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Abstract. Constraint programming (CP) has become increasingly prevalent in
recent years for performing pattern mining tasks, particularly on binary datasets.
While numerous CP models have been designed for mining on binary data, there
does not exist any model designed for mining on numerical datasets. Therefore
these kinds of datasets need to be pre-processed to fit the existing methods. Af-
terward a post-processing is also required to recover the patterns into a numer-
ical format. This paper presents two CP approaches for mining closed interval
patterns directly from numerical data. Our proposed models seamlessly execute
pattern mining tasks without any loss of information or the need for pre- or post-
processing steps. Experiments conducted on different numerical datasets demon-
strate the effectiveness of our proposed CP models compared to other methods.

Keywords: Constraint Programming · Pattern Mining · Numerical Data.

1 Introduction

Pattern mining is a crucial task in data mining. The constraint-based pattern mining
task [15] embraces a wide range of queries and methods aimed at extracting character-
ized patterns from data. These patterns can be interpreted by domain experts or serve as
inputs for downstream tasks such as classification or clustering [5].

Datasets commonly encountered in many application domains often comprise a va-
riety of value types, including binary, discrete, numerical or mixed values. There are a
plethora of pattern mining methods on binary data, sequences or graphs [15] but few
methods address numerical [8, 18] or mixed values [4]. A simple approach to cope with
numerical data is to reuse existing methods by first converting data into a binary rep-
resentation [6]. However, it is well-known that the binarization process often leads to a
loss of information. Considering the example of interval patterns defined by numerical
values, MININTCHANGE [8] is a method aiming to mine such patterns directly from
numerical data. However it is devoted to closed interval patterns and cannot deal with
other data mining tasks.

The aim of our work is to propose a comprehensive declarative framework to effi-
ciently tackle numerical data. Our work is guided by two principles. First, we keep the
whole original information expressed by the numerical data. Second, we choose to set
our approach in a declarative paradigm, the Constraint Programming (CP) framework.
The declarative paradigm enables to specify pattern mining tasks in an easy way by
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using general constraint primitives. In the last few years, many declarative constraint-
based methods were proposed for mining tasks on binary data or sequences [5, 9, 16],
to the best of our knowledge, so far, there is no declarative method tackling numerical
datasets. The core of our contribution is a declarative method to mine the complete set
of closed interval patterns from numerical data without any discretization process. A
closed pattern is essential in data mining tasks as it captures the maximum amount of
similarity within a dataset. These patterns have crucial properties and are widely used in
data mining applications. Moreover the whole set of interval patterns can be regenerated
following the principle of the pattern condensed representations [2]. Our CP models go
beyond interval patterns by combining primitives to write queries addressing complex
mining tasks on numerical data. As an illustration, we combine the no overlapping be-
tween patterns and the cover of the set of the mined patterns to perform the conceptual
clustering task.

Our contributions are the following. We define two CP models to mine the complete
set of closed interval patterns. The first model, called CP4CIP, is based on reified con-
straints and offers a general encoding of the closure relation to mine closed patterns.
In CP, global constraints can capture hidden relations between a set of variables to im-
prove the efficiency. We design a global constraint, called GC4CIP, using new specific
filtering rules, and we give a second CP model enhancing the mining efficiency. We
provide an extensive empirical evaluation comparing the efficiency of our CP models
with respect to other declarative methods and the ad hoc method MININTCHANGE. Fi-
nally, we illustrate the interest of the declarativity by using GC4CIP in a scenario of data
processing chain to find conceptual clustering from numerical data.

Section 2 introduces notations and basic concepts. Section 3 is devoted to related
work. Section 4 presents our first CP model based on reified constraints. Section 5 and
Section 6 depicts our second CP model based on global constraints. Section 7 provides
an extensive empirical evaluation on benchmark datasets and Section 8 concludes.

2 Preliminaries

2.1 Interval Pattern Mining

Numerical dataset. A numerical datasetN is defined by a set of objects G where each
object is described by a set of attributesM. Each attribute m ∈M has a rangeNm which
is a finite set containing all the possible values of m in N . An object g ∈ G is defined
by a vector of numerical values < vg,m >m∈{1,...,∣M∣}. A dataset where the values of all
attributes are binary Nm = {0,1},∀m ∈M, is a special case of a numerical dataset and
referred as a binary dataset.

Example 1. Table 1 shows a running example of a numerical dataset containing 5 ob-
jects G = {g1,g2,g3,g4,g5}, each object is described by 3 attributesM = {m1,m2,m3}.

Closed Interval Pattern. Patterns in numerical datasets can be represented in many
ways, we use the notion of Interval Pattern [8] which is defined as a vector of inter-
vals V = ⟨[wm,wm]⟩∀m∈M, where wm,wm ∈Nm. Each dimension of the vector V corre-
sponds to an attribute following a canonical order on the set of attributesM. We denote
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m1 m2 m3
g1 2 8 130
g2 4 12 102
g3 3 7 91
g4 2 9 101
g5 6 12 110

Table 1. A running example of a numerical datasetN

B[g] = ⟨[vg,m ,vg,m]⟩m∈{1,...,∣M∣} as the vector of intervals corresponding to an object
identified by g. An object g is an occurrence of the interval pattern V if each interval
in the vector B[g] is included in the interval of V , i.e. B[g] ⊑ V ⇐⇒ [vg,m ,vg,m] ⊆
[wm,wm],∀m ∈ {1, ..., ∣M∣}. The cover of V inN is the set of objects g ∈ G occurring in
V , i.e. cover(V) = {g ∈ G ∣ B[g] ⊑ V}.

