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Abstract: Airborne lidar point clouds of vegetation capture the 3-D distribution of its scattering
elements, including leaves, branches, and ground features. Assessing the contribution from vegetation
to the lidar point clouds requires an understanding of the physical interactions between the emitted
laser pulses and their targets. Most of the current methods to estimate the gap probability (Pgap)
or leaf area index (LAI) from small-footprint airborne laser scan (ALS) point clouds rely on either
point-number-based (PNB) or intensity-based (IB) approaches, with additional empirical correlations
with field measurements. However, site-specific parameterizations can limit the application of certain
methods to other landscapes. The universality evaluation of these methods requires a physically based
radiative transfer model that accounts for various lidar instrument specifications and environmental
conditions. We conducted an extensive study to compare these approaches for various 3-D forest
scenes using a point-cloud simulator developed for the latest version of the discrete anisotropic
radiative transfer (DART) model. We investigated a range of variables for possible lidar point
intensity, including radiometric quantities derived from Gaussian Decomposition (GD), such as
the peak amplitude, standard deviation, integral of Gaussian profiles, and reflectance. The results
disclosed that the PNB methods fail to capture the exact Pgap as footprint size increases. By contrast,
we verified that physical methods using lidar point intensity defined by either the distance-weighted
integral of Gaussian profiles or reflectance can estimate Pgap and LAI with higher accuracy and
reliability. Additionally, the removal of certain additional empirical correlation coefficients is feasible.
Routine use of small-footprint point-cloud radiometric measures to estimate Pgap and the LAI
potentially confirms a departure from previous empirical studies, but this depends on additional
parameters from lidar instrument vendors.

Keywords: radiative transfer model; Lidar; airborne laser scan; point cloud; reflectance; leaf area
index; gap probability; clumping; Gaussian decomposition; waveform

1. Introduction

Lidar remote sensing encompasses a broad range of technologies and applications [1]. Most
remote sensing lidar devices use the time-of-flight technique to generate precise range measurements
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based on the reflected signals of outgoing laser pulses. Lidar systems are typically categorized
according to either the platform, with its corresponding laser footprint diameter (i.e., large-footprint:
>25 m [2,3]; mid-footprint: 3–25 m [4,5]; small-footprint: 10 cm–3 m [6–8]; terrestrial laser scan (TLS):
0.1–3 cm [9]), or the detector system for recording return energy (e.g., waveform, discrete returns,
single-photon detection, etc.). Among the current lidar technologies, waveform lidar systems store the
most comprehensive information, and the recorded waveform can be converted into discrete points by
deconvolution, thresholding, zero-crossings, or Gaussian Decomposition (GD) [10].

In recent years, full-waveform lidars have been explored in depth to estimate gap fraction, leaf
area index (LAI) profiles, and biomass [mid-to-large footprint [11–15], small-to-mid footprint [16,17],
and TLS [18,19]. Most of these physically based approaches are capable of accurate estimation of
gap probability (Pgap) and effective LAI (eLAI = ω · LAI, where ω is the clumping index [20]) without
calibration with field measurements. However, conversion from Pgap into true LAI in most of these
approaches requires a generalization of ω which was derived from globally or regionally averaged
satellite products [21,22] instead of from the lidar data itself. Indeed, ω is a complex parameter that
accounts for clumping induced by landscape (e.g., spatial distribution of the canopy), canopy (e.g.,
within-crown leaf distribution), and shoots [20]. Clumping of shoots is beyond the scope of this study
and therefore not studied. For small-footprint airborne laser scan (ALS), Hu, et al. [23] computed the
geometrical path length distribution within the crown to consider the clumping induced by crown
shape and landscape. However, within-crown leaf area density variation was not completely addressed.

Despite the comprehensive information contained in a lidar waveform, storage of lidar data
as discrete points provides an efficient alternative. Discretization of the waveform can generate
uncertainties [24], and it is not necessarily straightforward to attribute precise radiometric information
to points, as “intensity” values are typically assigned by proprietary onboard processing systems that
usually present a black box to lidar users. Understanding the algorithms that convert waveforms into
points helps to avoid misuse of ambiguous definitions of radiometric quantities that can give erroneous
estimations that violate physical principles. Information and accuracy losses during waveform
discretization can also undermine the use of lidar points for biophysical parameter retrieval [25,26].
Given the influence of ambiguous coefficients and residual radiometric issues, there is considerable
controversy over the point-cloud inversion methods used to estimate Pgap from a computed laser
penetration index (LPI), and in a further step the effective and the true Plant/Leaf Area Index (PAI/LAI)
of vegetation [27]. For example, the accuracy of TLS inversions is affected by partial hits that depend
on the dimensions of the laser beam and leaves [18,28,29]. Moreover, for ALS, the point density
within an area or volume is usually used to estimate the LAI [30–34] or the leaf area density [35].
However, as mentioned by Armston, et al. [16] and Chen, et al. [17], methods based on point
density provide estimations of Pgap that rely on additional empirical correlation coefficients with field
measurements. Ambiguous “intensity” information from lidar points has also been used to retrieve
the LAI [36]. Most point-cloud inversion approaches lack a theoretical underpinning that would
enable universal application under various instrument specifications and environmental conditions.
The direct computation of LPI and ln

(
LPI−1

)
(canopy interception described by the Beer–Lambert law by

considering LPI as Pgap) from these approaches differ markedly. Furthermore, most previous empirical
studies focused mainly on individual test sites (restricted environmental conditions) with a specific lidar
device (fixed instrument) and a few airborne flights (limited experimental configurations). A general
lack of rigorous sensitivity studies could raise questions regarding the accuracy and limitations of each
approach: e.g., can any of the current methods be applied universally?

The methods developed for full-waveform data could be applied to point data if the radiometric
information could be retrieved and understood for each point. The GD technique was developed to
describe the waveform as a combination of discrete Gaussian profiles defined by peak amplitude, time
shift, and standard deviation [37]. These quantities can be stored in point data with or without storage
of the waveform [38–43]. Although these idealized quantities and the full waveform radiometric
calibration [44,45] have been discussed previously, the physical interpretations under realistic conditions
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have not been completely explored, such as the influences of footprint size, target size and orientation,
terrain, clumped leaves, etc.

A robust radiometric linkage is required for various quantities that are involved in point-data
generation and processing to understand the lidar point data and the inversion methods. Advances
in lidar systems have been mirrored by development of lidar modules in radiative transfer models
(RTM) [46–49], which can accurately simulate laser-target interactions under various instrument
specifications (e.g., beam width, divergence and acquisition rate), acquisition and environmental
conditions (e.g., flight altitude, viewing angle range, and terrain slope), and vegetation structures
(e.g., leaf reflectance, leaf angle distributions, and canopy closure). The 3-D RTM framework is suitable
for evaluating the sensitivity of different inversion approaches. It is capable of simulating laser pulse
interactions with realistic 3-D scenes and recording the energy profile of the waveform. In recent years,
many lidar waveform RTMs have been developed by extending the existing credible models, including
FLIGHT [47], DIRSIG [50,51], RAYTRAN [52,53], LIBRAT [54], FLiES [55], and DART [48,56]. These
RTMs have shown their capabilities in modeling lidar waveforms in the Radiation transfer Model
Intercomparison (RAMI) project [57]. The DART waveform lidar module has been extended to adapt
multi-pulse mode [58], which can efficiently simulate ALS and TLS waveform data in industrial lidar
format, with recent bounding volume hierarchy (BVH) implementation [59] for ray tracing acceleration.
Also, DART has the capability for solar signal and photon counting simulation [58]. These make DART
a suitable tool for the sensitivity study and evaluation of different approaches.

This work takes advantage of the latest implementation in DART in physical modeling of
point clouds from the existing multi-pulse waveform module, to conduct an in-depth study and
intercomparisons of the existing gap probability and leaf area index inversion approaches of
small-footprint ALS (Table 2). In Section 2, we have reviewed and built the physical basis and
the modeling approaches of various radiometric quantities associated with lidar point “intensity”
for investigating various laser-target interactions in radiative transfer models. Additionally, we
have described the implementation in the latest DART release to convert the simulated ALS
and TLS waveform data into points. Building on the theoretical basis, in Section 3, we have
conducted a comprehensive review with physical interpretation about the existing Pgap and LAI
estimation approaches from either point-number-based (PNB) methods or intensity-based (IB) methods.
In Section 4, we have demonstrated the utility of the DART model in evaluating these approaches from
sensitivity analyses with different footprint sizes, leaf areas, leaf density variations, foliar dimensions,
and homogeneous/heterogeneous scene configurations. From the results of the sensitivity studies,
we have discussed the optimization of LAI estimation through small-footprint ALS, which could
leverage existing and future point datasets to develop more robust LAI map products.

