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Abstract: The image-based modeling and simulation of plant growth have numerous and diverse
applications. In this study, we used image-based and manual field measurements to develop and
validate a methodology to simulate strawberry (Fragaria× ananassa Duch.) plant canopies throughout
the Florida strawberry growing season. The simulated plants were used to create a synthetic image
using radiative transfer modeling. Observed canopy properties were incorporated into an L-system
simulator, and a series of strawberry canopies corresponding to specific weekly observation dates
were created. The simulated canopies were compared visually with actual plant images and quan-
titatively with in-situ leaf area throughout the strawberry season. A simple regression model with
L-system-derived and in-situ total leaf areas had an Adj R2 value of 0.78. The L-system simulated
canopies were used to derive information needed for image simulation, such as leaf area and leaf
angle distribution. Spectral and plant canopy information were used to create synthetic high spatial
resolution multispectral images using the Discrete Anisotropic Radiative Transfer (DART) software.
Vegetation spectral indices were extracted from the simulated image and used to develop multiple
regression models of in-situ biophysical parameters (leaf area and dry biomass), achieving Adj R2

values of 0.63 and 0.50, respectively. The Normalized Difference Vegetation Index (NDVI) and the
Red Edge Simple Ratio (SRre) vegetation indices, which utilize the red, red edge, and near infrared
bands of the spectrum, were identified as statistically significant variables (p < 0.10). This study
showed that both geometric (canopy seize metrics) and spectral variables were successful in modeling
in-situ biomass and leaf area. Combining the geometric and spectral variables, however, only slightly
improved the prediction model. These results show the feasibility of simulating strawberry canopies
and images with inherent geometrical, topological, and spectral properties of real strawberry plants.
The simulated canopies and images can be used in applications beyond creating realistic computer
graphics for quantitative applications requiring the depiction of vegetation biological processes,
such as stress modeling and remote sensing mission planning.

Keywords: simulation; L-system; radiative transfer; biomass; strawberry

1. Introduction

Advances in plant measurement techniques have made it possible to construct a
geometric model of a specific plant from structural parameters [1,2]. The construction
of such models to simulate plants for computer graphics has long been a field of active
study [3,4]. Simulated plants have very promising applications, not only for modeling
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complex biological processes [5], but also for enriching training datasets for deep learning
applications [6].

Plant growth simulation can be modeled as a dynamic system with dynamic struc-
tures [7], in which not only the values of the state variables but also the set of state variables
change over time. Several modeling techniques have been developed over the years, among
which is the Lindenmayer-system (L-system) [8]. The L-system made it possible to model
dynamically reconfigurable plant structures. With the mathematical theory of plant devel-
opment [8] and the ability to incorporate geometric interpretations [9], the L-system has
been used in various agricultural research applications. Benoit et al. (2014) [10] employed
an L-system-based root model to generate images of simulated roots. Ubbens et al. (2018)
used L-system-generated leaf images to augment a dataset to help train a neural network
system [6]. Rokhana et al. (2020) used the L-system as a polynomial function to simulate
and visualize the growth of soybean (Glycine max L. Merrill) plants in response to various
combinations of fertilizers [11]. Xin et al. (2020) used a stochastic L-system to achieve 3D
reconstruction of grape fruit clusters (Vitis vinifera L. cv. Merlot) [12].

Several studies have utilized image-based positional information for plant model-
ing [13,14]. Structure from Motion (SfM) [15] analysis was used to generate point clouds
from plant images [16–18], which were then used to acquire leaf segment and petiole
silhouettes. Laser scanning has been used to derive positional information from scanned
point clouds [16,19]. A combination of image information, including image-based point
clouds and in-situ measurements of leaves and petioles, was used to extract canopy size
metrics, which were subsequently used to model canopy leaf area and biomass [20,21]. This
method can provide essential geometrical information needed to model crops, including
strawberry (Fragaria × ananassa Duch.), throughout the entire growing season.

Strawberry is a high-value fruit crop grown worldwide. However, strawberry pro-
duction requires intensive management, as plants and fruit are highly sensitive to various
biotic and abiotic factors [22]. Remote sensing data, captured with the right configuration
and at the right time, combined with advanced analysis techniques [23], can be used to
assist strawberry farm management. Understanding canopy structure characteristics is
key to many strawberry farming applications as well as preventative and management
actions. Models described in Guan et al. and Abd-Elrahman et al. [20,21] have focused on
developing empirical models of the relationship between plant biophysical parameters and
remote sensing information. These models, however, do not attempt to integrate radiative
transfer interactions inside the canopy structure to quantify photosynthesis and plant
growth and to plan remote sensing data acquisition mission parameters such as image
spectral, spatial, and temporal resolutions.