Example 2. From Table 1, V = ⟨[3,4],[7,12],[91,130]⟩ is an interval pattern cover-
ing the objects {g2,g3}. B[g2]= ⟨[4,4], [12,12], [102,102]⟩ is the vector of intervals
identified by the object g2 and an occurrence of V .

The frequency of V is the cardinal of its cover, i.e. freq(V) = ∣cover(V)∣. Given
a minimum frequency threshold θ , the interval pattern V is frequent if and only if
freq(V) ≥ θ . A description of a subset of objects G ⊆G is an interval pattern V where for
each g ∈ G, g is an occurrence of V , i.e. desc(G)=< [am, bm]>m∈{1,...,∣M∣} such that am =
min({vg,m ∣ g ∈G}) and bm =max({vg,m ∣ g ∈G}).

Exact pattern condensed representations (such as the closed patterns [19]) enable
to reduce the large number of patterns extracted from the datasets without loss of in-
formation [2]. The key idea of pattern condensed representations is to take advantage
of the redundancy of a collection of patterns to construct a concise representation of
the patterns instead of mining all patterns. A closed interval pattern (CIP) is defined
by the closure of an interval pattern that is the vector of intervals of its cover (i.e.
close(V) ⇐⇒ desc(cover(V)) = V).

Example 3. From Table 1, the set of objects {g2,g3} is described by the interval pat-
tern V = desc({g2,g3}) = ⟨[3,4],[7,12],[91,102]⟩. The interval pattern V = ⟨ [3,4],
[7,12], [91,102]⟩ is closed since desc({g2,g3}) =⟨[3,4], [7,12], [91,102]⟩ and the
cover(⟨[3,4], [7,12], [91,102]⟩) = {g2,g3}.

2.2 Problem statement

Our goal is to discover all frequent closed interval patterns (FCIP). More formally,
given a numerical datasetN and a minimum frequency threshold θ , the closed frequent
interval pattern mining problem is the problem of finding all interval patterns V such
that freq(V) ≥ θ and close(V).

There are a few things one should note about this statement. First, the search space
contains ∑∣G∣k=1 (

∣G∣

k ) candidates. This size is gigantic and a naive search that consists of
enumerating and testing the frequency of all interval pattern candidates is not practical.
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Second, mining FCIP can be solved by the following process: transform the nu-
merical data using Interordinal Scaling (IS) technique to get binary data, mine closed
itemsets from the binary data and post-processing closed itemsets to obtain closed in-
terval patterns [8]. Results are equivalent because IS preserve all the information of the
original data by creating pairs of binary attributes of the following form: m ≤ vg,m and
m ≥ vg,m,∀m ∈M,g ∈ G. Each element of these pairs is then used as a binary attribute
on the set of objects. The value of the attribute on each object is set to 1 if the condition
holds, otherwise the value is set to 0. However, this approach produces a large dataset
having∑m∈M2∣Nm∣ items. Moreover, the post-processing step is highly expensive. For
each itemset found, it needs to determine the interval of each attribute by calculating the
minimum and the maximum values that are present in the itemset. The time complexity
of the post-processing is in the worst case O(C ⋅ ∣M∣ ⋅U) where C is the total number of
mined closed itemsets and U is the number of distinct values for each attribute.

Finally, using the declarative paradigm easily enables us to combine CIP with other
constraints such as the overlapping or the cover of the set of returned patterns [9, 7, 3].
We illustrate the use of these constraints with our CP models in Section 7.3.

2.3 Constraint programming

A CSP consists of a set of variables X = {x1, . . . ,xn}, a set of domains D mapping
each variable xi ∈ X to a finite set of possible values D(xi), and a set of constraints C
on X . A constraint c ∈ C is a relation specifying the allowed combinations of values
for its variables X(c). An assignment on a set Y ⊆ X of variables is a mapping from
variables in Y to values in their domains. A solution is an assignment on X satisfying all
the constraints. CP solvers typically use backtracking tree search to explore the search
space of partial assignments and attempts to extend them to consistent ones with the
objective of finding solutions. The main technique used to speed-up the search is the
constraint propagation by a filtering algorithm. Each constraint filtering should remove
as many variable domain values as possible by enforcing local consistency properties
like domain or bound consistency. Global constraints are constraints capturing a relation
between a fixed number of variables. These constraints provide the solver with a better
view of the structure of the problem. Dedicated filtering algorithms are designed to
achieve better time complexity.

3 Related Work

Mining patterns in numerical data started with quantitative association rule mining [18].
A lot of work is discussed in [17]. Many of them are based on a natural approach where
each numerical attribute is discretized according to some interest functions, e.g. sup-
port, class values. Then patterns are mined from the discretized data. This family of
approaches leads to a loss of information. More recently, in the field of subgroup dis-
covery, a very common kind of patterns in modern pattern mining, Nguyen et al. [14]
creates a discretization process with the goal to maximize the average quality of the
patterns. [12] provides a thorough comparison of existing methods to deal with numer-
ical attributes in subgroups. By considering the notion of closed interval patterns, OS-
MIND [13] finds optimal subgroups according to an interestingness measure in purely
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numerical data. Our work takes advantage of the principle of the closed interval patterns
and it is not limited to subgroups.

