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Abstract. This paper introduces a novel spatial serial manipulator com-
posed of three anti-parallelogram (X) joints arranged in two perpendic-
ular planes and separated by offsets. The position of a point on the
terminal link is controlled through the three joint angles. The inverse
kinematic problem is solved analytically by decomposing it into two pla-
nar sub-problems. It is shown that this problem admits up to thirty-two
solutions, and an example with these many solutions is presented. The
singularities of this manipulator are derived and interpreted geometri-
cally. Finally, the workspace of this manipulator accounting for the joint
limits of each X-joint is visualized.

Keywords: Anti-parallelogram joint, spatial manipulator, inverse kine-
matics, workspace

1 Introduction

Serial robot manipulators predominantly comprise revolute and prismatic joints [1].
There are very few instances of commercial manipulators that use other types
of joints. For example, the parallelogram mechanism can be found in some in-
dustrial manipulators [2] and surgical manipulators requiring remote center of
motion [3]. On the other hand, the anti-parallelogram mechanism (X-joint) has
not yet entered the commercial domain. However, recent research indicates that
it has an excellent potential to function as a joint in a manipulator. For instance,
it has been used in a continuum manipulator in [4] and a bio-mimicking system
inspired by a bird’s neck in [5].

A comparative study showed that the X-joint is better than a revolute joint
in terms of the range of movement and stiffness modulation when they are an-
tagonistically actuated by cables [6]. Its moving instantaneous center of rotation
will be more suitable for modeling the intervertebral motion in a biological sys-
tem [7]. Such results have motivated the development of 2-DoF joints based on
the X-joint for bio-mimicking manipulators [8],[9].

This work proposes to build a 3-DoF spatial manipulator by arranging the
X-joints serially in different planes. The kinematics and workspace of this new
manipulator, designated as 3-X, are studied in detail.
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Fig. 1: Schematic of the spatial 3-X manipulator.

The rest of this paper is organized as follows: Section 2 describes the architec-
ture of the 3-X manipulator. Section 3 presents its inverse kinematics. Section 4
studies the singularities of this manipulator, and section 5 plots its workspace.
Finally, Section 6 presents the conclusions of this work.

2 Manipulator description

The kinematic diagram of the 3-X spatial manipulator at an arbitrary configura-
tion is shown in Fig. 1. It comprises three identical planar X-joints, whose base
and top bars are of length b while the crossed bars are of length l, with (l > b)
for its assembly. The first X-joint operates in the plane π1, the xz-plane in the
global frame of reference. On the other hand, the second and third joints operate
in the plane π2 that is perpendicular to π1. There are 3 offsets of length a be-
tween successive joints and the last joint and the end-effector (EE) point P . The
movement of joint i is measured by the coordinate θi, which is the orientation
of the line joining the mid-points of the base and top bars of the X-joint relative
to a reference perpendicular to its base. It is known that the orientation of the
top-bar relative to the base is 2θi for the X-joint [10]. Thus, it becomes possi-
ble to express the position of the EE of the manipulator using only the three
joint angles θ1, θ2, θ3. From Fig. 1, the direct kinematics of the manipulator is
presented as follows:

x = −l1(θ1) sin θ1 − sin(2θ1) {a cos(2(θ2 + θ3)) + a cos(2θ2) + a

+l2(θ2) cos θ2 + l3(θ3) cos(2θ2 + θ3)}
y = −l2(θ2) sin θ2 − a sin(2(θ2 + θ3))− a sin(2θ2)− l3(θ3) sin(2θ2 + θ3)

z = l1(θ1) cos θ1 + cos(2θ1) {a cos(2(θ2 + θ3)) + a cos(2θ2) + a

+l3(θ3) cos(2θ2 + θ3) + l2(θ2) cos θ2}
where li(θi) =

√
l2 − b2 cos2 θi for i = 1, 2, 3

(1)
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3 Inverse kinematics

The inverse kinematics problem involves finding all possible joint angles (θ1, θ2, θ3)
for a given EE position (x, y, z). This problem can be decomposed into two planar
sub-problems similar to that of a 3-R positioning manipulator whose first axis
is perpendicular to the next two parallel axes [11], p. 76. The first sub-problem
involves finding all possible θ1 values, and the second sub-problem requires the
computation of (θ2, θ3) for each value of θ1. These problems are described in the
next two sections, followed by a numerical example.

