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Abstract 

Solar-induced chlorophyll fluorescence (SIF), an electromagnetic signal that can potentially indicate 

vegetation photosynthetic activity, can be retrieved from ground-based, airborne and satellite 

measurements. However, due to the scattering and re-absorption effects inside the leaves and canopy, 

SIF measured at the canopy level is only a small part of the total SIF emission at the photosystem 
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level. Therefore, a downscaling mechanism of SIF from the canopy level to the photosystem level is 

important for better understanding the relationship between SIF and the vegetation gross primary 

production (GPP). In this study, firstly, we analyzed the canopy scattering effects using a simple 

parameterization model based on the spectral invariant theory. The probability for SIF photons to 

escape from the canopy was found to be related to the anisotropic spectral reflectance, canopy 

interception of the upward solar radiation, and leaf absorption. An empirical approach based on a 

Random Forest (RF) regression algorithm was applied to downscale SIF constrained by the red, 

red-edge and far-red anisotropic reflectance. The RF was trained using simulations conducted with 

the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model. The performance of 

the SIF downscaling method was evaluated with SCOPE and Discrete Anisotropic Radiative Transfer 

(DART) model simulations, ground measurements and airborne data. Results show that estimated 

SIF at the photosystem level matches well with simulated reference data, and the relationship 

between SIF and photosynthetically active radiation absorbed by chlorophyll is improved by SIF 

downscaling. This finding in combination with other evaluation criteria suggests the downscaling of 

canopy SIF as an efficient strategy to normalize species dependent effects of canopy structure and 

varying solar-view geometries. Based on our results for the SIF-APAR relationship, we expect that 

such normalization approaches can be helpful to improve estimates of photosynthesis using remote 

sensing measurements of SIF. 

Keywords: Solar-induced chlorophyll fluorescence; Downscaling; Canopy level; Photosystem level; 

Spectral invariant theory; Random Forest regression 



1. Introduction 

 Solar-induced chlorophyll fluorescence (SIF) has been proved to be an efficient tool for 

monitoring of gross primary production (GPP), showing large advantages compared with other 

remote sensing indicators based on reflectance-data (Guanter et al. 2014; Migliavacca et al. 2017; 

Porcar-Castell et al. 2014; Sun et al. 2017; Zhang et al. 2016). The photosynthetically active energy 

absorbed by leaf pigments can be: i) used in photochemical reactions, ii) dissipated as heat, or iii) 

re-emitted as fluorescence (Porcar-Castell et al. 2014). Unlike the reflectance based parameters, SIF is, 

as a by-product of photosynthesis, more directly related to GPP (Berry et al. 2012; Coops et al. 2010; 

Damm et al. 2015a; Zarco-Tejada et al. 2013).  

Validity of the resource balancing paradigm (Field et al. 1998) in combination with the Monteith 

light use efficiency (LUE) model (Monteith 1972; Monteith and Moss 1977) is the foundation of most 

of the approaches for the estimation of GPP from remote sensing data. The LUE model can be 

expressed as: 

 GPP = PAR × fAPAR × LUE  (1) 

where PAR stands for the photosynthetically active radiation, fAPAR is the fraction of PAR absorbed 

by vegetation, and LUE is the light use efficiency, defined as the number of μmol of CO2 absorbed per 

μmol of photons.  

Similarly, the total SIF emission at the photosystem (PS) level (the total SIF emission inside the 

leaves without any scattering or re-absorption) can be expressed as (Berry et al. 2012; Liu et al. 

2017a; Moya and Cerovic 2004; Porcar-Castell et al. 2014; Wieneke et al. 2016): 

 SIFୗ(λ) = PAR × fAPAR × F୷୧ୣ୪ୢ(λ)  (2) 



where λ is the wavelength, and Fyield is the quantum yield for chlorophyll fluorescence. If Fyield is 

constant, then SIFPS is linearly related to the PAR absorbed by vegetation. 

In recent years, we have been experiencing a rapid development of methods for SIF retrieval 

from spectral remote sensing data (Malenovský et al. 2009). The SIF signal can be detected by 

ground-based (Grossmann 2014; Liu et al. 2017a; Liu et al. 2015; Liu et al. 2005; Wyber et al. 2017; 

Yang et al. 2015; Cogliati et al. 2015; Burkart et al. 2015), airborne (Damm et al. 2014, Rascher et al. 

2015; Wieneke et al. 2016), and space-borne sensors (Frankenberg et al. 2011; Guanter et al. 2012; 

Joiner et al. 2013; Joiner et al. 2011; Köhler et al. 2015). However, SIF is emitted by chlorophyll a 

molecules, which are contained inside chloroplasts at different leaf mesophyll layers. Reabsorption 

and scattering of SIF are both taking place inside leaves as well as within the canopy. Using remote 

sensing approaches at large scales, it is only possible to measure SIF at the canopy level (SIFCanopy, 

defined as SIF escaping from the canopy in a specific viewing direction). 

The SIF spectrum extends over the wavelength range from about 640 to 850 nm, with two peaks 

centered at 685 nm and 740 nm. Ramos and Lagorio (2004) pointed out that the spectral shape of 

fluorescence measured at leaf level was influenced by the leaf re-absorption, and developed a model 

to correct the spectral shape using leaf reflectance. Van Wittenberghe et al. (2015) studied the 

upward and downward SIF emission at the leaf level separately using a special leaf probe called 

FluoWat, and found that the partitioning of the upward and downward SIF components is influenced 

by scattering and absorption processes related to the leaf structure and the pigment content. This 

indicates that the red SIF at 685 nm is strongly influenced by chlorophyll absorption within the leaves, 

while far-red SIF is mainly influenced by scattering effect of leaf tissue structures. Several studies 

have reported a decrease in the red/far-red SIF ratio from leaf level to canopy level (Fournier et al. 



2012; Moya et al. 2006; Romero et al. 2018), which can be, besides the environmental stress exposure 

(Ač et al. 2015), explained by the strong re-absorption of SIF by chlorophyll at the red band 

(Daumard et al. 2012; Fournier et al. 2012; Agati et al. 1993; Cordon et al. 2006; Porcar-Castell et al. 

2014; Romero et al. 2018). Liu et al. (2016) observed similar anisotropic characteristics for SIF and 

reflectance at the canopy level, and claimed that the phenomenon can be attributed to re-absorption 

by canopy components and the bidirectional canopy gap fraction. Other studies also reported a 

similar anisotropic effect for SIF retrieved from space (e.g. Guanter et al. 2012, Joiner et al. 2012), 

while He et al. (2017) proved that an angular normalization of SIF strengthens SIF-GPP relationships. 

Further, Du et al. (2017) reported a species-dependent relationship between SIFCanopy and PAR 

absorbed by chlorophyll (APARchl), and pointed out that the uncertainty in the SIF escape probability 

weakens the relationship between SIF and APARchl or GPP, especially at the red band. Therefore, 

downscaling of SIF from canopy level to PS level is important to better constrain estimates of GPP 

using remote sensing observations of SIF. 

There are two very recent studies focusing on the problem of SIF downscaling. Romero et al. 

(2018) developed a physical model based on the canopy reflectance, canopy transmittance and soil 

reflectance to correct the spectral shape of fluorescence emission from canopy level to leaf level. 

Together with the study by Ramos and Lagorio (2004), the fluorescence spectral shape at PS level 

could also be retrieved. However, the absolute SIF intensity was not available. Yang and Van der Tol 

(2018) linked the canopy scattering of far-red SIF to the canopy reflectance, canopy interceptance 

and leaf albedo based on canopy radiative transfer analysis, but the model was not valid for the red 

band and the input parameters were not easy to be accurately measured or estimated. Moreover, the 

SIF downscaling from leaf level to PS level was not included. 



Given the fact that the radiative transfer of emitted SIF within a canopy is similar to that for 

scattered solar radiation, it can be assumed that the modelling of top-of-canopy (TOC) spectral 

reflectance can approximate the canopy effects on SIF, which is needed for the estimation of SIF 

escape probability from PS level to canopy level (ߝ) (Van der Tol et al. 2009; Liu et al. 2016). To 

express the radiative transfer equation within the canopy together with the leaf scattering coefficient, 

Knyazikhin et al. (1998) introduced a spectral invariant p, which was defined by Smolander and 

Stenberg (2005) as photon recollision probability. Another spectral invariant, bi-directional gap 

fraction, was introduced to quantify the probability of scattered photons to escape the canopy via 

gaps in the direction of viewing (Huang et al. 2007; Knyazikhin et al. 2011). The so-called ‘spectral 

invariant theory’ has been successfully used to better understand the absorption and scattering 

effects within the canopy and also to link the reflectance at the canopy level and leaf level (Huang et 

al. 2007; Knyazikhin et al. 2013; Smolander and Stenberg 2005; Stenberg et al. 2016; Wang et al. 

2003). Similarly, the spectral invariant theory can be applied to model the escape probability for SIF 

with a number of parameters describing the leaf optical properties, canopy structure, and 

background reflectance. However, these parameters are usually difficult to accurately measure or 

estimate. Moreover, spectral invariant theory can only model the radiative transfer process from leaf 

level to canopy level, while SIF is emitted from inside the leaves, which means that the re-absorption 

of SIF photons within the leaves (leaf internal absorption) is not accounted for. Although the canopy 

reflectance also contains information about the leaf absorption, it is difficult to directly link this to the 

SIF absorption inside the leaves.  