2. Theoretical Background and Implementations in DART

The radiometric theories and point-cloud modeling in DART are presented in this section.
Detailed scientific and technical aspects of the waveform lidar module are described by
Gastellu-Etchegorry, et al. [48] and Yin, et al. [58].

2.1. Lidar Pulse

DART has improved lidar modeling in realistic acquisition geometry and power distribution.
For an emitted laser pulse, two Gaussian profiles are defined: the temporal convolution of the

transmitted pulse and receiver response function, S(t) = Ŝe
−

t2

2s2
s ; and the 2-D power profile Pl(β)

within the footprint cone such that the ratio of Pl(βt) at the boundary (half-divergence βt) to the central
maximum P̂l,β can be 0.5 (i.e., full width at half maximum (FWHM)), 1/e2, or 1/e [60]. The distribution

follows: Pl(β) = P̂l,βe
−
β2

2s2
β , where β represents the angular offset from the pulse direction and sβ is the

standard deviation of the angular divergence. The reception is defined with telescope area At =
πD2

r
4 .
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The power spread within the footprint area (radius rfp = R · tan βt +
dl
2 ) is precisely defined, where R

is the sensor-to-target range and dl is the beam cross-section diameter at the “exit gate” of the laser
generator. dl is negligible for aircraft and spaceborne platforms, but it has a critical influence on the
TLS footprint dimension.

2.2. Lidar Point Cloud and the Corresponding Radiometric Quantities

GD is used to extract points from simulated waveform data. According to Wagner, et al. [37], in the
presence of X echoes, the temporal power profile recorded by the receiver Pr(t) can be approximated as:

Pr(t) =
X∑

i=1

P̂ie
−

(t−ti)
2

2s2
p,i . (1)

For the ith Gaussian profile, ti is the temporal centroid; sp,i =
√

s2
s + s2

i where si compensates for
the broadening effect from an oblique surface or a cluster of leaves that cannot be distinguished in a
single return, and ss is an instrument-specific constant unless the temporal profiles of every transmitted
pulse are known [61]. sp,i ≈ ss if the footprint size is negligible compared to the pulse duration distance.
The ability of GD to distinguish different targets relies on target size, surface angle, gap size, and
acquisition rate. P̂i is the time-gated peak amplitude of the waveform P̂i =

σi
CcalR4

i sp,i
, where Ccal is a

calibration coefficient with pre-defined instrumental and experimental configurations, and detector
efficiency that could be related to distance.

Wagner, et al. [37] considered the differential backscatter cross-section σ = 4π
Ω̂
· ρ ·As of an ideal

target with an effective receiving area As, a natural reflectivity ρ, and a solid angle Ω̂ in which all
reflected fluxes are assumed to be uniformly distributed. However, for an actual multi-return lidar
pulse with only the target distance known and no details of the interaction, partial hits can occur and
both ρ and As are unknown. Therefore, for each return, we refine this expression as:

σi =
4π
Ω̂
· ρa,i ·As,i, (2)

where As,i =
πR2

i β
2
t

4 is the footprint area at a distance Ri (dl is neglected). Here, we define the
apparent reflectance ρa,i as the ratio of reflected radiant flux from a surface, over a perpendicular
infinite Lambertian surface with a reflectivity of 1, which can be considered similar to the biconical
reflectance factor with the same incident and view direction [62] associated with every return to a
pulse. By contrast, from the isotropic intensity given by Wagner, et al. [37], we considered isotropic
scattered radiance of a Lambertian surface to define ρa,i (intensity follows Lambert’s cosine law). Thus,
Ω̂ =

∫
2π cosθdΩ = π; and

σi = πρa,iR2
i β

2
t . (3)

For each point output, the subjected results have five types of radiometric quantities (cf.
Appendix A):

1. Rapid detected peak amplitude P̂i by first-derivative zero-crossing (without GD).
2. Fitted peak amplitude P̂i (after GD by non-linear least-squares minimization [63]).
3. Standard deviation sp,i (after GD).
4. Power integral Ii of a return (after GD):

Ii =
√

2π · P̂i · sp,i. (4)
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5. Apparent reflectance ρa,i (after GD):

ρa,i =
IiCcalR2

i

π
√

2π · β2
t

=
I′i Ccal

π
√

2π · β2
t

. (5)

where I′ = I ·R2 is the distance-weighted power integral. Indeed, ρa,i is physically equivalent to
the lidar backscattering coefficient, which was suggested for waveform radiometric calibration
due to the normalization relative to the footprint area [44,64].

By contrast, the biconical reflectance factor or apparent reflectance of an ALS return can be defined
from radiation transfer theory:

ρa,i =
πIi

∆ΩiPtη
, (6)

where ∆Ωi =
D2

rπ

4R2
i

is the solid angle of return i to the receiver; Pt =
√

2πŜss is the total pulse power,

and η is the system and atmospheric transmission factor. For various lidar devices, digital numbers
that are linked to one of P̂i, Ii, or I′i could be named “intensity” in the output. In contrast to Ii and I′i ,
P̂i cannot be used to directly derive ρa,i without knowing sp,i of the Gaussian profile (unless ss � si),
which necessitates the recording [50] or appropriate processing [44] of the complete waveform. Note
that some discrete-return lidar devices provide “reflectance” output by calibrating “intensity” values
with reference targets (reflectivity of 10%, 20%, . . . ) at various distances [39,40]. Other information
may also be available from instrument manufacturers. For example, without recording the full
waveform, the online waveform processing of Riegl devices provides additional information in the
extra byte associated with each point [42], but the computational details remain incomplete to the
users. Correspondences between the derived radiometric quantities and the extra byte information for
Riegl V-line and Q-line series are summarized in Table 1.

Table 1. Radiometric quantities provided by the Riegl V-line and Q-line extra byte associated with
each point.

Amplitude (P̂i) Reflectance (ρa,i) Pulse Width (2.355×sp,i) Deviation Full Waveform Storage

V-line × × ** ×

Q-line × × * × ×

* available only for certain devices, ** may be derived from pulse deconvolution instead of Gaussian Decomposition (GD).

2.3. Radiative Transfer under Realistic Conditions

Under realistic conditions, ρa,i is not equivalent to the natural reflectivity ρi of a target. There are
usually three cases of physical interactions that could occur (Figure 1):

Case A: single Lambertian target perpendicular to the pulse direction, i.e., si = 0 and sp,i = ss is a
constant. From Equation (4), P̂i is proportional to both Ii and ρa,i, and ρa,i = ρi.

Case B: single oblique Lambertian target, which is the most common case for TLS and
small-footprint ALS. From Lambert's cosine law, Ii = Ii_perp · cosθ, where θ is the angle between the
pulse and the target surface normal and Ii_perp is the power integral in Case A. Therefore, ρa,i = ρi · cosθ
if there is only a single return, which is consistent with findings by Hancock, et al. [19]. Standard
deviation si is a complex quantity that depends on the projection of the 2-D energy profile Pl(β) onto
the oblique target [41]. Unless ss � si, there is no direct link between P̂i and Ii.

Case C: a cluster of targets (i.e., clumped leaf volume and within-crown gap size smaller than the
lidar footprint). The waveform presents a decayed profile from the peak as the laser penetrates through
the cluster. The returns from several targets can merge to a single-return profile. In an ideal case:

Ii = Ptη ·
(
1− Pgap

)
· T(Ωi) ·

ρ · ∆Ωi

π
. (7)
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Here, Pgap is the gap probability of the canopy. T(Ωi) ·
ρ·∆Ωi
π is the backscatter transfer function

along the direction Ωi, with T(Ωi) defined as:

T(Ωi) =

∫
2π

g(Ωf)
2π cos2 θf,idΩf∫

2π
g(Ωf)

2π cosθf,idΩf

, (8)

where g(Ωf)
2π is the leaf angle distribution of the cluster, and θf,i is the angle between the leaf normal

and Ωi. Combining Equation (7) with Equation (6) gives an expression for ρa,i with three unknowns:

ρa,i =
(
1− Pgap

)
ρ · T(Ωi). (9)

Hence, the use of ρa,i for the inversion of any of the unknowns requires valid hypotheses on the
other two unknowns.
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Figure 1. The influence of three types of physical interactions between the emitted pulse and target
configuration on the shape of the received pulse.

