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Université Paris Saclay
F92322 Châtillon, France

Florian Quatresooz
ICTEAM / ELEN
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Abstract—Seen as the essential infrastructure supporting fu-
ture high-throughput space data highways, Optical Feeder Links
are still confronted with the need to manage atmospheric dis-
ruptions. Complex correction methods, including adaptive optics
(AO), coding, interleaving and handover will be necessary to
ensure the high link availability expected from a data providing
service. Each of these correction methods might reap the benefits
of an accurate propagation channel assessment either for real
time optimization to feed control laws of the AO for short-term
optimization in a minute timescale and for longer-term, typically
dozen of minutes to few hours, to supervise the handover process.
We present here the principal characteristics of ONERA’s optical
ground station FEELINGS data pipeline and draws perspectives
on its exploitation for link availability prediction.

Index Terms—Optical ground station, adaptive optics, optical
feeder link

I. INTRODUCTION

Considered as the backbone of future very high throughput
space data highways, Optical Feeder Links are currently being
pushed a step forward to high data rate demonstrations. Their
development is however still highly dependent on the possi-
bility to adequately mitigate atmospheric channel impairments

with a reasonable complexity. This is particularly challenging
due to the variability of atmospheric conditions to be faced
for future Optical Ground Stations (OGS) locations, as the
optical quality of the site is not necessarily the only criterion
of choice.

The strategies developed to mitigate the propagation channel
impact are based on complex correction methods (adaptive
optics (AO), interleaving and coding) whose design must
be optimized according to propagation conditions to keep
reasonable costs. The ability to anticipate channel impairments
is of critical importance in the very short term (typically for
few minutes) to adjust the configuration of the correction
methods, and for a longer timescale (few dozen of minutes)
to optimize the routing of information through the network
and enable the handover process required to overcome cloud
masking.

Thanks to their built-in system the future high data rate
OGS can benefit from a unique metrology to characterize the
propagation conditions along the line of sight. The use of
a dedicated data pipeline and simplified performance model
give access to a real-time theoretical performance assessment



during the optical links. Using machine learning tools, the
estimated atmospheric parameters can be used to predict short-
term atmospheric conditions and performance over duration up
to one hour, thus paving the way to an optimized operation of
the ground station network accordingly.

We present here an approach to exploit the data of the
wavefront sensor allowing the estimation of key turbulent
parameters along the line of sight. Based on the exploitation
of a metamodel trained on the results of numerical weather
prediction models, we investigate the possibility of predicting
the key atmospheric turbulence parameters for optical commu-
nication identified in [1] using the latest deep learning models
dedicated to time series forecasting. The tools presented here
will constitute the core of the data processing pipeline im-
plemented in ONERA’s OGS FEELINGS [2]. Its first light is
scheduled for the end of 2023, with the potential to establish
the first links with a GEO satellite in 2024 [3].

II. OPTICAL FEEDER LINK PERFORMANCE ASSESSMENT

A. Different needs for different timescales

The turbulence’s impact is critical for both downlinks, for
injection optimization, and uplinks, due to the influence of
anisoplanatism and partial correction. Therefore, performance
evaluation at different time scales is essential. In the short
term, it is compulsory to optimize various subsystems, espe-
cially the AO system. This optimization implies a fine-tuning
of the parameters such as wavefront sensor thresholds and
background management, as well as the control law parameters
(including modal gains and matrices in the case of predictive
control law) which relies on a performance evaluation within
short execution times (typ. on the order of a few tens of
seconds, in accordance with typical stationarity durations).
In the mid-term, there is a need to anticipate the operational
conditions at alternative sites we might switch to in the event
of cloud interruptions, turbulence conditions exceeding the
operating point, or proximity of the sun with the line of
sight. This implies to forecast turbulence conditions with time
horizons of the order of an hour or more.

Therefore, the dual challenge lies in achieving both short-
term performance assessment with high precision and mid-
term turbulence condition forecast, which necessitates dealing
with different time scales and their associated complexities.

Concerning the short term scale, the performance evaluation
strategy relies on using a Monte Carlo model (the Statistical
AO System Testing (SAOST) model [4]), enabling the gen-
eration of statistical and temporal characteristics to establish
an instantaneous performance metric (with a temporal scale
of turbulence stationarity, typ. up to a minute). The Monte
Carlo model takes as input elements of the communication link
budget (see II-C) and parameters measured by the station’s
instrumentation. The conditions of turbulence play a crucial
role in evaluating the performance of the system making
their accurate evaluation essential for the overall performance
assessment process.