Supervised machine learning approaches trained on appropriate training dataset are capable of 

building accurate prediction models (Ma, 2014) that can empirically overcome the difficulties in the 



physical modelling described above (the unavailable input parameters for the physical model can be 

estimated by machine learning approaches using available information). The physically based 

analysis of the radiative transfer process is, in turn, able to point out the appropriate input 

parameters used in the machine learning methods. 

This study aims to define and evaluate a practical solution for the downscaling of SIF from the 

canopy level to the PS level. The SIF radiative transfer within canopy and inside leaves is analyzed 

based on the spectral invariant theory and leaf-level simulations to define the key parameters driving 

the SIF downscaling from canopy level to leaf and PS levels. We then employ an empirical approach 

based on random forest (RF) regression (Breiman 2001) to predict the SIF escape probability from 

leaf level to canopy level (ߝ) and from PS level to canopy level (ߝ) using reflectance information. 

The Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model (Van der Tol et al. 

2009) was then used for the simulation of the training dataset. Finally, we evaluate the performance 

of the SIF downscaling using SCOPE and Discrete Anisotropic Radiative Transfer (DART) model 

simulations, ground and airborne data. The presented approach facilitates the normalization of SIF 

observations across canopy types observed under varying sun-view geometries, and eventually 

improves our understanding on the relationship between SIF emission and photosynthetic activity.  

2. Materials and methods 

2.1 Simulated datasets 

2.1.1 SCOPE simulation 

The SCOPE model (Van der Tol et al. 2009) is a vertical (1-D) integrated radiative transfer and 



energy balance model, which is able to simulate leaf and canopy spectral reflectance and SIF as well 

as photosynthesis and water and heat flux by linking the radiative transfer with micro-meteorological 

processes. SCOPE has been widely used in the field of SIF research (e.g. Verrelst et al. 2015; Zhang et 

al. 2016; Yang and Van der Tol. 2018). The latest version of SCOPE (v1.7) provides users with SIF at 

canopy level, leaf level (SIF emitted by all leaves, excluding the re-absorption and scattering within 

the canopy) and at PS level (SIF emitted by all photosystems, excluding the re-absorption within the 

leaves). Therefore, we used SCOPE v1.7 for the simulation of SIF at the canopy, leaf and PS levels, 

along with that of the canopy directional reflectance, leaf reflectance and transmittance. 

In the SIF emission spectral range (~ 640 – 850 nm), the amount of absorption by leaves is 

mainly related to chlorophyll content (Jacquemoud and Baret 1990). The canopy scattering is mainly 

related to the canopy structure parameters (leaf area index (LAI), leaf inclination distribution, etc.) 

and solar-view geometries (solar zenith angle (SZA), view zenith angle (VZA) and relative azimuth 

angle (RAA)) (Verhoef 1984). We parameterized SCOPE for sets of different leaf chlorophyll contents 

(Cab), LAI levels and six typical leaf inclination distributions to cover most common vegetation 

conditions. Additionally, different SZAs and VZAs in the solar principal plane were also defined. The 

full-width-at-half-maximum spectral response (FWHM) and spectral sampling interval (SSI) for the 

SCOPE simulations are 1 nm. Details about the SCOPE input parameters are listed in Table 1. As a 

result, 6240 different samples were generated. 

Table 1. Main input parameters for the SCOPE simulations. 

Parameter Values Unit Description 
Cab 20, 40, 60, 80 μg/cm2 Leaf chlorophyll a + b content 
Cdm 0.012 g/cm2 Dry matter content 
Cw 0.009 cm Leaf water equivalent layer 
N 1.4 - Leaf mesophyll scattering parameter 

LAI 1, 2, 3, 4 m2 /m2 Leaf area index 
LIDFa 1, -1, 0, 0, -0.35, 0 - Leaf inclination parameter 



LIDFb 0, 0, -1, 1, -0.15, 0 - Bimodality parameter 
FQE 0.01 - Fluorescence quantum yield 

efficiency 
SZA 20, 30, 40, 50, 60 degree Solar zenith angle 
VZA 0, 10, 20, 30, 40, 50, 60 degree View zenith angle 
RAA 0, 180 degree Relative azimuth angle 

2.1.2 DART simulation 

DART is a three-dimensional (3-D) radiative transfer model that allows simulating the radiation 

budget as well as remotely sensed images of natural and urban surfaces covering the range from the 

ultraviolet to the thermal infrared band (Gastellu-Etchegorry et al. 2015). Recently, a SIF module that 

allows simulations of SIF radiative transfer within 3-D canopies has been added to DART 

(Gastellu-Etchegorry et al. 2017). Similar to SCOPE, DART uses the Fluspect model (Vilfan et al. 2016) 

to simulate the reflectance, transmittance and SIF emission at the leaf level. In this study, the DART 

model (v5.6.6) was employed to simulate SIF at both the canopy and leaf levels, together with the 

directional reflectance of 50 different viewing angles for two geometrically explicit and 

architecturally different canopies of maize (Zea mays L.) and Norway spruce (Picea abies /L./ H. 

Karst.). The DART parameterization details are listed in Table 2. Figure 1 shows the simulated 

multi-angular SIF at canopy level for maize and spruce at the far-red (740 nm) and red bands (687 

nm). 

Table 2. Major input parameters for the DART simulations of maize and spruce canopies. 

Parameter Values Unit Description 
Cab 58 μg/cm2 Leaf chlorophyll a + b content 
Cdm 0.0037 g/cm2 Dry matter content 
Cw 0.0131  cm Leaf water equivalent layer 

N 
1.518 

- 
Leaf mesophyll scattering 

parameter 
LAI 4 (maize), 7 (spruce) m2 /m2 Leaf area index 

Canopy Height 2.25 (maize), 10 (spruce) m Canopy Height 
FQE (PSI) 0.002 - Fluorescence quantum yield 

efficiency for photosystem I 
FQE (PSII) 0.008 - Fluorescence quantum yield 



efficiency for photosystem II 
SZA 37.94 degree Solar zenith angle 
VZA 15 – 65 degree View zenith angle 
SAA 311.89 degree Solar azimuth angle 
VAA 0 – 180 degree View azimuth angle 

 

 

Figure 1. Multi-angular SIF at canopy level for maize and spruce at the far-red (740 nm) and red (687 

nm) bands, as simulated by DART. The labels are the view azimuth (0  - 360°, 0° for the north) and 

zenith (0° - 90°) angles. The red cross indicates the solar position (zenith angle: 37.94°; azimuth 

angle: 311.89°). The incident PAR is 1185.76 W/m2, and the temperature is 300 K. 

 

2.2 Ground measurements 

2.2.1 Multi-species experiments 

A dataset comprising ground spectral measurements of different species, acquired at three sites, 

following three specific experimental settings was used to evaluate the performance of SIF 

downscaling for different canopy structures.  



Spectral measurements of winter wheat (Triticum) were carried out on five days at the National 

Precision Agriculture Demonstration Base located at Xiao Tangshan Farm (XTS, 40°11’N, 116°27’E), 

north of Beijing, China. Diurnal cycles of radiance measurements (nadir view) were conducted on 

April 8 - 9 and 18, 2016, when the growth stages of the winter wheat were jointing and booting, and 

on November 7 and December 8, 2016 when the growth stages were emergence and tillering, 

respectively. The leaf inclination distribution function (LIDF) of winter wheat was assumed to be 

spherical based on a visual inspection.  

Measurements of cotton (Gossypium) and different kinds of vegetables (i.e. sweet potato 

(Ipomoea batatas), Chinese cabbage (Brassica rapa pekinensis), thyme (Thymus), pumpkin (Cucurbita 

Cucurbita)) were carried out on December 18, 2016 at Nanbin Farm (NBF, 18°22’N, 109°10’E) in 

Hainan Province, China. The LIDF types of the vegetables and cotton are mostly close to planophile 

based on visual assessment. For convenience, the term ‘vegetables’ is used to represent all the species 

on this site (including cotton). 

Diurnal measurements of gold coin grass (Lysimachiae Herba) were also carried out on 

December 18, 2016 at the Sanya Remote Sensing Satellite Data Receiving Station (SYS, 18°18’N, 

109°18’E) in Hainan Province, China. The LIDF of this grass was assessed to be close to planophile by 

visual inspection.  

Details of the multi-species measurements described above are summarized in Table 3. All the 

spectral measurements were conducted using a customized Ocean Optics QE Pro spectrometer 

(Ocean Optics, Dunedin, FL, USA), characterized by a FWHM of 0.31 nm, a SSI of 0.155 nm, and a peak 

signal-to-noise ratio (SNR) higher than 1000. For more details of the experiments, please refer to Du 

et al. (2017). 



Table 3. Parameters of multi-species measurements. Cab stands for leaf chlorophyll a+b content, LIDF 

is the leaf inclination distribution function, and Fc is the fraction of vegetation coverage. 

