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∗ Université de Toulouse III, LAAS-CNRS, UPR 8001, Toulouse, France.
(e-mail: samuele.zoboli@laas.fr)
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Abstract:
The definition of k-contraction promises a useful generalization of the classical notion of
contraction for dynamical systems. However, most of the k-contraction literature focuses on
continuous-time systems. In this work, we derive conditions for k-contractivity of discrete-
time dynamics. Our first result follows traditional lines for k-contraction analysis, and provides
Lyapunov-like sufficient conditions based on matrix compounds and state-dependent metrics.
However, our subsequent results avoid the complexities related to matrix compounds. Inspired by
recent findings in the context of k-contraction for continuous-time systems, we provide conditions
on the system’s dynamics that rely on generalized Lyapunov inequalities and quadratic cone
fields. The proposed conditions are also shown to be necessary for linear time-invariant systems.

Keywords: Contraction, Nonlinear systems, Discrete-time systems, Compound matrices.

1. INTRODUCTION

Contraction is a stability property that has been exploited
to solve numerous control problems, such as observer de-
sign [Sanfelice and Praly, 2012], multi-agent synchroniza-
tion [Giaccagli et al., 2024], and controller design [Manch-
ester and Slotine, 2017]. In few words, contractivity of
system’s dynamics implies that the distances between any
two trajectories decrease exponentially in time. However,
complex asymptotic behavior (e.g., multi-stability and os-
cillations) cannot be studied via classical contraction the-
ory. This motivated the study of suitable generalizations of
such a notion, such as k-contraction [Wu et al., 2022, Ce-
cilia et al., 2023]. k-contraction generalizes the requirement
of decreasing distances to the one of decreasing volumes
of k-dimensional objects. Hence, k-contraction boils down
to classical contraction when k = 1. However, it provides
interesting additional asymptotic properties for k > 1. In
2-contractive systems, every bounded solution converges
to an equilibrium point (not necessarily unique) [Li and
Muldowney, 1995]. Under some assumptions, bounded tra-
jectories of 3-contractive systems converge to a limit cycle
[Cecilia et al., 2023, Lemma 6].

Nonetheless, most of the literature in k-contraction fo-
cuses on continuous-time systems. To fill this gap, we aim
to define k-contraction in the discrete-time domain, and
provide sufficient conditions for its verification. Following
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the lines of [Wu et al., 2022, Ofir et al., 2022], we first
provide a sufficient condition for k-contraction involving
matrix compounds of the Jacobian of the dynamics’ vector
field. However, compound-based conditions are known to
rapidly grow in dimension. Moreover, they hinder the
derivation of feedback design methodologies [Dalin et al.,
2023, Cecilia et al., 2023]. For this reason, we present alter-
native conditions that do not rely on matrix compounds.
Our findings build upon generalized Lyapunov matrix in-
equalities studied in [Berger and Jungers, 2020, 2021] and
are inspired by [Cecilia et al., 2023, Zoboli et al., 2023]. We
present necessary and sufficient results for linear dynamics,
and sufficient conditions in the nonlinear framework.

Notation: R≥0 := [0,∞) and N := {0, 1, 2, . . .}. | · | denotes
the standard Euclidean norm.

(
n
k

)
:= n!

k!(n−k)! depicts the

binomial coefficient, with n! the factorial of n ∈ N. Let
◦ be the composition operator. For all t ∈ N, we define
the discrete-time flow operator f t := f ◦ f ◦ · · · ◦ f , where
f is applied t times. Then, ψ0(x) = x. The inertia of a
matrix with respect to the imaginary axis is denoted by
the triplet of integers Inc(P ) := (π−(P ), π0(P ), π+(P )),
where π−(P ), π+(P ) and π0(P ) denote the numbers of
eigenvalues of P with negative, positive and zero real part,
resp., counting multiplicities. The inertia of a matrix with
respect to the unitary disk is denoted by the triplet of in-
tegers Ind(P ) := (π<1(P ), π1(P ), π>1(P )), where π<1(P ),
π>1(P ) and π1(P ) denote the numbers of eigenvalues of
P inside, outside and on the unit circle, resp., counting
multiplicities. The cardinality of a set is denoted as card(·).