Case A was the preliminary assumption by Wagner et al. [37]. It usually serves as an experimental
setup for calibration. Actual interactions to generate small-footprint lidar points are either Case B or
Case C. Both indicate that natural reflectivity ρ cannot be derived from ρa without knowing the type of
interaction (number of returns, terrain slope, footprint size, leaf and gap size, etc.). Note that Case C
has been extensively explored in the study for mid-to-large full-waveform lidar research [11–14,16,17].
For those cases, the waveform provides more lidar metrics than can be generated from small-footprint
point clouds.

3. LPI Estimation and LAI/PAI Inversion from Small-Footprint ALS Point Clouds

3.1. Estimation of Pgap and LAI

3.1.1. Theoretical Approaches

The gap probability over a canopy that depends on zenith angle θ can be approximated as
Pgap(θ) = e−ω·G·LAI·cosθ. Although the angular effect is an important factor [65,66], here we follow
the majority of the past ALS work, which assumed a vertical direction. Considering only the
vertical direction:

Pgap = e−ω·G·LAI= e−G·eLAI, (10)
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where G =
∫

2π
g(Ωf)

2π cosθfdΩf is the unit leaf area projection along the vertical direction. For lidar, Pgap

and eLAI are typically derived from the laser penetration index (LPI) of either a single larger-footprint
pulse or multiple small-footprint pulses.

For small-footprint ALS, the 3-D structure provided by lidar signal can further distinguish
different components of the clumping [23]. For example, the clumping of a heterogeneous scene can be
dominated by spatial distribution of tree crowns, shape of crown, and within-crown clumping. If the
proportion of crown vertical projection area is defined as the vegetation canopy cover fraction fvcc by
neglecting the within-crown gaps, then fvcc can be used to separate the between-crown spaces. We can
derive an alternative expression for Pgap:

Pgap = fvcce−G·ωin·LAI/ fvcc + (1− fvcc), (11)

where LAI is at landscape scale, and LAI/ fvcc is the LAI under the vegetation coverage. Note that ωin

accounts for both the crown shape and the within-crown clumping. In Hu, et al. [23], fvcc was derived
from lidar first returns by neglecting the lidar incident angle. Geometrical path length distribution was
used to account for the crown shape contribution in ωin. Equation (11) provides a parsed format of
Equation (10) specifically for small-footprint ALS, relying on the accuracy of direct estimations of fvcc

and ωin from ALS data.

3.1.2. Practical Empirical Correlation

For ALS, the percentage of laser light penetration through a canopy [laser penetration index
(LPI)] provides information about the density of foliage [67]. In practice, most of the derived values
(such as LPI or eLAI) are empirically correlated with the field measurements, such as the gap
probability/transmittance (e.g., [30–32], Morsdorf, et al. [33], Korhonen et al. [34]), the eLAI obtained
by LAI-2000/hemispherical photos, or the LAI measured from direct methods (e.g., harvesting or
destruction, etc.).The effective LAI and tree LAI of estimation can be expressed as:

eLAIest = (G)−1 ln
(
LPI−1

)
,LAIest = (ωG)−1 ln

(
LPI−1

)
, (12)

where G is either known or approximated. The relationships between the reference values and the
estimated values can be described as:

Pgap = LPIα, (13)

LAI = α · LAIest = α ·ω−1
· eLAIest = α(ωG)−1 ln

(
LPI−1

)
. (14)

Note that α is not only the exponential coefficient to link LPI with Pgap, but also the linear
coefficient to link the estimated effective LAI (eLAIest) with eLAI. For the ideal case α = 1, LPI, eLAIest,
and LAIest are exactly equal to Pgap, eLAI, and LAI, respectively, leaving one physical parameter ω as
the slope to convert from eLAIest into the true LAI value. The statistical description used in Case C
of Figure 1 [Equations (7)–(9)] for a single large-footprint pulse is also valid for the interpretation of
integrated multiple small-footprint pulses within an area.

3.2. Review of LPI Computation

Explicitly, the LPI can be sampled by either the area fraction or power fraction of ground returns:

LPI =
Pt,g

Pt,g + Pt,v
=

Ag,proj

Ag,proj + Av,proj
=

∑
Ig
′∑

Ig′ + γ ·
∑

Iv′
, (15)

where subscript indices v and g relate to vegetation and ground, respectively; Pt is the incident lidar
power on the targets; Aproj is the projected area; γ is the ratio at which to convert vegetation return
reflectance to ground return reflectance as if the pulse is intercepted by the ground. Distance R,
apparent reflectance ρa, and γ are all spatially aggregated.
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According to the method of sampling area or intensity as illustrated in Equation (15), the
approaches for estimating LPI through ALS are categorized as either point-number-based (PNB) or
intensity-based (IB) in Table 2.

Table 2. Methods for laser penetration index (LPI) estimation using airborne laser scan (ALS) points
and references.

Representation Expressions Reference Examples

Point Number
Based (PNB)

Methods

LPIall
Ng

Ng+Nv

Luo et al. [36]
Hu et al. [23]

LPIweighted
Ng,1+

1
2 Ng,2+

1
3 Ng,3+

1
4 Ng,4...

Nt,1+
1
2 Nt,2+

1
3 Nt,3+

1
4 Nt,4...

Fleck et al. [68]
Schneider et al. [35]

Grau et al. [28]

LPIfirst
Ng,sin gle+Ng,first

Nsingle+Nfirst

Solberg et al. [30–32]
Riaño et al. [69]
Lovell et al. [70]

Morsdorf et al. [33]
Korhonen et al. [34]

Cook et al. [71]

LPIlast
Ng,single+Ng,last

Nsingle+Nlast

LPIboth
Ng,single+0.5(Ng,first+Ng,last )

Nsingle+0.5(Nfirst+Nlast)

“Intensity” Based
(IB) Methods

LPIγ
∑

Ig
′∑

Ig
′+γ·

∑
Iv
′

Empirical constant
γ

Lefsky et al. [72]
Luo et al. [36]

Statistically
derived γ : LPIfitted

Armston et al. [16]
Chen et al. [17]

LPInearest

∑
I′pure

g +
∑

I′g,v∑
I′pure

g +
∑

I′nearest
g,v +

∑
I′nearest

v
Milenković, et al. [64]

3.2.1. Point-Number-Based (PNB) Methods for LPI Computation

As shown in Table 2, given a small footprint size such that only a single return is retrieved from
each pulse, and a high pulse density, the number of returns from leaves (Nv) and the ground (Ng)
are statistical samplings of Av,proj and Ag,proj in LPIall estimates. Monitoring larger regions with ALS
requires a higher altitude, which makes the footprint size larger and increases the partial hit chance.
LPIweighted balances the weight of each return from a pulse, where Nt,i = Ng,i +Nv,i is the total number
of returns per pulse with i = 1, 2, 3 . . . returns (Nt,i = i), and Ng,i is the corresponding number of
ground returns. In older systems, limited to 2 or 4 returns per pulse, LPIfirst and LPIlast were used,
where Nsingle counts the single returns from the ground (Ng,single) or from indistinguishable vegetation
elements (Nv,single). LPIfirst tends to provide information on between-crown spaces, whereas LPIlast

contains information on both the between-crown spaces and the within-crown gaps. Usually, LPIfirst

underestimates and LPIlast overestimates Pgap. LPIboth balances this situation empirically, and has
proven to be better sensitive to general gap sizes.

