
HAL Id: hal-04644465
https://hal.science/hal-04644465v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

SyDPaCC: A Framework for the Development of
Verified Scalable Parallel Functional Programs

Frédéric Loulergue, Jordan Ischard

To cite this version:
Frédéric Loulergue, Jordan Ischard. SyDPaCC: A Framework for the Development of Verified Scalable
Parallel Functional Programs. Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA), Oct 2024, Crete Island, Greece. �10.1007/978-3-031-75380-0_16�. �hal-04644465�

https://hal.science/hal-04644465v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

PREPRINT

SyDPaCC: A Framework for the Development of Verified
Scalable Parallel Functional Programs

Frédéric Loulergue Jordan Ischard

Univ. Orléans, INSA CVL, LIFO EA 4022, Orléans, France
frederic.loulergue@univ-orleans.fr, jordan.ischard@univ-orleans.fr

Abstract: The SyDPaCC framework supports the development of
scalable parallel functional programs with Coq and helps the devel-
opers to write correct-by-construction programs with respect to spec-
ifications written as simple (and possibly very inefficient) functional
programs. Parallel programs are built from specifications using ver-
ified program transformations offered by SyDPaCC. Leveraging the
Coq extraction mechanism, compilable code can be obtained and ex-
ecuted on shared-memory or large scale distributed memory parallel
machines. This paper presents the usage of SyDPaCC via an ex-
ample, explains the internals of SyDPaCC and gives a tour of the
program transformations provided by the framework.

Keywords: scalable parallel computing, functional programming, in-
teractive theorem proving, program transformation, Coq

1 Introduction

There are many ways to program parallel architectures ranging from a dozen cores in a shared memory
machine to tens of thousands of cores or more in large distributed memory supercomputers. Message
Passing Interface [72, 61] is a de facto standard. While it is high-level compared to low-level shared
memory and network APIs, it remains low-level compared to other approaches. In particular, MPI
follows the Single Program Multiple Data (SPMD) paradigm in which programmers write a single
program (implicitly parametrized by a process identifier) that should be understood as a parallel
composition of communicating sequential programs. This style helps writing programs that scale
to large numbers of processors and gives developers a lot of control on the parallel aspects of their
programs. However, it is difficult for the programmers to see if a piece of code is local because it
depends on the process identifier or if it is global because it is independent of the process identifier.
Moreover, the execution and reading order may be different.

Automatic parallelization, in particular of nested loops using the polyhedral model [23, 8, 69], does
not require any expertise in parallelism. It is however mostly used for automatic vectorization and
parallelization for shared memory architectures, thus with a limited scalability. The programmers
also completely lose control over parallelism, although recent approaches aim at making polyhedral
optimizations amenable to programmers’ analysis and customization [2].

There are intermediate approaches where the programmers still have some control over the parallel
aspects of their programs but in a more restrictive parallel model than the parallel model supported

1

by MPI. The parallel model may be restricted independently of any programming interface, for e.g.
the PRAM model [42], the Bulk Synchronous Parallel model [82], or the logP model [13]. Or the
restricted parallel model may come from a high-level programming language or library which allows
expressing, without complex implementation details, a large range of parallel algorithms.

Functional programming languages have been an inspiration for the design of such high-level par-
allel programming languages and libraries, starting with algorithmic skeletons [11, 65, 70, 31]. Such
skeletons can be seen both as patterns of parallel algorithms and higher-order functions implemented
in parallel and working on concurrent or distributed data structures. There are many algorithmic
skeletons libraries for various programming languages in particular C++ [21, 22, 35, 46]. Popular
frameworks such as MapReduce [15] and Apache Spark [1] are closely related to algorithmic skele-
tons. Other proposals like Bulk Synchronous Parallel ML [56] (BSML) and Eden [49] and are more
general than data-parallel skeletons and can be used to implement them [43, 51].

Gallina, the specification language of the Coq [81, 3, 10] proof assistant can be considered as a
functional programming language with a rich type system allowing to state and prove mathematical
properties. Based on the Curry-Howard correspondence [37], statements of properties are expressed
as types while the proofs are programs, even though one usually writes proofs in Coq using one of
the proof script languages (in particular Ltac) rather than directly writing programs that are proofs.

The starting point of the approach presented in this paper was to answer the question : is
it possible to reason about programs written with one of these high-level library, namely BSML,
using Coq and following a shallow embedding approach, i.e. using Coq as a sequential functional
programming language? This is indeed the case [26, 80] as BSML has a pure functional semantics [55].
Note that BSML is axiomatized in Coq, therefore BSML programs cannot be executed in parallel in
Coq. But they can be extracted fromCoq to parametrized OCaml code which can be instantiated by
a parallel implementation of BSML on top of MPI [56] and run on parallel machines. However, we also
provide a sequential realization of the BSML axioms in Coq which allows running sequentially BSML
programs in Coq. It also allows validating experimentally that the parallel BSML implementation
returns the same results as the sequential Coq implementation which is proved correct with respect
to the BSML axiomatized semantics.

Algorithmic skeletons can be implemented using BSML, therefore Coq and BSML axioms can
be leveraged to verify the correctness of implementations of algorithmic skeletons [29, 50]. It is
convenient to express the correctness of an algorithmic skeleton or a non-skeletal parallel program
written in BSML by writing a sequential version that is considered as a specification and by stating
that they compute the same results for the same inputs (up to a sequentialization of distributed data
structures).

Constructive algorithmics [5] is a transformational approach to optimize sequential functional
programs. When applied to parallel programming [12, 32, 62], the transformations are proved (on
paper) on sequential programs and the result of the transformations is a sequential program expressed
with higher-order functions, such as map and reduce. The parallel implementation is then written
using an algorithmic skeleton library (often in C++) using the optimized sequential program as a
specification. It is of course possible to write and verify such sequential transformations in Coq, and
the correctness of algorithmic skeletons BSML implementations in Coq guarantees that replacing
the higher-order sequential functions by corresponding algorithmic skeletons is correct.

At some point, we realized that transformations and the correctness of algorithmic skeletons
can be expressed as instances of typeclasses in Coq in a way that the typeclass instance resolution
mechanism of Coq can automatically perform the sequential program optimizations and replacement
of high-order sequential functions by algorithmic skeletons. We consider the replacement phase to
be an automatic parallelization. This initial transformation and parallelization infrastructure was
based on many typeclasses. It was later simplified and restructured into what is now called the
SyDPaCC framework. This refactoring made more clear that only the statements of the correctness
of algorithmic skeletons (and their implementations) depend on the parallel model. Other parallel

2

libraries than BSML can be axiomatized, and algorithmic skeletons implemented and proved correct
using these libraries, while relying on the existing theorems for optimization. This part of SyDPaCC
is called a back-end and the only fully supported back-end is BSML, but there is preliminary work
on Apache Spark [53].

The SyDPaCC framework [59] thus supports the development of scalable parallel functional
programs with Coq and helps the developers to write correct-by-construction programs with respect
to specifications written as simple (possibly very inefficient) functional programs. Parallel programs
are built from specifications using provided verified program transformations. Coq extraction mech-
anism [48] generates parametrized compilable code that can be executed on shared-memory or large
scale distributed memory parallel machines. SyDPaCC is flexible and accessible to users with
different expertises and interests.