2. ON DISCRETE-TIME k-CONTRACTION

2.1 Definition of k-contraction

We consider discrete-time nonlinear systems of the form



x+ = f(x), x ∈ Rn (1)

with f being sufficiently smooth vector field and x being
the state. In the following, we adapt the definition of k-
contraction introduced in [Zoboli et al., 2023, Cecilia et al.,
2023] for continuous-time systems to the discrete-time
case. In particular, consider a set of sufficiently smooth
functions Ik defined on [0, 1]k, namely

Ik :=
{
Φ : [0, 1]k → Rn | Φ is a smooth immersion

}
. (2)

Let P : Rn → Rn×n be a matrix-valued function

pI ≻ P (x) ≻ pI, ∀x ∈ Rn,

satisfying for some positive constants p, p > 0. For each Φ
in Ik, we define the k-order volume of Φ as

V k(Φ) :=

∫
[0,1]k

√
det

{
∂Φ

∂r
(r)⊤P (Φ(r))

∂Φ

∂r
(r)

}
dr . (3)

We now define the k-contraction property for systems
of the form (1), which will be considered in this article.
Throughout the paper, we will assume k ∈ [1, . . . , n].

Definition 1 (k-contr.). System (1) is k-contractive on
a forward invariant set S ⊆ Rn if there exist real numbers
ρ ∈ (0, 1) and λ > 0 such that, for every Φ ∈ Ik satisfying
Im(Φ) ⊆ S, the following holds

V k(f t ◦ Φ) ≤ λρt V k(Φ), ∀t ∈ N. (4)

In other words, a system is k-contractive if, for any
parametrized k-dimensional submanifold of initial condi-
tions, the volume contracts along the system trajectories.
This definition is the discrete-time analog of the defini-
tion provided in [Zoboli et al., 2023, Cecilia et al., 2023].
Nonetheless, it presents two major differences. Firstly, the
volume V k(·) can be weighted by a state-dependent metric
P (x), while the condition in [Zoboli et al., 2023, Cecilia
et al., 2023] only considered the constant metric case. Sec-
ondly, the metric P (x) does not need to be differentiable.

2.2 Sufficient conditions based on matrix compounds

For continuous-time systems, sufficient conditions for k-
contraction were originally presented in the seminal work
[Muldowney, 1990], and they have been recently revisited
in [Wu et al., 2022, Cecilia et al., 2023, Angeli et al.,
2022]. These conditions strongly depended on the use
of a mathematical tool known as matrix compound, see
[Bar-Shalom et al., 2023] for a comprehensive review on
the topic. In discrete-time k-contraction, multiplicative
compounds [Bar-Shalom et al., 2023] turn out to be
predominant.

Definition 2 (Mult. Compound ). Consider a matrix
Q ∈ Rn×m and select an integer k ∈ [1,min{n,m}].
Moreover, define a minor of order k of the matrix Q as
the determinant of some k × k submatrix of Q. The k-
th multiplicative compound of Q, denoted as Q(k), is the(
n
k

)
×
(
m
k

)
matrix including all the minors of order k of Q

in a lexicographic order.

Bearing this definition in mind, we provide a sufficient
condition for k-contraction in the following theorem.

Theorem 1. System (1) is k-contractive on a forward
invariant set S ⊆ Rn if there exist a symmetric matrix-

valued function Q : Rn → R(
n
k)×(

n
k) and two constants

q, q > 0 satisfying

qI ≻ Q(x) ≻ qI, ∀x ∈ Rn,

and a real number η ∈ (0, 1) such that for all x ∈ S(
∂f

∂x
(x)(k)

)⊤

Q(f(x))

(
∂f

∂x
(x)(k)

)
⪯ η2Q(x). (5)

Proof: Consider any Φ ∈ Ik, where Ik is defined in (2),
satisfying Im(Φ) ⊆ S. To simplify notation, let us define
for all (r, t) in [0, 1]k × N

Γ(r, t) := f t ◦ Φ(r) , Γr(r, t) :=
∂Γ

∂r
(r, t).