Approaches based on Minimum Description Length are used for discovering useful
patterns and returning a set of non-redundant overlapping patterns with well-defined
boundaries [11, 20]. In order to design relevant intervals on the fly based on numerical
data, MININTCHANGE [8] introduces a framework that enumerates all closed interval
patterns starting with the largest one, then explores the search space through minimal
changes on the interval bounds. The principle has been reused to search for patterns
corresponding to convex polygons [1] but the technique is limited to two dimensions.
All these methods are dedicated to specific patterns and require to rewrite algorithms
when the problem at hands changes.

There are many declarative methods for constraint-based mining tasks under declar-
ative frameworks for binary data or sequences [5, 9, 16]. CP-based approaches have
been proposed to mine closed itemsets in a binary context as CP4IM [16] by using rei-
fied constraints or the global constraint closedPattern [10]. However, to the best of our
knowledge, there is no declarative method to discover patterns directly from numerical
data without requiring pre and post processing steps.

4 First Model using Reified Constraints

This section starts by presenting the variables used to model interval patterns and their
associated domains. Then, we describe our first model named CP4CIP.

4.1 Variables and Domains

The bounds of an interval pattern are modelled by introducing two variables xm, xm for
each attribute m ∈M. These variables represent respectively the lower bound and the
upper bound. The domains of these variables is the set of values Nm in the dataset, i.e.
D(xm) = D(xm) =Nm.

Additionally, we introduce another set of variables, denoted by Y , to capture the
coverage of an object by an interval pattern. The variable yg ∈ Y is associated to the
object g ∈ G and has a binary domain, i.e. D(yg) = {0,1}. The variable yg takes the
value 1 if and only if the object g is covered by the candidate interval pattern. A FCIP
is found by setting the variables xm and xm to a value in Nm and yg to 0 or 1.

Example 4. From Table 1, the interval pattern ⟨[3,4],[7,12],[91,102]⟩ is modelled by
the following assignment {x1 = 3, x1 = 4, x2 = 7, x2 = 12, x3 = 91, x3 = 102,y1 = 0,y2 =
1,y3 = 1,y4 = 1,y5 = 0}.

4.2 Reified Constraints

Coverage constraints. An object is covered by a FCIP iff all values of its attributes
are found in the intervals. To formulate the cover of a FCIP, we introduce in our model
Boolean variables Bg,m, for each value m and each object g in the database such that:

Bg,m = 1 ⇐⇒ xm ≤ vg,m ≤ xm, ∀m ∈M,∀g ∈ G (1)
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The following constraint exploits the variables Bg,m to enforce the cover on each
object. An object g ∈ G is covered iff the value of each attribute m for the object g is
bounded by the interval [xm,xm]. We can thus process the frequency of the interval
pattern by summing the yg variables such that the sum must be greater or equal than a
minimum support θ (i.e. ∑g∈G yg ≥ θ ).

yg = 1 ⇐⇒ ∑
m∈M

Bg,m = ∣M∣, ∀g ∈ G (2)

Proof. Let V be a candidate interval pattern. The variable yg models the cover of object
g ∈ G by V . The cover of V is given by the following: yg = 1 ⇐⇒ xm ≤ vg,m ≤ xm,∀ m ∈
M. Since, Bg,m = 1 ⇐⇒ xm ≤ vg,m ≤ xm. So, yg = 1 ⇐⇒ Bg,m = 1,∀m ∈M. It follows
that yg = 1 ⇐⇒ ∑m∈MBg,m = ∣M∣.

Closure constraints. The closure requires that each interval associated to each at-
tribute should contain all the values of the covered objects while each value of an
uncovered object should be outside of the interval. Let N ↑m (resp. N ↓m) be the maxi-
mum (resp. the minimum) value over the objects on the attribute m, the closure re-
lation can be expressed in our model by introducing the new variables Hg,m and Hg,m,
whereD(Hg,m)= {vg,m}∪{N ↑m+1}, andD(Hg,m)= {vg,m}∪{N ↓m−1}. The upper value
{N ↑m +1} (resp. lower value {N ↓m −1}) is added in the domain of Hg,m (resp. Hg,m) in
order to avoid selecting the minimum (resp. maximum) on the uncovered objects.

Lower bound closure. To capture the minimum value of covered objects, we use for
each attribute m ∈M a minimum constraint on the set variables {Hg,m,∀g ∈ G}. The
variables Hg,m of uncovered objects have value greater than all the values in the data.
Thus, the minimum cannot be selected on uncovered objects.

∀g ∈ G,m ∈M,yg = 1 Ô⇒ Hg,m = vg,m (3)

∀g ∈ G,m ∈M,yg = 0 Ô⇒ Hg,m =N ↑m+1 (4)

∀m ∈M,xm =min(H1,m,H2,m, ...,H ∣G∣,m) (5)

∀g ∈ G,m ∈M,yg = 1 Ô⇒ Hg,m = vg,m (6)

∀g ∈ G,m ∈M,yg = 0 Ô⇒ Hg,m =N ↓m−1 (7)

∀m ∈M,xm =max(H1,m,H2,m, ...,H ∣G∣,m) (8)

Upper bound closure. Similarly, to find the maximum value on the covered objects,
we use for each attribute m a maximum constraint on the set of variables {Hg,m,∀g ∈G}.
The variables Hg,m of uncovered objects have value smaller than all the values in the
data. Thus, the maximum cannot be selected on uncovered objects.

