, the
Translocator Protein (TSPO), an 18 kDa protein locatedmostly in the
outer membrane of mitochondria, has been largely described
[17,18] (Fig. 1). On one hand, TSPO ligands have been described to
reduce inflammasome activation through reduction of ROS pro-
duction [19]. On the other hand, TSPO deficiency resulted in
enhanced activation of inflammasome pathway promoting more
proinflammatory cytokine production [20]. These results demon-
strate that TSPO is a crucial modulator of the inflammation process.
Moreover, TSPO has been exponentially used over the last decades
as a neuroimaging biomarker of brain diseases linked to inflam-
mation [21] due to its overexpression in those pathologies [22].

Amyloidosis diseases have been initially characterized post-
mortem with the detection of amyloid deposits in tissue sections
[23]. Over last decades, new detection techniques have been
developed like positron emission tomography (PET) with radio-
tracer targeting different proteins among which TSPO using a large
family of ligands [24]. Colocalization of TSPO and amyloid fibrils has
been described in animal model by mixing the PET and monoclonal
antibodies techniques [25]. Recently, TSPO quantification in patient
with Alzheimer's disease has been carried out with PET radiotracer
[26]. Several tracers have been developed to target directly the
proteinopathies with positron emission tomography (PET) [27] and
magnetic resonance imaging (MRI) has also been recently used
with fluorinated probes [28] or nanotheranostics platform [29]. An
improved resolution (from mm to mm) has been obtained in a
mouse model using combined PET/MRI approaches [30]. Type 2
diabetes mellitus in human has been studied through detection of
amylin aggregates using PET imaging probes [31], but no study of
Fig. 1. Schematic representation showing the relationship between pathology,
inflammation, fibril formation and the potential regulation by TSPO. Amyloidosis pa-
thologies are linked to inflammation producing ROS that favours fibrils formation
involved in the death of cells. TSPO ligands have been described to reduce inflam-
mation, ROS production and thus fibril formation, acting as a protecting agent.
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inflammation using TSPO PET tracer is available for this pathology
in human, whereas data are available for pancreatic cancer in
mouse models [32].

Increasing evidence has placed inflammation at the centre of the
pathogenesis of neurodegenerative diseases linked with amyloid
protein aggregation [7]. However, it is not fully understood what
triggers this phenomenon. It is interesting to underline that
inflammation and oxidative stress are also markers of prediabetic
and diabetic states [33] and that mitochondrial oxidative phos-
phorylation is impaired by amyloid proteins [16], suggesting an
implication of mitochondria in the process. However, no study has
been performed to link regulation of inflammation, ROS production
by TSPO and hIAPP fibril formation in type 2 diabetes.

TSPO ligands have been found to reduce neuroinflammation,
ROS production and amyloid fibril formation in vitro [34,35] and
in vivo [36e38] (Fig. 1). Although the mechanism of neuro-
protection is not clear, it has been reported that the TSPO ligand
Ro5-4864 promotes production of anti-inflammatory cytokines
[39] and increase microglia phagocytotic ability [36]. The implica-
tion of TSPO in proliferation/cell death has been questioned and it
has been concluded that amyloid-induced death seems to be in-
dependent of TSPO [40]. However, the variety of ligands available to
target TSPO [41] that have different chemical structures and show
neuroprotection reducing the accumulation of b-amyloid peptide
[42,43] or tau [36], two proteins involved in Alzheimer's disease
and tauopathies, may be questioned. Extending this kind of study to
type 2 diabetes would be beneficial for therapeutic approaches and
for a better mechanism description.

TSPO deficiency in mice shows significantly higher levels of
amyloid proteins and plaques as well as increased level of proin-
flammatory cytokines in the brain [44], making TSPO a potential
therapeutic target in line with previous studies [41]. In the intes-
tine, global TSPO knockout in mice has been shown to exacerbate
ulcerative colitis pathology with an extensive inflammation [45,46]
in agreement with previous study making TSPO a therapeutic
target [17,47]. Moreover, TSPO conditional knock-out mice exhibit
prediabetes symptoms [48].

The presence of TSPO in pancreas has been characterized many
years ago [49] using classical radioactive ligands, but with some
difference between animals. Histological approach has revealed the
presence of TSPO in human pancreas [50]. More recently, the
localisation of TSPO has been performed on healthy human vol-
unteers using TSPO specific ligands for PET scanning [51e53]. An
increased pancreatic expression of TSPO has been characterized in
obese (fa/fa) rodents [54]. However, no data are available for TSPO
expression in diabetic patients.