By definition, we have

Γ(r, t+ 1) = f(Γ(r, t)), ∀(r, t) ∈ [0, 1]k × N. (6)

Moreover, since S is forward invariant and Im(Φ) ⊆ S, we
have Γ(r, t) ∈ S for all (r, t) in [0, 1]k ×N. Additionally, by
the chain rule, Γr(r, t) evolves according to

Γr(r, t+ 1) =
∂Γ

∂r
(r, t+ 1) =

∂f

∂r
(Γ(r, t))

=
∂f

∂x
(Γ(r, t))

∂Γ(r, t)

∂r
=
∂f

∂x
(Γ(r, t))Γr(r, t)

for all (r, t) in [0, 1]k × N. Finally, by the Cauchy-Binet
formula [Fallat and Johnson, 2022, Chapter 1], we obtain

Γr(r, t+ 1)(k) =
∂f

∂x
(Γ(r, t))(k)Γr(r, t)

(k). (7)

Define Q(x) := P (x)(k) for all x ∈ S, with P (x) as in (3).
Since Γr(r, t) ∈ Rn×k, from the Cauchy-Binet formula the
following equality holds

det
(
Γr(r, t)

⊤P (Γ(r, t)) Γr(r, t)
)

=
(
Γr(r, t)

(k)
)⊤
Q(Γ(r, t)) Γr(r, t)

(k):=v(r, t).
(8)

Then, the volume of f t ◦ Φ computed according to (3) is

V k(f t ◦ Φ) =
∫
[0,1]k

√
v(r, t)dr .

Moreover, it evolves according to

V k(ψt+1 ◦ Φ) =
∫
[0,1]k

√
v(r, t+ 1) dr

=

∫
[0,1]k

√(
Γr(r, t+ 1)(k)

)⊤
Q(Γ(r, t+ 1))Γr(r, t+ 1)(k)dr.

Hence, adapting to discrete-time the arguments of [Zoboli
et al., 2023, Theorem 3] and by means of (6) and (7), for
all (r, t) in [0, 1]k × N, we obtain

V k(ψt+1 ◦ Φ) =
∫
[0,1]k

√(
∂f

∂x
(Γ(r, t))(k)Γr(r, t)(k)

)⊤

×
√
Q(f(Γ(r, t)))

∂f

∂x
(Γ(r, t))(k)Γr(r, t)(k) dr. (9)

Then, invoking inequality (5) and recalling that Γ(r, t) ∈ S
for all (r, t) in [0, 1]k × N, the previous relation implies

V k(ψt+1 ◦ Φ) ≤ η

∫
[0,1]k

√
v(r, t) dr ≤ ηV k(f t ◦ Φ) .

Then, by recursively applying the above relation we obtain

V k(ψt+i ◦ Φ) ≤ ηV k(ψt+i−1 ◦ Φ) ≤ η2V k(ψt+i−2 ◦ Φ)
≤ · · · ≤ ηiV k(ψt ◦ Φ) ∀i ∈ N ,

thus concluding the proof. □



Notably, Theorem 3 presents sufficient conditions for k-
contraction based on state-dependent metrics Q(x), while
the (continuous-time) conditions in [Cecilia et al., 2023,
Wu et al., 2022] only consider constant metrics. This
generalization applies to a wider class of system, as hinted
by recent results on contraction analysis based on Rieman-
nian metrics, e.g. [Andrieu et al., 2020].

However, we highlight that the presence of multiplicative
compounds in (5) reduces the applicability of Theorem 1.
Firstly, matrix compounds rapidly explode in dimension
for low value of k and systems of large system dimension.
This fact is of particular relevance since, in practice, con-
ditions of the form (5) relying on matrix-valued functions
are often solved with numerical methods, which may suffer
from the curse of dimensionality. Secondly, the use of ma-
trix compounds hinders the derivation of tractable matrix
inequality problems for feedback design. More details on
these points can be found in [Dalin et al., 2023] and [Cecilia
et al., 2023, Section II-B]. Therefore, we devote the next
sections to the derivation of sufficient conditions for k-
contraction avoiding matrix compounds. To illustrate the
rationale behind the proposed conditions, we first consider
the linear framework.