3.2.2. “Intensity”-Based (IB) Methods for LPI Computation

In theory, radiometric information is more suited than point density for assessing vegetation
properties (e.g., LAI) [73]. Depending on the specifications of a certain device and on the user’s choice,
the “intensity” could be related to P̂, I, I′, sp,i, or ρa. However, in practice, IB methods have been used
infrequently, partly due to the ambiguous radiometric quantities and the uncertain accuracies. The
expression for intensity-based LPI (dependent on γ) is given in Table 2 and Equation (15). For a pulse
fully intercepted by the ground, if the variation in the elevation slopes within the area is negligible
and the surface is Lambertian, ρa,g = ρg · cosθg, where θg is averaged over the reconstructed terrain
model [74,75]. For a pulse fully intercepted by the vegetation, by setting Pgap = 0 in Equation (9), we
get ρa,v = ρv · T(Ωi). An expression for γ can be derived as:
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γ =
ρg · cosθg

ρv · T(Ωi)
. (16)

In previous studies, γ was usually assumed to be a constant. For example, γ = 0.5 was an
empirical value given by Lefsky, et al. [72] for lidar devices with 1064 nm wavelength, but adopting
the same value at 1550 nm can be inaccurate [36]. For typical ALS assumptions on horizontal terrain,
vertical pulse incidence, and spherical leaf angle distribution, T(Ωi) = 2/3, and:

γideal =
3 · ρg

2 · ρv
, (17)

where ρg and ρv can be retrieved from ground measurements as prior values. Equation (17) is an ideal
expression for any wavelength with measured ρg/ρv. Note that in Table 2, I′ is used instead of I for IB
methods. Additionally, ρa can replace I′ in Table 2 according to Equation (5), and both of them can
represent the backscattering coefficient.

Without any assumptions, the four unknowns in Equation (16) can vary across different areas.
Thus, γ should not be universal. Indeed, the denominator of LPIγ (Table 2) represents the cumulative
I′g of the ground as if there is no vegetation present. For full-waveform lidar, γ can be estimated with
linear correlation using vegetation and ground backscattering coefficients [16,17]. γ was found to
be relatively consistent with varying mid-to-large footprint size, but the correlation decreases with
decreasing footprint size. In practice, the least-squares correlation is also strongly influenced by the
diverse variances of

∑
I′v and

∑
I′g.

Milenković, et al. [64] proposed another method, which utilizes the nearest pure-ground pulse
(pulse that generates a single ground return). All pulses and return intensities were classified into
three types: pure-ground (intensity I′pure

g ), pure-vegetation, and vegetation-ground (with ground
return intensity I′g,v). The returns of the second and third types were associated with the nearest
first types (defined as I′nearest

v and I′nearest
g,v ). LPInearest in Table 2 relies on the pure-ground pulses,

and therefore requires large gaps to increase the probability of pure-ground pulses. Another critical
assumption is that ρa,g for both the pure-vegetation and vegetation-ground pulses are approximately
equal to ρa,g of the nearest pure-ground pulses. However, considering the ρa,g calculation, ρg could
vary significantly due to understory conditions and woody debris, and θg could be influenced by
insufficient sampling, whereas more samples (including ground returns of vegetation-ground pulses)
can be used for calculating θg,i (from terrain model reconstruction) in LPIIB,γ estimation.

4. Comparative Sensitivity Study of LPI/LAI Estimation Approaches Using DART Simulations

4.1. DART Simulations

The simulated point clouds of various critical parameters are studied and inter-compared with
the LPI/LAI estimation approaches in Section 3. A DART scene takes 3-D cells to contain the Earth’s
elements for either turbid medium or facets [76]. We used homogeneous and heterogeneous forest
scenes constructed from leaf facets to precisely model interactions with lidar pulses. Based on this
approach, DART can directly calculate reference parameters for evaluating the inversion results.

The simulated lidar mimics the characteristics of Riegl VQ-480i (Table 3), a multi-return online
waveform-processing lidar that is mounted on the G-LiHT platform [8]. The ground position of each
pulse was derived from flight height, moving speed, pulse repetition rate, and scanning speed. The
incident direction of each pulse was set to be vertical (θg,i = 0). We focused more on the physical
interactions themselves, following the majority of previous work, which neglected the angular effects,
although it is an important factor for the gap fraction [65,66]. The sensor height R varied from 50 m to
1000 m, increasing the footprint diameter from 0.015 m to 0.30 m. At 1550 nm, natural reflectivities ρv

and ρg were set to 0.243 (general leaf) and 0.340 (brown moss), respectively.
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Table 3. Lidar parameters used in DART simulations (Rigel VQ-480i).

Parameter Value Parameter Value

Wavelength 1550 nm Scanning speed 100 lines/second
Laser sampling interval 1 ns Laser pulse repetition

rate
200 kHzLaser beam divergence 0.3 mrad

4.1.1. Homogeneous Scenes

The test scene consisted of a square vegetation plot and a flat ground surface (Figure 2a). The plot
had a height of 12 m with a 2 m space below the canopy to facilitate the unambiguous classification of
ground returns and vegetation returns. Each leaf was represented by a square (5 cm× 5 cm), and leaves
within the canopy volume (22 m× 22 m× 10 m) had a spherical angle distribution. Under such ideal
configuration, γ = 2.10 was computed from Equation (17). The scene LAI ranged from 1 to 6 for the
sensitivity studies.
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4.1.2. Heterogeneous Scenes

A heterogeneous DART scene representing a general forest (100 m × 100 m) with randomly
distributed ellipsoidal and conical crowns (327 of each) was used to test the lidar-derived LPI and LAI
(Figure 2b). The crown height and diameter were set to 12 and 3.6 m, respectively. Two simulations
were conducted with different leaf area densities set to 0.25 and 0.5 for each crown, resulting in LAI = 1
and 2, respectively, for the whole scene. The lidar data were simulated with 0.30 m footprint diameter.
The LPI was calculated for each 10 m× 10 m area. The reference Pgap in this case was estimated with
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the irradiance intercepted by the ground surface using a large number of nadir incident rays [77,78].
DART was able to generate the map of Pgap for each area.

Within-crown leaf density variation was added to the heterogeneous scene of LAI = 2 (Figure 2c) to
study the influences of clumping and structural complexity on LAI retrieval. In DART, the non-random
leaf distribution within the crown was parameterized for each species by the proportion of full cells
and the vertical distribution of the leaf parameters. The simulated scene included 16 species, each with
a different extent of clumping, to ensure enough variation of within-crown gaps. For each species,
three layers with different vertical distributions of leaf density comprised each crown, determining
the proportion over the whole canopy. The vertical distribution of leaf density and the proportion
of full cells were randomly chosen for each layer of the crown. The LAI of each species were also
randomly determined, with a total LAI of 2 for the whole scene. In addition, a 25% probability of
empty 1 m × 1 m voxels was added into the crowns to further complicate the crown structure and
clumping. The histogram of leaf area density is shown in Figure 2d.

4.2. Results and Analyses

4.2.1. Homogeneous Scene

The estimations of LPI in each 2 m× 2 m area from both the PNB and IB methods from Table 2 are
illustrated in Figure 3, with various LAIs (1–6) and footprint diameters (0.015–0.30 m). The reference
Pgap is indicated with a dashed line for each subfigure.

The PNB methods to compute Pgap across the homogenous scene have low accuracy and varied
performances on LAI and footprint diameter. Persistently, LPIfirst underestimates Pgap and LPIlast

overestimates Pgap across all simulations. LPIs computed using other PNB approaches are in between
these two values: LPIlast > LPIboth > LPIweighted or LPIall > LPIfirst, which is consistent with the
previous studies referenced in Table 2. As the LAI increases, most of the PNB methods switch from
underestimation to overestimation. For a fixed LAI, estimations with infinitesimal footprint size
converge to Pgap for all PNB methods, which tends to verify the capability of TLS to capture Pgap

accurately [79]. The average number of returns for each pulse approaches 1 (single return) as the
footprint size approaches 0 (Figure 4a). With increasing footprint size across all simulations, LPIlast,
LPIfirst, and LPIboth converge to saturated values of 1, 0, and 0.5, respectively. As the LAI increases,
the saturation speed reduces due to the lower probability of energy penetration through the canopy
(Figure 4b). Although LPIboth balances the underestimation of LPIfirst and the overestimation of LPIlast,
the results do not indicate that LPIboth is more accurate. By contrast, LPIweighted is closer to Pgap than
LPIall. The saturation speeds of LPIweighted and LPIall are slower than those of the other approaches.
The total number of returns are illustrated in Figure 4a. The average number of returns per pulse
gradually becomes saturated together with LPIweighted and LPIall, as shown in Figure 3. From the
sensitivity study above, LPIweighted and LPIall have broader ranges of footprint size and LAI values
than the other PNB methods.