Physical Radiative Transfer (RT) models can simulate the propagation of radiation in
Earth landscapes and the atmosphere and can therefore simulate remote sensing images
of these landscapes using physically described mechanisms [24]. Ideally, they consider
all possible observation configurations with any sun and sensor viewing directions. The
amount of energy received at each pixel in an image can vary significantly due to image
formation geometry, expressed by the variations in energy source, object, and sensor
geometry [25], which can be expressed using RT models [26]. Methods to derive canopy
structure characteristics using physical RT models through inversion procedures [27–30]
and forward procedures [31,32] have been used. Precisely simulated images based on RT
modeling have a great potential in many domains, including agriculture and forestry. For
example, they can be simulated for various vegetation stress conditions and growth stages.
They can constitute synthetic training data for deep learning models. They can also be
used to prepare observation campaigns and design future satellite missions through the
determination of optimal spectral bands and time of satellite overpass, given the geometry
and optical properties of the studied land surfaces. However, these approaches require
canopy structure characteristics that are difficult to acquire and are often obtained from
generic pre-existing databases. Plants simulated using actual biological characteristics are
key to the accurate RT image simulation of vegetation canopies.
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This study aims to demonstrate and validate (1) the use of in-situ measurements
in strawberry plant growth simulation models and (2) the utilization of the simulated
plants in RT-based synthetic image simulation. In-situ measurements and image-derived
information of strawberry plants are used to provide geometric, structural, and pheno-
logical characteristics to inform growth functions. The simulated plants are validated
against canopy size metrics of existing strawberry plants throughout the growing season.
A physical RT model is calibrated using simulated canopy information to create synthetic
multispectral images of strawberry canopies at different growth stages. Spectral vegetation
indices derived from the simulated image are used to assess the simulation results. This
research is an important step towards realizing a biologically driven simulation that goes
beyond graphical representation and towards emerging applications such as the visualiza-
tion of crop model outputs, facilitating training datasets for deep learning, and planning
remote sensing missions.

2. Methods
2.1. Study Site and Data Collection

The University of Florida’s Gulf Coast Research and Education Center (GCREC)
experimental farm in Wimauma, FL (27◦45′40′′N, 82◦13′40′′W) (Figure 1A) served as the
study site. Sweet Sensation® “Florida127” strawberry plants were planted on a raised bed
(Figure 1B–D) and maintained according to the commercial growing standards in Central
Florida. “Florida127” is one of the major strawberry cultivars grown in Florida, United
States. Two representative plants were used to provide information for plant simulation.
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Figure 1. Study site: (A) University of Florida’s Gulf Coast Research and Education Center,
(B) orthophoto of mobile image, (C) section of the six imaged beds (study plots are located in
the two central beds), and (D) a single plant of “Florida127” strawberry.
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High spatial resolution close-range images were captured using a hand-held Nikon
COOLPix S630 at approximately 60 cm from the plant canopy from more than 24 angles
covering the whole plant (Figure 2). A wood frame was positioned around the canopy for
model scaling. The length of the petioles (leaf petioles) and size of the leaves were manually
measured every 4–5 days from 17 October to 17 December to study growth patterns.
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Figure 2. High-resolution, close-range image locations and orientations.

Spectral reflectance and transmittance data of the leaves, needed for the RT image
simulation (with wavelengths ranging from 400 nanometers to 2400 nanometers), were
acquired using a FieldSpec4 Spectroradiometer leaf clip (Figure A1A). The reflectance data
of the plastic bed and soil were acquired using a FieldSpec4 Spectroradiometer pistol grip
(Figure A1B). These were performed on 34 canopies every other week during the 2017/2018
season, concurrent with the image data collection. During each acquisition, the spectral
measurements of a mature (dark green, expanded to nearly full size, and more fibrous)
leaflet and a young (light green, still expanding, and small enough to barely cover the
collecting area of the FieldSpec 4 device) leaflet from each canopy were collected.

Mobile ground-based images and in-situ leaf area and dry biomass acquired every
week during the 2017/2018 strawberry season (Figure A2A) were used for the quantitative
assessment of the growth models and RT simulated images. Details about how this dataset
was collected and the methods used to derive the canopy size metrics (planimetry area,
average canopy height, and standard deviation of canopy height) from the captured images
are presented in Guan et al. and Abd-Elrahman et al. [20,21].