Users knowledgeable in sequential functional programming and familiar with interactive theorem
proving with Coq can write inefficient sequential programs (considered as specifications) and prove
properties on these programs to automatically transform them into efficient algorithmic skeleton-
based parallel programs. In this case, the framework is limited to functions that are compositions
of list homomorphisms [5], accumulations [4], BSP homomorphisms [29, 45] and sequential functions
that are not in these classes but for which a proof of correspondence with a parallel version exists.
The paper presents SyDPaCC mostly with this kind of users in mind.

Users who also have knowledge about the bulk synchronous parallel model can write any bulk
synchronous parallel algorithm in a functional way and prove its correctness using the framework.
It is of course no automatic, but SyDPaCC does provide reasoning principles that help reasoning
about BSML programs. Such users, by providing the correctness statement as a typeclass instance,
extend the expressivity of the framework for less knowledgeable users.

After a quick introduction to Coq (Section 2), this paper presents the use of SyDPaCC via a
new and very simple example (Section 3) including experiments on a parallel machine. Section 4
explains how a parallel program can be automatically obtained from the specification of Section 3
and the model of parallelism SyDPaCC currently supports. We give a tour of the program transfor-
mations available in SyDPaCC and the related publications (Section 5). Related work is discussed
in Section 6. We conclude and give future research directions in Section 7.

SyDPaCC is open source software and is available at https://sydpacc.github.io. Code
examples are (sometimes slightly simplified) excerpts of SyDPaCC version 0.5.

2 An Overview of Coq

Gallina is quite close to the pure functional syntax of OCaml, but with a richer type system. One
feature not present in the OCaml functional language is the support of typeclasses [73]. Basically,
typeclasses in Coq are structures or record types but that come with a kind of Prolog-like database.

We give a very quick overview of the salient features of Coq used in SyDPaCC with the code
of Figure 1.

Lines 4–8, 10, 17–21 are close to usual functional programming: they contain the definitions of
two recursive functions length and filter by pattern matching on their list arguments, as well as
the definition of a function compose for which an infix notation ◦ is given in line 11.

These functions are polymorphic functions. In the case of length (line 4), the type argument A
is explicitly given. However, because of the option Set Implicit Arguments in line 2, Coq makes
this argument implicit. Indeed, having the type of the second argument of length determines A.
That is why on line 7, length is applied only to one argument. filter is also polymorphic and
depends on a type argument. Line 17 does not contain (A: Type) as first argument. Nevertheless,
line 2 also contains the option Generalizable All Variables and the argument (p: A→bool) of
filter is prefixed with a back-tick ‘. It means that if the type of the argument uses names that are

3

https://sydpacc.github.io

1 Require Import List. Import ListNotations.

2 Set Implicit Arguments. Generalizable All Variables.

3

4 Fixpoint length (A: Type)(xs: list A) : nat :=

5 match xs with

6 | [] ⇒ 0

7 | _::xs’ ⇒ 1 + length xs’

8 end.

9

10 Definition compose ‘(g: B→C)‘(f: A→B): A→C := fun x ⇒ g (f x).

11 Infix "◦ " := compose (at level 40, left associativity).

12

13 Lemma length_app: ∀ A (xs ys: list A),

14 length (xs++ys) = length xs + length ys.

15 Proof. (* omitted *) Qed.

16

17 Fixpoint filter ‘(p: A→bool)(xs: list A): list A :=

18 match xs with

19 | [] ⇒ []

20 | x::xs’ ⇒ if p x then x::filter p xs’ else filter p xs’

21 end.

22

23 Lemma filter_app: ∀ ‘(p: A→bool) xs ys,

24 filter p (xs++ys) = filter p xs ++ filter p ys.

25 Proof.

26 induction xs as [| x xs IH].

27 - easy.

28 - intro ys. simpl. rewrite IH. now destruct (p x).

29 Qed.

30

31 Class Homomorphic ‘(h: list A→B)‘(op: B→B→B) :=

32 { homomorphic : ∀ x y, h (x++y) = op (h x) (h y) }.

33

34 Instance length_hom (A: Type): Homomorphic (@length A) Nat.add.

35 Proof. constructor. apply length_app. Qed.

36

37 Instance filter_hom ‘(p: A→bool): Homomorphic (filter p) (@List.app A).

38 Proof. constructor. apply filter_app. Qed.

39

40 Instance composition_homomorphic

41 ‘{Hg: @Homomorphic A (list B) g (@List.app B)}

42 ‘{Hf: @Homomorphic B C f op_f } : Homomorphic (f ◦ g) op_f.

43 Proof. (* omitted *) Qed.

Figure 1: A Simple Coq Example

4

not defined yet, these names are automatically added as implicit arguments. In the case of filter,
an argument (A: Type) is added automatically because the type of p is A→bool.

filter p xs’ (on line 24) is the application of function filter to two arguments: p and xs’.
++ is a notation for list concatenation. The match with end construct is a kind of extended switch

similar to the match construct of OCaml or Rust. In line 19, it means that if the list is the empty list
[] then the returned value is the empty list [] ; otherwise (line 20) the list is non-empty: it consists
of a first element x and the remainder (called xs’) of the list xs. :: is the “cons” operation that
builds a list by adding an element in front of an existing list. This operation is also a constructor of
lists, it can be used in such a pattern. On the right of ⇒ , variable x is bound to the first element of
the argument list xs and xs’ to xs but without its first argument.

Unlike mainstream functional programming languages, it is possible to state and prove lemmas
in Coq. The first lemma (lines 13–15) states that the length of the concatenation of two lists is the
sum of the lengths. Its proof script is omitted (line 15). The second lemma states that filtering the
concatenation of two lists is the concatenation of the filtering of both lists. The proof script is given
in extenso on lines 25–29. It consists of a sequence of tactics. Using a Coq IDE, these tactics are
applied in proof mode on a goal and may produce new goals or end the proof of a goal. For example,
the first tactic starts a proof by induction on the list xs, the initial goal being the lemma statement.
This tactics produces two new goals:

• ∀ ys: list A, filter p ([]++ys) = filter p [] ++ filter p ys,

• ∀ ys: list A,

filter p ((x::xs)++ys) = filter p (x::xs)++filter p ys.

The first goal can be proved by simplification using the definitions of filter and list concatenation,
then by concluding by reflexivity. This is done automatically using the tactic easy. For the second
goal, we need to apply the induction hypothesis (named IH) and reason by case on whether x satisfies
predicate p. This is done by the sequence of tactics of line 28.

Informally, a function f is a list homomorphism if it can be computed by dividing the list in two
pieces, recursively calling f on these two pieces and combining the two results into the final result
using a binary operation. We define the typeclass Homomorphic on lines 31–32, to formalize this
concept. One may wonder why h and op are not bundled in the typeclass as fields h and op. This
is a quite advanced Coq technical discussion and we refer to [76]. In this paper, h and op can be
considered as part of the Homomorphic record but having them as arguments to the typeclass allows
the instance resolution mechanism briefly presented below to infer them if needed.

We then define an instance of this class on lines 34–35. The field homomorphic is the statement
of a property, thus to define such an instance we need to write a proof. In this case, we rely on the
lemma length_app already proved. The interest of typeclasses is the typeclass instance resolution
mechanism. It is possible to specify arguments of a function in Coq to be implicit. If an implicit
argument has for type a typeclass, then Coq uses a Prolog-like resolution mechanism to find or
build an instance of this type. When we define the instance length_hom, this instance is added to
a database of instances, and can be thought as a Prolog fact. Some instances may have parameters
and then correspond to Prolog rules (see Figure 3 for examples of such instances). These facts and
rules are used by the resolution mechanism of Coq.