Site Location Date Species Cab (μg/cm2) LIDF Fc 
Xiao 
Tangshan 
(XTS) 

40°11’N 
116°27’E 

Apr. 8, 9 & 18, 
Nov. 7, Dec. 8, 

2016 

Winter 
wheat 

21.22 – 55.29 
Spherical 0.15 – 0.79 

Nanbin Farm 
(NBF) 

18°22’N 
109°10’E 

Dec. 18, 2016 Vegetables 
and cotton 

15.22 – 56.68 
Planophile 0.28 – 0.91 

Sanya Station 
(SYS) 

18°18’N 
109°18’E 

Dec. 18, 2016 Gold coin 
grass 

40.83 
Planophile 0.67 

 

2.2.2 Multi-angular experiments 

Due to the influence of the canopy structure (i.e. variable gap fraction and LIDF), SIF at the 

canopy level is anisotropic. To test the performance of the SIF downscaling algorithm, we carried out 

a series of multi-angular measurements on a winter wheat canopy during the springs of 2015 and 

2016 at the Xiao Tangshan Farm, Beijing, China, using a multi-angular observation system (MAOS) 

(Yan et al. 2012). The MAOS consists of a two-dimensional automatic goniometer, a spectrometer (QE 

Pro) and a laptop for control. It automatically collects the canopy radiance at different viewing angles, 

together with the downwelling solar irradiance reflected from a reference panel. In this study, the 

multi-angular spectral measurements were taken in the solar principal planes with the view zenith 

angles ranging from -60° to 60° with an interval of 10° (a smaller interval of 2° was set around the 

hotspot position). The multi-angular measurements of canopy reflectance and SIF were carried out 

under stable sunny weather conditions from 8:00 to 16:30 (local time) during eight days of different 

winter wheat growth stages in 2015 and 2016 (as listed in Table 4). It takes about 7 minutes for each 

set of multi-angular measurements. In total, 32 sets of valid measurements were acquired. 



Table 4. Parameters of multi-angular measurements on winter wheat at Xiao Tangshan Farm, Beijing, 

China during the springs of 2015 and 2016.  

Date LAI Cab (μg/cm2) SZA (°) 
Apr. 3, 2015 1.46 47.9 43.6 – 54.5 
Apr. 13, 2015 1.94 51.5 38.4 – 57.8 
Apr. 24, 2015 2.40 50.0 32.3 – 47.4 
Apr. 25, 2015 2.40 50.0 31.1 – 62.4 
Apr. 18, 2016 2.92 47.5 36.4 – 61.5 
May 3, 2016 1.93 49.3 29.3 – 50.5 
May 4, 2016 1.93 49.3 32.8 – 60.5 
May 17, 2016 1.43 45.6 27.4 – 47.6 

2.2.3 SIF retrieval 

At the canopy level, measured radiance signals comprise the sum of emitted SIF and reflected solar 

radiation. Disentangling both components is frequently based on the Fraunhofer Line Discrimination 

(FLD) principle (Plascyk 1975). Frequently used algorithms include the 3-band FLD (3FLD) (Maier et 

al. 2003), the improved FLD (iFLD) (Alonso et al. 2008) and the spectral fitting methods (SFM) 

(Meroni et al. 2010). According to the analysis by Damm et al (2011) and Liu et al. (2015), the 3FLD 

algorithm is relatively simple and robust for the spectral resolution and SNR of the spectral data 

acquired by our QE Pro spectrometer. Therefore, we estimated SIF at the canopy level with the 3FLD 

algorithm. The selected wavelengths are 757.92 nm, 760.72 nm and 768.87 nm for the O2-A band, 

and 686.44 nm, 687.09 nm and 688.23 nm for O2-B band (Du et al. 2017).  

2.2.4 Estimation of APARchl 

According to Eq. (2), SIF emission at photosystem level is closely related to APAR (more 

specifically, PAR absorbed by chlorophyll (APARchl)). APARchl is difficult to measure directly, but is 

closely related to the photosynthetically active radiation absorbed by green leaves (APARgreen) (Du et 



al. 2017; Porcar-Castell et al. 2014). Liu et al. (2013) proposed an efficient method for making in-situ 

measurements of the fraction of APARgreen (fAPARgreen) for a low vegetation canopy using a digital 

camera and a reference panel. A color image of the canopy with the reference panel is first taken by a 

digital camera at nadir position. Pixels in the image are then classified into green leaves, ground litter, 

sunlit soil, shaded soil, and reference panel. Consequently, the fAPARgreen could be calculated as: 

 fAPAR୰ୣୣ୬  =  ୖିୖ౨ି(ୖుా ା ୖిా)ୖ  (3) 

where PARi and PARr are, respectively, the incident and reflected (including all exposed components) 

PAR derived from the DN values of the digital image. APAREB and APARCB are the PAR absorbed by the 

exposed background (EB, including the non-photosynthetic components) and the vegetation-covered 

background (CB) respectively. 

In the multi-species experiments described in Section 2.2.1, fAPARgreen was measured with the 

digital camera based approach as described above. Unfortunately, fAPARgreen was not measured in the 

multi-angular experiments (Section 2.2.2). To eliminate the saturation effect of the normalized 

difference vegetation index (NDVI), Gitelson (2004) proposed a wide dynamic range vegetation index 

(WDRVI), which has been proved to be well linearly correlated with fAPARgreen (Viña and Gitelson 

2005). The WDRVI is defined as: 

 WDRVI = ( R୍ୖ − Rୖୣୢ) / ( R୍ୖ + Rୖୣୢ) (4) 

where RNIR and RRed are the reflectances at the near infrared and red band, respectively, and  is a 

weighting coefficient with a value of 0.1 – 0.2 (Gitelson 2004). Figure 2 shows the relationship 

between WDRVI (  = 0.1) and fAPARgreen for SCOPE simulations with different values of the LAI (1 – 

4), leaf chlorophyll content (20 – 80 g/cm2), SZA (20 – 60 ) and three typical leaf inclination 

distribution functions (planophile, plagiophile and spherical). Therefore, in the multi-angular 



experiments fAPARgreen was estimated using the linear model based on the WDRVI. 

 

Figure 2. Linear regression of the fraction of photosynthetically active radiation absorbed by green 

leaves (fAPARgreen) on the wide dynamic range vegetation index (WDRVI) computed from SCOPE 

simulations for canopies with different leaf area indices, leaf chlorophyll contents and leaf inclination 

distributions. 

Chlorophyll is the main absorbing compound for PAR in green leaves (Jacquemoud and Baret 

1990; Porcar-Castell et al. 2014). According to Du et al. (2017), fAPARchl can be approximated from 

fAPARgreen with a linear function: 

 fAPARୡ୦୪  =  ݇ × fAPAR୰ୣୣ୬ (5) 

where the coefficient k is related to the leaf chlorophyll content. Analysis of SCOPE simulations 

conducted by Du et al. (2017) revealed that the value of k varies from 0.78 to 0.80 for the leaf 

chlorophyll content from 20 to 60 μg/cm2. Since the leaf chlorophyll content of most of the samples 

was within the range 20 – 60 μg/cm2 (except for one sample for which the value was 15.22 μg/cm2), 

we estimated fAPARchl using k equal to 0.79 in this study. 

The incident photosynthetically active radiation (PAR) was calculated using the radiance 

reflected from a white reference panel measured by a spectrometer. Consequently, the APARchl can be 

calculated as: 



 APARୡ୦୪  =  PAR × fAPARୡ୦୪ (6) 

2.3 Airborne measurements 

 The airborne image, used to evaluate the method introduced in this study, was acquired using 

the imaging spectrometer HyPlant (Specim, Oulo, Finland). As an airborne demonstrator for the ESA’s 

Fluorescence Explorer (FLEX) mission, HyPlant was specifically designed for the monitoring of 

vegetation canopy spectral characteristic parameters, including SIF. There are two modules in 

HyPlant: the first is the FLUO module, which is used for the SIF measurements and which covers the 

range from 670 nm to 780 nm with a high spectral resolution (FWHM = 0.25 nm); the other module is 

the DUAL module, which covers a broader spectral range (380 – 2500 nm) with a FWHM of ~ 4 nm 

for bands from 380 nm to 970 nm, and of ~ 13.3 nm for bands from 970 nm to 2500 nm. More 

technical details about the HyPlant configurations and the data processing are available in Rascher et 

al. (2015).  

    In this study, we used a HyPlant image acquired at 14:58 (local time) on June 30 2015 over the 

study area located in the Ruhr catchment in the central western part of North Rhine-Westphalia, 

Germany (50.864° N, 6.452° E). The flight height of 600 m above ground and the swath wide of ~ 400 

m resulted in a spatial resolution of 1 m and view zenith angles from 0° to about 16.7° from the 

center to the edges of the swath. The flight heading direction was 345.89°, under the solar zenith 

angle of 31.89°, and the solar azimuth angle of 217.52°.  