Regarding the IB methods, the constant value of nearest pure-ground intensity I′pure
g for LPInearest

estimation is over-idealized for the simulations. Indeed, I′pure
g is a diverse variable for actual data

due to soil moisture, litter, and terrain slope. For LPIfitted, the least-squares approach applied to the
dataset of

∑
ρa,g and

∑
ρa,v of every single pulse is used to determine the fitted γ (Figure 5). The

scatter plots for LAI = 0.5, 2.0, and 5.0 are shown in Figure 5a–c, respectively, with increasing footprint
diameter (0.06 m, 0.15 m, and 0.30 m, respectively). The fitted line determines the slope value (−γ), the
y-axis intersection (

∑
ρa,g with a reference value of 0.340), and the x-axis intersection [

∑
ρa,g with a

reference value of 0.162 from Equations (16) and (17)]. It should be noted that with increasing footprint
diameter, the fitted γ value and the axial intersections converge to the reference values. The data
variance decreases as correlation increases in Figure 5d,e. These results are consistent with [16] and [3],
in which γ should be estimated using a larger footprint dimension with smaller variance for LAI
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retrieval (e.g., the spaceborne waveform lidars [2,80]). Note that the simulation might not represent
the realistic conditions because of the constant reflectivity of the ground surface.
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The three IB methods, LPIγ=2.10, LPInearest, and LPIfitted, generally gave accurate estimations of
Pgap at all footprint sizes (α ≈ 1.0), except that LPIfitted underestimated Pgap at small footprint sizes
as expected. Due to the over-idealized simulation conditions, LPInearest was suitable for all footprint
sizes, regardless of the structural and optical properties of the vegetation. In general, IB methods are
preferable for variation of LAI values. As the LAI increases, the ground returns become weaker than
the vegetation returns, but pulses with larger footprint size can still produce ground returns. Thus, the
average numbers of returns for different LAI values converge to the same value in Figure 4.

The empirical coefficient (α) in Equations (13) and (14) was studied for various estimation
approaches with ω = 1 (homogeneous scene). Figures 6 and 7 illustrate the correlation between the
references and the estimations using different methods. The results from the homogeneous simulation
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are consistent with previous assertions mentioning that LPI derived from PNB methods requires α to
correlate with field measurements of Pgap [16,17]. For the small footprint diameter of 0.03 m, which
mimics a TLS configuration, both exponential and linear correlations are successfully established for all
the approaches. For the IB methods, α ≈ 1.0 is observed for LPI and the LAI was derived for LPIγ=2.10

and LPInearest. LPIfitted approached Pgap as the footprint size increased. For PNB methods, LPIweighted

and LPIall were more accurate than the other PNB methods, which give either underestimations
(αlast = 3.38, αboth = 1.67) or overestimations (αfirst = 0.37). In Figure 7, the LAI correlations are
almost linear for the PNB methods with LAI > 1, and converge to the origin with varying α as the LAI
value approaches 0, which is caused by the boundary partial hit effect due to the non-negligible ratio
of footprint size to leaf size. The results also indicate that LPIweighted is preferable among all the PNB
methods. Regarding larger footprint diameters (0.15 and 0.30 m) that mimic regular ALS configurations,
α ≈ 1.0 is still maintained for the IB methods. By contrast, all the PNB methods demonstrate low
sensitivities for both Pgap and LAI correlations. LPIfirst and LPIlast are not seen from Figure 7 because
ln

(
LPI−1

)
is consistently equal to infinity and 0, respectively. LPIboth shows a negligible sensitivity as

the LAI varies. Unexpected non-linear correlations can be observed for LPIweighted and LPIall with LAI
< 3 (0.15 m footprint) and LAI < 1.5 (0.30 m footprint). Indeed, the merging of returns with high leaf
density and large LAI (Case C of Figure 1) makes the linear correlation of PNB methods distorted and
inappropriate for capturing the small gaps within the crown to give accurate estimations. Indeed, the
merging of returns reduces the point number, but the reflectance would be cumulated into the merged
point. Therefore, IB methods are not influenced by this effect.
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In a forest, foliar dimensions can vary a lot with tree species and growing stages. Even for the
same LAI and footprint size, variation in foliar dimensions can influence the estimated LPI. Figure 8
shows the relative bias and sensitivity of lidar-derived LPIs (LAI fixed at 3) under different footprint
sizes and foliar dimensions of the homogeneous scene. LPIweighted (the most reliable PNB method,
Figure 8a and c and LPIγ=2.10 (the idealized IB method, Figure 8b,d are studied here. LPIγ=2.10 is much
less sensitive to leaf dimensions than LPIweighted. We used the ratio of footprint size to leaf size to
characterize the changes in accuracy. Figure 8c,d give the relative bias against the ratios for LPIweighted

and LPIγ=2.10, respectively. LPIweighted approaches the references when the ratio approaches 1.0, which
can also be confirmed by the 0% difference slope in Figure 8a and the plot of LAI = 3 in Figure 3. LPI
and Pgap are close at 0.05 m footprint diameter but diverse for larger footprint size and for LAI = 1
(underestimation) or LAI = 5 (overestimation) as illustrated in the other plots of Figure 3. This suggests
that LPIweighted is sensitive to the footprint size and foliar dimensions when it is used to estimate small
within-crown gaps. The bias plot of LPIγ=2.10 converges to less than 3% when the ratio of footprint
diameter to leaf length becomes larger than 6, which ensures that a lidar pulse covers an adequate
number of foliar elements. Indeed, the relative error significantly increases with decreasing ratio value.
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4.2.2. Heterogeneous Scene

For the heterogeneous scenes, landscape-scale areas (10 m× 10 m) were studied. Figure 9 and
Table 4 show the correlation between the lidar-derived LPIs and the reference values (Pgap and LAI),
with a relatively large footprint diameter (0.3 m). For the PNB methods, the correlation depends more
on the large gaps between crowns due to the sensitivity loss for the within-crown gaps at 0.3 m footprint
size, as illustrated previously in Figure 6. We estimated the reference value of fvcc by thresholding the
generated Pgap map of 0.1 m× 0.1 m pixel size into a binary image of 1 (open space) and 0 (canopy
cover), and computing the fraction within each area. Table 4 illustrates the results of correlations of
various PNB and IB methods in terms of four derived parameters: α is the fitted exponential coefficient
of LPI against Pgap (Figure 9a–c) from Equation (13); α ·ω−1 is the fitted linear correlation coefficient of
reference LAI against eLAIest described by Equations (14) and (12) (slopes of Figure 9d–f); computed
ω is generated by dividing α by α ·ω−1; and R2 is the coefficient of determination of reference LAI
against eLAIest. The last column of Table 4 provides the reference values computed by using Pgap as
LPI. Additionally, derived results of both fvcc and Pgap are shown in Figure 9 for comparison.

Table 4. Derived and computed coefficients for the PNB and IB methods from Figure 9 and Equations
(13) and (12). The reference derivations from Pgap are in bold.

Variables
PNB Methods IB Methods References

LPIall LPIweighted LPIfirst LPIlast LPIboth LPIγ=2.10 LPInearest LPIfitted Pgap

LAI = 2
(Random)

α 0.40 0.97 0.60 27.14 1.56 1.00 1.00 1.02 1.00
α ·ω−1 1.57 1.84 1.16 22.08 3.90 1.98 1.98 2.01 1.98

computed
ω

0.25 0.53 0.52 1.23 0.40 0.51 0.51 0.51 0.51

R2 0.88 0.84 0.77 0.19 0.79 0.89 0.89 0.89 0.90

LAI = 2
(Clumping)