3 SyDPaCC by Example

As a small example of the use of SyDPaCC, we will implement a parallel program for counting the
number of elements in a distributed list satisfying a given predicate.

5

1 Definition opl (a: A)(count: nat): nat := count + (if (p a) then 1 else 0).

2

3 Definition opr (count: nat)(a: A): nat := count + (if (p a) then 1 else 0).

4

5 Definition count_inv (n: nat): list A := map (fun x⇒ default) (seq 0 n).

6

7 Instance count_leftwards: Leftwards count_spec opl 0.

8

9 Instance count_rightwards: Rightwards count_spec opr 0.

10

11 Instance count_right_inverse: Right_inverse count_spec count_inv.

Figure 2: Properties of count_spec

Specification. The specification is given as a sequential function manipulating a list. It can simply
be written as:

Definition count_spec (A: Type)(p: A→bool)(l: list A): nat :=

length (filter p l).

We omit the details here and refer to the code, but we assume that there exists at least one value
of type A that satisfies p. This value is named default.

Properties of the Specification. We prove three properties about this specification:

• count_spec is rightwards, meaning it can be implemented using fold_right,

• count_spec is leftwards, meaning it can be implemented using fold_left,

• count_spec has a right inverse. For a positive number n, this right inverse builds a list
containing only the value default n times.

Omitting the proofs of the instances (that are only a few lines long), this is done by the code of
Figure 2.

Program Transformation and Parallelization. Finally, we call the program transformation
and automatic parallelization of SyDPaCC on the specification:

Definition par_count (A: Type)(p: A→bool): par(list A)→nat :=

parallel(count_spec p).

The transformations are done by the call to parallel. One important aspect besides applying it to
count_spec is the fact that we expect the result of this call to be of type par(list A)→nat. par

is a parametric type of distributed vectors (see more in Section 4.1). par(list A) is therefore a
parallel vector of lists and can be thought as a distributed list. Thus, we want to obtain a function
that operates on distributed lists.

This call succeeds, and count_par is the composition of a parallel reduce and a parallel map.
parallel relies on implicit arguments and typeclasses as explained in Section 4.2. The transforma-
tion proceeds in two steps: (1) it transforms the specification into a composition of sequential map
and reduce, (2) these sequential functions are replaced with their parallel counterparts. Note that
the first transformation may decrease the algorithmic complexity of the sequential function (this is
not the case here). This is for example the case for the maximum prefix sum application [59].

6

Instance third_homomorphism_theorem ‘{h:list A→B}

‘{Hl: Leftwards A B h opl e}

‘{Hr: Rightwards A B h opr e}

‘{inv: Right_inverse A B h h’}:

Homomorphic h (fun l r ⇒ h((h’ l)++(h’ r)))

Instance first_homomorphism_theorem

‘{H: Homomorphic A B h op}

FunCorr h ((reduce op) ◦ (List.map (fun x⇒ h[x]))).

Figure 3: Third and First Homomorphism Theorems as Typeclass Instances

In the case of the count_spec, a part of the call to parallel proceeds as follows. count_spec

properties stated as instances in Figure 2 are the hypotheses of the third homomorphism theorem
(Figure 3, proofs are omitted) and the conclusion of this theorem is stated as a typeclass instance: if
these hypotheses hold then the function is homomorphic. This conclusion in turn is the hypothesis of
the first homomorphism theorem, that states — as an instance of the typeclass FunCorr which is, in
this specific application, equivalent to stating ∀ l, h l = (reduce op) (map (fun x⇒ h[x]) l)

— that when a function is homomorphic then it can be implemented as a composition of map and
reduce.

Basically, parallel tries to find or build instances of FunCorr for its argument. For count_spec,
one possible instance is first_homomorphism_theorem. As this theorem has an instance of Homomorphic
as argument, then the instance resolution mechanism tries now to find an instance of Homomorphic.
One possible way of building such an instance is to apply third_homomorphism_theorem which re-
quires to build instances of Leftwards, Rightwards and Right_inverse. There are actually such
instances already defined in Figure 2. The instance resolution succeeds. This is however not the
whole story: what we have just described gives a sequential function of type list A→nat not of the
expected type par(list A)→nat. Indeed, FunCorr is more than just extensional function equality
and there are additional FunCorr instances that take care of replacing map and reduce by their
parallel counterparts as explained Section 4.2.

Note that resolution succeeds this way and proposes this particular parallelization because there
are instances of properties of count_spec as shown in Figure 2. Proving different properties could
instead trigger the transformation and parallelization using other transformation theorems and algo-
rithmic skeletons. Also, it is not difficult to directly show that count_spec is indeed homomorphic
by writing an instance of Homomorphic. In this case, the third homomorphism theorem would not
be applied, but the obtained parallel program would be very similar: the arguments to the par-
allel reduce and the parallel map, although extensionally equal to what is obtained here, may be
implemented differently.

Code Extraction and Experiment. The last step is to obtain OCaml code from this Coq
development using the extraction mechanism. All the applications in SyDPaCC are written inside
a parametric module that takes as argument a module whose signature is the module type of BSML
primitives. To obtain executable code, we just need to apply this parametric module to an actual
implementation of BSML primitives as provided by the BSML [56] library for OCaml implemented
on top of an MPI C library.

We experimented on a parallel machine named Speed2: a 32-core processor (Intel Xeon Gold
5218) with 192 GB of memory, running Ubuntu 22.04, OCaml 4.13.1, GCC 11.4 and OpenMPI 4.1.2.
We measured the time required for the computation 30 times. The table and figure present the
median of these measurements together with the standard deviation, as well as the relative speed-up.

7

Table 1 and Figure 3 present the results for count_par where the elements are square floating-
point number matrices of size 50×50 and the predicate checks if the square of the matrix is diagonal.
The experiment was conducted on a list of length 210. The speed-up is less than the number of
processors: indeed communications and synchronization are needed. Note that both communications
and synchronization are independent of the length of the list. Therefore, increasing the length of the
list would also increase the speed-up.

ti
m
e
(s
ec
on

d
)

number of cores

0
0.5
1
1.5
2

3

4

5

6

7

8

9

10

11

12

13

1 2 4 8 16 32

standard deviation
time (second)
speed-up (second)

Figure 4: Experiments on a 32-core Parallel Machine

Table 1: Result table for experiments on a 32-core Parallel Machine
number of cores median time (second) standard deviation speed-up

1 4.87 0.51 1
2 2.47 0.25 1.97
4 1.57 0.49 3.10
8 1.09 0.22 4.46
16 0.60 0.1 8.15
32 0.40 0.04 12.22

3.1 Trusted Base

The goal of SyDPaCC is to obtain verified parallel programs: how sure are we that the obtained
programs are correct?

First, we need to trust the Calculus of Induction Constructions (CIC) on which Coq’s type
system is based, as well as the type checker of Gallina programs of Coq. One of the goals of the
MetaCoq project [75] is to verify these aspects, as there were issues with the type checker (mostly
related to checking the termination of recursive functions). A large subset of the type checker has
been verified [74], thus we now only need to trust the CIC theory.