    The far-red (760 nm) and red (687 nm) SIF at canopy level were retrieved using the iFLD 

method (Alonso et al. 2008). A semi-empirical technique that made use of SIF-free reference pixels 

(e.g., bare soil) was used to empirically account for uncertainties in estimated upward transmittance 



of the atmosphere (Damm et al. 2014). For further technical details of SIF retrieval from the HyPlant 

image, please refer to Damm et al. (2014) and Wieneke et al. (2016). fAPARgreen was estimated using 

the WDRVI-based linear model that was introduced in Section 2.2.4. As explained in Section 2.2.4, the 

linear relationship between fAPARchl and fAPARgreen was assumed also for the HyPlant image. The 

missing of information about chlorophyll content made it difficult to decide a proper coefficient for 

the fAPARchl - fAPARgreen relationship, so we did not calculate the fAPARchl for the HyPlant image, but 

used the fAPARgreen directly to evaluate the results of SIF downscaling. 

2.4 Physical analysis of SIF radiation transfer within the canopy 

The absorption and scattering of SIF photons within the canopy is ruled by the same physical 

interactions as in the case of the reflected radiation. The difference is only the location of the photons’ 

source. SIF photons are emitted inside the leaves while, photons of reflected radiation originate from 

the solar illumination at the top of canopy (Figure 3).  
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Figure 3. An illustration of the canopy absorption and scattering model for solar illumination (a) and 

SIF emission (b) assuming with non-reflecting soil background. State T0 represents photons that go 

through the canopy without interacting with the canopy or being absorbed by the soil; state I 

represents photons that interact with the canopy; state A represents photons absorbed by the canopy; 

and state E represents photons that escape from the canopy.  is the recollision probability, ߱ is 



the leaf scattering coefficient (single scattering albedo), ݅  is the canopy interceptance of the 

incoming radiation, which means the probability of an incident photon that will be intercepted by the 

canopy , and ݐ  is the probability that a photon can pass through the canopy without any 

interactions (ݐ = 1 − ݅).  

 

Using the concept of recollision probability (so-called ‘p-theory’) (Stenberg et al. 2016) and 

assuming that the canopy is bounded underneath by a non-reflecting surface (the ‘black-soil’ 

condition), the four probable states of photons originating from solar illumination are as illustrated 

in Figure 3(a) (Smolander and Stenberg 2005). The canopy absorptance can be expressed as: 

 ܽ(λ) = ݅ൣ൫1 − ߱(ߣ)൯ + ߱(ߣ)൫1 − ߱(ߣ)൯ + ߱(ߣ)ଶଶ൫1 − ߱(ߣ)൯ + ⋯ ൧ = ݅ ଵିఠಽ(ఒ)ଵିఠಽ(ఒ) (7) 

where  is the recollision probability, ߱ is the leaf scattering coefficient (single scattering albedo), 

and ݅ is the canopy interceptance of the incoming radiation. The canopy scattering can then be 

expressed as: 

(λ)ݏ  = ݅ − ܽ(λ) = ଵିଵିఠಽ(ఒ) ݅߱(ߣ) (8) 

The recollision probability describes the multiple scattering process within the canopy. To 

describe the anisotropic escape probability of photons to leave the canopy, the bi-directional gap 

fraction, another spectral invariant, is needed. The term (1 −  can be expressed as the integrated (

canopy density over all directions in the unit sphere (Knyazikhin et al. 2013): 

 1 −  = ଵ ∫ ସ(Ω)ߩ |ߤ| ݀Ω (9) 

where ߩ(Ω) is the gap fraction for direction Ω, 4π denotes the unit sphere, and ߤ is the cosine of 

the polar angle of Ω. The canopy structure is the main factor influencing its reflectance anisotropy. 

According to Knyazikhin et al. (2011 & 2013), the bi-directional reflectance factor (BRF), 



representing the canopy scattering in a specific observing direction, can be approximately expressed 

as: 

 BRF(λ, Ω௦, Ω௩) = ఘ(ஐೞ,ஐೡ)ଵିఠಽ(ఒ) ݅߱(ߣ) (10) 

where ߩ(Ω௦, Ω௩)  is the bi-directional gap fraction which contains the information of canopy 

structure and the fraction of sunlit and shaded leaves. Ω௦ and Ω௩ are the solar and view directions, 

respectively. 

Similarly, for SIF emission, the probable states of the SIF photons emitted from leaves are as 

illustrated in Figure 3(b). It needs to be noted that, there is also probability for SIF photons to be 

absorbed by the soil without any interactions in the canopy (similar as the state of T0 in Figure 3(a)). 

However, such probability is considered to be very low, because the SIF photons absorbed by soil 

directly are most likely from the bottom leaves, while the illumination on leaves at the bottom of 

canopy is usually very low for dense canopy. Additionally, for the red-band, the downward SIF at leaf 

level has been proved to be much weaker than the upward SIF (Van Wittenberghe et al. 2015). 

Therefore, the portion of SIF photons directly absorbed by the soil is neglected in this study. 

Accordingly, the canopy absorptance of SIF photons can be expressed as: 

 ܽ(λ) = ൫1 − ߱(ߣ)൯ + ߱(ߣ)ଶ൫1 − ߱(ߣ)൯ + ߱(ߣ)ଶଷ൫1 − ߱(ߣ)൯ + ⋯ =  ଵିఠಽ(ఒ)ଵିఠಽ(ఒ) (11) 

and the canopy scattering of SIF photons as: 

(λ)ݏ  = 1 − ܽ(λ) = ଵି୮ଵିఠಽ(ఒ) (12) 

The scattering processes for SIF photons and for reflected photons by canopy elements are similar. 

Consequently, the SIF escape probability from leaf level to canopy level (ߝ =  ௩௦) inܨܫܵ/௬ܨܫܵ

observing direction Ω can be expressed as: 

,(λߝ  Ω) = ఘ(ஐ)ଵିఠಽ(ఒ)  (13) 



If we substitute Eq. (10) into Eq. (13), then we have, 

,(λߝ  Ω) = ୖ(,ஐ)బఠಽ(ఒ)   (14) 

According to the analysis above, under the ‘black-soil’ condition, the SIF escape probability from 

leaf to canopy level is related to the directional reflectance, the canopy interceptance and the leaf 

scattering coefficient. In practice, the directional reflectance can be acquired concurrently with the 

SIF measurements, but canopy interceptance and leaf scattering coefficients can not, in general, be 

accurately estimated. The canopy interceptance is driven by the canopy structure and the actual solar 

position. If the clumping effect is assumed to be of minor impact, the canopy interceptance can be 

expressed as (Chen and Black 1992; Ross 2012): 

 ݅ = 1 − exp (ିீ(ఏ)∙ூୡ୭ୱ(ఏ) ) (15) 

where ߠ  is the SZA and (ߠ)ܩ  is the mean projection coefficient for foliages on a plane 

perpendicular to ߠ. The function, G, is determined by the LIDF. For the spherical leaf inclination 

distribution type with an LIDF that is a sine function, the value of G is 0.5 and is independent of ߠ. 

For other values of the LIDF, the value of G ranges from 0 to 1 when ߠ varies from 0° to 90°, and 

generally converges to 0.5 when ߠ is approximately 57.3° for all LIDF types (Nilson 1971; Ross 2012; 

Ryu et al. 2010). (ߠ)ܩ ∙  .represents the projected LAI in the solar direction ܫܣܮ

Figure 4 shows the values of i0 for different values of G, LAI and SZA. For a dense canopy with 

large values of LAI and G, the value of i0 is close to 1, while for sparse canopies, the value of i0 shows a 

large degree of variability. 



 

Figure 4. Values of the canopy interceptance of the incoming radiation (i0) for different G function 

values, leaf area index (LAI) and solar zenith angle (SZA) combinations, calculated using Eq. (15). G 

function is the mean projection coefficient for foliages on a plane perpendicular to the solar zenith 

direction. 

Since absorption by chlorophyll a molecules is very weak at the far-red band, leaf single 

scattering albedo (߱) is strongly influenced by chlorophyll content only in the red wavelengths of 

SIF emission. ߱at the far-red band is, therefore, almost independent of chlorophyll content and it is 

driven by a minor absorptance of leaf tissue biochemical compounds. Figure 5 shows the variations 

of ߱ at the far-red (760 nm) and red (687 nm) bands simulated by the Fluspect model for leaf 

chlorophyll content from 10 to 80 μg/cm2. As expected, the value of ߱ at the far-red band is almost 

invariant, reaching values between 0.853 and 0.888, while it varies from 0.044 to 0.287 for the red 

band, where the absorption by chlorophyll is strong. It exhibits a large variation in the value of ߱, 

especially for the chlorophyll content lower than 40 μg/cm2. 



 

Figure 5. Values of ߱ at the far-red (760 nm) and red (687 nm) bands simulated by the Fluspect 

model for different values of the leaf chlorophyll content. The values for other input parameters for 

the Fluspect model were set as default (same as in Table 1). 

Another fact needs to be noted is, the spectral invariant theory ignores the difference between 

the leaf reflectance and leaf transmittance (combined as ߱). Therefore, the spectral invariant theory 

performs well at the far-red band, where multi-scattering dominates, but not so well at the red band, 

where single scattering dominates. Nevertheless, the ߝ and ୖబఠಽ are still proportional at the red 

band (Yang and Van der Tol. 2018). This problem is discussed in Section 4.4.  