In the present work, we evaluate the presence of TSPO in
overweighted patients, potentially prediabetic, and its link with
inflammation.We also estimate the same parameters in the rat beta
pancreatic cell line (INS-1E) upon culture in diabetogenic condi-
tions. We further study the kinetics of hIAPP fibrillation on these
cells. Finally, we determined the pancreatic beta cell mass, the in-
sulin secretion and the kinetics of hIAPP fibril formation in TSPO
deficient rat. These data suggest that TSPO may constitute a diag-
nostic and therapeutic target for type 2 diabetes and opens the way
to further studies.

2. Material and methods

2.1. Human islets

Human islets batches (17 donors) were provided by the Cell
Therapy Unit (Saint-Louis Hospital, Paris) among which 8 and 9
donors with a body mass index (BMI) < 25 and a BMI>25, respec-
tively. Total RNAs were isolated (RNeasy Mini Plus Kit; QIAGEN,
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Hilden, Germany) and reverse transcribed into cDNA with Super-
Script transcriptase (Applied Biosystems, Foster City, CA, USA).
Gene expressionwas quantified by real-time PCR using SYBR Green
Supermix (Applied Biosystems) in a QuantStudio1 thermal cycler
(ThermoFisher Scientific, Montigny-le-Bretonneux, France). The Ct
value obtained for each specific gene product was normalized for
18 S rRNA and expressed as the fold change of the value in the
control condition. Primer sequences are available upon request.

2.2. Animals

Sprague-Dawley wild-type (WT) or TSPO-KO (SD-Tspo emVpI)
male rats generated by Vassilios Papadopoulos (University of
Southern California) [55] and donated to Didier Morin (IMRB,
INSERM U955) were used to obtain pancreas for the studies re-
ported in this manuscript.

2.3. Islet isolation and glucose-stimulated insulin secretion

Pancreas from rats were digested with liberase (Roche,
Boulogne-Billancourt, France) in Hank's balanced salt solution
(HBSS, 137 mM NaCl, 5.36 mM KCl, 4.17 mM NaHCO3,0.88 mM
MgSO4, 0.44 mM KH2PO4, 0.34 mM Na2HPO4, 1.27 mMCaCl2,
10 mM HEPES, and 0.5 % bovine serum albumin [BSA]) and islets of
Langerhans purified from exocrine tissue by discontinuous density-
gradient centrifugation (Histopaque 1077; Sigma-Aldrich, Saint-
Quentin-Fallavier, France) [56]. The islets were hand-picked un-
der a binocular microscope (Leica Microsystems, Wetzlar, Ger-
many) and used for hIAPP fibrillation or glucose-stimulated
secretion experiments, or frozen until used. For glucose-stimulated
secretion experiment, freshly isolated islets were cultured and
stimulated as previously described [57].

2.4. Immunohistochemistry, immunofluorescence, and
morphometry

Pancreas were fixed in 3.7 % formalin solution, embedded in
paraffin, and cut into 5-mm thick sections. Morphometrical pa-
rameters (beta-cell fraction, islet size, and density) were evaluated
from 4 sections per pancreas after immune histochemistry using a
mouse polyclonal anti-insulin (Sigma-Aldrich), and a secondary
antibody coupled to horseradish peroxidase (Jackson ImmunoR-
esearch, Westgrove, PA, USA). Enzyme substrate was DABþ (Dako-
Agilent, Les Ulis, France). Morphometrical parameters were deter-
mined as previously described [58]. Pictures were taken on a slide
scanner (Hamamatsu slide scanner 2.0 HT, Hammamatsu, Massy,
France) and the stained areas were measured using the software
Calopix (Tribun Healthcare, Paris, France).