Example 5. Table 2 shows the values taken by the closure variables Hg,m (left) and Hg,m
(right) to find the closed interval pattern ⟨[3,4],[7,12],[91,102]⟩.

Proof. Consider the subset G of objects covered by the interval pattern ⟨[am,bm]⟩∀m∈M .
According to the closure definition, the lower bound can be expressed as ∀m ∈M,am =
min({vg,m ∣ g ∈ G}). This is equivalent to ∀m ∈M,am =min({vg,m ∣ ∀g ∈ G,yg = 1}).
Consequently, we deduce that ∀m ∈M,am =min({v ∣ ∀g ∈ G,(yg = 1 Ô⇒ v = vg,m)∧
(yg = 0 Ô⇒ v =N ↑m+1)}). The proof of the upper bound is similar to lower bound.
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yg Hg,1 Hg,2 Hg,3

g1 0 7 13 131
g2 1 4 12 102
g3 1 3 7 91
g4 0 7 13 131
g5 0 7 13 131

min: 3 7 91

yg Hg,1 Hg,2 Hg,3

g1 0 1 6 90
g2 1 4 12 102
g3 1 3 7 91
g4 0 1 6 90
g5 0 1 6 90

max: 4 12 102
Table 2. Values of closure variables Hg,m and Hg,m for the running example.

CP4CIP model. FCIP mining can be modeled by the conjunction of the coverage
constraints (cf. Eq. 1 and Eq. 2) and the closure constraints (Eqs. 3 to 8). This model
uses 2.∣M∣ variables for interval representation, ∣G∣ variables for objects coverage, and
3.∣G∣.∣M∣ variables. It involves ∣G∣.∣M∣ inclusion constraints, ∣G∣ coverage constraints,
and 4.∣G∣.∣M∣+2.∣M∣ closure constraints. The main limitation of such a model lies in
its number of variables and constraints leading to scaling challenges on large datasets.

5 Second Model using a Global Constraint

Similarly to Section 4.1, this second model uses the sets of variables X and X to repre-
sent the lower bounds and the upper bounds of an interval pattern. The GC4CIPN ,θ (X , X)
global constraint holds if and only if V is closed, i.e. close(V) and V is frequent, i.e.
freq(V)) ≥ θ . In the following, we describe the new specific filtering rules associated to
closure and frequency of an interval pattern.

5.1 Closure filtering rules

Let V∗ = ⟨[min(D(x1)),max(D(x1))], . . . , [min(D(x∣M∣)),max(D(x∣M∣))]⟩ be the
largest interval pattern from the domains. Proposition 1 states that values occurring
only in objects non covered by V∗ must be removed.

Proposition 1. Let V∗ = ⟨[min(D(x1)), max(D(x1))], . . . , [min(D(x∣M∣)), max(D(
x∣M∣))]⟩. Let m ∈ M, g ∈ G,

{ vg,m ∉D(xm),
vg,m ∉D(xm)

i f ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∃ m′ ∈M,m ≠m′,vg,m′ <min(D(xm′)) ∨ vg,m′ >max(D(xm′))
∧
∀g′ ∈ G, g ≠ g′ such that g′ is covered by V∗, vg,m ≠ vg′ ,m

(9)

Proof. Let m, m′ ∈M and m ≠m′. Suppose that vg,m ∈D(xm) and vg,m′ <min(D(xm′))
or vg,m′ >max(D(xm′)). If vg,m′ <min(D(xm′))∨vg,m′ >max(D(xm′)), this means that
g is not covered by V∗, i.e. g ∉ cover(V∗). Thus following the closed interval definition
in section 2.1, xm =min({vg′ ,m ∣ g

′ ∈ cover(V∗)}). If there does not exist g′ ∈G where g′

is covered and vg′ ,m = vg,m , then vg,m will never be a bound in V∗, therefore vg,m ∉D(xm)
which contradicts the assumption. The proof for the upper bound is similar.
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Example 6. Consider the dataset in Table 1, and the following domains:D(x1) = {4,6},
D(x1)={4,6}, D(x2)={7,8,9,12}, D(x2)={7,8,9,12}, D(x3)={91,101,102,130},
D(x3) = {91,101,102,130}. Since the values 2 and 3 for the attribute m1 are not in
D(x1) and D(x1), the objects g1, g3 and g4 are not covered. Therefore, the values
7,8,9 will be removed from D(x2) and D(x2) because 7 appears in g3, 8 appears in g1
and 9 in g4, and these values do not occur in any covered object.

For defining the next filtering rule, we first consider the joint between the domains of
two attributes m and m′. For each value vg,m in D(xm), we consider the objects g having
such a value for attribute m, i.e. Im = {g ∣ g ∈ G,vg,m ∈ D(xm)}. Then, for each object
g in Im, we determine its value for the attribute m′ So, join(xm′ ,xm) = {vg,m′ ∣ vg,m′ ∈
D(xm′),g ∈ Im}. Then, every value outside the bounds of this set has to be removed.

Proposition 2. Let m,m′ ∈M, m ≠m′. For simplicity, we denote by xm as either a lower
bound xm or an upper bound xm.