α 0.42 0.97 0.67 24.20 1.62 1.01 1.03 1.03 1.00
α ·ω−1 1.50 2.20 1.42 21.11 4.2 2.24 2.28 2.28 2.23

computed
ω

0.28 0.44 0.47 1.15 0.39 0.45 0.45 0.45 0.45

R2 0.71 0.80 0.80 0.34 0.84 0.89 0.89 0.89 0.90

LAI = 1

α 0.27 0.61 0.42 - 1.10 1.00 1.02 1.03 1.00
α ·ω−1 0.77 0.92 0.59 - 1.95 1.49 1.49 1.52 1.48

computed
ω

0.35 0.66 0.71 - 0.56 0.67 0.68 0.68 0.68

R2 0.90 0.84 0.78 - 0.77 0.94 0.95 0.94 0.95

For the derived α of Table 4 from Figure 9a–c, all of the IB methods (LPInearest, LPIγ=2.10, and
LPIfitted) were consistent with Pgap with α ≈ 1 for varying LAI and within-crown clumping (bias < 3%).
The varying leaf area over the entire scene benefits the building of the slope γ for LPIfitted, as illustrated
in Figure 10. The differences between fitted γwere less than 0.5%, but the introduction of within-crown
clumping reduced the fitted γ by 5%, which suggests that within-crown clumping increases the variance
of the dataset. The correlation coefficient remained high for all conditions. For the PNB methods, all
LPI estimates are strongly biased towards the reference Pgap. LPIfirst severely underestimates Pgap

because of the small gaps within the crown. LPIweighted tends to give a more accurate estimation than
LPIfirst. When the LAI varies from 2 to 1, LPIweighted provides an underestimation with α varying
from 0.97 to 0.61. LPIlast provides a strongly saturated overestimation with low sensitivity for LAI = 2,
and loses its sensitivity for LAI = 1. LPIboth averages the inaccuracy of both LPIfirst and LPIlast. LPIall

introduces a large offset. Additionally, LPIfirst slightly underestimates fvcc (red diamond scatter plot in
Figure 9a,c) because of the multiple returns at the boundary of the crown, but it presents a feasible
approach if the lidar incident angle is neglected.

In Figure 9d–f, according to Equation (12), the eLAIest from various approaches were linearly
correlated with the reference LAI. Unlike in the homogeneous scene, ω is a non-negligible physical
unknown. Therefore, eLAIest is used instead of LAIest. The slope α ·ω−1 and R2 values are shown in
Table 4. Compared with the reference values derived from Pgap, the three IB methods give results
that are close to the references (bias < 3% and R2 > 0.89). The estimations using all the returns (LPIall,
LPIweighted, LPIγ=2.10, and LPInearest) are closer to the references than the estimations partially using
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the points (LPIfirst, LPIlast, and LPIboth). LPIfirst was insensitive to the changes in the LAI and clumping.
Due to the non-linearity of Equation (11), explicit analytical references of α · ω−1 do not exist. It
should be noted that although the clumping-parsed expression of Equation (11) does not show a linear
relationship, most linear regression studies show high R2 values in this study range, which verifies the
past work in linear fitting of field measurements for LAI map generation and insensitive correlation of
LPIlast in estimating the large gaps between crowns.

Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 32 

 

4.2.2. Heterogeneous Scene 

For the heterogeneous scenes, landscape-scale areas (10 m × 10 m) were studied. Figure 9 and 
Table 4 show the correlation between the lidar-derived LPIs and the reference values (𝑃  and LAI), 
with a relatively large footprint diameter (0.3 m). For the PNB methods, the correlation depends more 
on the large gaps between crowns due to the sensitivity loss for the within-crown gaps at 0.3 m 
footprint size, as illustrated previously in Figure 6. We estimated the reference value of 𝑓  by 
thresholding the generated 𝑃  map of 0.1 m × 0.1 m pixel size into a binary image of 1 (open 
space) and 0 (canopy cover), and computing the fraction within each area. Table 4 illustrates the 
results of correlations of various PNB and IB methods in terms of four derived parameters: 𝛼 is the 
fitted exponential coefficient of LPI against 𝑃  (Figure 9a–c) from Equation (13); 𝛼 ⋅ 𝜔  is the 
fitted linear correlation coefficient of reference LAI against eLAI  described by Equations (14) and 
(12) (slopes of Figure 9d–f); computed 𝜔  is generated by dividing 𝛼  by 𝛼 ⋅ 𝜔 ; and 𝑅  is the 
coefficient of determination of reference LAI against eLAI . The last column of Table 4 provides the 
reference values computed by using 𝑃  as LPI. Additionally, derived results of both 𝑓  and 𝑃  
are shown in Figure 9 for comparison.  

Table 4. Derived and computed coefficients for the PNB and IB methods from Figure 9 and Equations 
(13) and (12). The reference derivations from 𝑃  are in bold. 

 Variables 
PNB Methods IB Methods References LPI LPI LPI  LPI  LPI  LPI .  LPI LPI 𝑃  

LAI = 2 
(Random) 

𝛼 0.40 0.97 0.60 27.14 1.56 1.00 1.00 1.02 1.00 𝛼 ⋅ 𝜔  1.57 1.84 1.16 22.08 3.90 1.98 1.98 2.01 1.98 
computed 𝜔 0.25 0.53 0.52 1.23 0.40 0.51 0.51 0.51 0.51 

R2 0.88 0.84 0.77 0.19 0.79 0.89 0.89 0.89 0.90 
LAI = 2 

(Clumping) 
𝛼 0.42 0.97 0.67 24.20 1.62 1.01 1.03 1.03 1.00 𝛼 ⋅ 𝜔  1.50 2.20 1.42 21.11 4.2 2.24 2.28 2.28 2.23 

 computed 𝜔 0.28 0.44 0.47 1.15 0.39 0.45 0.45 0.45 0.45 
 R2 0.71 0.80 0.80 0.34 0.84 0.89 0.89 0.89 0.90 

LAI = 1 

𝛼 0.27 0.61 0.42 - 1.10 1.00 1.02 1.03 1.00 𝛼 ⋅ 𝜔  0.77 0.92 0.59 - 1.95 1.49 1.49 1.52 1.48 
computed 𝜔 0.35 0.66 0.71 - 0.56 0.67 0.68 0.68 0.68 

R2 0.90 0.84 0.78 - 0.77 0.94 0.95 0.94 0.95 
 

  
(a) (b) Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 32 

 

  
(c) (d) 

  
(e) (f) 

Figure 9. Plots of 𝑃  against lidar-derived LPIs (a–c) and reference LAIs against eLAI  (d–f) 
(estimated from Equation (12)) for a simulated scene with discrete tree crowns (LAI = 1 and 2) and 
within-crown clumping (LAI = 2). The slope (𝛼 ⋅ 𝜔 ) and R2 values are shown in Table 4. 

For the derived 𝛼 of Table 4 from Figure 9a–c, all of the IB methods (LPI , LPI . , and LPI ) were consistent with 𝑃  with 𝛼 ≈ 1 for varying LAI and within-crown clumping (bias < 
3%). The varying leaf area over the entire scene benefits the building of the slope 𝛾 for LPI , as 
illustrated in Figure 10. The differences between fitted 𝛾 were less than 0.5%, but the introduction of 
within-crown clumping reduced the fitted 𝛾 by 5%, which suggests that within-crown clumping 
increases the variance of the dataset. The correlation coefficient remained high for all conditions. For 
the PNB methods, all LPI estimates are strongly biased towards the reference 𝑃 . LPI  severely 
underestimates 𝑃  because of the small gaps within the crown. LPI  tends to give a more 
accurate estimation than LPI . When the LAI varies from 2 to 1, LPI  provides an 
underestimation with 𝛼  varying from 0.97 to 0.61. LPI  provides a strongly saturated 
overestimation with low sensitivity for LAI = 2, and loses its sensitivity for LAI = 1. LPI  averages 
the inaccuracy of both LPI  and LPI . LPI  introduces a large offset. Additionally, LPI  
slightly underestimates 𝑓  (red diamond scatter plot in Figure 9a and c) because of the multiple 
returns at the boundary of the crown, but it presents a feasible approach if the lidar incident angle is 
neglected. 