2.5. INS-1E cells culture

Rat insulinoma-1 (INS-1E) pancreatic beta-cells were grown in
culture medium containing RPMI 1640 supplemented with peni-
cillin (100 units/ml), streptomycin (100 mg/ml), pyruvate (1 mM)
(all from Invitrogen, Paris, France), beta-mercapto-ethanol (50mM)
(Sigma-Aldrich), and 10 % heat-inactivated calf serum (Dutscher,
Bernolsheim, France). The cultures were maintained at 37 �C in an
incubator humidified 95 % air, 5 % CO2. INS-1E cells were plated at a
density of 300 000 cells/well in a 24-well plate. Following 24 h of
culture, cells were treated for another 24 h-period with BSA alone
or complexed with palmitate (Bertin Technologies, St Quentin en
Yvelines, France). The molar ratio of palmitate to BSA was 5:1. The
fatty acid stock solution was diluted in RPMI-1640 Medium (Invi-
trogen, Paris, France) supplemented with 1 % (vol/vol) FBS to obtain
the required final concentration. At the end of the culture period,
3

total RNAs were extracted, following manufacturer's recommen-
dation (Macherey-Nagel, Hoerdt, France). Reverse transcription as
well as gene expression analysis were performed as described in
the human islets section.

2.6. hIAPP fibrillation

INS-1E cells and rat islets were plated respectively at a density of
30 000 cells/well or 50 islets/well in a 96-wells black plate (flat
bottom, Greiner Bio-One, Courtaboeuf, France). Following 24 h of
incubation, the mediumwas replaced with 100 ml of fresh medium
containing 50 mM of indicated peptide as previously described [59].
10 ml (final concentration 20 mM) of Thioflavine T (ThT) was added
in each well in order to monitor fibril formation. The fluorescence
was measured at 30 �C from the top of the plate every 30 min with
excitation filter 440 nm and emission filter 485 nm for a 15 h (INS-
1E cells) or a 30 h period (rat islets) using a spectrophotometer
(TECAN, Lyon, France). For rat islets, the plate was taken out of the
incubator to measure the ThT fluorescence each 30 min during
30 h. For INS-1E cells, ThT fluorescence was measured continuously
for 15 h, with acquisition point taken every 10 min.

2.7. Statistics

Each experiment was performed at least 3 times in triplicates.
Results are expressed as means ± SEM. Statistical significance was
determined using Student's test (*, p < 0,05; **, p < 0.01; ***,
p < 0.001).

3. Results

3.1. TSPO in human islets from pancreas of healthy and prediabetic
post-mortem donors

In order to determine parameters acting on TSPO expression, we
compared mRNA levels of TSPO and proteins known to be impli-
cated in diabetes (insulin, glucose transporter, inflammatory pro-
teins, ROS regulating proteins, hIAPP and component of its
receptors AMY 1e3 [60]) in pancreatic islets of patients with BMI
below (<25, 7 donors) and above overweight (>25, 9 donors), the
latter being described as a risk factor for pancreatic diseases [61,62].
Our data show (Fig. 2A) that TSPO mRNA expression is significantly
increased in patient with a BMI over 25 compared to control patient
with a BMI below 25. Moreover, Interleukin-1 beta (IL-1beta)
mRNA, a proinflammatory cytokine known to induce glucotoxicity
[63], and superoxide dismutase 2 (SOD2) mRNA, a mitochondrial
protein that down regulates the level of ROS [64], are also signifi-
cantly overexpressed in patient with a BMI over 25 (Fig. 2B). It has
to be mentioned that mRNA expression of SOD2 level has been
previously analysed as reflecting the protein expression and
enzyme activity in rat pancreatic islets [64]. Conversely, mRNA level
of Insulin is decreased in patient with a BMI over 25 (Fig. 2A) in
agreement with the risk factor for pancreatic diseases. Finally,
mRNA of SLC2A2 coding GLUT2, a glucose transporter, tumor ne-
crosis factor alpha (TNF alpha), SOD1, hIAPP, RAMP1,2,3 (receptor
activity modifying protein) and calcitonin receptor (CTR, belonging
to the GPCR family), forming the hIAPP receptors AMY 1e3 [60] are
not modified (Fig. 2B and C). The difference observed between IL-1
beta and TNF alpha mRNA regulation might suggest different tissue
specific immunoenhancing effects [65,66] that have to be further
studied. The non-significant expression modification of hIAPP and
component of its receptor might suggest that they are not involved
yet at this prediabetic stage. Our results suggest a positive corre-
lation between TSPO, inflammation and ROS production in predi-
abetic conditions. An extrapolation to diabetes has been suggested



Fig. 2. Comparison of mRNA level in human islet from patients with BMI below (orange) and above 25 (black). mRNA level of (A) Insulin, Glut2 and TSPO, (B) inflammatory cytokine
(IL-1b and TNF-a) and SOD1 and 2, (C) CLTR, hIAPP, RAMP 1,2,3. *, p < 0.05; ns, not significant.
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in a previous study indicating that human pancreatic islets (10
donors) exposed 72 h to a cytotoxic cytokine combination of IL-1
beta, TNF alpha and interferon gamma (IF-Y), show an upregula-
tion of TSPO (protein and mRNA) and an increase in beta-cell death
4

associated with apoptosis and mitochondrial swelling [67].
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3.2. TSPO in pancreas from wild type and knock-out rat