{ vg,m ∉D(xm) if: vg,m >max( join(xm′ ,xm))
vg,m ∉D(xm) if: vg,m <min( join(xm′ ,xm))

(10)

Proof. Let m,m′ ∈M and m≠m′. Suppose that vg,m ∈D(xm) and vg,m >max( join(xm′ ,xm)).
D(xm′) contains all possible lower bounds for the attribute m′, therefore join(xm′ ,xm)
returns all the values which are potential lower bounds for the attribute m. If vg,m >
max( join(xm′ ,xm)), there exists an object g which is either uncovered or is strictly
inside the closed intervals. In both cases, all the values occurring in object g are not
located in the closure’s lower border. Consequently, the vg,m ∉D(xm) which contradicts
the assumption. The proof for the upper bound is similar.

Example 7. Consider the database in Table 1 and the following domains: D(x1) =
{2,3,4, 6},D(x1)={4,6},D(x2)={7,8,9,12},D(x2)={7,8,9,12},D(x3)={91,101,
102, 110, 130}, D(x3) = {91, 101, 102, 110}. The objects associated to D(x1) are g4
and g6. The values of these objects for attribute m3 are 102 and 110. So join(x1,x3) =
{102,110}. In the same way, join(x1,x3) = {102,110}. Following the filtering rules
in 10, value 130 will be removed from D(x3), because 130 > max( join(x1,x3))
and values 91, 101 will be removed from D(x3) since 91 and 101 are smaller than
min( join(x1,x3)).

5.2 Frequency filtering rules

Values not occurring in any frequent interval pattern have to be removed.

Proposition 3. Let m ∈ M, and V p = ⟨[min(D(xi)),max(D(xi))]⟩1≤i≠m≤∣M∣ be a par-
tial interval pattern.

{am ∉ D(xm) if: freq(V p ++ [am,max(D(xm))]) < θ

bm ∉D(xm) if: freq(V p ++ [min(D(xm)),bm]) < θ
(11)
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Proof. We prove that am ∉D(xm) if the candidate interval on the attribute m using the
maximum value as an upper bound will always lead to a frequency less than θ . Suppose
that am ∈ D(xm). We know that cover(V p)∩ cover([am,bm]) = cover(V p ++ [am,bm]).
Since V p is a consistent partial solution, freq(V p) ≥ θ . This means that the frequency
of the candidate interval pattern (V p ++ [am,bm]) is determined only by freq([am,bm]).
Consequently, if freq([am,max(D(xm))]) < θ , then the value am as a lower bound will
always lead to infrequent candidate interval pattern with current domains. Thus am ∉
D(xm) which contradicts the assumption. The proof establishing the inconsistency of
the value bm in the upper bound domain is similar.

Example 8. Consider the dataset in Table 1, a minimum frequency threshold θ = 2, and
the following variable domains: D(x1) = {2}, D(x1) = {3}, D(x2) = {8,9}, D(x2) =
{8,9,12}, D(x3) = {91,101,102,130}, D(x3) = {91,101,102,130}. Following the fre-
quency filtering rule, and considering the partial assignement V p = ⟨[2, 3], [91, 130]⟩,
the values 8 and 9 will be removed fromD(x2) andD(x2) respectively, since f req(V p ++
[9,max(D(x2))]) < 2 and f req(V p ++ [min(D(x2)),8]) < 2 (Equation 11)

GC4CIP model. Our global constraint GC4CIPN ,θ (X , X) can be used with additional
constraints to handle more complex mining tasks (see Section 7.3).

6 GC4CIP Filtering Algorithm

In this section, we introduce our algorithm designed to implement the filtering rules
outlined in Section 5, ensuring the domain consistency of the GC4CIP constraint. Our
filtering algorithm leverages an internal data structure to certify candidate solutions and
optimize the filtering process.

A specific data structure. Consider a tree represented as T = (N, E, r, in f , sup)
where N is the set of nodes in T . Each node n ∈ N contains an interval [an,bn] with an
and bn being values returned by the operators in f (n) and sup(n) respectively. The root
node of T is r, and E is the set of edges in the tree. The collection of such trees is called
forest and denoted as F . In our algorithm, this forest is represented as a list of trees,
where each tree is associated with an attribute m ∈M from the dataset. Additionally,
we introduce a Boolean array, denoted as Cov, designed to compute the current coverage
of the set of objects (i.e. leaf nodes). For g ∈ G, Cov[g] is set to 1 if g can be covered,
otherwise it is set to 0. The synchronization of trees within the forest is maintained
through the coverage array.

Initially, for each attribute m and object g in the dataset, a leaf node n ∈N is created,
such that n = [vg,m ,vg,m] where vg,m ∈Nm. A parent node p is created over a subset of
leaf nodes, where in f (p) is set to the minimum an of its children and sup(p) is set to
the maximum bn of its children. The interval [ar,br] associated with the root node of
each tree establishes coherent bounds for the variables corresponding to the attribute
m ∈M (i.e. xm and xm).
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Algorithm 1: GC4CIP coverage update
1 Function PushDown(T : tree, depth, n: current node, a: value inNm, b: value inNm,

Cov: coverage array)
2 if depth = maxdepth(T) ∧ (in f (n) < a ∨ sup(n) > b) then
3 in f (n)←Ð +∞; sup(n)←Ð −∞;
4 Cov[ObjectIndexFromLeaf(n)]←Ð 0;
5 else
6 foreach c ∈ child(n) do
7 if in f (c) < a ∧ sup(c) > b then
8 PushDown(T, c, a, b, depth+1)
9 else if in f (c) < a then

10 PushDown(T, c, a, sup(c), depth+1)
11 else if sup(c) > b then
12 PushDown(T, c, in f (c), b, depth+1)

To maintain the trees and the coverage array with respect to changes in the variables
domains, we introduce a function PushDown(), see Algorithm 1. The PushDown func-
tion allows to update leaves nodes having their intervals (i.e. [vg,m ,vg,m]) not included
in the interval of the root node, lines 3 and 12. If this condition holds, the interval of the
leaf node is set to [+∞,−∞], making the corresponding object uncovered.