2.2. Simulation of Plant Growth Using L-System

This study focused on the “Florida127” strawberry to simulate its plant growth
throughout the growing season using the L-system assisted by field measurement. Figure 3
shows the workflow used to generate the L-system strawberry model and results assess-
ment. A global-to-local approach was adopted to model the strawberry canopy, starting
with the silhouette of the whole canopy and moving to leaf and petiole details. Data re-
quired to model plant growth were obtained from high-resolution images, leaf and petiole
size field measurements, and topological observations (e.g., number and frequency of
emerging petioles). Dynamic strawberry growth models were then created and simulated
throughout the strawberry growing season. The simulated canopies were analyzed weekly
within the growth cycle to match mobile ground-based image and in-situ biomass and leaf
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area data collections. Canopy sizes from simulated and actual plants were compared to
determine the suitability of simulations to model in-situ leaf area and biomass.
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Simulation language and L-Studio environment: Plant growth simulations in this
study were conducted using L-Studio [33,34] software (Figure A2). An L-system model
in the L-studio environment consists of two components: (i) a generative algorithm in
a generator modeling language called a plant and fractal generator with a continuous
parameter (cpfg/lpfg) [35] and (ii) a set of graphically defined entities. The cpfg/lpfg is
a language constructed based on rewriting rules that capture the development of plant
components over time. In general, rewriting is a technique for defining complex objects by
successively replacing parts of simple initial objects. The graphically defined entities were
defined and manipulated using editors (function, curve, and surface) within the L-studio
environment.

Modeling individual leaves: The information needed to model individual leaves was
extracted from the close-range hand-held images acquired for “Florida127” strawberry
plants throughout the growing season. The images were processed using a self-calibrating
bundle adjustment [36] implemented in the Agisoft Metashape software (version 1.4.0.5650) [37]
(Figure 2). The tie-points needed for the bundle adjustment were detected automatically
by identifying local features within each image, which were then matched across multiple
images using the Structure from Motion (SfM) technique [15]. Figure 4A shows a dense
point cloud of one of the observed strawberry canopies with leaf-level details. Figure 4B,C
shows a dense point cloud of one of the leaves. A 2.4 mm-resolution Digital Surface Model
(DSM) representing the shape of the leaf was created using the Agisoft software.
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Figure 4. Modeling of a single leaf. (A) Point cloud generated from the close-range images of a plant
canopy. (B) Extracted point cloud of a single leaf. (C) Corresponding mesh generated from the point
cloud.

The DSM was analyzed using The ESRI’s ArcMap software v10.5. Since the surface
editor of L-studio uses 16 × 16 point grid to create a Bézier surface to reconstruct the
shape of the leaf, a 16 × 16 matrix of sample points was positioned on the DSM to acquire
3D information at these locations (Figure 5A) through the ArcMap’s software geospatial
analysis tools. This 16 × 16 matrix of sample points was input into L-Studio. A comparison
of the L-system surface and a point cloud of a leaf from different angles is shown in
Figure 5B–D.

Stem angle modeling: To describe the shape and gesture of a petiole (leaf petiole), two
angles (angles α and β in Figure 6) need to be defined. As the plant grows, new petioles
develop from the crown (basal part of the plant) and push the existing petioles outward due
to the petiole orientation and space competition. As a result, the existing petioles gradually
deviate from an imaginary vertical line at the center. This phenomenon is described by a
gradual change of angle α (Figure 6). As the petioles develop and mature, the increasing
mass of the petioles and the leaves attached to their ends bend the petioles down to the



Remote Sens. 2022, 14, 548 7 of 21

bed surface. Meanwhile, due to the phototropism phenomenon [38,39], the petioles grow
upward to maximize the exposure of leaves to sunlight. These two tendencies result in
angle β changes during growth. We measured the angle α on captured images and observed
a change from zero as the petiole emerges to 29 degrees on average at the end of the season
(134 days from the first petiole emergence). Similarly, we observed that angle β changes
from zero to 19 degrees on average when the petiole reaches maturity (i.e., it reaches its
maximal length about 50 days from petiole emergence).
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Growth function modeling: The L-system is designed as a dynamic structure [8] with a
prominent feature of modeling canopy growth as a phenomenon. The model can represent
the dynamic change of both the topology and geometry of the canopies throughout their
growth cycle. The weekly high-resolution images captured throughout the strawberry
season were used to extract time-stamped measurements of leaf length and width, petiole
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length and angle, and leaf curvature angles. The observed petiole number, petiole length,
and leaf length were used to model the canopy growth function.