For the long term scale, it is possible to replace the SAOST
model with a metamodel based solely on integrated turbulence

parameters. The key idea is to accurately predict the integrated
parameters using weather prediction database to access to a
performance forecast. This transition to a metamodel simplifies
the performance prediction process by relying exclusively on
these integrated turbulence parameters.

B. Data pipeline structure
The station’s objectives and structure are presented in [5].

The station’s various instruments will generate large quantities
of data during the acquisitions. All the various sensors and
instruments provides data concerning the state and health of
the OGS subsystems and the surrounding instruments (weather
station). They monitor the health of the station and can trigger
emergency processes.

The second part concerns the data received by the fibre
detector, which digitises the time series of the received flux
from the satellite. The mean and variance of these series are
calculated for comparison with the estimated values.

The last part of this data is acquired to feed the perfor-
mance estimation simulator and understand the limits of the
instrument. A weather station close to the ground station is
used to acquire measurements of temperature, wind, humidity,
pressure and, under certain conditions, Fried’s parameter and
the scintillation rate. The software process this data to estimate
the turbulence profile (see section II-D), the wind profile and
the atmospheric transmission in order to numerically estimate
the performance of the link. The profiles are estimated from
the Shack-Hartmann measurements. These estimated turbu-
lence conditions feed the ONERA’s SAOST model [4] which
provides statistics on the time series of flux received on the
ground and at satellite level.

The experimental statistics are then compared in real-time to
theoretical signal statistics, computed through SAOST model.
This model uses a Monte-Carlo approach on an ideal AO
error budget. It takes into account fitting error, aliasing error,
temporal error, PAA induced anisoplanatism error, turbulent
phase residuals and power in the bucket power fluctuations
induced by scintillation. It allows to compute statistical series
with a high number of occurrences quickly, and thus has good
statistical convergence. However it doesn’t include a precise
description of AO components, such as the wavefront sensor
or the deformable mirror.

In order to get an even higher level of understanding of the
performance and the channel characteristics, this data pipeline
is tested and compared to a digital twin currently under de-
velopment. The latter includes the ONERA’s PILOT software
to simulate the propagation of an optical wave through the
atmosphere, as well as an AO module for ground-satellite
links. It is gradually being improved to take into account more
and more effects linked to the specific characteristics of the
OGS and the links. This is a precise, end-to-end model whose
calculation time is incompatible with the ground station’s real
time data processing requirements.

C. Link budget and performance metrics
Setting up a high-speed data transmission requires being

able to guarantee that the detection signal-to-noise ratio is



maintained above a certain threshold for the duration of the
data transmission. This means establishing a balance of the
attenuations suffered by the transmitted wave from transmis-
sion to reception. The viability of this balance depends on the
information transmission capacity.

We provide in Table 1 an example of link budget obtained
in the case of GEO-FL for the uplink and the downlink.
The wavelength is supposed to be C-Band. In this table,
we considered that the OGS contributions are those of the
FEELINGS ground station [5]. For the payload, we suppose
here 1 W of emitted power through a 25 cm diameter aperture
[6], but of course it will depend on the targeted satellite. For
instance, HICALI is 2.5 W optical power in C-band for a
15 cm diameter aperture [7], while ALPHASAT is up to 4 W
emitted power through a 30 cm diameter aperture at 1.06 µm
[8].

Fig. 1. Example of FEELINGS-GEO uplink and downlink link budget. For
more information about the chosen data, see section II-C.

The mean sensitivity value for BPSK used in the table
assumes a 10 Gbps BPSK signal, for a targetted BER of 10−3

and a space-grade high gain fiber amplifier in the detection
chain [9].

As for the channel, the turbulence conditions and atmo-
sphere we consider in this table are chosen to be representative
of medium cases - i.e. we expect the conditions to be better
(or worse) than these values half of the time (by day time).

The values contained in that table will have to be confronted
to experimental data. Channel properties will be estimated
through the post-processing of AO data for turbulence and
wind speed (see section II-D), and through post-processing
of terrain measurements for transmission (all-sky camera,
weather station, lidar, photometer...); performance metrics will
be mean signal and signal standard deviation.

The goal is to establish an error budget during the acquisi-
tions and compare it with the received flux.

D. Turbulence channel characterization

The estimated losses introduced by atmospheric turbulence
after correction or precompensation by AO are calculated
from a turbulence profile estimated from the Shack-Hartmann
data. To be effective, the accuracy of the method used to
estimate the profile must be such that the difference between
the performance obtained with the estimated profile and the
one obtained with the real profile is negligible compared with
the link margin.