Implementing the filtering rules. Algorithm 2 applies the filtering rules described
in Section 5. When the domain of a bound variable of an interval xm (i.e. xm or xm )
changes, we first update the leaves through the PushDown() function described in Al-
gorithm 1. The leaves of all the trees within the forest are then synchronized through
the cover array such that each leaf corresponding to a newly uncovered object is set
to [+∞,−∞], lines 6 to 8 in Algorithm 2. The new interval borders are updated using
a bottom-up approach which sets for each parent node a new lower and upper bound
consisting respectively, of the smallest value from its children’s lower bound and the
highest value among its children’s upper bound, lines 10 to 13. The intervals coherence
is maintained in lines 14 and 15 by filtering values that are greater than sup(r) and
smaller than in f (r) from bothD(xm′) andD(xm′). Lines 16 and 17 implements Propo-
sition 1 using the cover array by filtering values that appears only in uncovered objects.
Afterward lines 19 and 20 are a straightforward application of Proposition 2 as they fil-
ter all the values greater than max( join(xm,xm′)) and smaller than min( join(xm,xm′)).
Finally, Lines 22 and 23 implements Proposition 3 since it filters values that only leads
to infrequent closed interval patterns.

Time complexity analysis Algorithm 1 has a worst-case time complexity of O(∣G∣),
which correspond to the number of leaves in the tree. This is simplified from O(SlogS ∣G∣),
where S is the maximal number of children of a parent node. The time complexity of
the algorithm 2 in the worst case is given by O(∣G∣+(∣M∣ ⋅ ∣G∣3 ⋅ logS∣G∣)+ ∣G∣). Conse-
quently the complexity of GC4CIP is bounded by O(∣M∣ ⋅ ∣G∣3 ⋅ logS∣G∣).
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Algorithm 2: GC4CIP closure filtering
1 Input: XM = {x1, x2, ..., x∣M∣}, XM = {x1, x2, ..., x∣M∣}, θ :Frequency threshold,

xm′ : modified variable, F = [T1, ...,T∣M∣]: Forest corresponding to databases’ attributes,
Cov[∣G∣]:Coverage vector

2 Output: Consistent XM = {x1, x2, ..., x∣M∣} and XM = {x1, x2, ..., x∣M∣}
3 begin:
4 PushDown(F[m’],depth=0, r ∈ F[m], min(xm′), max(xm′))
5 foreach m ∈M do

// synchronize the tree leaves

6 foreach leaf n ∈ F[m] do
7 if Cov[n] = 0 then
8 in f (n)←Ð +∞; sup(n)←Ð −∞

// update nodes intervals of the tree

9 level←Ð Maxdepth(F[m])−1
10 while level ≥ 0 do
11 foreach n ∈ F[m] where depth(n) = level do
12 in f (n)←Ð min({in f (c) ∣ c ∈ child(n)})

sup(n)←Ð max({sup(c) ∣ c ∈ child(n)})
13 level←Ð level−1

// Maintaining interval coherence

14 D(xm)←ÐD(xm) / {v ∣ v ∈D(xm)∧v > sup(r)}
15 D(xm)←ÐD(xm) / {v ∣ v ∈D(xm)∧v < in f (r)}

// Closure filtering

16 D(xm)←ÐD(xm) / {v ∣ v ∈D(xm)∧ ∀g ∈ G,v ≠ vg,m where Cov[g] = 1}
17 D(xm)←ÐD(xm) / {v ∣ v ∈D(xm)∧ ∀g ∈ G,v ≠ vg,m where Cov[g] = 1}
18 if m ≠m′ then
19 D(xm)←ÐD(xm) / {v ∣ v ∈D(xm) ∧ v <min( join(xm′ ,xm))}
20 D(xm)←ÐD(xm) / {v ∣ v ∈D(xm) ∧ v >max( join(xm′ ,xm))}

// Frequency filtering

21 V p ←Ð ⟨[min(D(xi)),max(D(xi))]⟩1≤i≠m′≤∣M∣
22 D(xm′) ←Ð D(xm′) / {v ∣ v ∈D(xm′) ∧ freq(V p ++ [v, max(xm′)]) < θ}
23 D(xm′) ←Ð D(xm′) / {v ∣ v ∈D(xm′) ∧ freq(V p ++ [min(xm′),v]) < θ}

7 Experiments and results

The experimental evaluation is designed to address the following questions:
1. What are the results in terms of CPU time for our two models compared to :

(a) CP approaches such as CP4IM and CLOSEDPATTERN outlined in section 3 which
require a pre and post processing step ?

