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Domain decomposition is a numerical method to solve linear and nonlinear problems. It enables fast and parallel execution of
simulations. The growing size of electromagnetic simulations raises a lot of interest in developing such methods. Their adaptation
in magnetostatics means handling the case of vector potential formulation with its difficulties, mainly resulted from the necessity of
gauge condition. This paper provides an approach to overcome this issue and presents test cases for the use of domain decomposition

with edge elements.

Index Terms—Domain decomposition, FETI method, Vector potential formulation, Regularization, Parallel computing.

I. INTRODUCTION

AGNETOSTATIC modeling relies on two types of

formulations: scalar potential and vector potential. The
latter offers robust solving capabilities but requires a gauge
condition to ensure solution unicity. This becomes particularly
challenging when employing domain decomposition due to the
decomposed nature of the global problem. Domain decompo-
sition, by definition, aims to break down a global problem
into smaller ones that can be solved in parallel. Typically,
a gauge tree or auto-gauging is employed during solving,
but with domain decomposition, local matrix manipulation
hinders the use of these methods. In this study, we adopt a
different approach based on regularization techniques that can
be applied to local problems, enabling the use of the FETI-DP
algorithm. The paper presents a test case and results pertaining
to conditioning and the number of iterations.

II. PROBLEM DESCRIPTION

A 3D magnetostatic problem using a vector potential for-
mulation will be considered in the remainder of this paper [1]
and we will therefore use the following equations

b =curla, b=gh, curlh=j, (D

where a is the vector potential, b the magnetic induction, h
the magnetic field strength, j the given current density and p
the magnetic permeability. The potential a is then given by

curl(p~ ! curla) = j. (2)

On a domain €2 and using suited boundary conditions, the
variational formulation can be written as

(utcurla,curla’) = (j,a’), Va' € Ho(cur;Q), (3)

where (-,-) denotes the classical L? scalar product and
Hy(curl; Q) is the space of vector fields whose curl is square-
integrable. Note that the vector potential a is determined up to
the gradient of an arbitrary scalar function. A gauge condition
is then needed to ensure the unicity of this potential.

Using the edge element method, for a domain €2 with a linear
magnet as source, linear ferromagnetic materials and the device
surrounded by air, the system to be solved is written

Ku=f, 4)

where

e K is the finite element matrix of the magnetic vector

potential formulation,

o u contains the field circulations of the vector potential on

each edge of the mesh,

o f is the source vector.

The finite element matrix contains several null pivots. When
solving, a gauge tree or an autogauging method is used to help
detect those null pivots. The use of a direct solver to solve the
problem is then possible [2].

III. DOMAIN DECOMPOSITION

For this study, we consider non-overlapping domain decom-
position methods. They are characterized by the absence of a
shared surface (2D) or volume (3D) connecting neighboring
subdomains [3]]. This choice was motivated by the parallel
computing capabilities that it offers.

Here we will focus on the FETI-DP approach (Finite Ele-
ment Tearing and Inteconnecting - Dual Primal). This method
is an evolution of the FETI-1 method introduced by Farhat
and Roux in 1991 [4]. In FETI-1, the domain is decomposed
into subdomains and the continuity on the interface between
subdomains is enforced by Lagrange multipliers. Thus, the
local subdomain problems are solved independently on a
processor by a direct solver, while an iterative method enables
to solve a global problem for the multipliers condensed on the
interface. FETI-DP methods add a coarse problem with some
primal variables [3], i.e. a few continuity constraints are always
satisfied and does not require multipliers, the dual variables.
An iterative method is used to solve the corresponding prob-
lem. The problem to be solved contains then both Lagrange
multipliers and the primal variables. These primal variables are
typically defined on some cross points so that for a subdomain



s, K, us and f, can be partioned into (interior + remaining
boundary) variables denoted by r and coarse primal variables
denoted by c :
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The problem to solve can then be written as

F’rr Frc A _ dr
<qu(- *ch Uc N fc (6)
with F.., F,., K., d, et f. defined as :
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B . and B ;. are boolean matrices used to extract the primal
¢ and rest components r of subdomain s.
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A. Regularization

Because of the subdivision into subdomains, the previous
techniques to remove null pivots are difficult to apply. For
this work, we propose the following regularization technique,
which is more adapted to the domain decomposition approach.
Instead of solving (@), the following problem is considered [6]

curl(p ! curla) + oa = j. (12)

The regularization coefficient o has positive constant value in
each subdomain ;. Different coefficients have been tested.
The term oa can be added at the integration step when building
the matrix [[7] or algebraically after. The regularization should
enable us to have a non-singular problem while maintaining
good results.

B. Application

Regularization has been implemented in Altair Flux™ soft-
ware [8]. Figure [T] illustrates the test case and represents a
simplified 3D magnetic contactor decomposed into 4 subdo-
mains. The cube in the middle is a linear magnet. The other
two regions represent ferromagnetic material. All three regions
are surrounded by an air region.

Different values of the regularization coefficient have been
tested for various coarse problem sizes. We studied the matrix

Fig. 1. Test case of 3D magnetosatic simulations with edge elements

spectrum and the conditioning for the full problem, subdo-
mains, interface and coarse problems.

The assembled matrix for the full problem is ill-conditioned
because many eigenvalues are close to zero but not exactly
zero. Our study consisted of analysing the interface problem
matrix conditioning. Different values of the regularization
coefficient, ranging from 1 x 1077 to 1 x 107 were used.
The higher the regularization coefficient, the better the results
(smaller condition number). Examples have shown that there is
a maximum value that can be taken, and exceeding this value
results in an error compared to standard solving. The size of
the coarse problem is also important. Domain decomposition
method implies to have a coarse problem as small as possible.
At the same time, our analysis shows that the bigger the coarse
problem, the better the conditioning.

IV. CONCLUSION

The decomposed aspect of domain decomposition can result
in difficulties in magnetostatic simulations using edge ele-
ments. In this work, we explored a technique to address this
issue, which is simple to implement and yields good results.
Nevertheless, it also introduces input variables (coarse problem
size and a regularization coefficient) that need to be chosen
carefully. We applied it to a first test case and foresee applying
it to more difficult cases.
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