To further test the role of TSPO in pancreas, we analysed the
morphology of pancreatic islet of wild type (WT) and constitutive
global TSPO knock-out (TSPO-KO) Sprague-Dawley rats [49]. The
global beta cell content as well as the islet average size were not
modified, while the islet density was significantly decreased in
TSPO-KO rat pancreas (Fig. 3).

We compared insulin secretion byWT and TSPO-KO pancreas in
diabetogenic conditions. Pancreatic islets were cultured and probed
for insulin secretion stimulated 1 h by low glucose, then 1 h by high
glucose and finally 1 h with KCl, this later condition allowing in-
sulin secretion in the absence of glucose metabolism. Low glucose
(2.5 mM) has no effect on WT islets whereas it significantly stim-
ulates insulin secretion in the TSPO-KO islets (Fig. 4A). Conversely,
high glucose (16.7 mM) and KCl (50 mM) strongly stimulate insulin
secretion in WT, whereas both conditions have a significantly
reduced effect on TSPO-KO (Fig. 4B and C). These data reveal a
pancreatic beta cells dysfunction in TSPO-KO rats since insulin
secretion is not correlated to glucose concentration. However, this
dysfunction is not observed in vivo in rats. Indeed, when glucose is
injected (1 g/kg, Fig. S1, panel A) there is no differences between
WT and TSPO-KO rats. Moreover, glucose and insulin tolerance in
WT and TSPO-KO rats (Fig. S1, panels A and B) do not show any
significant differences [68,69]. These experiments revealed a dif-
ference between animals (in vivo) and islets (in vitro), probably due
to different regulation other than glucosemetabolism. In absence of
TSPO, insulin secretion by beta cells is dysregulated and not linked
to glucose concentration. This dysfunction of pancreatic beta cells
has been previously described in Tspo cKO mice that exhibited
sustained hyperglycemia whereas TSPO-KO rat do not [48].

We also compare the IAPP fibrillation on WT and TSPO-KO
pancreatic islets. Since IAPP from rat (rIAPP) have mutations that
prevent its fibrillation, we used human IAPP (hIAPP) to analyse if
TSPO deletion has an effect. We thus performed hIAPP fibrillation
by adding 50 mMof synthetic peptide to pancreatic islet issued from
WT and TSPO-KO (Fig. 5). The absence of TSPO slows down the
kinetics of fibrils formation followed by ThT fluorescence (half-time
increases from ~1 h to ~5 h for WT and TSPO-KO, respectively), but
seems to increase the amount of fibrils as suggested by the higher
level of fluorescence. In TSPO-KO rats the basic level of insulin is
increased compared to WT (Fig. 4A) and it has been previously
described that insulin prevents the hIAPP fibrillation [70], this
might explain why the fibrillation is delayed, on one hand. How-
ever, on the other hand, the absence of TSPO prevents the inhibition
of ROS production that increases the fibrils formation as soon as the
small oligomers are formed, this might explain why the final
Fig. 3. Rat pancreatic islet morphology for WT and TSPO-KO animals. (A) Beta cell
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amount of fibrils is increased.
3.3. TSPO in rat insulinoma cell line (INS-1E) in prediabetic and
diabetic conditions