The change in petiole number shows the dynamic nature of strawberry plant topology
and drives leaf area accumulation. The number of petioles was counted (Figure 7) and
utilized in the cpfg [35] coding as explained in the next section. The changes in petiole
and leaf lengths exhibit the dynamic nature of the plants as a geometric aspect. Measuring
petiole lengths from the point clouds extracted from the image SfM analysis results was
difficult due to the small size of the petioles as well as plant occlusion. Alternatively, petiole
dimensions were measured using a ruler. Figure 8A shows how petiole lengths change
with time, and Figure 8B shows the petioles after lining up all the petiole observations
according to their corresponding age(different colors represent different petioles).
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An asymptotic regression model is presented in Equation (1) to depict a limited growth
of sigmoidal elongation of segments such as the petioles or leaves [9]:

L = a(1− ebt) (1)

where L is the dimension of the leaves or petioles, t is the time expressed in days after
planting, and a and b are coefficients to be determined by regression fitting of the observed
in-situ leaf and petiole measurements. Figure 8C shows petiole dimension data fitted
against the asymptotic model. Petiole and leaf dimensions were then predicted on a daily
interval and normalized to accommodate the function editor requirements in L-s. Studio,
which has x and y axes ranging from 0 to 1 (Figure 8D). Figure A3 shows the generated
petiole and leaf growth functions through the L-studio function editor.

L-system cpfg coding: The cpfg code used in this study was developed to set up the
rewriting rule guiding plant development in both plant topology and geometry. This code
first described how the petioles emerge and occupy the space and how this behavior affects
the silhouette of the canopy. Then, the details of each petiole, such as the change of petiole
length, orientation, and the growth of leaves, were modeled.

A root node was initiated in the model with a certain number of petioles attached to
it, and each petiole was given a dormant/delay time. The numbers of petioles changing
over time and dormant/delay time were determined by the in-situ measurements. The
pattern of how the petioles spread in the azimuth direction was assumed to be symmetrical
in all directions. The pattern of how petioles occupy the zenith dimensions was guided by
observations of how the petiole angles change over time.
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over time. (B) Petiole length time-shifted to the same start time for all petioles. (C) Asymptotic
function fitting. (D) Asymptotic function normalized (values 0–1) to input into L-Studio function
editor.

Every petiole was modeled as a composition of more detailed components (i.e., several
segments representing the petiole part and a trifoliate leaf attached to the top), defined as a
decomposition process in cpfg. The angles between the segments allow the petiole to bend
during their elongation, and the elongation was guided by the developed growth function.
A similar approach was adopted to generate the leaves. In practice, the normalized growth
function of leaf length and leaf width is nearly the same [40–42], so the growth function
of leaf length was chosen to control changes in leaf dimensions. A stochastic effect was
applied to the size of the leaves and length of the petioles according to the mean and
standard deviation of leaf and petiole field measurements.

Model validation: A scale factor was calculated using modeled leaf dimensions and
in-situ measurements. The L-system models were scaled to the real strawberry canopy di-
mensions using this scale factor before conducting model validation. Two types of L-system
model validations were conducted. The first validation was conducted by comparing the
plant leaf area output from the L-system simulation with the average in-situ total leaf area
of two plants of “Florida127” measured weekly by destructive methods [20,21]. Plants sim-
ulated by the L-system were exported as 3D models. A computer program was developed
in Python to compute the total canopy leaf area from the extracted 3D canopy models.

The second validation assessed the L-system model capacity to develop a leaf area
regression model to predict leaf area using canopy size metrics (i.e., canopy area, canopy
average height, and standard deviation of canopy height). We hypothesized that if the leaf
area statistical prediction model was validated, the L-system model could depict the real
plant to some degree. The simulated 3D models were transformed into a 3D point cloud
and processed into a DSM by sampling the point cloud into a grid while recording only
the maximum elevation. This process was conducted via the Quick Terrain Modeler V1.2
software (2015) to estimate canopy size parameters.
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2.3. Radiative Transfer Image Simulation

In this study, images were simulated using the Discrete Anisotropic Radiative Transfer
(DART) model [24], which computes radiation propagation through the whole Earth–
atmosphere system in the entire optical domain from the visible to thermal infrared parts
of the electromagnetic spectrum [43,44]. Leaf, canopy, bed, and soil optical, geometrical,
and/or structural properties were input into the DART model to simulate a “scene” (3D
structures with geometric and spectral properties). Scene elements can be represented
as volumes of turbid medium and/or facets. The date and time of the data simulation
and the geolocation of the study site were used to calculate the solar angle. Radiation
propagation was simulated with a discrete ordinate method (i.e., rays can propagate only
along a finite number of directions). A single DART simulation provides images for a
number of predefined viewing directions and spectral bands. These images were processed
and analyzed to create a set of vegetation spectral indices. Regression analysis was then
carried out using the vegetation indices and canopy size parameters to model the total leaf
area and biomass of the canopies. A detailed description of these steps is explained in the
following subsections.