8

Second, the extraction mechanism of Coq have to be trusted. Actually, there are two parts in
this mechanism: in a first phase, Gallina programs are extracted into an internal miniML language.
This part (erasure) has been verified using MetaCoq [74]. The second phase translates miniML
to mainstream functional languages such as Haskell (some Gallina features are not supported) and
OCaml. This second phase is not verified, and in the case of OCaml, the extracted code may contain
values and types of the Obj undocumented module which are used to bypass OCaml’s type checker.
As the code is typed in Coq, if used correctly, these tricks should be safe. In the case of count_spec,
the extracted code contains only one such type definition which is not used by the application code.
This is not the case for some applications discussed in the next section. An alternative to Coq’s
built-in extraction to OCaml source code is to extract towards an intermediate representation of the
OCaml compiler. Such an approach has been verified [25].

Third, we need to trust that the BSML implementation on top of MPI — which contains OCaml
code and C code — satisfies its specification as provided by BSML axioms in Coq. As mentioned
in introduction, there is a verified sequential implementation that satisfies these axioms. Therefore,
we can at least test the parallel implementation against the verified sequential implementation.

Fourth, we need to trust the OCaml compiler. A compiler is a large piece of software and always
contain bugs unless it is formally verified. One possible way to remove the compiler from the trusted
base would be to use the verified CakeML compiler [78]. However, it would require the implemen-
tation and verification of an extraction mechanism towards CakeML and a new implementation of
BSML in CakeML.

4 SyDPaCC behind the Scenes

4.1 Reasoning about Functional Bulk Synchronous Parallel Programs

Bulk Synchronous Parallelism [82] is a structured model of parallelism. BSP programs run on
BSP computers which are distributed memory machines with the ability to deliver point-to-point
communications and possess a global synchronization unit. Any general purpose parallel machine
(for e.g. a shared memory machine or a Cluster of PCs) can be seen as a BSP computer.

A BSP program is a sequence of super-steps. A super-step consists of three logically different
phases. A visualization of a BSP program is given in Figure 5. In the computation phase, proces-
sors compute in parallel only using data they hold locally. In the data exchange phase, processors
send/receive messages to/from other processors. Finally, the super-step ends with a global synchro-
nization.

P1

P2

P3

...

Pn

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...
...

synchronization super-step end
data exchangecomputation

Figure 5: BSP super-steps

BSML is a pure functional programming library for OCaml [47] that supports the BSP model.
It offers an abstract data type of distributed vectors and four operations to manipulate them. Addi-

9

mkpar : (int → α) → α par

mkpar f = ⟨f 0, . . . , f (p− 1)⟩
apply : (α → β)par → α par → β par

apply ⟨f0, . . . , fp−1⟩ ⟨v0, . . . , vp−1⟩ = ⟨f0 v0, . . . , fp−1 vp−1⟩
proj : α par → (int → α)
proj ⟨v0, . . . , vp−1⟩ = function 0 → v0 | . . . | p− 1 → vp−1

put : (int → α)par → (int → α)par
put ⟨tosend0, . . . , tosendp−1⟩ = ⟨rcvd0, . . . , rcvdp−1⟩
where ∀ src, dst . 0 ≤ src, dst < p ⇒ rcvddst src = tosend src dst

Figure 6: BSML primitives

Definition replicate (A: Type)(x: A): par A :=

mkpar(fun _ ⇒ x).

Definition parfun (A B: Type)(f: A→B)(v: par A): par B :=

apply (replicate f) v.

Definition par_map (A B: Type)(f: A→B) : par(list A)→par(list B) :=

parfun (map’ f).

Figure 7: Parallel Map in Coq

tionally, it provides four constants that describe the performances of the BSP computer the BSML
program runs on. The BSP cost model is out of the scope of this paper, we refer the interested reader
to [6, 56]. Therefore, we use only one of these constants: bsp_p the number of processors of the BSP
computer.

In the remaining of this section, we consider that the value of bsp_p is p a strictly positive integer.
Let ⟨v0, . . . , vp−1⟩ denotes a parallel vector. The only possible size for a parallel vector is p, hence
there is one value per processor. The semantics of the four BSML primitives mkpar, apply, proj and
put are given informally in Figure 6. mkpar builds a parallel vector from a function. apply applies
a vector of functions (i.e. where at each processor the content of the vector is a function) to a vector
of values. proj can be seen as the dual of mkpar. However, the result is a function defined only on
[0, p− 1]. In a BSP super-step, the messages to be sent can be seen as a p× p matrix where the cell
i, j contains the message to be sent from processor i to processor j. put transposes this matrix and
in the result, the cell j, i contains the message received by j from i. In BSML, these matrices are
actually implemented as parallel vectors of functions.

The semantics of BSML in Coq is provided as a module type, i.e. it is an axiomatization of
the informal semantics of Figure 6. To check that the axioms are non-contradictory, a sequential
realization is provided by SyDPaCC. This module type allows to write and reason about BSML
programs in Coq. For example, a parallel map working on distributed lists is given in Figure 7 where
map’ is a tail recursive version of sequential List.map.

SyDPaCC offers a set of such parallel functions, also called algorithmic skeletons and transfor-
mation theorems to automatically parallelize some classes of functions as compositions of algorithmic
skeletons. Of course, the obtained parallel function is equivalent, in a sense given in the next sub-
section, to the initial sequential function.

10

4.2 Program Transformations

The support for program transformation and automatic parallelization relies on typeclasses:

• a typeclass for type correspondence (TypCorr): a type A is said to correspond to a type B if and
only if there exists a surjective operation join: B→A. Intuitively it means that for any value a
of A, there exists at least a value b of B corresponding to a. An example of type correspondence
is the correspondence between a sequential list and a distributed list. A distributed list can
be seen as p lists distributed on p processors. The join operation can be the concatenation
of these lists (if the distribution is circular then the join operation should be something else).
List.app is indeed surjective: a list l of size n can be divided into p lists of size about n/p
in such a way that their concatenation is l. In this case the distribution is balanced. But of
course it is not the only distribution. Uneven distributions are possible, for example the initial
list on processor 0 and the empty list on other processors. In general the type B to which A

corresponds has several ways to represent a value of type A.

• a typeclass for function correspondence (FunCorr): if type A corresponds to type A’ (with
join_A) and type B correspond to type B’ (with join_B), then a function f: A→B corresponds
to a function f’: A’→B’ if and only if ∀ (a’: A’), join_B (f’ a’) = f (join_A a’).

These notions of correspondences are composable: if a type A corresponds to a type A’ and A’

corresponds to A’’ then A corresponds to A’’. This extends to function f, f’ and f’’. These
compositions are called “vertical” compositions. If a function f corresponds to a function f’ and g

correspond to g’ then f ◦ g corresponds to f’ ◦ g’ where ◦ is usual function composition. This
kind of composition is called “horizontal” composition.

All these compositions are expressed as instances of the classes TypCorr and FunCorr. These
instances can be thought as rules for the instance resolution mechanism.

Then there are instances that can be thought as facts for the Prolog-like instance resolution
mechanism. For example, sequential lists correspond to distributed lists, sequential map on lists
corresponds to the map algorithmic skeleton on distributed lists, written as (proof omitted):

Instance map_par_map (A B: Type)(f: A→B):

FunCorr (map f) (par_map f).

and sequential reduce corresponds to the reduce algorithmic skeleton on lists.
The parallel function used in Section 3 is defined as:

Definition parallel ‘(f:A→B)

‘{ACorr: TypeCorr A Ap join_A} ‘{BCorr : TypeCorr B Bp join_B}

‘{fCorr: @FunCorr A Ap join_A ACorr B Bp join_B BCorr f fp } :

Ap →Bp := fp.