3.1 First sub-problem

(a) Sub-problem 1 (b) Sub-problem 2

Fig. 2: Decomposition of the inverse kinematic problem of the 3-X manipulator.

Since the first X-joint is in plane π1 that is perpendicular to the plane π2 of
the other two joints, it is possible to compute the feasible values of θ1 independent
of the other two angles. From Fig. 1, it is apparent that θ1 cannot alter the y-
coordinate of the point P . Hence, the given EE point can be projected on the
plane π1 to obtain the point P

′
(x, 0, z) as shown in Fig. 2a. The plane π2 has

been suppressed, but its line of intersection with π1 is indicated by the segment
connecting X-joint to the point P

′
. A virtual prismatic joint with coordinate d1

has been added along this line to locate the point P
′
from the first joint. Thus,

we have an XP manipulator in the plane π1.
The first sub-problem consists of finding all possible θ1 that can position the

plane π2 to meet the point P
′
(or point P ). Equivalently, it involves finding the

feasible coordinates (θ1, d1) for a given point P
′
.

It is possible to express the kinematics of this XP manipulator using l1 =√
l2 − b2 cos2 θ1 as in Eq. (1). However, the associated equations must be squared

to eliminate the square roots, which would inject spurious solutions in the pro-
cess. As an alternative, it is possible to express the direct kinematics in terms
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of the intermediate angle (φ1) and include the associated loop-closure equation
in the model, as carried out in [10],[12]. This process leads to the following
equations:

−(b/2) + l cosφ1 − (b/2) cos(2θ1)− d1 sin(2θ1)− x = 0

l sin(φ1)− (b/2) sin(2θ1) + d1 cos(2θ1)− z = 0

b(1 + cos(2θ1))− l {cosφ1 + cos(−2θ1 + φ1)} = 0

(2)

The above system contains three equations in three unknowns (θ1, d1, φ1).
Hence, it is possible to eliminate two of them and obtain a univariate polynomial
involving only one of the variables. In order to simplify the elimination process,
the equations are normalized by setting l = 1 without any loss of generality.
Then, the Projection command from the SIROPA library of Maple was used
to obtain the univariate polynomial equation Q(t) = 0 in t = tan(φ1/2), where
Q(t) is as follows (see [13] for details):

4(b+ 1)2(x+ 1)t4 − 16(b+ 1)zt3 + 8
(
b2 − 3

)
xt2 − 16(b− 1)zt+ 4(b− 1)2(x− 1)

(3)

It has a degree of 4, which indicates that there can be up to 4 real φ1 for a given
EE point P . For a feasible value of φ1, a unique combination of (θ1, d1) can be
computed from the relations in Eq. (2). Thus, the first sub-problem admits up
to four solutions for θ1.

It is noteworthy that the above quartic polynomial degenerates to a cubic
form at (x = −1, z ∈ R) and further to a quadratic form at (x = −1, z = 0).
In such scenarios, the number of solutions obtained for t drop to three and two,
respectively. Indeed, the missing solutions are formed by t→∞ (or equivalently
φ = ±π), which should be added to the solution set for completeness.

3.2 Second sub-problem

The second sub-problem in inverse kinematics involves computing the angles
(θ2, θ3) for a given value of θ1. This sub-problem is confined to the plane π2
and can be represented graphically as in Fig. 2b. The plane π2 and the base
pivots of the first X-joint in this plane are known once θ1 is given. Since the
point P is also known, the computation of (θ2, θ3) is the same as computing the
inverse kinematics of a planar 2-X manipulator with offsets. This problem has
already been solved in [10], and it is known that there are up to 8 solutions.
Thus, combining the two sub-problems, there can be up to 32 (4× 8) solutions
for the inverse kinematic problem of the 3-X manipulator. The following section
presents a numerical example with 32 real solutions for this problem.

3.3 Numerical example

As a numerical illustration, consider the 3-X manipulator with the following
geometry: b = 1, l = 2, and a = 6. Note that all the lengths are normalized
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w.r.t. b, without any loss of generality. This setting obviates the need to specify
the units of points and lengths of the bars. When the EE is positioned at the
location (x, y, z) = (3/2, 1, 3/2), 32 real inverse kinematic solutions are obtained
as presented in Table 1. The 4 configurations of the first joint and the 8 feasible
configurations obtained for each value of θ1 are presented in Fig. 3.