Geometric and spectral configuration: Recreating the lighting geometry, which is the
angle of the object–sensor with respect to that of the object–sun, is crucial in RT-based image
simulation. The date and time of the data simulation and the geolocation of the study site
were used to calculate the solar angle [45].The imaging sensor was assumed to be mounted
on a mobile mapping platform collecting nadir-looking images. The imaging sensor in
the simulation was assumed to have five bands (blue, green, red, near infrared, and red
edge) mimicking the spectral properties of the widely used MicaSense multispectral camera
(Table 1).

Table 1. Spectral bands simulated using the DART software.

No. Band Name Center Wavelength (nm) Bandwidth (nm)

MicaSense

1 Blue 475 32
2 Green 560 27
3 Red 668 14
4 Red Edge 717 12
5 Near IR 842 57

Image simulation: Three scene objects were included in the simulation: soils, plastic
beds, and strawberry canopies. The soils and the plastic beds were treated as surface media
with complex geometry. The elevations created using image information were imported
into the DART software to guarantee the faithfulness of the representation of the geometric
complexity of the soil and plastic bed objects. The spectral properties of the soil and plastic
elements were input as spectral reflectance over a certain range of the spectrum acquired
by the FieldSpec4 spectroradiometer using the device shown in Figure A1B.

In this study, the canopies were treated as turbid media [46]. Therefore, foliar elements
(leaves and petioles) were randomly distributed. Under this assumption, canopies could be
described by addressing two components: (i) the spectral properties of the foliar elements
and (ii) the canopy structure formed by the distribution of these elements. The spectral
properties of the canopy leaves were described as reflectance and transmittance over the
specific range of wavelengths acquired by the FieldSpec4 spectroradiometer using the
device shown in Figure A1A. The structure of the canopy is described by the spatial
distribution of the leaf-area volume density, which is defined as the total one-sided leaf area
of photosynthetic tissue per unit canopy volume. Integrating it over the canopy height gives
the leaf area index (LAI), which is the one-sided leaf area per unit horizontal ground surface
area [47]. Canopy structure is also described by the leaf normal orientation distribution
function, which is another expression of the leaf area distribution (LAD) [48]. A total of
14 “Florida127” strawberry canopies simulated using the L-system, representing different
data collection points throughout the season, were imported into the DART software to
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provide the canopy structural elements. The L-system-simulated canopies allowed the
modeling of the geometry and inner structure of the canopies, which were used to compute
the LAI and LAD. Radiation propagation interactions with the created scene elements were
then computed to create the synthetic image. During the modeled energy–object interaction,
radiation is scattered multiple times before being received by the hypothetical imaging
sensor. Images containing the reflectance of five bands adopting the spectral properties
of the MicaSense Red Edge camera were created. A true color (RGB: red, green, and blue)
visualization of the image was created using the DART simulation model.

Extraction of spectral indices: ESRI’s ArcMap software v10.5 was used to process
the simulated images and to delineate individual canopy boundaries. The reflectance
values of the five bands for all pixels within each canopy were extracted, and the average
values within the individual canopies were calculated (Table 2). Six vegetation indices
were computed as the spectral transformation of two or more band reflectances for each
canopy [49]. Table 3 shows a description of the vegetation indices used in this study.

Table 2. Reflectance values of the strawberry canopies of “Florida127” strawberry at different growth
stages, extracted from the DART-simulated image.

Date Days after Planting B G R RedEdge NIR

16/11/2017 31 0.143 0.145 0.038 0.199 0.386
21/11/2017 36 0.111 0.114 0.027 0.158 0.309
30/11/2017 45 0.129 0.130 0.032 0.181 0.357
7/12/2017 52 0.146 0.146 0.021 0.218 0.478
14/12/2017 59 0.117 0.119 0.020 0.172 0.355
21/12/2017 66 0.128 0.129 0.032 0.178 0.377
27/12/2017 72 0.138 0.141 0.019 0.206 0.440
4/1/2018 80 0.139 0.141 0.029 0.196 0.433
11/1/2018 87 0.129 0.130 0.016 0.195 0.423
18/1/2018 94 0.129 0.131 0.024 0.183 0.424
25/1/2018 101 0.133 0.135 0.013 0.204 0.455
1/2/2018 108 0.136 0.140 0.024 0.196 0.466
8/2/2018 115 0.145 0.147 0.016 0.219 0.489
15/2/2018 122 0.138 0.141 0.023 0.198 0.474
22/2/2018 129 0.112 0.114 0.020 0.165 0.337
27/2/2018 134 0.131 0.138 0.015 0.195 0.483

Table 3. Vegetation indices derived from the simulated image.