(b) the ad hoc method MININTCHANGE described in Section 3?
2. Can our CP model be seamlessly extended to address other data mining tasks on
numerical data (e.g. clustering) while being competitive with ad hoc approaches (e.g.
K-MEANS) ?
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NT AP BK Cancer CH Yacht LW
∣M∣ 3 5 5 9 8 7 10
∣G∣ 130 135 96 116 209 308 189

distinct values 67 674 313 900 396 322 253
Interordinal scaled datasets

∣Binary attributes∣ 134 1348 626 1800 792 644 506
density (%) 52.23 50.37 50.79 50.50 51.01 51.08 51.97

Table 3. Datasets characteristics

7.1 Benchmark datasets

We selected several difficult numerical datasets for declarative approaches which were
used in [8]. We also selected two other datasets (Cancer and Yacht) from the UC
Irvine archive 1. The names of datasets are given by standard abbreviations used in
the database of Bilkent University. All the selected datasets come in different sizes and
types, most of them containing real values and one of them negative values. Table 3 pro-
vides a comprehensive summary of dataset characteristics, including the following key
metrics: the number of objects denoted by ∣G∣, the number of items represented by ∣M∣,
the sum of distinct values which is calculated by the formula∑∣M∣m=1 ∣Nm∣, the count of bi-
nary attributes resulting from the process of interordinal scaling’s binarization denoted
as ∣Binary attributes∣ and the density of the binarized datasets. The dataset’s density,
after applying IS method, is always greater than 50 %. This is a direct result of the IS
method which assigns for each numerical value at least one binary attribute to 1.

The implementation of our approach was carried out using the OR-tools solver
v9.02. All experiments were conducted on an AMD Opteron 6174 with 2,2 GHz of
CPU and 256 GB of RAM. with a timeout of 12 hours. For each dataset, we decreased
the (relative) frequency threshold until it is impossible to extract all closed interval
patterns within the allocated time/memory. The source code and datasets are available
at https://github.com/djawed-bkh/CPAIOR2024.

7.2 Mining CIP

Comparing with other CP approaches. Table 4 presents the computation time re-
quired to discover all closed interval patterns under different minimum frequency thresh-
olds across various datasets. In these experiments, for both the CP4IM and CLOSEDPAT-
TERN approaches, we provide the cpu-time of pre-processing and post-processing steps
for using itemset mining. The pre-processing time is negligible compared to the post-
processing time due to the high number of closed itemsets found.

If we consider the two reified models, CP4CIP and CP4IM, we can observe that
CP4CIP consistently outperforms CP4IM across most of the selected datasets. In terms
of CPU times, an average speed-up of 8.36, 10.11, 14.12, and 32.64 is observed for
the BK, CH, Cancer, and AP datasets, respectively. For the LW, and Yacht datasets, we

1 https://archive.ics.uci.edu/datasets
2 https://github.com/google/or-tools/
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N θ # Sol Time (s)
(%) (≈) (1) (2) (3) (1 + 3 ) (2 + 3) (4) (5)

B
K

80 106 1840.21 148.91 176.65 2016.86 325.56 271.10 89.63
70 107 15132.87 1457.99 1326.58 16459.45 2784.57 1770.22 655.63
60 107 TO 8643.34 6713.25 TO 15356.59 7311.24 2879.54
50 108 TO 28302.62 19307.70 TO 47610.32 18471.23 7780.65
20 108 TO TO TO TO TO TO 34598.10

C
an

ce
r 95 104 170.14 6.19 13.69 183.83 19.88 18.42 5.80

94 105 568.00 18.21 38.88 606.88 57.09 45.43 15.66
92 105 6944.07 294.14 542.82 7486.89 836.96 486.87 190.84
90 106 29787.19 1190.42 2348.45 32135.64 3538.87 1806.19 786.25

A
P

80 105 783.92 175.02 55.21 839.13 230.23 28.55 19.18
70 106 5909.86 189.30 415.76 6325.62 605.06 194.64 128.83
60 106 18479.87 7995.84 1275.85 19755.72 9271.69 548.12 373.01
50 107 TO 23252.89 2964.71 TO 26217.60 1223.79 770.83
20 107 TO 43199.73 3052.93 TO 46252.66 5129.20 2891.55

0 107 TO TO TO TO TO 5867.37 2343.98

C
H

95 106 25.59 1.16 29.93 55.52 31.09 5.98 1.60
90 105 608.94 36.58 224.70 833.64 261.28 89.81 38.42
85 106 4753.35 331.08 835.24 5588.59 1166.32 671.49 256.86
80 106 19154.96 1444.64 18009.40 37164.36 19454.04 2739.85 890.82
50 TO TO TO TO TO TO TO TO

LW

80 106 1612.68 96.91 174.46 1787.14 271.37 1638.03 181.81
70 106 12904.12 757.02 1279.34 14183.34 2036.36 9886.90 1269.50
60 107 TO 3436.91 5236.91 TO 8673.82 33 148.24 4,965.20
50 108 TO 11060.23 15588.10 TO 26648.33 TO 14298.64
20 TO TO TO TO TO TO TO TO

N
T

80 103 0.87 0.06 0.07 0.97 0.13 1.80 0.13
50 104 7.08 0.41 0.50 7.58 0.91 11.01 0.91
20 104 28.13 1.53 1.83 29.96 3.36 28.77 2.89
10 105 41.75 2.51 2.61 44.36 5.12 32.50 4.02

0 105 62.48 2.88 3.13 65.61 6.01 33.72 3.81

Y
ac

ht

80 104 40.12 2.03 83.20 123.32 85.23 90.92 2.45
50 106 7277.85 336.03 268.28 7546.13 604.31 4090.63 181.63
40 106 30519.66 1282.32 727.09 31246.75 2009.41 9380.16 501.52
30 107 TO 4265.71 1695.63 TO 5961.34 20464.22 1179.13
20 107 TO 12898.20 2874.08 TO 15772.28 33294.36 2487.68

0 107 TO TO TO TO TO TO 4116.60

(1): CP4IM (2): CLOSEDPATTERN

(3): Preprocessing + Postprocessing (4): CP4CIP (5): GC4CIP

Table 4. Closed Interval Pattern Mining Methods vs Itemset Mining Methods with Interordinal
Scaling

observe a speedup of 1.26 and 2.17 respectively. Finally in the NT dataset the results are
more balanced as in the high frequencies CP4IM slightly overcome CP4CIP whereas in
low frequencies CP4CIP is better. This can be explained with the low number of distinct
values, resulting in fewer binary attributes generated with the IS method which enables
CP4IM to enhance performance.