Since turbulence conditions are highly dependent on local
environmental configuration (local wind flows and surface
emissivity), the most relevant way to assess properly turbu-
lence impact on the line of sight is to extract the C2

n profile
directly from data extracted from the AO loop concomi-
tantly to the acquired AO compensated signal. The method
exploited here has been proposed 15 years ago [10] and
validated in comparable turbulence conditions for slant path
propagation[4], [11]. The methods consists in estimating the
C2

n profile from the numerical inversion of a direct model
describing the spatial correlations of slopes and intensities
measurements in the Rytov regime according to a principal
analogous to the one exploited in the SHIMM instrument[12].
The precision of the estimation depends on the choice of
different key parameters. The number of occurrences from
which the empirical covariances are calculated will affect the
precision of the covariance evaluation (convergence noise).
The propagation path sampling will affect the accuracy with
which the direct model represents the effective turbulence
profile. The noise on both slopes and intensity measurements
might degrade the covariance estimation introducing a bias on
the variance estimation. Most of these parameters also affect
the computation time and therefore the periodicity with which
such an estimation can be performed.

We evaluate here the impact of the C2
n profile sampling

and noises on the propagation channel fluctuations for the
AO precompensated uplink. In this aim, a 10 s time series of
slopes and intensities provided by a 17× 17 Shack-Hartmann
wavefront sensor (SHWFS) sampling a 60 cm aperture at a 1
kHz frequency is generated using an end-to-end simulation
on a known profile. The known profile is taken from the
MOSPAR database [4], [13] so that it presents a 70% joint
cumulative probability for r0 and for the isoplanatic angle θ0
: 70% of the profiles of the database present a greater r0 and
a greater θ0 than the one of the profile considered here. The
integrated turbulence parameters for the MOSPAR7070 are
reported in the first row of table I . The wind profile used for
the simulation is a Bufton one with 10 m.s−1 for the ground
speed parameter and 30 m.s−1 for the high altitude layer. Both
photon noise and detector noise generated by the detection
process are taken into account, and the potential saturation of
the detector as well. The incoming irradiance in the overall
aperture is 5.5 nW, the noise detector standard deviation is
σ2
noise = 30 electrons and the sensor is assumed to have a 0.75

quantum efficiency. The detector has a 43 kilo-electrons well
capacity and have a linear response. Using the SHWFS data



TABLE I
INTEGRATED TURBULENCE PARAMETERS FOR THE DIFFERENT PROFILES.

Profile r0[cm] θ0[µrad] σ2
χ

MOSPAR7070 5.8 9.3 0.047
29 layers 5.8 9.3 0.047
12 layers 5.6 9.2 0.037
4 layers 5.6 9.3 0.035
3 layers 5.6 9.6 0.034

hence generated a C2
n profile estimation is performed from

the empirical evaluation of the covariances via the iterative
minimization of a maximum likelihood criterion under posi-
tivity constraint. The C2

n used to generate the simulated data is
plotted in continuous black lines in figure 2. It consists in 29
layers with an irregular sampling adapted to the end-to-end
simulation process. The result of the estimation assuming a
spatial sampling of the turbulence identical to the one of the
profile used for the simulations is in red. This case corresponds
to an estimation only affected by the convergence noise, every
other unknown parameter being known. The profiles obtained
with a 12 layers, 4 layers and 3 layers evenly spaced are plotted
in green, blue and purple respectively. For each profile the C2

n

is supposed to be constant on the thickness of the layer. The
true profile presents 4 major layers (ground, 7 km from the
telescope, 16 km and 30 km along the line of sight). These
layers appears very well estimated in the convergence noise
limited case. This enables to estimate a sensitivity limit of
the approach that appears around 5.10−18m−2/3. The 4 main
layers contributions can be clearly identified for the 12 and
4 layers estimation case, contrary to the 3 layers one. The
integrated parameters calculated from the profiles are reported
in table I. Despite the 29 layers case which enables an accurate
estimation of the three considered parameters, the other cases
lead to small underestimation of r0 (typ. 3%) and to a more
significant underestimation of σ2

χ (21% for the 12 layers case).
The isoplanatic angle evaluation remains precise unless for the
3 layers case.