Table 1: The 32 inverse kinematic solutions for the 3-X manipulator with geom-
etry b = 1, l = 2, a = 6 and the EE positioned at (x, y, z) = (3/2, 1, 3/2). All the
angular measures are presented in radians.
No. θ1 θ2 θ3
1 2.81 1.88
2 2.97 -1.62
3 -2.48 1.67
4 2.86 -2.38 -1.82
5 -1.13 2.01
6 -0.92 -1.45
7 1.27 1.40
8 1.48 -2.07

No. θ1 θ2 θ3
9 2.16 2.36
10 2.36 -1.20
11 -2.22 1.22
12 -1.38 -2.04 -2.33
13 -1.31 2.50
14 -1.10 -1.03
15 1.24 1.01
16 1.46 -2.53

No. θ1 θ2 θ3
17 2.30 2.19
18 2.48 -1.34
19 -2.30 1.37
20 -0.68 -2.13 -2.15
21 -1.23 2.33
22 -1.04 -1.17
23 1.21 1.14
24 1.41 -2.36

No. θ1 θ2 θ3
25 2.00 2.61
26 2.24 -1.03
27 -2.14 1.05
28 0.82 -1.91 -2.57
29 -1.42 2.73
30 -1.18 -0.87
31 1.30 0.84
32 1.55 -2.77

Note that these computations do not consider limits on the movement of
the joints due to the flat-singularities. In the presence of these limits, i.e., θi ∈]
−π2 ,

π
2

[
, i = 1, 2, 3, only 6 solutions are feasible, as highlighted in Table 1.

4 Singularity analysis

The relation between EE velocity and the joint velocities can be obtained by
differentiating the direct kinematic equations in Eq. (1) w.r.t. time. This yields:

ẋẏ
ż

 = J3x

θ̇1θ̇2
θ̇3

 (4)

where J3x is the Jacobian matrix of the position vector [x, y, z]> w.r.t. the joint
orientation vector [θ1, θ2, θ3]

>. The singularity condition of the manipulator is
obtained from the vanishing of the determinant of J3x, which, upon clearing the
non-zero factors, leads to:

det (J3x) = 0 =⇒ σ1σ2 = 0 (5)
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(a) 8 solutions with θ1 = 2.86 rad (b) 8 solutions with θ1 = −1.38 rad

(c) 8 solutions with θ1 = −0.68 rad (d) 8 solutions with θ1 = 0.82 rad

Fig. 3: The 32 inverse kinematic solutions of the manipulator separated into 4
groups, with b = 1, l = 2, a = 6 and when the EE is at (x, y, z) = (3/2, 1, 3/2).

where,

σ1 = −32a2 sin θ3 cos θ3
√
l2 − b2 cos2 θ2

√
l2 − b2 cos2 θ3

− 4ab2 sin(θ2 − 2θ3)
√
l2 − b2 cos2 θ3 + 8ab2 sin θ3

√
l2 − b2 cos2 θ2

+ 8ab2 sin(3θ3)
√
l2 − b2 cos2 θ2 + 4ab2 sin(θ2 + 2θ3)

√
l2 − b2 cos2 θ3

− 16al2 sin θ3
√
l2 − b2 cos2 θ2 − 8al2 sin(θ2 + 2θ3)

√
l2 − b2 cos2 θ3

+ b4 sin(θ2 − θ3)− b4 sin(θ2 + θ3)− b4 sin(θ2 + 3θ3) + b4 sin(θ2 − 3θ3)

− 2b2l2 sin(θ2 − θ3) + 4b2l2 sin(θ2 + θ3) + 2b2l2 sin(θ2 + 3θ3)

+ 8b2 sin θ3 cos θ3
√
l2 − b2 cos2 θ2

√
l2 − b2 cos2 θ3 − 4l4 sin(θ2 + θ3)

(6)

(7)
σ2 =

(
l2 − b2

)
cos θ1 + 2

√
l2 − b2 cos2 θ1

{
a cos(2(θ2 + θ3)) + a cos(2θ2) + a

+ cos(2θ2 + θ3)
√
l2 − b2 cos2 θ3 + cos θ2

√
l2 − b2 cos2 θ2

}
The singularity of the 3-X manipulator occurs when σ1 = 0 or σ2 = 0. Inter-

estingly, the factor σ1 is only a function θ2 and θ3, while the factor σ1 involves
all three angles. Physically, the vanishing of σ1 corresponds to the singularity of
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(a) σ1(θ2, θ3) = 0 (b) σ2(θ1, θ2, θ3) = 0

Fig. 4: Singular configurations corresponding to σ1 = 0 and σ2 = 0.

the planar 2-X manipulator in the plane π2, i.e., when the instantaneous centers
of rotation of the two X-joints and the EE point become collinear (see Fig. 4a).