The ‘ before an argument means that if the type of the argument uses names that are not defined
yet, these names are automatically added as implicit arguments. For example, arguments (A: Type)

(B: Type) are added automatically because the type of f is A→B. Using {} instead of () for an
argument means that this argument is implicit and Coq will try to infer it. That is why even though
the definition of parallel looks like this function has four arguments (f, ACorr, BCorr and fCorr)1,
we applied it to only one argument in Section 3. Without these implicit arguments, this function
would not be very interesting because it simply returns one of its arguments: fp. But because fCorr
is an implicit argument and the type of this argument is a typeclass, Coq tries to build an instance
of this typeclass automatically, meaning it tries to build a parallel function fp that corresponds
semantically to sequential function f.

1and actually, because of the use of ‘ it has many more, all implicit

11

To do so, it uses parametric instances such as the composition of instances and the first homomor-
phism theorem, and non-parametric instances such as the correspondences of sequential and parallel
map and reduce. Therefore, a sequential homomorphic function can be automatically parallelized
as a composition of the algorithmic skeletons map and reduce: that is how the count example is
automatically parallelized.

5 A Tour of SyDPaCC Transformations and Applications

The early work on SyDPaCC started with contributions to the definition and formalization in Coq
of BSP homomorphisms [28] which was not initially executable at scale. It was improved and made
executable. A quite complicated and preliminary form of transformation based on typeclasses was
proposed [29, 79], in a framework named SDPP. A parallel version of the tower building problem [29]
as well as the all nearest smaller values [57] were developed using BSP homomorphisms and the
associated transformation theorems.

While working on a class for a summer school [58], we realized that the transformation infras-
tructure of SDPP could be hugely simplified and that list homomorphisms and the homomorphisms
theorems [30] fitted very well the transformation approach. We therefore started from scratch a new
framework coined SyDPaCC which offered initially list homomorphism-based transformations [59].
SyDPaCC offers a few applications using these transformations including the parallelization of the
maximum prefix sum problem.

We then extended SyDPaCC to deal with functions that are not necessarily list homomorphisms
but a more general class [50]. The functions in this class are transformed using the so-called diffusion
theorem [38] and the associated accumulate algorithmic skeleton [41]. The application is a parallel
version of the bracket matching problem.

More recently, we ported and improved (removing all the non-tail recursive functions) BSP ho-
momorphisms (BH) into SyDPaCC [54]. We parallelized a heat diffusion simulation using BH
transformations.

The version of SyDPaCC described in this paper has around 7kLoC of Coq code including
4kLoC of proof scripts. The parallel implementation of BSML primitives is about 300 LoC of OCaml
and 240 LoC of C. The considered applications so far are still modest. Code extraction yields code
that is more verbose than hand-written code. The largest examples are in the range of 100-200 LoC
of hand-written code including the algorithmic skeletons and the application.

One set of SDPP transformations has not yet been included into SyDPaCC (but will be): the
so-called GTA approach [20]. In this approach, a user defines an inefficient specification of her
problem as a composition of a generator of all the candidate solutions, a tester of valid solutions,
and an aggregator to combine the solutions. Two transformation theorems (filter embedding and
semiring fusion [19]) allow obtaining efficient parallel programs as compositions of map and reduce.
The approach is applied to the knapsack problem.

6 Related Work

Bird introduced constructive algorithmics [5] and the literature on the matter is rich and included
parallel programming (for e.g. [39, 32, 16, 62, 12]). Most of the work is done on paper while more
recently interactive theorem proving is used (for e.g. [63]) but not in the parallel case.

There are contributions that formalize some aspects of parallel programming, but to our knowl-
edge these approaches do not allow to directly obtain executable code as we do with SyDPaCC:
Swierstra [77] formalized mutable arrays with explicit distributions in Agda ; BSP-Why [27] allows
to deductively verify imperative BSP programs, but these are models of C BSPlib [36] programs

12

rather than executable code ; the Data Parallel C programming language was formalized with Is-
abelle/HOL [14] and the tool generated Isabelle/HOL expressions representing the parallel of the
program; Grégoire and Chlipala provide a small parallel language and its semantics and proves
correct optimizations of stencil-based computations [34].

Studying, from the functional programming perspective, frameworks such as Hadoop MapRe-
duce [44, 60] and Apache Spark [1, 9] is related to SyDPaCC as we may take a similar approach
to be able to extract MapReduce or Spark programs from Coq. Ono et al. [64] used Coq to verify
MapReduce programs and either extract Haskell code fed to Hadoop Streaming or directly write
Java programs annotated with JML and used Krakatoa [24] to generate Coq lemmas. This work is
less systematic and automated than SyDPaCC. Also related to Apache Spark, Philippe et al. [68]
presented a formalized model transformation engine in Coq, but there is neither automated program
transformation nor automatic code extraction.

SyDPaCC supports deterministic parallel programming which is also the focus of [40, 7, 71].
The context is however very different. These contributions consider sequential imperative programs
with contracts and annotations and transform both the programs and the annotations so that if the
sequential program respects its contract, so will the parallel program. The approaches consider more
low-level programs and annotations are necessary which makes SyDPaCC more high-level, but the
obtained parallel imperative code is much more efficient than SyDPaCC code. These approaches
also focus on OpenMP compiler directives or GPU code which limits the applicability to shared
memory machines.

7 Conclusion and Future Work

SyDPaCC currently handles the automatic parallelization of list homomorphisms, of functions per-
forming accumulative computations, of BSP homomorphisms, as well as their compositions. The
obtained code is functional bulk synchronous parallel code that we have demonstrated to be scalable
by running it on parallel machines

There are several directions of future work for SyDPaCC:

• Work on new transformations to handle the automatic parallelization of new classes of functions,
including functions that manipulate other data-structures than lists, such as trees or graphs
for which there is preliminary work [66, 67].

• Work on other back-ends than OCaml and BSML, in particular Scala and Spark for which we
have a not yet fully automated solution [53]. An automated solution requires a Scala code
extractor from Coq code more general than the one we used [17]. To design and implement
such a code extraction plugin, we plan to rely on MetaCoq [75].

We could also consider extraction towards Python and algorithmic skeletons libraries such
as PySke [52], and towards C++ and algorithmic skeleton libraries, such as SkePU [22],
Muesli [35], SkeTo [18] or OSL [46, 45]. To be very efficient we may to be consider code
extraction that do use mutation and explicit memory allocation and deallocation.

• The transformation mechanism relies on typeclass resolution in Coq. It returns the first
solution it finds, not necessarily the best one in terms of parallel performances. We plan to
explore an extraction mechanism that takes into account the parallel performances. We would
require to leverage the BSP performance model, reason about performances in Coq (there
exists work on complexity reasoning in Coq for sequential programs, for e.g. [83]) and to
design and implement a search that takes into account performances. The implementation
could use ELPI an implementation of λProlog extended with Constraint Handling Rules that
can be used to manipulate Coq terms [33].

13

Acknowledgements. This work was supported by the project AcceptAlgo funded by Region Cen-
tre Val-de-Loire.

References

[1] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh Rosen, Ion
Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia. Scaling Spark in the Real World:
Performance and Usability. PVLDB, 8(12):1840–1851, 2015. URL http://www.vldb.org/

pvldb/vol8/p1840-armbrust.pdf.