The escape probability for SIF from the PS level to the leaf level (ߝ = SIFୣୟ୴ୣୱ/SIFୗ) is related 

to the leaf internal absorptance (from the photosystems to the leaf surface). The leaf internal 

absorptance at the spectral range of the SIF emission is caused mainly by the leaf chlorophyll content, 

but the relationship is non-linear, because the increment in radiation absorption per unit of 

chlorophyll decreases at high chlorophyll content (Adams et al. 1990; Gitelson et al. 1998; 

Porcar-Castell et al. 2014). Besides, chlorophyll molecules are distributed in different cell layers of 

leaf mesophyll tissues. Although the radiative transfer processes at the molecular-level are complex 



for accurate modelling, ߝ can be expressed as a non-linear function of the chlorophyll content (Cab) 

and wavelength as: 

(λ)ߝ  ≈ ݂(Cab, λ) (16) 

Consequently, the SIF escape probability from the PS level to the canopy level (ߝ) can be 

expressed as: 

,(λߝ  Ω) = (λ)ߝ ∙ (λ)ߝ ≈  ݂(Cab, λ) ∙ ୖ(,ஐ)బఠಽ(ఒ)  (17) 

To summarize, the SIF escape probability from the PS level to the canopy level can be 

approximately modeled using the canopy BRF, canopy interceptance and Cab, under the assumption 

of ‘black-soil’ condition. For remote sensing observations, the directional reflectance is available. 

However, the i0 and ߱ is not easy to be accurately measured or estimated. According to Eq. (15) and 

Figure (4), i0 is related to canopy structure, which is not easy to be accurately retrieved with optical 

remote sensing approaches. It is not possible to observe leaf reflectance and transmittance directly at 

canopy level, and ߱ varies among different leaves. So ߱ is also difficult to be estimated from 

remote sensing observations at canopy level. But for a dense canopy and for leaves with a relatively 

high value of Cab, i0 and ߱ are relatively stable, and the directional reflectance is the main factor 

that influences ߝ, especially at the far-red band. 

2.5 Estimation of ࡼࢿ and ࡸࢿ using the random forest approach 

    Given the difficulties involved in acquiring the parameters required for physical modelling of the 

SIF downscaling, a statistical model based on the Random Forest (RF) regression, which is one of the 

most effective machine learning models for predictive analytical approaches (Breiman 2011), was 

trained on the dataset simulated in SCOPE to estimate ߝ.  



As shown in Section 2.4, the BRF has significant impact on ߝ. Taking all other factors together 

as fCP, Eq. (17) can be modified thus: 

,(λߝ  Ω ) = ݂ ∙ BRF(λ, Ω) (18) 

where fCP is the ratio of ߝ to BRF. In the SCOPE simulations, ߝ(λ, Ω ) and BRF(λ, Ω) can be 

simulated directly, and ݂ later calculated. As ݂ is acquired from SCOPE simulation instead of 

physical analysis, the assumption of ‘black-soil’ condition for Eq. (17) is no longer needed here. 

Similarly, ߝ can be expressed as, 

,(λߝ  Ω) = ݂ ∙ BRF(λ, Ω) (19) 

We only estimated fCP or fCL with the random forest approach to increase robustness of estimated 

ߝ  andߝ . Directional reflectance was obtained from measurements or simulations. fCP and fCL are 

mainly related to the leaf scattering coefficient and canopy structure. These kinds of information can 

be derived from directional reflectance at different bands and from various vegetation indices.  

At the near infrared band, the canopy reflectance is dominated by the scattering effect, which 

primarily originates from the leaf and canopy structure. At the red band, the canopy reflectance is 

dominated by the absorption effect of chlorophyll pigments (Colwell 1974; Sims and Gamon 2002). It 

has been demonstrated that the red-edge band is important for the estimation of Cab as it is less 

impacted by the absorption saturation effect for a high Cab than the red band (Clevers and Gitelson 

2013; Dash and Curran 2004; Gitelson et al. 2005; Malenovský et al. 2013). Several vegetation indices 

(VIs), based on the reflectance at the red, red-edge and near infrared bands, have been developed for 

the retrieval of vegetation parameters. In this study, the NDVI, simple ratio (SR) and the MERIS 

terrestrial chlorophyll index (MTCI) were used (formulae and references in Table 5). Considering the 

possible available wavelength range of spectral measurements for SIF retrieval, and to avoid the SIF 



in-filling effect at the oxygen absorption bands at about 687 nm and 760 nm, we selected 685 nm as 

the red band, 710 nm as the red-edge band, and 758 nm as the near infrared band for the calculation 

of the VIs. The NDVI is sensitive to the canopy structural parameters such as LAI (Soudani et al. 2012). 

The SR is sensitive to the chlorophyll absorption at the red band. Finally, MTCI was designed for 

estimation of the chlorophyll content (Dash and Curran 2004). Consequently, NDVI, SR and MTCI, 

together with the canopy directional reflectance at 685 nm, 710 nm and 758 nm, were selected as the 

potential input variables to establish the RF regression. The scatter matrix of the relationships among 

the potential input variables and fCP is provided in the Supplementary materials (Figure S1). The final 

selection of inputs was decided by testing the performance of RF regression with different 

combinations of the six potential variables, which is shown in Section 3.1. 

Table 5. Mathematical formulations and references for the Vis (R758, R685 and R710 stand for the 

directional reflectance at 758 nm, 685 nm and 710 nm, respectively). 

Equation Reference 
NDVI=(R758-R685) / (R758+R685) (Rouse et al. 1973) 
SR=R758 / R685 (Jordan 1969) 
MTCI=(R758-R710) / (R710-R685) (Dash and Curran 2004) 

     

500 decision trees were used to construct the RF model, and the minimum number of terminal 

nodes were set as 5. The SCOPE simulations (cf., Section 2.1.1), which cover most common vegetation 

conditions, were employed for the training of the RF. SIF of the red (687 nm) and far-red (760 nm) 

bands at canopy, leaf, and PS levels were simulated by the SCOPE model, together with the directional 

reflectance at 685 nm, 710 nm and 758 nm. Consequently, fCP and fCL could be calculated according to 

Eq. (18) and Eq. (19), respectively.  

 



3. Results 

3.1 Selection of the inputs for the RF regression 

To optimize the inputs for the RF regression, we tested the performance of the RF model with 

different combinations of the six potential input parameters explained in Section 2.5. Firstly, all the 

six potential parameters were used as the inputs for the RF regression to calculate their relative 

importance using the mean decrease accuracy (MDA) method based on the concept of out-of-bag 

(OOB) error. The OOB error is a parameter that represents the RF prediction error. It is considered as 

the mean prediction error on each training sample xᵢ, which uses only the trees that did not have xᵢ in 

their bootstrap sample (Breiman, 2001). To measure the importance of the j-th feature for training, 

the values of the j-th feature are permuted among the training data and the OOB error is computed 

for each perturbed data set. The importance score for the j-th feature is computed by averaging the 

difference in the OOB error before and after the permutation over all trees. Figure 6 shows the 

relative importance of the input variables of the RF model for SIF downscaling from canopy level to 

leaf level or PS level. These results indicate that the far-red directional reflectance and MTCI were 

found as the most important variables for the SIF downscaling model at both the far-red and red 

bands, while the importance of the directional reflectance at the red and red-edge bands, the NDVI, 

and the SR was on similar, lower level.  



 

Figure 6. Relative importance of input variables of the RF model for SIF downscaling from canopy 

level to leaf level or PS level. R758, R685 and R710 stand for the directional reflectance at 758 nm, 685 

nm and 710 nm, respectively. 

Secondly, the performance of the RF model was tested with different combinations of input 

parameters. 2/3 of the SCOPE simulations were randomly selected to train the RF model, and the 

remaining 1/3 were used as reference samples to evaluate the performance of the trained model with 

the relative root-mean-square error with respect to mean value (RRMSE) and the coefficient of 

determination (R2). To reduce the random errors, for each combination of input parameters, 30 RF 

models were trained and the RRMSE and R2 were averaged. The results are listed in Table 6. In 

addition, a significance test was also carried out for further comparing the performance of different 

combinations of input parameters (shown in Table S1). For the far-red band, when four parameters 

(R758, MTCI, R685, R710) were used, the RRMSE and R2 became relatively stable, and the difference 

comparing with using all six parameters became insignificant (the p-value is 0.273 and 0.335 for leaf 

level and PS level, respectively). When adding more input parameters (SR and NDVI), the variation of 

RRMSE was less than 0.5%. For the red band, in contrast, the difference between the performance of 

using four input parameters (R758, MTCI, R685, R710) and using all six parameters was still significant 



for both leaf level and PS level (p-value < 10-9, see Table S1). When adding SR or NDVI as the input 

parameters, the RRMSE of the RF model was improved clearly (the RRMSE was reduced about 10% 

for the leaf level and about 6% for the PS level). But the performance of the RF model had no 

significant improvement when using both SR and NDVI (p-values > 0.300, see Table S1). The results 

also indicated that, although the vegetation indices can be calculated using the reflectance at the 

three wavelengths, they can still provide important information for the estimation of fCL and fCP, 

because vegetation indices are able to enhance some information by non-linearly combining the 

reflectance at different wavelengths, and the special non-linear relationship may be difficult for the 

RF regression to find out. 