Acronym Index Equation Reference

gNDVI Green NDVI (RNIR − Rgreen)/(RNIR + Rgreen) [50]

NDVI Normalized Difference
Vegetation Index (RNIR − Rred)/(RNIR + Rred) [51]

SR Simple Ratio RNIR/Rred [52]

NDVIre Red Edge Normalized
Difference Vegetation Index (RNIR − Rrededge

)/(RNIR + Rrededge
) [53]

SRre Red edge Simple Ratio RNIR/Rrededge
[53]

RTVI Red Edge Triangular
Vegetation Index 100(RNIR − Rrededge

)− 10(RNIR − RGREEn) [54]

NIRv Near-infrared reflectance of
vegetation NDVI ∗ NIR [55]

Simulated image validation: Multiple regression analysis was performed using R-studio
software version 1.1.453 [56]. In the developed models, only the significant variables at the
90% confidence level that were not highly correlated (Variance Inflation Factor (VIF) [57]
less than 10) were kept in the models. Three dependent variables were used to assess
the performance of the simulated images and compare the performance with other plant
canopy data sources: (1) leaf area of the L-system simulated plants; (2) in-situ leaf area, and
(3) in-situ biomass. Four sets of independent variables were used to model each of the three
dependent variables: (a) canopy size metrics (canopy area, average height as a baseline,
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and standard deviation of height) extracted from mobile ground-based images [20,21],
(b) canopy size metrics extracted from the L-system simulated canopies, (c) vegetation
indices extracted from the DART-simulated images, and (d) a combination of L-system
canopy size metrics and vegetation indices.

In this analysis, we attempted to evaluate the suitability of using the DART-simulated
spectral data to model canopy biophysical parameters and compare these results to cor-
responding models utilizing geometric canopy information. The analysis identified the
statistically significant indices and their simulated bands. We also assessed the use of
a combination of the canopy size metrics extracted from the L-system canopies and the
canopy spectral indices extracted from the DART-simulated images to model the canopy
leaf area and dry biomass.

3. Results
3.1. L-System Canopy Growth Simulation Results

In-situ observation of strawberry plant growth showed that a single petiole takes up
to 50 days to reach its maturity (maximum length), after which the size of both petiole and
leaf remains approximately the same, assuming the plant was not subject to stress (e.g.,
drought, pests, and diseases). Table 4 shows the summary statistics of petiole length and
leaf size at maturity. The mean and standard deviation of the petiole length and leaf size
serve the purpose of adding a stochastic effect to the L-system model, assuming that the
maturity length and size of the petioles and leaves follow a normal distribution (leaf size:
0.074± 0.12 m; petiole length: 0.093± 0.184 m), as shown in Table 4.

Table 4. Descriptive statistics of “Florida127” strawberry leaf and petiole length at maturity from
in-situ measurements.

Leaf Size at Maturity (m) Petiole Length at Maturity (m)

Minimum 5.00 × 10−2 6.00 × 10−2

Maximum 8.00 × 10−2 1.15 × 10−2

Range 3.80 × 10−2 5.50 × 10−2

Mean 7.02 × 10−2 9.00 × 10−2

Median 7.40 × 10−2 9.30 × 10−2

standard deviation 1.20 × 10−2 1.84 × 10−2

Equations (2) and (3) show the asymptotic growth models of petiole length and
leaf length of “Florida127” (Figure A3). Petiole and leaf lengths were generated at daily
intervals using these equations and normalized to values between 0 and 1 for input into
the L-system function editor. The normalized leaf length was chosen to depict leaf size
growth. The custom L-system code developed to simulate the strawberry canopies was
executed through the L-studio software simulator, and canopies corresponding to the
weekly collected in-situ data and mobile image acquisitions were produced. Figure 9 shows
a visual comparison between real canopies and L-system models at their corresponding
growth age.

Petiole Length = 7.73
(

1− e0.10t
)

(2)

Lea f Length = 5.73
(

1− e−0.18t
)

(3)

Model performance was assessed quantitatively by comparing the total leaf area of
the L-system simulated plants with in-situ plant leaf area measured at the corresponding
growth age (Figure 10), showing Adj R2 = 0.78 of the simple regression model relating the
simulated and in-situ leaf areas. Differences between each of the three canopy size metrics
extracted from the L-system simulation and corresponding canopy metrics extracted from
the mobile images throughout the season were also used to evaluate the L-system model
results as shown in Figure 11A–D.
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Figure 9. Example of a real plant canopy vs. an L-system generated canopy throughout the growing
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after planting. (E) 80 days after planting. (F) 87 days after planting. (G) J94 days after planting.
(H) 108 days after planting.
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Figure 11. (A–C) L-system-derived canopy size metrics throughout the season. (D) L-system-derived
and in-situ leaf area throughout the season.