[2] Lénäıc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. Opening poly-
hedral compiler’s black box. In Code Generation and Optimization (CGO), page 128–138,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450337786.
doi:10.1145/2854038.2854048.

[3] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Springer,
2004. doi:10.1007/978-3-662-07964-5.

[4] Richard Bird. The promotion and accumulation strategies in transformational programming.
ACM Trans Program Lang Syst, 6(4):487–504, October 1984. doi:10.1145/1780.1781.

[5] Richard Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Programming
and Calculi of Discrete Design, pages 5–42. Springer-Verlag, 1987.

[6] R. Bisseling. Parallel Scientific Computation. A Structured Approach using BSP and MPI.
Oxford University Press, 2004.

[7] S. Blom, Saeed Darabi, Marieke Huisman, and M. Safari. Correct program parallelisa-
tions. International Journal on Software Tools for Technology Transfer, 23:1–23, 10 2021.
doi:10.1007/s10009-020-00601-z.

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic
polyhedral parallelizer and locality optimizer. In Programming Language Design and Implemen-
tation (PLDI), pages 101–113, New York, USA, 2008. ACM. doi:10.1145/1375581.1375595.

[9] Yu-Fang Chen, Chih-Duo Hong, Ondrej Lengál, Shin-Cheng Mu, Nishant Sinha, and Bow-Yaw
Wang. An executable sequential specification for Spark aggregation. In Networked Systems
(NETSYS), volume 10299 of LNCS, pages 421–438, 2017. doi:10.1007/978-3-319-59647-1 31.

[10] Adam Chlipala. Certified Programming with Dependent Types. MIT Press, 2014.

[11] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press, 1989.

[12] Murray Cole. Parallel Programming, List Homomorphisms and the Maximum Segment Sum
Problem. In Gerhard R. Joubert, Denis Trystram, Frans J. Peters, and David J. Evans, editors,
Parallel Computing: Trends and Applications, PARCO 1993, pages 489–492. Elsevier, 1994.

[13] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E. Schauser,
Eunice E. Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a realistic
model of parallel computation. In Principles & Practice of Parallel Programming (PPOPP),
pages 1–12, New York, NY, USA, 1993. ACM. doi:10.1145/155332.155333.

14

http://www.vldb.org/pvldb/vol8/p1840-armbrust.pdf
http://www.vldb.org/pvldb/vol8/p1840-armbrust.pdf
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/1780.1781
https://doi.org/10.1007/s10009-020-00601-z
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/978-3-319-59647-1_31
https://doi.org/10.1145/155332.155333

[14] M. Daum. Reasoning on Data-Parallel Programs in Isabelle/Hol. In C/C++ Verification Work-
shop, 2007. doi:http://www.cse.unsw.edu.au/ rhuuck/CV07/program.html.

[15] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
In OSDI, pages 137–150. USENIX Association, 2004.

[16] W. Dosch and B. Wiedemann. List Homomorphisms with Accumulation and Indexing. In
G. Michaelson, P. Trinder, and H.-W. Loidl, editors, Trends in Functional Programming, pages
134–142. Intellect, 2000.

[17] Youssef El Bakouny and Dani Mezher. Scallina: Translating Verified Programs from Coq to
Scala. In Asian Symposium on Programming Languages and Systems (APLAS), volume 11275
of LNCS, pages 131–145. Springer, 2018. doi:10.1007/978-3-030-02768-1 7.

[18] K. Emoto and K. Matsuzaki. An Automatic Fusion Mechanism for Variable-Length List Skele-
tons in SkeTo. Int J Parallel Prog, 2013. doi:10.1007/s10766-013-0263-8.

[19] Kento Emoto, Sebastian Fischer, and Zhenjiang Hu. Generate, Test, and Aggregate – A
Calculation-based Framework for Systematic Parallel Programming with MapReduce. In ESOP,
volume 7211 of LNCS, pages 254–273. Springer, 2012. doi:10.1007/978-3-642-28869-2 13.

[20] Kento Emoto, Frédéric Loulergue, and Julien Tesson. A Verified Generate-Test-Aggregate Coq
Library for Parallel Programs Extraction. In Interactive Theorem Proving (ITP), number 8558
in LNCS, pages 258–274, Wien, Austria, 2014. Springer. doi:10.1007/978-3-319-08970-6 17.

[21] J. Enmyren and C. Kessler. SkePU: A Multi-Backend Skeleton Programming Library for Multi-
GPU Systems. In 4th workshop on High-Level Parallel Programming and Applications (HLPP).
ACM, 2010.

[22] August Ernstsson, Dalvan Griebler, and Christoph W. Kessler. Assessing application efficiency
and performance portability in single-source programming for heterogeneous parallel systems.
Int. J. Parallel Program., 51(1):61–82, 2023. doi:10.1007/S10766-022-00746-1.

[23] Paul Feautrier. Some efficient solutions to the affine scheduling problem: One-dimensional time.
Int J Parallel Prog, 21(5):313–347, 1992. doi:10.1007/BF01407835.

[24] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus Platform for De-
ductive Program Verification. In W. Damm and H. Hermanns, editors, 19th International
Conference on Computer Aided Verification, LNCS. Springer, 2007.

[25] Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. Verified extraction from coq to ocaml.
Proc. ACM Program. Lang., 8(PLDI), jun 2024. doi:10.1145/3656379.

[26] Frédéric Gava. Une bibliothèque certifiée de programmes fonctionnels BSP. Technique et Science
Informatiques, 25(10):1261–1280, 2006.

[27] Frédéric Gava, Jean Fortin, and Michaël Guedj. Deductive Verification of State-Space Algo-
rithms. In IFM, volume 7940 of LNCS, pages 124–138. Springer, 2013. doi:10.1007/978-3-642-
38613-8 9.

[28] Louis Gesbert. Développement systématique et sûreté d’exécution en programmation par-
allèle structurée. PhD thesis, University Paris Est, LACL, 2009. URL http://tel.

archives-ouvertes.fr/tel-00481376.

15

https://doi.org/http://www.cse.unsw.edu.au/\unhbox \voidb@x \protect \penalty \@M \ rhuuck/CV07/program.html
https://doi.org/10.1007/978-3-030-02768-1_7
https://doi.org/10.1007/s10766-013-0263-8
https://doi.org/10.1007/978-3-642-28869-2_13
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1007/S10766-022-00746-1
https://doi.org/10.1007/BF01407835
https://doi.org/10.1145/3656379
https://doi.org/10.1007/978-3-642-38613-8_9
https://doi.org/10.1007/978-3-642-38613-8_9
http://tel.archives-ouvertes.fr/tel-00481376
http://tel.archives-ouvertes.fr/tel-00481376

[29] Louis Gesbert, Zhenjiang Hu, Frédéric Loulergue, Kiminori Matsuzaki, and Julien Tesson.
Systematic Development of Correct Bulk Synchronous Parallel Programs. In Parallel and
Distributed Computing, Applications and Technologies (PDCAT), pages 334–340. IEEE, 2010.
doi:10.1109/PDCAT.2010.86.

[30] J. Gibbons. The third homomorphism theorem. J Funct Program, 6(4):657–665, 1996.
doi:10.1017/S0956796800001908.

[31] Horacio González-Vélez and Mario Leyton. A survey of algorithmic skeleton frameworks: high-
level structured parallel programming enablers. Software, Practrice & Experience, 40(12):1135–
1160, 2010. doi:10.1002/spe.1026.