Figure 9. Plots of Pgap against lidar-derived LPIs (a–c) and reference LAIs against eLAIest (d–f)
(estimated from Equation (12)) for a simulated scene with discrete tree crowns (LAI = 1 and 2) and
within-crown clumping (LAI = 2). The slope (α ·ω−1) and R2 values are shown in Table 4.
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With derived α and α ·ω−1 from the Pgap and LAI correlation studies, the scene clumping index
ω is computed by dividing these two values. The reference ω computed using Pgap and input LAI
ranges from 0.45 to 0.68 in the simulations. Among all of them, the addition of within-crown clumping
reduces ω to between 0.51 and 0.45. For the IB methods, the computed ω is consistent with high
accuracy (bias < 2%). Indeed, ω is a physical quantity that should not vary with estimation approach.
In general, the PNB methods produce various computed ω values, which suggests that most of the
PNB methods have influences not only on an empirical correlation coefficient (i.e., α), but also on
other physical quantities (i.e., ω). Surprisingly, among all the PNB methods, LPIweighted gave a close
estimation of ω with bias < 4%, although the fitted α could be far away from 1.0. Therefore, LPIweighted

partially interprets ALS data physically, and it is preferable over all the other PNB methods.
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In addition to the experimental and environmental variables, instrumental specifications
(e.g., the reflectance threshold ρa) can also influence the LPI estimation, and this is analyzed in
Appendix B. The studies in Section 4.2 assumed that every infinitesimal peak from the waveform could
be detected by the sensor.
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5. Discussion

From a homogeneous layer of randomly scattered leaves, we found the point-based LPIs computed
by small-footprint ALS either overestimate or underestimate Pgap, and they become saturated relying on
two factors: (1) the ratio of footprint diameter to leaf or vegetation element dimensions and (2) the LAI.
The former factor determines a pulse’s capability in generating multiple returns, and the latter factor
determines the number of returns per pulse. To apply PNB methods over a homogeneously dense forest,
the footprint size should be controlled within a range so that the sensitivity is maintained as the LAI
decreases and the LPI estimations do not converge to a constant value (e.g., 1, 0.5, 0, etc.). The estimation
of this range requires a deep understanding of the relationship between leaf dimensions, leaf density,
and device specifications. As for increasing footprint size, the estimated Pgap from the PNB methods
becomes insensitive to LAI or leaf area density variation as well as within-crown clumping, even
with the path length variation considered [23,27]. Sensitivity studies demonstrated that IB methods
for physically estimating Pgap and eLAI were accurate and less influenced by variations in footprint
size, leaf area, vegetation cover, and foliar dimensions than the PNB methods. From the modeling
results, the main advantage of the IB methods is that the empirical coefficient α can be removed from
Equations (13) and (14), leaving only the physical quantities (i.e., ω) for LAI estimation if the threshold
of ρa is neglected (which could introduce bias as presented in Appendix B). They also have flexibility of
use in a wide variety of instrumental, experimental, and environmental configurations, which cannot
be achieved by PNB methods unless the footprint size is infinitesimally small (i.e., TLS configuration).

We have shown that some of the PNB methods are only sensitive to the large gaps, and the
IB methods can capture the precise Pgap of various gap sizes. Among the radiometric quantities
derived from lidar, Ii

′ and ρa are the only suitable quantities for inversion. In practice, lidar point
intensity has more unresolved uncertainties than point number. The ground reflectance variance can
be large due to moisture, litter, and low vegetation and micro-topography. Also, a LAS file stores
the intensity values as 8-bit or 16-bit digital numbers, and this discretization may introduce further
precision issues. Additionally, most lidar devices capture P̂ as the intensity value, which is unsuitable
for the IB methods. For example, for Riegl lidar devices, most of the past full-waveform studies used
Q-line with full-waveform storage from which all the radiometric quantities can be derived. Our study
supports the potential of V-line using online waveforms processed into apparent reflectance ρa [38–40]
with lower cost, smaller divergence, higher pulse repetition frequency, and more efficient data storage
without waveforms. For the IB methods, the constant γ assumption in estimating LPIλ heavily relies
on the statistically convergent leaf angle projection, clumping index, and natural reflectivity ratio of
the leaves and the ground within a region. The understory vegetation and debris can influence the
ground reflectivity and the fitting of γ. The full-waveform method used by Armston, et al. [16] and
Chen, et al. [17] is a practical approach without empirical correlation. However, the method needs a
different least-squares approach to consider the inconsistent variances over the dataset. The LPInearest

could be another practical approach, but possible sources of bias exist due to insufficient single-return
ground pulses and the possible large variance of ground reflectance. Furthermore, the influences of
the threshold of ρa should be noted (Appendix B).

Based both on the modeling results in this study and on previous studies (e.g., [16,17,81]),
estimation of LAI from small-footprint ALS point clouds without field measurements is promising.
We investigated the dependence of the linear fitting coefficient α. From both homogeneous and
heterogeneous simulations, we have shown that Pgap can be estimated without the correlation
coefficient α. For the heterogeneous scene, the linear coefficient α ·ω−1 is analyzed, with a parsed
expression of ω provided in Equation (11). eLAI is divergent from the actual LAI, for which precise
estimation requires the inputs of vegetation cover fraction ( fvcc), shape, and within-crown clumping
index (ωin) and G in Equation (11). Small-footprint ALS has a great advantage in capturing the
structures of tree crowns. Although our simulation shows that fvcc can be estimated by LPIfirst based
on the vertical pulse assumption, the actual lidar incident angle would introduce non-negligible biases.
Considering the influences of both crown shape and within-crown clumping,ωin could be resolved with
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aggregating pulses within a small area to estimate the within-crown optical depth distribution instead
of only the path geometrical length distribution [25]. Another difficult configuration is the footprint
size, which should be larger than the within-crown gaps but smaller than the between-crown spaces, to
capture: (1) the fvcc through first returns to exclude the within-crown gaps and (2) the light penetration
within the crown through multi-return pulses to exclude the between-crown spaces. Fortunately,
most of the recent ALS data are considered satisfactory (e.g., Cook, et al. [8]). Therefore, the LAI
map product could be provided more accurately with a proper method. The ray-tracing-based voxel
reconstruction (e.g., AMAPVox [81]) from ρa could potentially be a solution in resolving fvcc and ωin

together. The precise estimation of G and ωin might require a multi-ALS scan from different directions.
In this study, we took Riegl lidar configurations with extra byte storage as typical examples.

However, all ALS data are diverse due to the sensor specifications and environmental configurations.
The acquisition methods, configurations, and point-processing algorithms from different manufacturers
are also diverse. The appropriate way to understand the capability of a device requires physical
modeling instead of directly applying approaches that were previously verified with only a single
experiment. There are several other important effects not included in this study, such as the angle
distribution of incident pulses, the woody parts of realistic trees including twigs, as well as the sensor
noise, dead-time, out-of-focus effect, etc. These effects will be considered in future work in which more
complex approaches (e.g., ray tracing) are involved. In this work, we specifically focused on point
representation through basic and idealized experimental modeling.

6. Conclusions and Outlook

In this work, we conducted an in-depth study of gap probability and LAI estimates from
small-footprint ALS point clouds with sensitivity studies to evaluate the methods based on either
point number (PNB) or intensity (IB), using improved DART point-cloud-modeling capabilities.
The simulated scene configurations include both homogeneous vegetation plots and heterogeneous
forest, with clumping effects existing at both the landscape and crown scale.

Apart from the clumping index with a clear physical definition, the PNB methods require
additional empirical correlation coefficients that rely on field measurements. The correlation could
become saturated, with diminished sensitivity, relying on the relationship between the ratio of footprint
diameter to leaf dimension and the LAI. Among all the PNB methods, the LPIweighted approach [28,35,68]
is preferable because it has the broadest effective range in adapting various configurations (footprint
size, LAI, and clumping), and is the most physically based, which preserves the valid clumping index
without the influence of correlation (Table 4). In contrast, all the IB methods listed in Table 2 have
the great advantage over the PNB methods of being able to accurately estimate the gap probability
without the requirement of a correlation coefficient [α ≈ 1 in Equations (13) and (14)], given that an
appropriate radiometric quantity of lidar point is used (either the distance-weighted power integral
I′ or the apparent reflectance ρa of each return). The IB methods remain accurate in the presence of
both landscape and within-crown clumping. However, despite the empirical correlation coefficient,
the clumping index ω that is required for true LAI estimation remains a challenge to estimate merely
from lidar points. Further parsed analysis of clumping to figure out the separated contributions
by landscape, crown shape, and within-crown variation requires new approaches to be developed,
potentially by combining voxel-based ray tracing with well-defined radiometric quantity of ALS points.

For actual data processing, the choice of PNB methods or IB methods should be analyzed case by
case depending on whether field measurements are available and whether the uncertainty or noise
of using point radiometric quantity is less than those of using point number. The potential of using
abundant ALS point-cloud resources could provide additional validations and pre-studies of existing
and future spaceborne platforms. The point-cloud module has been implemented in the latest DART
release, which is also capable of TLS simulation (versions higher than 5.7.0). The recent development
of the DART lidar module supports the conversion of DART-simulated waveforms into point clouds,
with storage of waveforms and point-cloud data in the standard LAS format with the extra byte output.