If we consider the use of global constraints GC4CIP and CLOSEDPATTERN, GC4CIP
consistently outperforms CLOSEDPATTERN across all datasets. Regarding CPU times,
an average speed-up of 1.20, 1.67, 3.98, and 4.83 is noted for the NT, LW, Cancer,
and BK datasets, respectively. For the Yacht, CH, and AP datasets, a substantial speed-
up of 10.70, 13.15, and 18.31 is observed, showcasing the efficiency of GC4CIP which
emerges as the most efficient approach among all the compared declarative methods. Its
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main competitor, CLOSEDPATTERN, is consistently outperformed in the majority of in-
stances, even when comparing only resolution times (without including pre-processing
and post-processing times).
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Fig. 1. MinIntChange compared to declarative approaches
Fig. 2. Cluster quality of
GC4CIP and K-MEANS

Comparing with the ad hoc approach MININTCHANGE. Figure 1 compares CPU
times of our two proposals with the adhoc method MININTCHANGE. As expected,
MININTCHANGE outperforms the declarative approaches across all databases, with
speedup between GC4CIP and MININTCHANGE ranging from 2 for the NT database
to 7 in Yacht. This outcome is due to the dedicated character of MININTCHANGE, tai-
lored specifically for the FCIP mining task. However, in contrast to our generic declar-
ative approaches, MININTCHANGE struggles to adapt to other data mining tasks due
to its need of rewriting the solving algorithm. In the following section, we illustrate the
genericity of our declarative approaches by applying them to another data mining task.

7.3 Modelling a k-clustering problem using GC4CIP

We demonstrate the genericity of our approach by considering a clustering task as a use
case. Our objective is to find a clustering which forms a partition over the objects in the
dataset as akin to K-MEANS method. Closed interval patterns form the set of clusters,
making this task known as conceptual clustering, where each cluster is defined by a
unique concept (i.e. closure property). This task of finding k interval closed patterns
{V1, ...,Vk} is formally described by the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Closure close(V i) ,∀1 ≤ i ≤ k
No overlapping cover(V i) ∩ cover(V j) =∅ ,∀1 ≤ i < j ≤ k
Total coverage ⋃1≤i≤k cover(V i) = G
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To carry this task, we extend our global constraint GC4CIP to handle the conceptual
clustering directly from the numerical data. This involves adding a new set of variables
denoted Y as parameter in our global constraint i.e GC4CIPN ,θ (X , X ,Y). The set of
binary variables Y = {y1, ...,y∣G∣} indicates whether an object is covered by V or not.
The filtering rules over the variables Y in the global constraint are described in supple-
mentary material https://github.com/djawed-bkh/CPAIOR2024. Our CP based
k-Clustering model requires three sets of variables. X i and X

i
to represent each interval

pattern associated to a cluster and Y i to indicate whether an object is included in a clus-
ter. In term of constraints, our model requires the conjunction of three distinct types of
constraints. The first one is a closure constraint, represented by GC4CIPN ,θ (X i, X

i
,Y i)

which is applied k times to generate k closed interval patterns each one representing a
cluster. Then, to ensure the non-overlapping coverage of our interval patterns, we in-
troduce a partitioning constraint which ensures that each object g ∈ G can be covered
with at most one interval pattern, thus guaranteeing that an object belongs to a single
clustering at most (i.e. ∑1≤i≤k yi

g = 1). Finally, we introduce a constraint enforcing the
k-clusters to cover all the objects in the database (i.e. ⋃1≤i≤k cover(V i) = G).

In Figure 2, we showcase the results of clustering on the NT database with 3, 4,
and 5 clusters for both the K-MEANS and K-GC4CIP approaches, with a 12 hours time-
out. To measure the results quality we use the intra-cluster and inter-cluster Euclidean
distances. Notably, for cluster numbers 3 and 4, the K-GC4CIP method outperforms K-
MEANS in both intra-cluster distance and inter-cluster distance as the former is smaller
and the latter is greater than the heuristic approach. However, for a number of clusters
of 5, we note that K-MEANS performed slightly better than K-GC4CIP in both mea-
sures, which can be explained by the timeout of K-GC4CIP, as it was unable achieve an
exhaustive search within the allocated time.

8 Conclusion

In this paper, we introduced two CP models (CP4CIP and GC4CIP) for mining FCIP
directly from numerical data without requiring any pre- or post-processing step. We
demonstrated the efficiency of GC4CIP compared to existing declarative methods and an
ad hoc one. Finally, we illustrated the genericity of our approach by combining GC4CIP
with other constraints to tackle the conceptual k-clustering problem. The declarative
nature of our contributions enables straightforward combination with other declarative
approaches. For example, combining GC4CIP with CP4IM allows effortless mining of
closed patterns from heterogeneous data, where the former handles numerical data and
the later focuses on binary data.
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