3. k-CONTRACTION FOR LINEAR SYSTEMS

We consider discrete-time linear systems of the form

x+ = Ax, x ∈ Rn. (10)

Without loss of generality, we will consider a constant
metric P in (3). Moreover, we assume the eigenvalues of
the matrix A in (10) to be ordered such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. (11)

We now provide a set of sufficient and necessary conditions
guaranteeing that (10) is k-contractive according to Defi-
nition 1. This result is based on the following two facts:

1) System (10) is k-contractive if and only if the product
of the norms of any combination of k-eigenvalues of
A is strictly smaller than 1;

2) Inequalities of the form A⊤PA ≺ µ2P admit a
symmetric solution P of inertia Inc(P ) = (p, 0, n− p)
if and only if A has p eigenvalues with norm larger
than µ and n− p with norm smaller than µ.

We start by presenting the relation between the eigenval-
ues of A and k-contraction.

Lemma 1. Consider system (10). The following state-
ments are equivalent:

1) System (10) is k-contractive.
2) A(k) is Schur.
3) The eigenvalues of A, ordered according to (11),

satisfy
k∏

i=1

|λi| < 1 . (12)

Proof: We start by proving 1) ⇐⇒ 2), in particular the
implication 1) =⇒ 2). By following the same steps as in
the proof of Theorem 1 up to equality (9) and recalling
Definition 1, if system (10) is k-contractive there exist
ρ ∈ (0, 1) and λ > 0 such that

V k(ψt+1 ◦ Φ) =
∫
[0,1]k

√(
Γr(r, 0)(k)

)⊤
H(t)Γr(r, 0)(k) dr

≤ λρt+1 V k(Φ), (13)

where we defined H(t) := ((A(k))t+1)⊤P (k)(A(k))t+1.
Since (13) holds for any Φ defined in (2), it must hold
for the particular case of Im(Φ) being a parallelotope with
vertices on any set of k+1 initial conditions of (10). That

is, pick k+1 initial conditions x10, . . . , x
k+1
0 ∈ Rn and define

Φp(r) =

k∑
i=1

rix
i
0 +

(
1−

k∑
i=1

ri

)
xk+1
0 , (14)

with ri ∈ [0, 1] for i ∈ {1, . . . , k} being the i-th component
of r. Under this specific selection, Γr(r, 0) is a term that
does not depend on r. Namely,

Γr(r, 0) =
∂Φp

∂r
(r) =

[
x10 − xk+1

0 x20 − xk+1
0 . . . xk0 − xk+1

0

]
.

Consequently, since the terms inside the square roots in
(13) are positive and independent of r, (13) with the
specific immersion (14) implies

(Γr(r, 0)
(k))⊤(H(t)− λ2ρ2(t+1)P (k))Γr(r, 0)

(k)≤ 0, ∀t ∈ N.
Since λ, ρ > 0 and t ∈ N, the above inequality implies

(A(k))⊤(P (k))
1

t+1A(k) ⪯ λ
2

t+1 ρ2(P (k))
1

t+1 .

Since P ≻ 0 and t ∈ N, we have that (P (k))
1

t+1 ≻ 0, thus
showing that A(k) is Schur. To show 2) =⇒ 1), notice
that if A(k) is Schur stable, there exists η ∈ (0, 1) and a
matrix Q ≻ 0 such that (5) holds. Then, system (10) is
k-contractive by Theorem 1.

We now show 2) ⇐⇒ 3). A spectral property of the
multiplicative compound matrix is that the eigenvalues of
the matrix A(k) are all the possible products of the form
λi1λi2 · · · · · λik , with 1 ≤ i1 < · · · < ik ≤ n [Wu et al.,
2022, Section 2.3]. Hence, A(k) is Schur if and only if the
product of any combination of k eigenvalues of A is inside
the unit disc. In particular, due to the ordering (11), this
holds if and only if the first k eigenvalues satisfy condition
(12), thus concluding the proof. □

The following lemma presents inertia properties of Lya-
punov inequalities of the form (16a).

Lemma 2. Given a matrix A ∈ Rn×n, a positive constant
µ, and an integer p ∈ {0, . . . , n}, the following statements
are equivalent:

1) A has p eigenvalues with norm larger than µ and n−p
eigenvalues with norm smaller than µ,

2) the matrix Â := µ−1A satisfies Ind(Â) = (n−p, 0, p),
3) there exists a symmetric matrix P ∈ Rn×n with

inertia Inc(P ) = (p, 0, n− p) satisfying

A⊤PA ≺ µ2P, (15)

4) for any Q ≻ 0, there exists a symmetric matrix
P ∈ Rn×n with inertia Inc(P ) = (p, 0, n−p) satisfying
Â⊤PÂ = P −Q, with Â := µ−1A.