We used rat insulinoma cell line (INS-1E) to decipher at a
cellular level the links between TSPO, inflammation, ROS in predi-
abetic and diabetogenic conditions and IAPP fibrillation. We per-
formed INS-1E cell cultures (24 h) in the presence of low (5 mM)
glucose concentration in the absence and in the presence of
palmitate (0.4 %), and high (30 mM) glucose concentration in the
presence of palmitate (0.4 %) (Fig. 6). At low glucose plus palmitate
(G5þPalm), conditions similar to prediabetic donors, we observed a
negative relation between expression of mRNA levels of TSPO and
insulin (Fig. 6A), with significant increase in TSPO and decrease in
insulin, similarly to prediabetic donors (Fig. 2A). However, no sig-
nificant differences were observed for the mRNA levels of GLUT2
and pancreatic and duodenal homeobox 1 (PDX1), a transcription
factor known to stimulate insulin expression (Fig. 6A) as also
observed for prediabetic donors. We noticed a slight increase in the
proinflammatory cytokine TNF alpha, but not in SOD1 and SOD2
which are regulated by ROS (Fig. 6B), conversely to prediabetic
donors where only SOD2 is increased (Fig. 2B). In these prediabetic
conditions (G5þPalm), the kinetics of hIAPP fibrillation do not
show significant differences compared to low glucose alone
(Fig. 6C). We believe that TSPO may somehow protects cells in
prediabetic conditions, but further studies with TSPO-KO cells are
needed to confirm our hypothesis. At high glucose plus palmitate,
diabetogenic conditions (G30þPalm), we observed a significant
decrease in insulin mRNA compared to prediabetic conditions
(Fig. 6A), as well as significant decrease in GLUT2 and PDX1 mRNA
compared to glucose alone (Fig. 6A). At high glucose plus palmitate,
TNF alpha, SOD1 and SOD2 mRNA levels are similar to the levels
observed in the presence of glucose alone (Fig. 6B). In these diabetic
conditions, the kinetics of hIAPP fibrillation are very different
compared to prediabetic, the maximum ThT fluorescence is
increased suggesting a higher amount of fibrils (Fig. 6C). At high
glucose plus palmitate, rIAPP mRNA is significantly reduced
(Fig. 6D) in agreement with insulin decrease. Whatever the predi-
abetic or diabetic conditions, no significant modification of CLTR
and RAMP1,2,3 mRNA levels were observed (Fig. 6D). In diabetic
conditions (G30þPalm), apoptosis is strongly activated [71] leading
to down regulation of many proteins that may explain why TSPO is
not anymore overexpressed, thus unable to protect cells against cell
death and hIAPP fibrils formation. We hypothesis that TSPO over-
expressionmight have a protective effect on cell survival in diabetic
conditions, further studies are needed to confirm our hypothesis.
mass, (B) Islets density, (C) Islets average size. *, p < 0.05; ns, not significant.



Fig. 4. Insulin secretion by cultured pancreatic rat islets fromWT and TSPO-KO animals stimulated by glucose (2.5 and 16.7 mM, panels A and B, respectively) or KCl (50 mM, panel
C). 11 islets from pancreas of WT and TSPO-KO rats (2 and 4 animals, respectively) were cultured and insulin secretion was measured in duplicate. *, p < 0.05.

Fig. 5. Kinetic of hIAPP fibrillation on pancreatic rat islets. Fibrillation of hIAPP (50 mM)
followed using the ThT (20 mM) fluorescence is shown for pancreatic islets issued from
WT and TSPO-KO rats in yellow and dark red, respectively. Excitation and emission
wavelength, are 440 and 485 nm, respectively.
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4. Discussion and perspectives

In human pancreatic islets, an upregulation of TSPO has been
previously described in response to damage associated with
inflammation leading to cell death [67], a critical step towards type
2 diabetes since insulin is not anymore secreted in sufficient
amounts. However, no data are available upon a link between TSPO
and prediabetic conditions.

Our data demonstrate, in human pancreatic islets from patients
with low and high BMI, a link between prediabetic conditions and
overexpression of TSPO mRNA coupled to insulin mRNA decrease.
This may suggest a regulatory function of TSPO in agreement with
data gained in TSPO-KO mice [48]. Indeed, these mice show hy-
perglycemia, a sign of prediabetes and it was proposed that it was
induced by an increase in glucose production [48]. However, no
significant difference in basal glucose concentration was observed
betweenWT and TSPO-KO rats [68,69] that could be due to species
differences. In TSPO-KO rat pancreatic islets, we show that basal
insulin secretion is higher than in WT rats. These data suggest a
beta cells dysfunction in TSPO-KO animals. Moreover, in WT rat
pancreatic islets, we show that high concentrations of glucose or
KCl, simulating diabetic conditions, induce a fourfold increase in
insulin secretion. However, similar treatment for TSPO-KO rat
6