[32] Sergei Gorlatch and Holger Bischof. Formal Derivation of Divide-and-Conquer Programs: A
Case Study in the Multidimensional FFT’s. In D. Mery, editor, Formal Methods for Parallel
Programming: Theory and Applications, pages 80–94, 1997.

[33] Benjamin Grégoire, Jean-Christophe Léchenet, and Enrico Tassi. Practical and sound equality
tests, automatically: Deriving eqType instances for Jasmin’s data types with Coq-Elpi. In
Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and
Proofs (CPP), pages 167–181. ACM, 2023. doi:10.1145/3573105.3575683.

[34] Thomas Grégoire and Adam Chlipala. Mostly automated formal verification of loop depen-
dencies with applications to distributed stencil algorithms. In Jasmin Christian Blanchette
and Stephan Merz, editors, Interactive Theorem Proving (ITP), volume 9807 of LNCS, pages
167–183. Springer, 2016. doi:10.1007/978-3-319-43144-4 11.

[35] Nina Herrmann and Herbert Kuchen. Distributed calculations with algorithmic skeletons
for heterogeneous computing environments. Int. J. Parallel Program., 51(2-3):172–185, 2023.
doi:10.1007/S10766-022-00742-5.

[36] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau, Kevin Lang, Satish B.
Rao, Torsten Suel, Thanasis Tsantilas, and Rob Bisseling. BSPlib: The BSP Programming
Library. Parallel Computing, 24:1947–1980, 1998.

[37] William A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, pages 479–490. Academic Press, 1980.

[38] Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion: Calculating Efficient Parallel Programs. In
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’99), pages 85–94. ACM, January 22-23 1999.

[39] Zhenjiang Hu, Hidewaki Iwasaki, and Masato Takeichi. Formal derivation of efficient parallel
programs by construction of list homomorphisms. ACM Trans Program Lang Syst, 19(3):444–
461, 1997. ISSN 0164-0925. doi:10.1145/256167.256201.

[40] Marieke Huisman, Stefan Blom, Saeed Darabi, and Mohsen Safari. Program correctness by
transformation. In Leveraging Applications of Formal Methods, Verification and Validation.
Modeling: 8th International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part I, pages 365–80, Berlin, Heidelberg, 2018. Springer-Verlag. ISBN 978-3-030-
03417-7. doi:10.1007/978-3-030-03418-4 22.

[41] Hideya Iwasaki and Zhenjiang Hu. A new parallel skeleton for general accumulative computa-
tions. Int. J. Parallel Program., 32(5):389–414, 2004. doi:10.1023/B:IJPP.0000038069.80050.74.

16

https://doi.org/10.1109/PDCAT.2010.86
https://doi.org/10.1017/S0956796800001908
https://doi.org/10.1002/spe.1026
https://doi.org/10.1145/3573105.3575683
https://doi.org/10.1007/978-3-319-43144-4_11
https://doi.org/10.1007/S10766-022-00742-5
https://doi.org/10.1145/256167.256201
https://doi.org/10.1007/978-3-030-03418-4_22
https://doi.org/10.1023/B:IJPP.0000038069.80050.74

[42] J. Jájá. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[43] Ulrike Klusik, Rita Loogen, Steffen Priebe, and Fernando Rubio. Implementation Skeletons in
Eden: Low-Effort Parallel Programming. In Markus Mohnen and Pieter W. M. Koopman, edi-
tors, Implementation of Functional Languages, 12th International Workshop, IFL 2000, Aachen,
Germany, September 4-7, 2000, Selected Papers, LNCS 2011, pages 71–88. Springer, 2000.

[44] Ralf Lämmel. Google’s MapReduce programming model – Revisited. Sci Comput Program, 70
(1):1–30, 2008. doi:10.1016/j.scico.2007.07.001.

[45] Joeffrey Légaux, Zhenjiang Hu, Frédéric Loulergue, Kiminori Matsuzaki, and Julien Tesson.
Programming with BSP Homomorphisms. In Euro-Par Parallel Processing, number 8097 in
LNCS, pages 446–457, Aachen, Germany, 2013. Springer. doi:10.1007/978-3-642-40047-6 46.

[46] Joeffrey Légaux, Sylvain Jubertie, and Frédéric Loulergue. Development Effort and Perfor-
mance Trade-off in High-Level Parallel Programming. In International Conference on High
Performance Computing and Simulation (HPCS), pages 162–169, Bologna, Italy, 2014. IEEE.
doi:10.1109/HPCSim.2014.6903682.

[47] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-
lon. The OCaml system release 5.00. https://v2.ocaml.org/manual/, 2022.

[48] Pierre Letouzey. Coq Extraction, an Overview. In A. Beckmann, C. Dimitracopoulos, and
B. Löwe, editors, Logic and Theory of Algorithms, Fourth Conference on Computability in Eu-
rope, CiE 2008, volume 5028 of LNCS. Springer, 2008. doi:10.1007/978-3-540-69407-6 39.

[49] R. Loogen, Y. Ortega-Mallen, and R. Pena-Mari. Parallel Functional Programming in Eden. J
Funct Program, 3(15):431–475, 2005. doi:10.1017/S0956796805005526.

[50] Frédéric Loulergue. A verified accumulate algorithmic skeleton. In Fifth International Sym-
posium on Computing and Networking (CANDAR), pages 420–426, Aomori, Japan, November
19-22 2017. IEEE. doi:10.1109/CANDAR.2017.108.

[51] Frédéric Loulergue. Implementing Algorithmic Skeletons with Bulk Synchronous Parallel ML. In
Parallel and Distributed Computing, Applications and Technologies (PDCAT), pages 461–468.
IEEE, 2017. doi:10.1109/PDCAT.2017.00079.

[52] Frédéric Loulergue and Jolan Philippe. Automatic Optimization of Python Skeletal Parallel
Programs. In Algorithms and Architectures for Parallel Processing (ICA3PP), LNCS, pages
183–197, Melbourne, Australia, 2019. Springer. doi:10.1007/978-3-030-38991-8 13.

[53] Frédéric Loulergue and Jolan Philippe. Towards verified scalable parallel computing with
Coq and Spark. In Proceedings of the 25th ACM International Workshop on Formal Tech-
niques for Java-like Programs (FTfJP), pages 11–17, New York, NY, USA, 2023. ACM.
doi:10.1145/3605156.3606450.

[54] Frédéric Loulergue and Julien Tesson. Verified Parallel Programming in Coq with Bulk Syn-
chronous Parallel Homomorphisms. In 17th International Symposium on High-Level Parallel
Programming and Applications (HLPP), Pisa, Italy, July 2024. hal: hal-04597523.

[55] Frédéric Loulergue, Gaétan Hains, and Christian Foisy. A Calculus of Functional BSP Programs.
Sci Comput Program, 37(1-3):253–277, 2000. doi:10.1016/S0167-6423(99)00029-5.

17

https://doi.org/10.1016/j.scico.2007.07.001
https://doi.org/10.1007/978-3-642-40047-6_46
https://doi.org/10.1109/HPCSim.2014.6903682
https://v2.ocaml.org/manual/
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1017/S0956796805005526
https://doi.org/10.1109/CANDAR.2017.108
https://doi.org/10.1109/PDCAT.2017.00079
https://doi.org/10.1007/978-3-030-38991-8_13
https://doi.org/10.1145/3605156.3606450
https://inria.hal.science/hal-04597523
https://doi.org/10.1016/S0167-6423(99)00029-5

[56] Frédéric Loulergue, Frédéric Gava, and David Billiet. Bulk Synchronous Parallel ML: Modular
Implementation and Performance Prediction. In International Conference on Computational
Science (ICCS), volume 3515 of LNCS, pages 1046–1054. Springer, 2005. doi:10.1007/11428848 -
132.