Proof: The eigenvalues of µ−1A are the scaled eigenvalues
µ−1λ1, . . ., µ

−1λn, where eigenvalues are ordered accord-
ing to (11). If µ−1A has inertia (n − p, 0, p), it implies
that µ−1|λp+1| < 1 and µ−1|λp| > 1. Due to the ordering
(11), this shows that 1) ⇔ 2). The implication 2) ⇔ 3)
follows from [Lancaster and Tismenetsky, 1985, Section



13.2, Theorem 2] and exploiting the strict positivity of
the right-hand side matrix in [Lancaster and Tismenetsky,
1985, Section 13.2, eq. (2)]. Similarly, the implication
2) ⇔ 4) can be found, e.g., in [Lancaster and Tismenetsky,

1985, Section 13.2, Theorem 2] by considering the Â. □

Combining the properties presented in Lemma 1 and
Lemma 2, we derive the following main result.

Theorem 2. System (10) is k-contractive in Rn if and
only if there exist:

• a positive integer ℓ ∈ N satisfying 1 ≤ ℓ ≤ k,
• ℓ strictly positive real numbers µi ∈ R>0, with i ∈

{0, . . . , ℓ− 1},
• ℓ positive integers di ∈ N, with i ∈ {0, . . . , ℓ − 1},

satisfying

0 = d0 < d1 < · · · < dℓ−1 ≤ k − 1,

• and ℓ symmetric matrices Pi ∈ Rn×n of respective
inertia Inc(Pi) = (di, 0, n−di), with i ∈ {0, . . . , ℓ−1},

such that

A⊤PiA ≺ µ2
iPi, ∀i ∈ {0, . . . , ℓ− 1}, (16a)

ℓ−1∏
i=0

µhi
i ≤ 1 , (16b)

where h0 ≥ 1 and hi = di+1 − di, for all i = {0, . . . , ℓ− 1}
with dℓ ∈ N satisfying dℓ−1 + 1 ≤ dℓ ≤ k.

Proof: Adapting to discrete-time the proof of [Cecilia
et al., 2023, Theorem 2], we introduce the following nota-
tion to represent the eigenvalues of A and their associated
multiplicities relative to the norm. Consider the matrix A
in (10) and let Π : C → R denote the 2-norm operator,
namely Π(λ) = |λ|. Let σ(A) be the spectrum of A and
suppose Π(σ(A)) = {α1, α2, . . . , αq} (q ≤ n) with α1 >
α2 > · · · > αq. Set h̄i = card

(
Π−1(αi+1)

⋂
σ(A)

)
, where

eigenvalues have been counted with their multiplicities (so
that h̄0 + h̄1 + · · · + h̄q−1 = n). Finally, let d̄0 = 0 and

d̄i =
∑i−1

j=0 h̄j , for each i ∈ {1, . . . , q − 1}.

Sufficiency. In order to prove the sufficiency, we will show
that the set of inequalities (16) implies the condition (12).
To this end, notice that a solution of (16a) for some µi ∈ R
and Pi with inertia Inc(Pi) = (di, 0, n − di) implies that
Ind(µ

−1A) = (n − di, 0, di) by Lemma 2. In other words,
A has only di eigenvalues with norm strictly larger than
µi or, equivalently,

|λdi+1
| ≤ |λdi+1| < µi, ∀i ∈ {0, . . . , ℓ− 1}. (17)

Invoking again Lemma 2, we have that µi+1 < µi for all
i ∈ {0, . . . , ℓ−2}. Therefore, bound (16b) implies µℓ−1 ≤ 1
and, in turn, |λdℓ

| < 1 by inequality (17). Moreover, due to
the eigenvalue ordering (11), the following bound trivially
holds for all i ∈ {0, . . . , ℓ− 1}

di+1∏
j=di+1

|λj | ≤ |λdi+1|di+1−di = |λdi+1|hi ,

where we used the definition hi := di+1 − di. As a
consequence, since |λdℓ

| < 1 and dℓ ≤ k, we obtain the
following inequalities

k∏
i=1

|λi| ≤
dℓ∏
i=1

|λi| =
ℓ−1∏
i=0

di+1∏
j=di+1

|λj | ≤
ℓ−1∏
i=0

|λdi+1|hi . (18)

Then, combining (17), (18) and (16b) we have

k∏
i=1

|λi| <
ℓ−1∏
i=0

µhi
i ≤ 1 , (19)

showing k-contractiveness of system (10) by Lemma 1.