Remote Sens. 2020, 12, 4 22 of 31

These advances bridge the gap between simulated data and current data-processing software, to
improve the usage of lidar points for assessing the accuracy of ALS and TLS inversions. Our next work
will be on evaluations in 3-D point voxelization software through DART ALS and TLS simulations:
e.g., AMAPVox [81], VoxelSD [28], and VoxLAD [29,82]. DART provides free licenses for scientific and
educational work.
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Nomenclature

At Receiver telescope area
As Footprint area at a certain distance
Aproj Projection area
Ccal A calibration constant with pre-defined instrumental and experimental·configurations
dl The beam cross-section diameter at the “exit gate” of the laser generator
Dr Diameter of the receiver telescope
eLAI Effective LAI
fvcc Proportion of crown vertical projection area by neglecting the within-crown gaps
g(Ωf) Leaf angle distribution function
G Unit leaf area projection along the pulse direction
I Integral of a return Gaussian power profile, total power of a return
I′ The distance-weighted power integral (I ·R2), proportional to ρa

I′pure
g I of pulses with only single ground return

I′nearest For a pure vegetation or vegetation-ground pulse, refer to I′pure
g For the nearest pure

ground pulse
i Return index of a lidar pulse
IB Intensity-based
LAI Leaf area index
LAIest Estimated LAI from lidar points without using correlation coefficient
LPI Laser penetration index
LPIpulse Penetration index of a single pulse
N Number of returns
Nfirst Number of first returns
Nlast Number of last returns
Nsingle Number of pulses with only a single return
P̂ Peak amplitude of a return Gaussian profile
Pr(t) Time-dependent amplitude profile of a lidar waveform recorded by the receiver
Pt Total pulse power
Pt,g Total incident power onto the ground
Pt,v Total incident power onto the vegetation part
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Pgap(θ) Gap probability of zenith angle θ
Pgap The gap probability along vertical direction adapted in most airborne lidar processing
PNB Point-number-based
R Distance from lidar
rfp Footprint radius
Ŝ Peak amplitude of transmitted laser pulse

ss
The temporal standard deviation of the convolved transmitted pulse and receiver
response function

sp,i The temporal standard deviation of a returned Gaussian profile of return index i

si
The temporal standard deviation broadening of a return Gaussian profile (index i) from
target interaction

sβ The standard deviation of the angular energy distribution within footprint
T(Ωi) Back-scatter transfer function of Ωi of return index i
α Correlation coefficient to link LPI with Pgap (exponential) and eLAIest with eLAI (linear)
β The angular offset from the pulse direction
βt Footprint divergence
γ Ratio of ground apparent reflectance over vegetation apparent reflectance
σ Radar back-scattering differential cross-section
ρ Natural reflectivity of a target
ρa Apparent reflectance of a target
Ωi, ∆Ωi Direction and solid angle from target to the receiver of return index i
Ωf Leaf normal direction
η System and atmospheric transmission factor
ω The overall clumping index for LAI estimation over an area
ωin Index of clumping that is induced by only crown shape and within-crown clumping
θg The angle between ground normal and the incident direction of a pulse

Appendix A DART Workflow of Point-Cloud Modeling

Figure A1 shows the workflow for simulating lidar point clouds. For the first step, DART
reads a 3-D scene (i.e., an abstract description or field of 3-D objects) with user-defined experimental
configurations for lidar acquisition (e.g., altitude, platform trajectory, pulse divergence, scan density,
control points, etc.). The stages enclosed in the dashed box are DART internal processes. DART uses a
quasi-Monte Carlo ray-tracing approach to model the waveform for each pulse [48]. DART-simulated
waveforms can either be exported as a binary file, or processed as points with GD before being exported
as a text file.Remote Sens. 2019, 11, x FOR PEER REVIEW 25 of 32 
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1. yOutput exportation to LAS:

The DART-simulated waveforms are stored as a binary file. In the next step, this binary file
can be converted into standard lidar data formats to adapt to the existing software. Previous work
documented the output conversion into sorted pulse data (SPD) format [58,83]. Here, we implement
an approach that processes the binary file into an LAS 1.3 point cloud through the LASPY library [84].
The points are stored in an LAS file, with the possibility to export the waveforms to another WDP
file that is linked to each decomposed point [Header description in [85], point type 1 or 4]. The file is
supported by existing LAS visualization and processing software (e.g., CloudCompare [86]).

2. Internal waveform processing:

Waveforms are decomposed into points in DART code that are saved as matrices in a text file.
Each line represents a point. Columns store 3-D position and “intensity” information, including peak
amplitude (P̂), temporal standard deviation (sp,i), integral (∝ P̂ · sp,i), apparent reflectance (ρa), return
index, number of returns per pulse, etc.

The dual-output option provides great flexibility in different applications. For example, Option 1
supports the validation of algorithms that work with ALS waveform data in LAS format (e.g., Riegl’s
Q-line devices). Option 2 may be preferable for numerous points (e.g., Riegl’s V-line devices with online
waveform processing). In that case, storing waveforms in a binary file would require tremendous
unnecessary computer memory and hard disk space. Additionally, users may want to investigate the
sensitivity of various input instrumental variables (dl, βt, . . . ) or output intensity selections (P̂, σ, or
P̂ · σ . . . ) that can be stored in the extra bytes of LAS format for different applications (e.g., classification,
leaf angle distribution inversion, etc.).

Appendix B Influence of Peak Detection Threshold

For actual devices, the parameters that determine whether a return can be detected by a lidar
device are R and ρa, due to the sensor capability. In this section, the points produced by GD are
filtered with threshold ρa > 0.009, which is a typical value retrieved from the point cloud generated by
Riegl VQ-480i.

Figure A2 illustrates the LPI calculated by the filtered point cloud under different LAIs for the
homogeneous scene (LAI = 1, 3, and 6). Compared to the unfiltered LPIs illustrated in Figure 3,
the filtered LPIs have a larger variance. When the LAI is small, the vegetation return usually has
lower ρa, which may be filtered out. This causes an overestimation by LPIγ=2.10, as some energy
from vegetation backscattering has been removed. LPIfitted is also influenced by the large divergence
of dataset variance. The bias curve gives a parallel displacement. LPInearest still provides accurate
estimations due to the idealized ground reflectance and the adaptation with ρa filtering. For the PNB
methods, the estimated LPIs are slightly lower than the ones from the unfiltered point cloud, because
the average number of returns has been reduced (Figure A3). From Figure A3, the average number of
ground returns decreases with increasing LAI, which means there are more pure-vegetation pulses. For
the heterogeneous scene, the results are shown in Figure A4 and Table A1. These results correspond to
a potential reason for the occlusion effect in ALS applications [87].
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Table A1. Fitted ω for LPI and coefficient of determination R2 for the LAI in Equation (12) for the
heterogeneous scene after filtering. The reference values are bold.

Variables
PNB Methods IB Methods References

LPIall LPIweighted LPIfirst LPIlast LPIboth LPIγ=2.10 LPInearest LPIfitted Pgap

LAI = 2
(Random)

α 0.47 0.94 0.64 6.11 1.44 1.05 1.00 1.07 1.00
α ·ω−1 1.70 2.01 1.26 7.26 3.35 2.10 2.10 2.10 1.98

computed
ω

0.28 0.47 0.51 0.84 0.43 0.50 0.48 0.51 0.51

R2 0.90 0.87 0.78 0.78 0.91 0.89 0.89 0.89 0.90

LAI = 2
(Clumping)

α 0.49 1.03 0.71 4.85 1.45 1.04 1.02 1.07 1.00
α ·ω−1 1.66 2.36 1.51 6.99 3.51 2.29 2.27 2.34 2.23

computed
ω

0.30 0.44 0.47 0.69 0.41 0.45 0.45 0.46 0.45

R2 0.82 0.86 0.81 0.81 0.94 0.89 0.89 0.89 0.90

LAI = 1

α 0.33 0.71 0.47 18.69 1.18 1.09 1.00 1.11 1.00
α ·ω−1 0.90 1.11 0.67 0.81 2.10 1.59 1.48 1.63 1.48

computed
ω

0.37 0.64 0.70 1.73 0.56 0.69 0.68 0.68 0.68

R2 0.91 0.87 0.81 0.14 0.82 0.95 0.95 0.95 0.95
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