In contrast, at a configuration corresponding to σ2 = 0 (see Fig. 4b), the
normal to plane π2 dropped from the EE point intersects with the instantaneous
axis of rotation of the first joint. In such a configuration, the velocity produced
by the first joint at the EE lies in the plane π2, just as those produced by the
second and third joints. Thus, the EE loses its ability to move out of the plane π2
at this configuration, making the manipulator singular.

Note that the singularity analysis presented above is valid for any choice of
actuation (e.g., φi, ψi) of the X-joints.

5 Workspace

Since the movement of an X-joint is limited by the flat-singularities at θi =
±π2 , they should be accounted for while computing the set of reachable joint
configurations and the workspace. The joint limits enclose a cube in the joint
space, as shown by the golden planes in Fig. 5a. Inside these joint limits, the
singularities of the manipulator, i.e., σ1 = 0, σ2 = 0, are marked by the grey
surfaces. These boundaries are mapped onto the task space using the direct
kinematic model in Eq. (1). The resulting contours of the workspace boundaries
are presented in Fig. 5b. The workspace is symmetric about the planes x = 0
and y = 0. However, it is impossible to see the various regions it encompasses.

Hence, further study is conducted by visualizing several cross-sections of
the workspace in the following. The workspace is sliced at different values of
x ∈ [0, 10.5]. The negative values of x are not considered as the workspace is
symmetric about x = 0. The resulting cross-sections are displayed in Fig. 6.
Important observations from these plots are listed in the following:

– In all sections, a large region with two solutions (green shade) exists. A
maximum of six inverse kinematic solutions (orange shade) could be found
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(a) Joint space (b) Workspace

Fig. 5: Joint space and workspace of the 3-X manipulator with geometry b =
1, l = 2, a = 2, in the presence of joint limits θ1, θ2, θ3 ∈]− π

2 ,
π
2 [.

near the origin (section x = 0). It reduces to five in the section x = 1.89,
three in section x = 2.25 and two in the remaining sections.

– Around the origin, the reachable workspace is limited to the region z ∈
[−3, 10] and contains a void in the center. But, beyond x = 2.25, the
workspace size increases nearly two-fold with a symmetric half along the
negative z-axis (see Fig. 5b). As x increases further, the workspace decreases
in size until x ≈ 10.5, and beyond it, the points become unreachable.

– The number of inverse kinematic solutions change by one (resp. two) across a
boundary due to joint limits (resp. singularities). However, exceptionally, this
change increases to three (resp. four) across joint limits (resp. singularities)
in sections x = 0, 1.89 due to self-intersections in the respective contours in
the workspace.

6 Conclusions

A novel spatial manipulator with three anti-parallelogram (X-joints) arranged
in two perpendicular planes was proposed in this work. The inverse kinematic
problem was solved by decomposing it into two planar sub-problems. The first
sub-problem admits up to four solutions, while the second admits up to eight.
Thus, in all, the 3-X manipulator can have up to thirty-two configurations at
a given position of the EE. A numerical example was presented to confirm this
proposition.

It was found that the singularities of the 3-X manipulator are formed by two
conditions, of which at least one of them must be satisfied. The first condition
corresponds to the collinearity of the instantaneous centers of rotation of the
second and third joints with the EE point. The second condition corresponds to
configurations where the velocity induced by the first joint lies in the plane of
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Fig. 6: Cross-sections of the workspace of the 3-X manipulator with geometry
b = 1, l = 2, a = 2 in the presence of joint limits θ1, θ2, θ3 ∈]− π

2 ,
π
2 [.
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the other two joints. Singular poses corresponding to each of these conditions
were presented as illustrations.

Finally, the three-dimensional workspace of the 3-X manipulator was plotted
by considering the joint limits due to flat-singularities of each X-joint. Several
sections of this workspace were presented to comprehend its interior volume. For
the example considered, a maximum of six inverse kinematic solutions exist near
the origin and two solutions near the external boundary.

In the future, actuation schemes and instantaneous velocity/force perfor-
mance of this manipulator will be studied and compared with the existing spatial
manipulators composed of revolute joints.
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