In order to assess the impact of the different sources
of errors simulated here (spatial sampling and noise) on
the uplink propagation channel statistics we investigate the
distribution of turbulence related atmospheric channel power
attenuation by numerical modeling. Random draws of uplink
channel power attenuation are calculated using a simplified
performance model called SAOST, a Monte Carlo simulation
tool exploiting random draws of complex amplitude maps and
AO corrected phase residuals generated in the Fourier space.
The cumulated probability evaluation provided with SAOST
on 20000 independent occurrences is plotted figure 3 as a
function of the attenuation threshold s for an AO precomen-
sation of 17 Zernike radial orders at 2 kHz. The telescope
diameter corresponds to the 60 cm of the FEELINGS ground
station [14]. We consider the 10−3 cumulated probability as
a manageable probability with respect to the error correcting
codes typical recovery performance. For the 29 layers case the
power attenuation threshold difference with the reference case
(MOSPAR7070) is 0.15 dB, respectively 0.20, 0.45 and 0.95

Fig. 2. C2
n profiles, MOSPAR7070 in black, 29 layers in red, 12 layers in

red, 4 layers in green, 3 layers in purple.

for the 12 layers, 4 layers and 3 layers case. For the 29 layers
case the position of the layers are identical to those in the
MOSPAR7070. The remaining errors that prevent the 10−3

attenuation threshold from being identical to the reference
case are the limited number of occurrences in the statistical
horizon to compute the empirical covariances and the influence
of the noise on the Shack-Hartmann wavefront sensor data.
The only additional error for the other cases is the number
of layers used to describe the profile. This error increases
as the number of layers decreases. In view of the undergone
computational burden (it takes less than 30 s to perform the
12 layers estimation on a single CPU) and of the gain in
terms of link margin uncertainty (0.25 dB compared to the
4 layers case) a 12 layers estimation will be implemented in
FEELINGS’ data pipeline.

We presented an evaluation of the power margin uncer-
tainty related to the turbulence channel characterization for
a typical GEO feeder link on the uplink. According to the
results a 0.20 dB typical error can be expected from the C2

n

profile estimation method exploited here. These results can
be considered as a best case scenario, as they were obtained
assuming that both the outer scale of turbulence and the wind
profile are assumed to be known. As this is not the case in
practice a dedicated process must be considered to estimate
as well these parameters. For the outer scale influence, a
way to proceed would be to extract it from a fit of the
measured phase variance per radial order exploiting a direct
model already available in the literature[15], [16]. For the
wind profile, a short term approach could rely on a parametric
estimation of a Bufton wind profile which parameters would
be provided by local measurements (for the ground wind speed
modulus) and for the unknown parameters on the minimization
of an error criterion between the scintillation temporal power
spectrum estimated from the SHWFS data and a model with
an approach analogous to the one presented in [17]. Of course



on a longer term prospect a generalization of the C2
n profile

estimation to a joint estimation of both the C2
n and wind profile

should be made possible by the possibility to compute the
spatio-temporal covariances of slopes and intensities in real
time, assuming a tractable expression of these spatio-temporal
covariances is available.

Fig. 3. Cumulated probability function of the uplink received optical power
attenuation for the different profiles : MOSPAR7070 in black, 29 layers in
red, 12 layers in red, 4 layers in green, 3 layers in purple.

III. ATMOSPHERIC TURBULENCE PARAMETERS
PREDICTION

In the previous subsection, we focused on the short term
performance estimation. The aim of this section is to investi-
gate, for a time horizon of the order of an hour or more, the
temporal prediction of key atmospheric turbulence parameters,
specifically the Fried parameter (r0), the isoplanatic angle (θ0),
and the atmospheric coherence time (τ0). These parameters
exhibit high temporal variability, and accurate prediction is
crucial for the optimal operation of optical communication
systems. To achieve this, we explore the use of deep learning
models, such as N-BEATS and N-HITS.

To construct a database, we rely on WRF (Weather Research
Forecast) simulations. WRF is a numerical weather prediction
model that provides valuable insights into the atmospheric
conditions that affect turbulence parameters such as temper-
ature vertical profiles, wind speed vertical profiles and more.
C2

n profile estimation from WRF outputs has been performed
using the model described by F. Quatresooz in [18]. To
estimate the reliability of the results, we selected a location
and a time period for which we had access to local integrated
parameter measurements. Four temporal periods were selected,
October, April, July and August of 2021 to cover different
seasons. Simulations were done for the Teide observatory
(28.30228, -16.51032) at altitude 2390 m where a differential
image motion monitor (DIMM) measuring the Fried parameter
has been installed by Miratlas. The instrument is positioned

on a 7 meter high tower to limit the sensitivity to the most
intense ground phenomena.
r0 was measured only during day time due to a failure

of the night time instrument. However, since the systems
dedicated to free space optics will have to cover all the
turbulence conditions likely to be encountered, they are
designed for demanding turbulence conditions, which almost
always occur during the day. In this respect, the database
supplied by Miratlas provides representative measurements,
as it covers daytime conditions.