3.2. Radiative Transfer Image Simulation Results

The simulated canopy images (Figure 12) were validated against in-situ leaf area and
dry biomass measurements conducted throughout the growing season as well as the leaf
area of the canopies simulated using the L-system. We used 16 plants simulated to match
16 episodes of in-situ image acquisition over the strawberry growing season (Table 2).
Figure 13 represents the adjusted R2 values (R2 values after accounting for the number of
independent variables) of the tested models. The multiple linear regression analysis of the
L-system simulated leaf area, in-situ leaf area, and in-situ biomass as dependent variables
and the vegetation indices listed in Table 3 as independent variables (Equations (4)–(6))
resulted in Adj R2 values of 0.58, 0.63, and 0.51, respectively. The NDVI and SRre vegetation
indices were identified as statistically significant variables (p < 0.10).

Lea f AreaLsys = −1.55 + 1.0316 ∗ NDVI + 0.4110 ∗ SRre (4)

Lea f Areain−situ = −1.67 + 1.3122 ∗ NDVI + 0.3472 ∗ SRre (5)

Dry Biomassin−situ = −252.85 + 170.38 ∗ NDVI + 59 ∗ SRre (6)

The highest Adj R2 of the models utilizing vegetation indices was achieved for the
in-situ leaf area, which contradicted our expectations of having higher Adj R2 for the
leaf areas computed from the L-system simulated canopies since the DART simulation is
derived directly from the L-system canopies.

Combining the L-system canopy size metrics with the spectral variables resulted in a
slight increase in the Adj R2 values for the in-situ leaf area and dry biomass (0.68 and 0.58)
compared to using the spectral indices only (0.62 and 0.51). This may suggest that both the
spectral and geometrical canopy data can be used independently to model canopy leaf area
and biomass and still obtain close results. In the meantime, combining the two datasets
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could also have the potential to explain additional variability in the leaf area and biomass
variables.
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Figure 13. Adjusted R2 of multiple regression modeling L-system leaf area, in-situ leaf area, and
in-situ dry biomass as dependent variables, with three different sets of independent variables:
(A) canopy size metrics extracted from mobile images, (B) L-system canopy size metrics, (C) veg-
etation indices of simulated images, and (D) vegetation indices and L-system canopy size metrics.
Dependent variables: (blue) L-system leaf area, (orange) in-situ leaf area, and (gray) in-situ dry
biomass.

The Adj R2 of the in-situ leaf area and biomass models using simulated data (L-system
canopy size metrics or spectral data) are significantly lower than those obtained when
using the canopy metrics extracted from the mobile images, which is expected due to the
direct correspondence between the in-situ leaf area and dry biomass measurements and
the image-based canopy size metrics. Although this could be attributed to the expected
shortcomings of all simulation methods, it also raises the potential for improving the
simulation results.

An Adj R2 value of 0.87 was obtained when the L-system canopy size metrics were
used as independent variables to model the leaf area of the same L-system simulated
canopies. This lower-than-expected value highlights the limitation of using canopy metrics
(canopy area, average canopy height, and standard deviation of canopy height) to explain
canopy leaf area variability as well as other limitations in the statistical model (multiple
linear regression) that was used.
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4. Discussion

This study used close-range images, field measurements, and spectral measurements
to build an L-system dynamic strawberry growth model and simulate RT images of straw-
berry plants throughout the growing season. In-situ measurements and information
extracted from images were used to quantitatively evaluate the L-system and RT simulation
results. Our results highlight the ability of L-system models to predict leaf area and size
metrics of the strawberry canopy and suggest the feasibility of using simulated plants in
agricultural applications. For example, physical radiative transfer modeling using accurate
structure and geometry characteristics can be used to produce simulated aerial images that
characterize biological processes such as strawberry disease stresses or genotypes.

Images and field measurements provided topological and geometric information
that enabled plant simulation throughout the season. This information guided the whole
structure of the L-system cpfg code development. While close-range image analysis was a
valuable source for some aspects of the simulation, such as leaf surface modeling, the in-situ
measurements provided more accurate, fine-scale geometric information, such as petiole
and leaf lengths, as well as the topological information needed to control the growth
function. Simulated plants at different growth levels were validated, and the data used
for model development (e.g., leaf and petiole dimensions, images, and point clouds) were
different from the data used in the validation process (e.g., in-situ total leaf area).