According to the results, R758, MTCI, R685, and R710 were selected as the input parameters of the 

RF model for the estimation of fCL and fCP at the far-red band, while R758, MTCI, R685, R710, and SR were 

selected for the red band. 

Table 6. The relative root-mean-square error (RRMSE) and the coefficient of determination (R2) of RF 

models for the ratios of SIF escape probability to BRF (fCL for leaf level to canopy level and fCP for 

photosystem level to canopy level) at far-red and red bands with different combinations of input 

parameters. 

Input parameters 
fCL (Far-red) fCP (Far-red) fCL(Red) fCP (Red) 

RRMSE R2 RRMSE R2 RRMSE R2 RRMSE R2 

R758, R710, R685 0.0492 0.871 0.0569 0.901 0.0981 0.960 0.0942 0.954 

R758, MTCI, R685 0.0463 0.886 0.0502 0.928 0.0990 0.961 0.0969 0.957 

R758, MTCI, R685, 

R710 
0.0462 0.886 0.0489 0.931 0.0871 0.964 0.0849 0.961 

R758, MTCI, R685, 

R710, SR 
0.0461 0.887 0.0487 0.931 0.0804 0.968 0.0797 0.964 

R758, MTCI, R685, 

R710, NDVI 
0.0463 0.886 0.0488 0.930 0.0800 0.969 0.0797 0.964 

R758, MTCI, R685, 0.0461 0.887 0.0487 0.931 0.0799 0.969 0.0795 0.966 



R710, SR, NDVI 

3.2 Evaluation of the SIF downscaling accuracy using SCOPE and DART simulations 

SCOPE and DART based simulations were used in the first instance to quantitatively evaluate the 

performance of the RF approach for SIF downscaling. SCOPE allows simulating SIF values at the 

canopy, leaf, and PS levels, but there is no module for SIF simulation at PS level in DART, so the DART 

model is only able to provide the SIF values at the canopy and leaf levels.  

The SCOPE simulations were first used for accuracy assessments at the leaf and PS levels. 2/3 of 

the SCOPE simulations were randomly selected to train the RF model, and the remaining 1/3 was 

used for validation. Figure 7 shows a comparison of the far-red and red SIF estimated by the RF 

approach with the reference SIF simulated by SCOPE for the leaf and PS levels. In general, the 

estimated values of SIF at the leaf and PS levels matched well with the reference values. Most of the 

points were located near to the 1:1 line, and the values of the coefficient of determination (R2) were 

higher or close to 0.9. The estimation of red SIF at the PS level was not as robust as that of the far-red 

SIF, but the root-mean-square error (RMSE) was still as low as 3.613 mW/m2/nm, resulting in the 

relative root-mean-square error (RRMSE) of 7.299%. The relationship of SIF at canopy level and leaf 

level, SIF at leaf level and PS level, SIF at canopy level and PS level from SCOPE simulations are also 

provided in the Supplementary materials (Figure S2) for comparisons. 

 

 



 

 

Figure 7. Comparison of far-red (760 nm) and red (687 nm) SIF estimated by the RF approach with 

reference SIF simulated by SCOPE for leaf and PS levels. R2 is the coefficient of determination, and 

RMSE is the root-mean-square error. 

 

Simulations performed in the 3-D DART model (cf., Section 2.1.2) were used for further 

evaluation of the RF model trained by the SCOPE simulations. Since DART produced canopy and leaf 

SIF simulations for two modeled canopies of maize and spruce, only the downscaling of SIF from the 

canopy level to the leaf level could be evaluated. Figure 8 shows SIF simulated by DART at canopy and 

leaf level vs. estimates of downscaled SIF. The leaf SIF estimates for the maize canopy were more 

robust (less variable) for the spruce canopy, but the downscaled estimates matched well the 



reference values in both cases. The RRMSE between the estimated and reference far-red and red leaf 

SIF was 7.42% and 12.10% for the maize canopy, and 7.57% and 25.92% for the spruce canopy. 

 

 

 

Figure 8. Boxplot of far-red (740 nm) and red (687 nm) SIF simulated by DART for maize and spruce 

canopies and corresponding downscaled leaf SIF using the Random Forest (RF) model. The orange 

dashed line shows the reference values of SIF at leaf level, as simulated in DART by Fluspect. The 

bottom and top of each box represent the first and third quartiles, respectively, the thick horizontal 

line in the box is the median, the whiskers show the maximum/minimum values within 1.5 times the 

interquartile range (IQR, the difference between the third and the first quartiles), and the circles 

show the outliers out of 1.5IQR. The units of mW/m2/nm/sr were applied to SIF at canopy level as 

well as leaf level to make the values comparable.  

 

The evaluation carried out on datasets simulated by two different radiative transfer models 

using different vegetation representations and solar-viewing geometries revealed accurate and 



robust performance of the RF downscaling approach, especially for the far-red SIF. The lower 

accuracy for the red band is discussed in Section 4.4. 

3.3 Evaluation of SIF downscaling through in-situ multi-species experiments 

Under conditions with no stress and with high light, the SIF yield varies little (Van der Tol et al, 

2014; Damm et al. 2015), so the total SIF emission of a plant at PS level is strongly related to APARchl. 

However, SIF at the canopy level is strongly influenced by re-absorption and scattering effects, which 

are related to leaf pigments and the canopy structure. Therefore, we compared APARchl measured for 

multi-species canopies of different structures with SIF downscaled to PS level with the RF approach 

(cf., Section 2.2.1).  

Figure 9 shows the relationship between APARchl and nadir-observed canopy SIF, SIF at leaf level 

and SIF at PS level estimated by the RF approach. The relationship between APARchl and SIFCanopy 

varied for different species, while the slope of the linear regression lines of the SIF-APARchl models for 

different species became closer to each other when SIF was downscaled from canopy level to PS level, 

which indicated that the relationship between APARchl and SIFPS was less species-dependent. At the 

far-red band, the values of R2 increased significantly when SIF was downscaled from canopy level to 

leaf level, but did not vary much (decreased a little) when SIF was further downscaled to the PS level. 

Differently, at the red band, the R2 for the PS level was much higher than that for the leaf level.  

 



 

Figure 9. The relationship between APARchl and canopy SIF observed at nadir (a, b), SIF at leaf level (c, 

d) and PS level (e, f) estimated by the RF approach for several different species (grass, various 

vegetables and wheat). The colored dash lines are the linear regression lines for specific species. The 

black solid lines and the equations are the linear regression lines and models for all the samples. 



 

Table 7. Linear regression models of the SIF-APARchl relationship for different species at canopy, leaf 

and photosystem (PS) levels. The ‘CV of slopes’ are the coefficients of variation of the slopes for 

different species at specific levels. 

Band Level Grass Vegetables Wheat 
CV of 

slopes 

Far-re
d 

Canopy 
y = 0.0065x + 0.122  
R² = 0.7873 

y = 0.017x - 0.5606  
R² = 0.7078 

y = 0.005x + 0.0213  
R² = 0.9182 

0.688 

Leaf 
y = 0.0423x + 0.468  
R² = 0.8567 

y = 0.0778x - 2.3764  
R² = 0.6803 

y = 0.0352x + 0.1319  
R² = 0.9292 

0.441 

PS 
y = 0.0634x + 0.8884  
R² = 0.8786 

y = 0.1108x - 3.0645  
R² = 0.6122 

y = 0.0495x + 0.6585  
R² = 0.9227 

0.431 

Red 

Canopy 
y = 0.0035x + 0.1653  
R² = 0.7068 

y = 0.0074x + 0.0417  
R² = 0.4672 

y = 0.0033x + 0.0056  
R² = 0.8232 

0.488 

Leaf 
y = 0.0336x + 0.9976  
R² = 0.7621 

y = 0.0444x + 0.9485  
R² = 0.1964 

y = 0.0292x + 0.4097  
R² = 0.6182 

0.219 

PS 
y = 0.3808x + 10.094  
R² = 0.7719 

y = 0.5914x + 1.3347  
R² = 0.4455 

y = 0.358x + 1.031  
R² = 0.6831 

0.290 

The linear regression models of the SIF-APARchl relationship for different species at canopy, leaf 

and PS levels were summarized in Table 7, and the coefficients of variation (CV) of the  slopes for 

different species at each level were also calculated. For grass and wheat, the relationships between 

SIF at all levels and APAR were close to linear. But for the vegetation, the relationship was some 

erratic, especially at the red band. The reason may partly due to the measurement errors. For both 

the far-red and red bands, the CV of slopes for different species decreased significantly when SIF was 

downscaled from canopy level to leaf or PS level. At the far-red band, both the CV of slopes and the R2 

of each model at the PS level were very close to that at the leaf level. At the red band, the CV of slopes 

at the PS level was some higher than that for the leaf level, but the R2 of the regression model for all 

the three species were higher than that at the leaf level, especially for the model of the vegetables 



(increased from 0.1964 to 0.4455 when SIF was downscaled from leaf level to PS level). 