First step of validation of WRF data has been to look at the
meteorological parameters on the ground level.

Fig. 4. Comparison of the temperature and humidity on the ground level ob-
tained through WRF (orange) and measured through the local meteorological
station (blue)

As we can see on Figure 4, the trend is well represented
here through the month of April but similar comparisons are
obtained for the other months. Nevertheless, a systematic error
appears on the simulation of the ground layer temperature
using WRF, this could be due either to the height of the first
layer not being extremely accurate or due to the fact that the
nature of the ground is not accounted for in our simulations.

The high frequency variation in temperature or relative
humidity over short time scales is not accurately described,
this is even more visible when comparing the simulated r0
values in April as we did in Figure 5. WRF at best gives an
average value of the Fried parameter over a couple of hours
but does not translate the high frequency variability.

The reasons are numerous:
• WRF simulations are conducted on a grid with a large

spatial resolution compared to the local variations in
atmospheric parameters. This is particularity true for fine-
scale processes such as optical turbulence parameters that
have, close to the ground, an outer scale of a few metres.



Fig. 5. Comparison of the r0 obtained through WRF (orange) and measured
through the local meteorological station (blue)

• WRF uses parametrisation schemes to simulate the pro-
cesses at unresolved scales like turbulence and boundary
layer interactions, which are the processes contributing to
large-scale variability. Nonetheless, these parametrisation
schemes are only statistical models.

• The region being simulated presents complex terrain
and heterogeneous land, which leads to challenges in
accurately representing local atmospheric conditions that
cannot be solved using only WRF.

• The 5 minutes temporal resolution of WRF involves
temporal averaging, which smooths out high-frequency
variability, while the local measurement consists of the
acquisition of a point every minute without any averaging
being done.

Despite these intrinsic limitations WRF simulations are
able to capture the larger-scale trends and patterns in the
atmospheric data. They give us an idea of the evolution
of each layer of the atmosphere for kilometres around the
observation point.

These considerations led us to continue the prediction
work on WRF data only, for exploratory purposes and with
the aim of developing interesting models for forecasting over
mid-term time periods. This was done using two newly-
presented deep neural network temporal prediction model
called N-BEATS and N-HITS and compared to the latest
state of the art model from integrated parameters prediction
ARIMA+VMD presented in [19]. The training process is
always the same. Each month is separated into 2 times 15
days, the first being used as a training set for the models, and
the second being used as validation set. It was determined
that the prediction gives the best results for an input time
series of the model of 5 to 7 days.

The best results were obtained with N-BEATS, while N-
HITS is usually more suitable for long trends and requires a
more complex parametrisation. Figures 6 shows two relevant
examples of the kind of probabilistic prediction obtained using
N-BEATS. For each of these cases, we have applied quantile
regression with quantiles corresponding to a 95% confidence

interval.

07-20 12 07-21 00 07-21 12 07-22 00 07-22 12 07-23 00 07-23 12

0.0

0.2

0.4

0.6

0.8

1.0

Stochastic forecast of NBEATS Model on R0 values with 50 series as training
input
validation
NBEATS
 - RMSE : 0.13%
 - MAE : 0.10%

07-21 12 07-21 18 07-22 00 07-22 06 07-22 12 07-22 18 07-23 00 07-23 06 07-23 12

0.0

0.2

0.4

0.6

0.8

Evaluation of different models on R0 values with 50 series as training for Deep Learning ones
input
validation
NBEATS
 - RMSE : 0.05%
 - MAE : 0.03%

Fig. 6. Two examples of prediction of r0 over one day using N-BEATS for
July

The model visually gives impressive prediction but is still
basic as it only uses moments from the past 7 days to predict
the upcoming ones. This results in good trend prediction, but
the model would not be able to anticipate unexpected variation
due for example to high ground turbulence (sudden change in
temperature or wind speed).

This was accounted for by implementing the use of past
covariate to these models. Looking at correlations between the
moment of interests and the meteorological data available in
WRF simulations, we selected two covariates: temperature at a
ground level and the ground Turbulent Kinetic Energy (TKE).
Adding these measurements to the input of the model allows
to learn the relationship between the past meteorological con-
dition and the future moment, which improves the precision
the predictions with metric scores decreasing by 5 to 15%
depending on the case (lower is better). All metrics are visible
in the next Table II.