The standard deviation of height of the simulated canopies, among all the canopy size
metric parameters, had the least correspondence to validation data (standard deviation of
canopy heights extracted from mobile images). Because this metric reflects canopy internal
structure, it could indicate a limitation in our L-system model when dealing with canopy
structure details such as where new petioles emerge and how they compete for space and
solar radiation with existing petioles. This limitation could also be due to the fact that both
the close-range imagery (used in model development) and the mobile imagery (used in
model results validation) did not acquire enough information on the inside parts of the
canopy to enable descriptions of canopy structure. More in-situ observations or the use of
high-density laser scanning techniques could address this limitation.

Although only one cultivar (Florida127) of strawberry was simulated in this study,
the code developed in the study could be modified and used to simulate other cultivars
and other crops that have similar growth habits with minor adjustments. Incorporating
crop yield, common management practices, such as pruning, other canopy elements such
as flowers and fruits, as well as other physiological and environmental processes, such as
stress effects from water and nutrition deficiencies, weather conditions, diseases, and pests,
could expand the use of this model in agricultural management applications. This can be
achieved by adding features to the simulation code as well as using situational L-systems to
deal with disease and pest effects. Such sophisticated modeling serves as a solid foundation
for image simulation in physical radiative modeling.

Unlike most image and plant simulation studies, we attempted to develop simulated
images using datasets that have high resemblance to reality, benefiting from the L-system
models. One of the most important parameters needed for a radiative transfer image
simulation (e.g., using DART) is the estimation of the canopy geometrical aspects. The
L-system’s ability to simulate plant canopies and our attempts to assist the simulation with
field measurements and observations facilitated faithful representation and computation of
the geometrical and structural canopy properties extracted from the simulated canopies.

Having a moderate goodness of fit for the in-situ leaf area and dry biomass models
signals the possibility of using simulated images to experiment with imaging parameters
that can be used to predict in-situ strawberry biophysical parameters (leaf area and dry
biomass in our case). This indicates, however, that there is room to improve the simulation
models. For example, in this study, we only used in-situ measurement from a small number
of plants (e.g., one plant to observe petiole emergence along the season), and we have not
incorporated other plant elements, such as strawberry flowers and fruits. Enriching the
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datasets and adding more features to the L-system models can improve their faithfulness
and capacity to depict more biological processes.

This study results emphasize the importance of specific spectral bands and canopy
size metrics for modeling leaf area, as they highlight the importance of using sensors with
red, red edge, and near infrared bands to develop canopy leaf area and biomass prediction
models. This again represents a simple example of the potential of using canopy and image
simulation in applications such as image planning. The faithful simulation of canopies
and images can be used to identify the best bands, flying height (image resolution), and
acquisition time for specific applications such as diagnosing the effect of specific plant
stressors. Images of plants subject to different types of stressors, such as pests, diseases,
drought, and nutrient deficiencies, could be simulated by modifying the L-system and
DART simulation parameters to accommodate the geometrical and spectral changes at the
leaf and canopy levels.

Through this procedure, a series of images can be simulated to present canopies
under diverse stressors and management practices using different spectral (e.g., band
wavelengths and widths) configurations, image spatial resolutions, sun–sensor–object
geometries, and field topographies and configurations. Analyzing these images could aid
in identifying the best parameters, configurations, and analysis techniques for numerous
applications such as detecting and diagnosing different stressor types. The simulated
images could also be used to enrich training data for automated object detection and
image classification using machine and deep learning techniques, reducing the need for
costly image acquisition efforts. They may also be used in inversion models to estimate
plant biophysical parameters from actual images. More research is needed to overcome
some of the limitations of this study by incorporating more in-situ observations, modeling
different strawberry varieties, and integrating different physiological and phenological
plant behaviors along the growth cycle.

5. Conclusions

This study used close-range images, field measurements, and spectral measurements to
build an L-system dynamic strawberry growth model and simulate RT images of strawberry
plants throughout the growing season. In-situ measurements and information extracted
from images were used to quantitatively evaluate the L-system and RT simulation results.

Our results highlight the ability of L-system models to predict leaf area and size
metrics of the strawberry canopy and suggest the feasibility of using simulated plants in
agricultural applications. The Normalized Difference Vegetation Index (NDVI) and the Red
Edge Simple Ratio (SRre) vegetation indices extracted from simulated images were identi-
fied as statistically significant variables. This study showed that both geometric (canopy
seize metrics) and spectral variables were successful in modeling in-situ biomass and leaf
area. The simulated canopies and images have the potential to be used in applications
beyond creating realistic computer graphics or synthetic representations for quantitative
applications requiring the depiction of vegetation biological processes.
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