pancreatic islets only induces a small increase in insulin secretion
confirming beta cells dysfunction in rat TSPO-KO. Our data show
that, while the islet mass is not modified in the TSPO-KO pancreas,
the density is diminished suggesting a reduction of small islets
known to be the most insulin secretive [72]. This should have led to
a reduced insulin secretion. However, the increased basal insulin
level and the reduced stimulation by glucose or KCl demonstrate a
dysfunction of the pancreatic islets. The implication of TSPO in the
development of the islets and their function needs to be further
investigated. When performing prediabetic treatment to rat insu-
linoma cell line (INS-1E), we observe a decrease in insulin mRNA
expression and an increase in TSPO mRNA expression as observed
in patient with high BMI. It has to be notice that TSPO is overex-
pressed only in prediabetic conditions that are not toxic to INS-1E
cells, conversely to diabetic conditions that have been described
as toxic [73]. We propose that this TSPO induction could act as a
pancreatic beta cell protection as observed in the P19 cell line by
regulating ROS production [74]. TSPO deficiency exacerbates
inflammasome activation pathway [20] characterized to be linked
tomitochondrial ROS [75]. The overexpression of TSPO is correlated
with overexpression of inflammatory cytokine IL1-beta which has
been previously described as linked to mitochondrial swelling and
cell death [67]. There is a crosstalk betweenmitochondrial swelling
and ROS production [76], the latter being described as inducing and
stabilizing fibrils [77]. Mitochondrial dysfunction has been
described in many neurodegenerative diseases [8] and its regula-
tion a target to prevent them [22]. We did not observe a change in
the kinetics of hIAPP fibrils formation between control and predi-
abetic conditions for INS-1E cells while TSPO is overexpressed. This
may suggest a protective effect of TSPO in prediabetic conditions.
However, in diabetic conditions, a significant increase in hIAPP fi-
brils formation has been observed, whereas TSPO has been
reduced. Similarly, TSPO-KO pancreatic islets show an increase in
hIAPP fibrils formation. Further studies are needed to measure ROS
levels in these conditions. A previous study with mice lacking TSPO
has shown significant higher level of beta amyloid plaques and
more proinflammatory cytokines in brain [44] and suggest that
TSPO has protective functions. Moreover, it has been described that
TSPO ligands present neuroprotective effects by regulating mito-
chondrial functions [36,41,43,78,79]. No data are available upon
pancreas on the use of ligand to image or to protect against hIAPP
fibrils formation. However, TSPO-PET ligand have been used to
localize pancreatic ductal carcinoma tumors in amicemodel [80] as
well as premalignant and pancreatic cancer lesions in human [81].



Fig. 6. Comparison of INS-1E cells cultured in normal (Glucose 5 mM, orange), pre-
diabetic (Glucose 5 mM plus palmitate, grey) and diabetogenic (Glucose 30 mM plus
palmitate, blue) conditions. (A) mRNA level of Insulin, GLUT2, PDX1 and TSPO, (B)
mRNA level of TNF alpha, and SOD1 and 2, (C) ThT fluorescence to follow the kinetic of
hIAPP fibrillation. (D) mRNA level of rIAPP, CLTR, RAMP1,2,3.3 independent experi-
ments in triplicate for each condition. *, p < 0,05; **, p < 0.01; not significant if not
indicated.

Fig. 7. Schematic representation of TSPO implication in hIAPP fibril formation involved
in type 2 diabetes. Type 2 diabetes leads to hyperglycaemia partly due to death of beta
pancreatic cells that produce insulin and regulate glucose level. This death process is
governed by ROS generated and amplified by hIAPP fibrils formation. TSPO and its
ligands are known as ROS regulators and thus a good candidate to reduce hIAPP fibrils
formation and to preserve functional pancreatic beta cell mass.
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Further studies are needed to test the effect of TSPO ligands upon
hIAPP fibril formation (Fig. 7) taking into account that the high
affinity drug ligand PK 11195 has been described to induce a
reduction of insulin secretion both in rats isolated pancreas
perfused with a slightly stimulating glucose concentration [82], but
also in human pancreatic islet in similar glucose conditions [83]. PK
11195 has also been characterized to reduce inflammasome
7

activation and cytokine release [19]. This has to be linked to a
previous study showing that reduction of inflammasome expres-
sion improves insulin-sensitivity in obese type 2 diabetic patients
[84]. To better understand the role of TSPO, further studies with
INS-1E cell where TSPO expression will be modified (over-
expression or no expression), are also needed.

As a conclusion, TSPO could be used as a target to characterize
the diabetic risk for patients or to analyse pancreas previous to
transplantation. Indeed, an increase in TSPO protein can be detec-
ted using numerous radiotracers for TSPO positron emission to-
mography already available for imaging [8,85,86] and used in
diverse human CNS pathologies [21].
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