As can be seen in Figure 7, adding the temperature as a
past covariate, not only improves the prediction compared to
the TKE only case, but also lowers significantly the precision
interval of the prediction making it much more reliable.

From all scores presented in Table II, it is clear that the
latest temporal prediction model NHITS does not behave
better than the ARIMA based method in our case and the
reasons remain unclear. It could be that the more complex
architecture of NBEATS, even though it is slower, allows us
to learn more complex patterns in the data, which can lead
to better predictions. The ability of NHITS to capture long-
term dependency much better than NBEATS is probably not as
relevant in our case, since there is little long-term dependency
in moments due to the nature of atmospheric phenomena.
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Fig. 7. Comparison of N-BEATS with TKE (purple) as a past covariate and with T° + TKE (yellow) as past covariates for a prediction of a few hours the
22nd of October.

TABLE II
PREDICTION SCORE FOR THE DIFFERENT MODELS AND DIFFERENT

MOMENTS OF INTEREST. THE LEFT SCORE IS THE RMSE AND THE RIGHT
ONE THE MAE

Moments r0 τ0 θ0
ARIMAV MD 0.100/0.087 0.128/0.117 0.119/0.109
NHITS 0.096/0.081 0.128/0.118 0.127/0.120
NBEATS 0.071/0.061 0.075/0.068 0.083/0.076
NBEATSTKE 0.069/0.059 0.073/0.066 0.076/0.069
NBEATSTKET

0.061/0.049 0.070/0.063

In spite of this, NBEATS outperforms the current state-of-
the-art ARIMA + VMD model regardless of the moment
considered. The prediction score can slightly be improved with
the addition of the TKE as a past covariate and even further
adding the temperature measured near the ground as well.

One key area of improvement lies in the incorporation
of future covariates, such as meteorological forecasts from
mesoscale models, to provide more forward-looking predic-
tions. Additionally, composite models that combine local
measurements and outputs from meteorological models like
WRF could offer a comprehensive solution, capturing both
trend predictions and high-frequency variability. Lastly, robust
uncertainty estimation methods should be developed to provide
reliable confidence measures for the composite predictions.

IV. EXPERIMENTAL PLAN

Reliable temporal characteristics of the received optical
power are for instance mandatory to define appropriate im-
pairments management strategies (interleavers, error correct-
ing codes) and decline the corresponding constraints on the



space segment. Such models are emerging but they still lack
experimental validations in relevant turbulence conditions.

A. Atmospheric transmission measurements

To validate the hypothesis on the transmission of the budget
link, we will implement an atmospheric transmission assess-
ment using MATISSE with Météo-France forecast data, 12
to 36 hours in advance. The MATISSE code is the DGA’s
reference code for modelling atmospheric radiative transfer
on a global scale [20]. It provides atmospheric luminance and
transmission over the entire optical spectrum. It has databases
that can be used to fill in the input parameters: standard or
climatological thermodynamic profiles, optical properties of
aerosols and cloud types, reflectance of the ground, sea tem-
perature, etc. This assessment will provide an initial estimate
of the various contributors to transmission along the line of
sight (molecula, cloud and aerosol transmission), with the
temporal and spatial resolution of Météo-France forecasts, i.e.
2.5 km and 1 h respectively. Accuracy is limited to forecasts
accuracy.

The FEELINGS ground station is equipped with ground-
based measurement instruments to provide, after process-
ing, precise characterisation on a local scale of parameters
characteristic of atmospheric transmission: spatial distribution
or integration along the line of sight, temporal evolution
on a scale of a few minutes of microphysical and optical
parameters. A visible all-sky camera and a ceilometer will
be used to characterize clouds; a Sun Sky Lunar CIMEL
photometer will be supplied to document aerosols. The data
is usually displayed vertically from the instrument and at
its wavelength. The use of a combination of sensors makes
it possible to overcome the individual limitations of each
sensor in order to access more parameters and improve the
quality of the retrieval. The combination of a LiDAR (ideally
bi- or multi-wavelengths), an All Sky visible camera, and
day/night sunphotometer is an effective solution for describing
the atmosphere. This description is based both on processes
that combine the instruments and on complementary expertise
on a case-by-case basis. Full automation of processing requires
further development.