 

The results shown in Figure 9 and Table 7 confirmed that the species-dependency of the 

SIF-APARchl relationship could be reduced by SIF downscaling from canopy level to leaf or PS level. 

These results also indicated that the canopy structure is the main factor influencing the far-red SIF 

escape probability, while the leaf internal absorption mainly influence the red SIF.  

3.4 Evaluation of SIF downscaling using multi-angular experiments 

The SIF emission at the PS level can be regarded as isotropic whereas, due to re-absorption and 

scattering within the canopy, the observed SIF at the canopy level is obviously anisotropic. 

Consequently, multi-angular measurements of a winter wheat canopy (cf., Section 2.2.2) were used 

for further evaluation of the SIF downscaling approach, in particular its potential to normalize the 

anisotropy in the SIF measurements. 

Figure 10 shows the relationship between APARchl and values of the multi-angular observed SIF 

at canopy level, leaf level or PS level in the form of boxplots. The APARchl values were divided into 

groups with an interval of 5W/m2. Moreover, for each set of multi-angular observations (with 

different VZAs in the solar principal plane), we calculated the coefficients of variation (CV) of SIF at 

canopy level, leaf level or PS level, as shown in Figure 11. Lower CV values indicated less anisotropy 

of SIF. The results shown in Figure 10 and Figure 11 demonstrate that, for each APARchl level, SIF at 

canopy level varied substantially at both the far-red and red bands due to its anisotropic 

characteristics caused by the scattering within the canopy. Computed CV values varied from 0.12 to 

0.32 for the far-red band, and from 0.33 to 0.61 for the red band. The value of R2 for the relationship 



between SIFCanopy and APARchl is 0.43 and 0.09 for the far-red band and the red band, respectively. The 

estimated SIF at the leaf level and PS level was much more closely related to APARchl and the variation 

of SIF in predefined APARchl level was visibly reduced. At the far-red band, the value of R2 for the 

relationship between SIFPS and APARchl was 0.76, and the values of CV for SIFPS varied from 0.04 to 

0.18. At the red band, there were some outliers in the boxplot which indicates a less robust 

performance of the SIF downscaling. Overall, the value of R2 for the relationship between SIFPS and 

APARchl was 0.14, and the values of CV for SIFPS for most sets of multi-angular observations were also 

reduced and lie within the range 0.14 to 0.42. The results for SIF downscaling to leaf level and to PS 

level were very similar, because the leaf absorptance did not vary a lot (the chlorophyll contents for 

all the samples were very similar as shown in Table 4). The results also confirmed the assumption 

that the SIF emission at both leaf level and PS level is isotropic. 

 

 



 

Figure 10. The relationship between APARchl and multi-angular observations of SIF at canopy level (a, 

b) and estimated SIF at leaf level (c, d) or PS level (e, f) by the RF approach. The bottom and top of the 

boxes correspond to the first and third quartiles, the thick horizontal line in each box is the median, 

the whiskers show the maximum/minimum values within 1.5 IQR, and the circles show the outliers 

that lie outside 1.5 IQR. The multi-angular observations were conducted on a wheat canopy. The 

averaged number of observations per APAR interval is 49. 

 



 

Figure 11. The coefficients of variation (CV) of the observed canopy SIF and leaf or PS SIF estimated 

by the RF approach for each set of multi-angular observations in the solar principal plane. Each 

sample was calculated using a set of multi-angular observations taken within 7 minutes and the SIF 

at PS level was expected to be constant. 

 

 

3.5 Downscaling of canopy SIF retrieved from HyPlant image 

Besides the ground-based measurements, in this study, a HyPlant image was also employed for 

the evaluation of the SIF downscaling results. Before application of SIF downscaling, the original pixel 

size of the HyPlant was reduced from 1 m × 1 m to 5 m × 5 m in order to reduce the influence of 

sensor noise. 

 



 

Figure 12. True color composited HyPlant image and values of fAPARgreen, SIF at canopy level 

(retrieved using the iFLD method), SIF at leaf level and PS level (estimated using the RF approach) at 

both the far-red (760 nm) and red (687 nm) bands. The image was acquired at 14:58 (local time) on 



June 30 2015 over the study area located in the Ruhr catchment in the central western part of North 

Rhine-Westphalia, Germany (50.864° N, 6.452° E). The flight height was 600 m above ground. The 

species in the fields labeled as “A”, “B” and “C” in the true color image are winter wheat, potato and 

sugar beet, respectively. The three fields are selected as examples for further analysis.  

 



 

Figure 13. Relationship between fAPARgreen and SIF at canopy level, leaf level and PS level retrieved 

from the HyPlant image. Non-vegetation pixels were excluded. In order to reduce the propagation of 

noise, each point represents the averaged pixel value in a 50 m  50 m window. 

 



Next to the true color composite of the HyPlant image, Figure 13 shows fAPARgreen, canopy SIF 

retrieved by the iFLD method, and SIF at leaf and PS levels as estimated by the RF approach for both 

far-red and red bands. In Figure 12, an obvious variation in the value of ࡼࢿ for the different fields 

can be seen. As an example, Field A (witer wheat) and Field B (potato) feature similar levels of 

fAPARgreen and SIFPS but their SIFCanopy were quite different, which indicated significant differences in 

their canopy structure (see the color of Field A and Field B in the true color image in Figure 12). Their 

different relationships between fAPARgreen and SIFCanopy could be attributed to the differences in ࡼࢿ. 

Moreover, the HyPlant results also demonstrated that the SIF anisotropy at canopy level was 

efficiently corrected after the downscaling. For example, as shown in the image, despite a relative 

spatial visual homogeneity of Field C (see the true color image in Figure 12), the map of SIFCanopy 

showed a systematically increasing trend from west to east. The view zenith angle for HyPlant varied 

from -16.7° to ~ 16.7° for pixels from the left to the right of the swath and so this variation in SIFCanopy 

within a homogeneous field may be related to SIF anisotropy. In contrast, the value of SIFPS in this 

field was much more homogeneous.  

Relationship between fAPARgreen and SIF at canopy, leaf or PS level extracted from the HyPlant 

image vegetation pixels were presented in Figure 13. Although the spatial resolution of the HyPlant 

image was reduced from 1 m to 5 m, the SIF images still appear noisy, especially for the red band. To 

further reduce the noise influence, we aggregated image pixels into 50 m  50 m bins, in which the 

fAPARgreen and SIF values were averaged (the scatter plots for the 5 m  5 m images are available in 

the Supplementary materials (Figure S3)). Since the HyPlant image used in this study was acquired 

within one minute and the study area was flat, the PAR was expected to be constant for all pixels. The 

graphs showed a stronger and more linear relationship between SIFPS and fAPARgreen than between 



SIFCanopy and fAPARgreen for both the far-red band and the red band. The downscaling of SIF from 

canopy to PS level using the RF approach has increased the value of R2 for the linear relationship 

between SIF and fAPARgreen from 0.347 to 0.440 at the far-red band, and from 0.056 to 0.181 at the 

red band. For the far-red band, values of R2 for the leaf level and PS level were very similar, while for 

the red band, the value of R2 for the PS level was higher than that for the leaf level.  

4. Discussion 

4.1 Downscaling of SIF for the correction of SIF anisotropy 

The observed SIF anisotropy at the canopy level is due to the re-absorption and scattering effects 

within the canopy. Guanter et al. (2012) and Joiner et al. (2012) reported the influence of the 

sun-view geometry on satellite remotely sensed SIF. Since the upwelling radiative transfer process 

from leaf level to canopy level for SIF emission is similar to that of reflected radiation, one can assume 

that SIF anisotropy is similar to that of reflectance (Liu et al. 2016).  

According to the physical analysis of the SIF radiative transfer within the canopy conducted in 

this study, which was neglecting the influence of soil reflectance (is applicable for dense canopies), 

the SIF anisotropy at canopy level can be normalized by the BRF as expressed by Eq. (14), which is 

consistent with Liu et al. (2016). Multi-angular measurements of a winter wheat canopy were used in 

the evaluation of the SIF downscaling (Figure 11 and Figure 12). The results showed that, after the 

downscaling process, the difference in the values of SIF observed at different VZAs was reduced 

effectively. Similarly, in the HyPlant image, due to the variation of view zenith angle, SIF at canopy 

level showed obvious differences between the center and edges of the swath, while SIF at PS level was 



more homogeneous within each field. 

Pinto et al. (2017) showed the angular distribution of SIF emission of a sugar beet canopy which 

consistent with our DART simulations shown in Figure 1, and they pointed out that the directional 

SIF emission is related to the canopy structure. He et al. (2017) developed a model to normalize the 

remotely sensed SIF to the hot spot direction by quantifying the fraction of sunlit and shaded leaves 

in the field of view, and consequently, the total SIF at canopy level could be estimated as a weighted 

sum of SIF from sunlit and shaded leaves. They reported that the calculated total SIF was better 

related with the simulated total GPP than the original SIF observation. According to these relevant 

studies, the demonstrated SIF directional correction is especially important for long-term, 

ground-based or satellite-based observations of SIF time series as the sun-view geometry has a big 

influence on the SIF values (Guanter et al. 2012; Joiner et al. 2012; Liu et al. 2016; He et al. 2017; 

Pinto et al. 2017). The downscaling approach proposed in this paper presents a practical method of 

reducing the anisotropy of SIF emissions, which consequently enables less biased understanding of 

the SIF information at canopy level. 