[57] Frédéric Loulergue, Simon Robillard, Julien Tesson, Joeffrey Légaux, and Zhenjiang Hu. Formal
Derivation and Extraction of a Parallel Program for the All Nearest Smaller Values Problem.
In ACM Symposium on Applied Computing (SAC), pages 1577–1584, Gyeongju, Korea, 2014.
ACM. doi:10.1145/2554850.2554912.

[58] Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson. Calcul de programmes parallèles
avec Coq. In Nicolas Ollinger, editor, Informatique Mathématique une photographie en 2015,
collection Alpha, pages 87–134. CNRS Éditions, 2015.

[59] Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson. Calculating Parallel Programs in
Coq using List Homomorphisms. Int J Parallel Prog, 45:300–319, 2017. doi:10.1007/s10766-
016-0415-8.

[60] Kiminori Matsuzaki. Functional Models of Hadoop MapReduce with Application to Scan. Int
J Parallel Prog, 2016. doi:10.1007/s10766-016-0414-9.

[61] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.1,
November 2023. URL https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf.

[62] A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. The third homomorphism theorem on
trees: downward & upward lead to divide-and-conquer. In Zhong Shao and Benjamin C. Pierce,
editors, POPL’09, pages 177–185. ACM, 2009. doi:10.1145/1480881.1480905.

[63] Shin-Cheng Mu, Hsiang-Shang Ko, and Patrik Jansson. Algebra of programming in Agda:
Dependent types for relational program derivation. J Funct Program, 19(5):545–579, 2009.
doi:10.1017/S0956796809007345.

[64] Kosuke Ono, Yoichi Hirai, Yoshinori Tanabe, Natsuko Noda, and Masami Hagiya. Using Coq
in specification and program extraction of Hadoop MapReduce applications. In SEFM, LNCS,
pages 350–365, Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-24690-6 24.

[65] S. Pelagatti. Structured Development of Parallel Programs. Taylor & Francis, 1998.

[66] Jolan Philippe and Frédéric Loulergue. Parallel programming with Coq: Map and reduce skele-
tons on trees. In ACM Symposium on Applied Computing (SAC), pages 1578–1581. ACM, 2019.
doi:10.1145/3297280.3299742.

[67] Jolan Philippe, Frédéric Loulergue, and Wadoud Bousdira. Formalization of a Big Graph API
in Coq (Poster). In International Conference on High Performance Computing and Simulation
(HPCS), pages 893–894, Genoa, Italy, 2017. IEEE. doi:10.1109/HPCS.2017.140.

[68] Jolan Philippe, Massimo Tisi, Hélène Coullon, and Gerson Sunyé. Executing certified model
transformations on Apache Spark. In 14th International Conference on Software Language En-
gineering (SLE), pages 36–48, New York, NY, USA, 2021. ACM. doi:10.1145/3486608.3486901.

[69] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Iterative Opti-
mization in the Polyhedral Model: part II, Multidimensional Time. In Rajiv Gupta and
Saman P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation (PLDI 2008), pages 90–100. ACM, 2008.
doi:10.1145/1375581.1375594.

18

https://doi.org/10.1007/11428848_132
https://doi.org/10.1007/11428848_132
https://doi.org/10.1145/2554850.2554912
https://doi.org/10.1007/s10766-016-0415-8
https://doi.org/10.1007/s10766-016-0415-8
https://doi.org/10.1007/s10766-016-0414-9
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/10.1145/1480881.1480905
https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1007/978-3-642-24690-6_24
https://doi.org/10.1145/3297280.3299742
https://doi.org/10.1109/HPCS.2017.140
https://doi.org/10.1145/3486608.3486901
https://doi.org/10.1145/1375581.1375594

[70] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and Distributed
Computing. Springer, 2003. doi:10.1007/978-1-4471-0097-3.

[71] Ömer Şakar, Mohsen Safari, Marieke Huisman, and Anton Wijs. Alpinist: An annotation-aware
gpu program optimizer. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 332–352, Cham, 2022. Springer International
Publishing. doi:10.1007/978-3-030-99527-0 18.

[72] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.

[73] M. Sozeau and N. Oury. First-Class typeclasses. In O. A. Mohamed, C. Muñoz, and S. Tahar,
editors, Theorem Proving in Higher Order Logics (TPHOLs), volume LNCS 5170, pages 278–
293. Springer, 2008.

[74] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.
Coq coq correct! verification of type checking and erasure for coq, in coq. Proc. ACM Program.
Lang., 4(POPL), dec 2019. doi:10.1145/3371076.

[75] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze,
Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The metacoq project. J. Autom.
Reason., 64(5):947–999, 2020. doi:10.1007/S10817-019-09540-0.

[76] Bas Spitters and Eelis Van der Weegen. Typeclasses for mathematics in type theory. Mathe-
matical Structures in Computer Science, 21:795–825, 7 2011. doi:10.1017/S0960129511000119.

[77] Wouter Swierstra. More dependent types for distributed arrays. Higher-Order and Symbolic
Computation, 23(4):489–506, 2010. doi:10.1007/s10990-011-9075-y.

[78] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael
Norrish. A new verified compiler backend for CakeML. In International Conference on Func-
tional Programming (ICFP), page 60–73, New York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450342193. doi:10.1145/2951913.2951924.

[79] Julien Tesson. Environnement pour le développement et la preuve de correction systématiques de
programmes parallèles fonctionnels. PhD thesis, LIFO, University of Orléans, November 2011.
URL http://hal.archives-ouvertes.fr/tel-00660554/en/.

[80] Julien Tesson and Frédéric Loulergue. A Verified Bulk Synchronous Parallel ML Heat Diffu-
sion Simulation. In International Conference on Computational Science (ICCS), pages 36–45,
Singapore, 2011. Elsevier. doi:10.1016/j.procs.2011.04.005.

[81] The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr.

[82] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103, 1990.
doi:10.1145/79173.79181.

[83] E. van der Weegen and J. McKinna. A Machine-checked Proof of the Average-case Complexity
of Quicksort in Coq. In Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro, editors, Types
for Proofs and Programs, International Conference (TYPES 2008), LNCS 5497, pages 256–271.
Springer, 2008. doi:10.1007/978-3-642-02444-3.

19

https://doi.org/10.1007/978-1-4471-0097-3
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1145/3371076
https://doi.org/10.1007/S10817-019-09540-0
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1007/s10990-011-9075-y
https://doi.org/10.1145/2951913.2951924
http://hal.archives-ouvertes.fr/tel-00660554/en/
https://doi.org/10.1016/j.procs.2011.04.005
http://coq.inria.fr
https://doi.org/10.1145/79173.79181
https://doi.org/10.1007/978-3-642-02444-3

	Introduction
	An Overview of Coq
	SyDPaCC by Example
	Trusted Base

	SyDPaCC behind the Scenes
	Reasoning about Functional Bulk Synchronous Parallel Programs
	Program Transformations

	A Tour of SyDPaCC Transformations and Applications
	Related Work
	Conclusion and Future Work