Feeding an atmospheric propagation code with local mea-
surements of the atmosphere is the most interesting solution
for meeting the need for local evaluation of transmission along
the optical link and at the wavelength of this link. This ap-
proach benefits from the local description of the atmosphere by
the measurements, which is decisive, and from the flexibility of
the modelling in the choice of spectral bands and calculation
scenarios. Since the parameters returned by local measure-
ments are not always directly usable as input data for the code,
they have to be translated into input parameters. This is the
case for clouds and especially aerosols. As before, automatic
access to code input parameters from measurements requires
methodological developments. This is the next stage, which
will provide in-depth knowledge of atmospheric transmission
for the optical links with the FEELINGS ground station.

B. Validation of the link budget

In the specific case of geostationary ground-satellite links,
it is necessary to validate in real conditions the assumptions
made about the link budget especially for the largest contrib-
utors : geometrical losses (beam divergence and depointing),
losses due to atmospheric turbulence and their correction by
adaptive optics, losses inherent in the optical path and the
impact of attenuation caused by the degraded transparency of
the atmosphere (absorption, scattering).

The links are also an opportunity to demonstrate in real
conditions the implementation of a laser amplifier that goes
beyond the state of the art and whose optical characteristics
are compatible with high-speed data transmission [2]. One of
the main challenge of the use of such an amplifier is the
implementation on the optical bench by sharing the optical
path with a differential between the flux emitted at the pupil
output and that received flux on the downlink telecom channel
of 10 orders of magnitude.

C. Understanding the temporal and statistical characteristics
of the received power

To ensure lossless transmission of information, data trans-
mission reliability is based on the use of digital information
processing (error correcting codes on interleaved data), the
efficiency of which is highly dependent on the statistical and
temporal properties of the propagation channel. A major chal-
lenge therefore lies in the ability to have reliable models of the
statistical and temporal properties of the signal received at the
broadband detection level. These properties are conditioned
by the impact of atmospheric turbulence and its correction by
AO, the performance of which is sensitive to the conditions
of use.

To date, there is no AO system in operation on a telescope
24 hours a day and operating on an uplink. All the systems
in operation on telescopes operate at night (in the case of
astronomical applications or space observation) or on down-
link optical links. The turbulence conditions to be addressed
are also very poorly documented to date. To demonstrate the
validity of the models in the range of conditions of use, it is
necessary to characterise the properties of the high-frequency
atmospheric channel at the same time as the data link, and to
be able to reproduce the properties of the signal using models
parameterised by the propagation conditions encountered.

V. CONCLUSION

Atmospheric turbulence will compromise optical feeder
links availability unless appropriate strategies are put in place
to mitigate and anticipate them. Properly assessing turbulence
impact is critical to reach the availability requested from very
high data rates optical links and finally provide connectivity as
a service. Short term reliable performance estimation will be
used to optimize AO based system operations, mid-term pre-
diction will be necessary to ensure an uninterrupted handover.
FEELINGS, ONERA’s optical ground station demonstrator for
optical feeder links will implement a real time performance
assessment based on the use of a Monte Carlo model that



exploits an analytical description of AO residuals and spa-
tial characteristics of turbulence induced complex amplitude
impairments. This model is fed by systematic C2

n and wind
profiles estimations. We focused here on the C2

n estimation
process and put the emphasize on the influence of its key
parameters. For a 10 s duration temporal horizon for data
acquisition a 12 layers estimation result in a received optical
power uncertainty of 0.2 dB. The estimation converges in
less than 30 s keeping the computation cost within a typical
stationary time of atmospheric turbulence. With respect to
performance prediction, we demonstrated recently that an
appropriately trained Artificial Intelligence (AI) exploiting
Gaussian processes can provide reliable estimates of optical
link availability while requiring a limited number of appropri-
ately chosen integrated parameters. The possibility to predict
such parameters offers the perspective to be able to predict link
availability with an accuracy compatible with typically used
link margins. We investigated here the possibility to exploit
state of the art AI tools to predict atmospheric parameters
within few hour. On WRF data the method provides very
promising results with prediction errors smaller than 10 %
within 1 hour timescale.
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[5] P. Cyril, B. Aurélie, C. Jean-Marc, et al., “Feelings:
The onera’s optical ground station for geo feeder links
demonstration,” in 2022 IEEE International Conference
on Space Optical Systems and Applications (ICSOS),
IEEE, 2022, pp. 255–260.

[6] B. Roy, S. Poulenard, S. Dimitrov, et al., “Optical
feeder links for high throughput satellites,” in 2015
IEEE International Conference on Space Optical Sys-
tems and Applications (ICSOS), IEEE, 2015, pp. 1–6.