4.2 Improvements of APAR estimation by SIF downscaling 

APAR is a bridge linking SIF to GPP (Berry et al. 2012; Porcar-Castell et al. 2014). Besides the SIF 

anisotropy at the canopy level, the SIF-APAR relationship also depends on the canopy components 

and structures.  

Du et al. (2017) studied the response of SIF to APARchl using a simulated dataset and ground 

measurements, and found that the relationship between SIFCanopy and APARchl is highly dependent on 

the canopy structure and chlorophyll content, especially for the red band. Our study pointed out that 



corrections for the re-absorption and scattering that affects the SIF transfer from the PS level to 

canopy level is important for linking SIFCanopy to APARchl. The study by Guanter et al. (2014) also 

found that there are differences between SIF-GPP models relationships for US croplands and 

European grasslands. According to the multi-species experiments used in our study (Figure 10), the 

RF-based downscaling of SIF is efficient to reduce the influence of the re-absorption and scattering 

effects within the canopy, and to reduce the species-dependency of the SIF-APARchl models.  

Wieneke et al. (2016) analyzed the value of Fyield at canopy level (SIFCanopy/APAR) for different 

agricultural fields captured in a HyPlant image, and found that Fyield varied with the crop type and 

with the time of image acquisition, i.e., the solar zenith and azimuth angles. The reason could be 

partly related to the re-absorption and scattering of SIF within the canopy. The results that we 

obtained using the HyPlant image further support the idea that SIF downscaling from canopy level to 

PS level can help to achieve more stable and reliable SIF-based APAR models. 

4.3 The variation of SIF spectral shape at canopy, leaf and PS levels 

Apart from the intensity of single-wavelength SIF, the spectral shape of SIF also contains 

important information (Liu et al. 2015). The two photosystems, PS I and PS II, contribute differently 

to the SIF emission. The PS II is responsible for the SIF emission at both the red and far-red bands, 

while the PS I only contributes to the far-red SIF emission and has a much smaller yield (Pfündel 

1998; Agati et al. 2000). Therefore, the spectral shape of SIF is related to the energy distribution 

between PS I and PS II (Porcar-Castell et al. 2014). However, as the within-canopy re-absorption and 

scattering effects on SIF are quite different for the red band and the far-red band, the spectral shape 

of SIF at canopy, leaf and PS levels varies significantly (Fournier et al. 2012; Moya et al. 2006; 



Porcar-Castell et al. 2014). Romero et al. (2018) developed a model based on the canopy reflectance, 

canopy transmittance and soil reflectance to retrieve the spectral shape of fluorescence emission at 

leaf level from the observed fluorescence at canopy level. Ramos and Lagorio (2004) proposed a 

physical model to obtain the fluorescence spectra at PS level by combining the leaf fluorescence 

emission and leaf reflectance. Based on the two studies above, it is possible to retrieve the SIF 

spectral shape at PS level from SIF observation at canopy level, but the absolute intensity of SIF 

emission at leaf level or PS level is not available.  

In this paper, although we focused on the SIF downscaling at two spectrally narrow bands 

instead of full-wavelength, it is still possible to see the variation of SIF spectral shape at canopy, leaf 

and PS levels using the ratio of far-red and red SIF. For the wheat canopy introduced in the 

multi-species experiment, the averaged ratios of SIF at the far-red band (760 nm) and red band (687 

nm) are 1.63, 1.17 and 0.17 for the canopy level, leaf level and PS level, respectively. The significant 

decrease of the SIF ratios results from a much stronger re-absorption effect at the red band. The 

results are consistent with the Figure 8 in Romero et al. (2018). 

4.4 Reliability of this study 

A practical solution based on RF regression was proposed to overcome the difficulties in the 

physical approach for SIF downscaling from canopy level to PS level. As an efficient machine learning 

algorithm, the RF regression model is able to give accurate prediction of parameters if it is properly 

trained. The RF model is made up of a large number of decision trees. Each decision tree is 

independently grown on a bootstrap sample, and hence, the trees are weakly correlated. Therefore, 

the risk of overfitting the training dataset, which is a significant problem for many machine learning 



algorithms, can be reduced (Abdel-Rahman et al. 2013). The RF model is a black box and is totally 

reliant on the training dataset, which may reduce its robustness and applicability under certain 

conditions. For comparison, a simple multiple linear regression (MLR) method was also tested using 

the SCOPE simulation, but the results (Figure S4 in the Supplementary materials) were much worse 

than the RF model (as shown in Figure 7), which confirmed that the RF model was more efficient to 

estimate the SIF escape probability based on the information from reflectance. 

A physical analysis based on the spectral invariant theory was carried out to improve the 

robustness of the SIF downscaling model and find out the most important variables. However, there 

are some limitations remaining in using the spectral invariant theory. In the spectral invariant theory, 

the leaf reflectance and transmittance are combined as the leaf single scattering albedo. In other 

words, the different transfer processes of the photons scattered downwards and upwards by leaves 

were ignored. Yang and Van der Tol (2018) analyzed the radiative transfer of incident light and 

emitted SIF considering the leaf reflectance and transmittance separately and got the same equation 

as Eq. (14). But they pointed out that the equation was not valid for the red band due to the difference 

between the leaf reflectance and transmittance. At the far-red band, the influence of the difference of 

leaf reflectance and transmittance becomes relatively small with the increasing interaction order. At 

the red band, however, the difference of leaf reflectance and transmittance is not ignorable because 

the single scattering dominates. Nevertheless, Yang and Van der Tol (2018) also found that the ߝ 

and ୖబఠಽ  were still proportional at the red band for individual leaves, but the slope of the 

relationship was influenced by the leaf structure and pigment composition. In our study, we did not 

rely on the physical analysis for SIF downscaling, but only used the spectral invariant theory to find 

out the key parameters to estimate the SIF escape probability. Therefore, the results of this study 



were not directly influenced by the limitations of the spectral invariant theory, and the SIF 

downscaling at the red band was still reasonable and valid, although the accuracy was lower than 

that at the far-red band. 

We used different data stemming from models, field and airborne observations to assess 

reliability of our approach. Although we could demonstrate consistency of downscaling results across 

levels and experiments, particularly results obtained from HyPlant data were less clear compared to 

modeling results. This is expected and related to the wealth of factors determining real 

measurements. Further, the atmospheric correction of airborne measured radiance data to retrieve 

surface reflectance and eventually calculate vegetation products such as fAPAR is a highly complex 

task. Particularly canopy structure can introduce uncertainties in estimated irradiance due to varying 

fractions of diffuse and direct irradiance components, thus causing errors in retrieved vegetation 

products (Damm et al 2015b).  

Other assumptions applied might also limit the scope of our analysis. i) The training dataset was 

simulated with the SCOPE model. SCOPE provides relatively reliable simulations of SIF at PS, leaf and 

canopy levels, and has been widely used in studies dealing with SIF (Damm et al. 2015a, Verrelst et al. 

2016). However, SCOPE is a 1-D model and its simulations may only be reliable for canopies with a 

relatively simple structure, such as crops and grass, and not for more complicated canopies such as 

forest. The clumping effect was also neglected in the physical analysis. The performance of the 

proposed method for the cases across canopies still needs to be further tested. ii) The estimated SIF 

at PS level is not possible to be directly validated for ground or airborne measurements. APARchl or 

fAPARgreen were, therefore, used to indirectly evaluate the reliability of estimated SIFPS. But the 

measurements or estimates of APARchl or fAPARgreen also contain uncertainties. Moreover, the 



influence of SIF yield was neglected. Therefore, the validation of our SIF downscaling must be 

elaborated in future work. 

5. Conclusions 

Remote sensing based SIF measurements at canopy level are largely affected by re-absorption 

and scattering within the leaves and canopies, so the downscaling of SIF from canopy level to PS level 

is important to better understand the link between SIF and GPP. A practicable solution based on 

physical analysis and RF regression for the estimation of SIF escape probability was proposed. The RF 

regression model was trained using SCOPE simulations. The results were evaluated using SCOPE and 

DART simulations, field experiments and HyPlant image. The results indicate that, for the far-red 

band, the SIF escape probability is dominated by the canopy scattering, while for the red band, the 

SIF escape probability is related to both canopy scattering and reabsorption within leaves. We 

conclude that accurate knowledge and correction of SIF escape probability is essential to reduce 

associated large uncertainty in the SIF-APAR relationship, and this is also expected to improve the 

SIF-based GPP estimation. Our suggested approach is based on the spectral invariant theory and 

relies on canopy directional reflectance at the red, red-edge and far-red bands to downscale canopy 

SIF to leaf or photosystem level. Although we could successfully demonstrate the reliability of our 

approach, we identified strong sensitivity of our results to data quality and assumptions in 

underlying models. We suggest advancing reliability of reflectance data retrievals in requested 

wavelength ranges and further assessing the impact of assumptions underlying our analysis. 
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