[7] Y. Munemasa, Y. Saito, A. Carrasco-Casado, et al.,
“Advanced demonstration plans of high-speed laser
communication,” 2019.

[8] R. M. Calvo, J. Poliak, J. Surof, et al., “Optical tech-
nologies for very high throughput satellite communi-
cations,” in Free-Space Laser Communications XXXI,
SPIE, vol. 10910, 2019, pp. 189–204.

[9] T. Anfray, S. Mariojouls, A. Laurent, et al., “Assessment
of the performance of dpsk and ook modulations at
25 gb/s for satellite-based optical communications,” in
2019 IEEE International Conference on Space Optical
Systems and Applications (ICSOS), IEEE, 2019, pp. 1–
6.

[10] N. Védrenne, V. Michau, C. Robert, and J.-M. Conan,
“C(n)(2) profile measurement from shack-hartmann
data,” Optics Letters, vol. 32, no. 18, pp. 2659–2661,
Sep. 15, 2007, Number: 18, ISSN: 0146-9592. DOI: 10.
1364/ol.32.002659.

[11] N. Védrenne, A. B. Montmerle, C. Robert, V. Michau,
J. Montri, and B. Fleury, “C2n profile measurement
from shack-hartmann data: Experimental validation and
exploitation,” in Optics in Atmospheric Propagation and
Adaptive Systems XIII, vol. 7828, International Society
for Optics and Photonics, Oct. 11, 2010, 78280B. DOI:
10.1117/12.866168. (visited on 10/05/2019).

[12] S. Perera, R. W. Wilson, J. Osborn, and T. Butter-
ley, “SHIMM: A seeing and turbulence monitor for
astronomy,” in Adaptive Optics Systems V, vol. 9909,
SPIE, Jul. 27, 2016, pp. 1108–1116. DOI: 10.1117/12.
2231680. (visited on 10/04/2023).

[13] N. Vedrenne, C. Petit, A. Montmerle-Bonnefois, et
al., “Performance analysis of an adaptive optics based
optical feeder link ground station,” in International
Conference on Space Optics — ICSO 2020, vol. 11852,
SPIE, Jun. 11, 2021, pp. 527–535. DOI: 10.1117/12.
2599232. (visited on 11/25/2021).

[14] C. Petit, A. Bonnefois, J.-M. Conan, et al., “FEELINGS
: The onera’s optical ground station for geo feeder links
demonstration,” in International Conference on Space
Optical Systems and Applications (ICSOS 2022), Kyoto,
Japan: IEEE, Mar. 2022. DOI: 10.1109/ICSOS53063.
2022.9749705. (visited on 10/08/2023).

[15] D. M. Winker, “Effect of a finite outer scale on the
zernike decomposition of atmospheric optical turbu-
lence,” JOSA A, vol. 8, no. 10, pp. 1568–1573, Oct. 1,
1991, Publisher: Optica Publishing Group, ISSN: 1520-
8532. DOI: 10 . 1364 / JOSAA . 8 . 001568. (visited on
10/08/2023).

[16] F. Chassat, “Propagation optique a travers la turbulence
atmospherique : Etude modale de l’anisoplanetisme et
application a l’optique adaptative,” thesis, Paris 11,



Jan. 1, 1992. [Online]. Available: http:/ /www.theses.
fr/1992PA112262 (visited on 10/07/2019).

[17] C. Robert, M.-T. Velluet, E. Masciadri, et al., “Charac-
terization of the turbulent atmospheric channel of space-
ground optical links with parametric models: Descrip-
tion and cross-validation with mesoscale models and in-
situ measurements,” in Environmental Effects on Light
Propagation and Adaptive Systems II, K. U. Stein and
S. Gladysz, Eds., Strasbourg, France: SPIE, Oct. 31,
2019, p. 3. DOI: 10 . 1117 / 12 . 2534659. (visited on
02/08/2021).

[18] F. Quatresooz, G. O. de Xivry, O. Absil, D.
Vanhoenacker-Janvier, and C. Oestges, “Challenges for
optical turbulence characterization and prediction at op-
tical communication sites,” in International Conference
on Space Optics—ICSO 2022, SPIE, vol. 12777, 2023,
pp. 2410–2424.

[19] Y. Li, H. Zhang, L. Li, L. Shi, Y. Huang, and S. Fu,
“Multistep ahead atmospheric optical turbulence fore-
casting for free-space optical communication using em-
pirical mode decomposition and lstm-based sequence-
to-sequence learning,” Frontiers in Physics, vol. 11,
p. 1 070 762, 2023.
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