Necessity. By recalling that d̄q−1 > · · · > d̄0 = 0, define

pk := max
(
d̄q−1, k − 1

)
,

ck := card
(
{d̄0, d̄1, . . . , d̄q−1}

⋂
[0, k − 1]

)
.

(20)

Then, the following equality holds

αk−pk
ck

ck−2∏
i=0

αhi
i+1 =

k∏
i=1

|λi|.

Hence, by Lemma 1, if the system is k-contractive, the
following bound must hold

αk−pk
ck

ck−2∏
i=0

αhi
i+1 < 1. (21)

Then, by continuity, there exists a scalar ε > 1, such that

(εαck)
k−pk

ck−2∏
i=0

(ε αi+1)
hi ≤ 1.

By selecting ℓ = ck, dℓ = k − pk + dℓ−1, di = d̄i for
all i ∈ {0, . . . , ℓ − 1} and defining µi−1 := εαi, for all
i ∈ {1, . . . , ℓ}, we obtain

ℓ−1∏
i=0

µhi
i = (εαck)

k−pk

ck−2∏
i=0

(ε αi+1)
hi ≤ 1,

thus showing (16b). Now, define matrices Âi := µ−1
i A with

i ∈ {0, . . . , ℓ − 1}. It is clear that, since µi−1 > αi by

definition, each matrix Âi has d̄i eigenvalues outside the
unit disc and n− d̄i eigenvalues inside the unit disc. That
is Ind(Âi) = (n− d̄i, 0, d̄i). Then, by Lemma 2, there exist
Pi with Inc(Pi) = (d̄i, 0, n − d̄i) such that A⊤PiA ≺ µ2

iPi

for all i = 0, . . . , ℓ− 1, thus concluding the proof. □

4. k-CONTRACTION FOR NONLINEAR SYSTEMS

In this section, we generalize the result of Theorem 2 to
nonlinear systems of the form (1). Naturally, the eigen-
value interpretation of Theorem 2 cannot be used for
the nonlinear case. Nonetheless, it can be reformulated as
an argument on contracting and expanding subspaces of
the tangent space along the trajectories of the nonlinear
dynamics. This intuition is the foundation of the follow-
ing theorem, which provides a sufficient condition for k-
contractivity of nonlinear systems of the form (1). Our
result is restricted to systems evolving in compact sets
and having a diffemorphic vector field f . We also highlight
that our conditions are presented with state-dependant
matrices Pi.

Theorem 3. Let S ⊊ Rn be a compact forward invariant
set and assume f in (1) is a diffeomorphism. Moreover,
suppose there exist two symmetric matrix-valued functions
P0, Pk−1 : Rn → Rn×n of respective inertia Inc(P0(x)) =
(0, 0, n) and Inc(Pk−1(x)) = (k − 1, 0, n − k + 1) for all
x ∈ S, which are bounded according to

|x⊤Pi(x)x| ≤ pi|x|2, i ∈ {0, k − 1}, ∀x ∈ S (22)



for some positive real constants p0, pk−1 > 0. Finally,
assume there exist strictly positive constants µ0, µk−1 ∈
R>0 such that

∂f

∂x
(x)⊤P0(f(x))

∂f

∂x
(x) ≺ µ2

0P0(x), (23a)

∂f

∂x
(x)⊤Pk−1(f(x))

∂f

∂x
(x) ≺ µ2

k−1Pk−1(x) (23b)

µk−1µ
k−1
0 < 1, (23c)

for all x ∈ S. Then, system (1) is k-contractive on S.

The proof of Theorem 3 is derived in the following subsec-
tions. We begin by providing preliminary results required
to understand and prove Theorem 3. In Section 4.2, we
provide the theorem’s proof.

4.1 Preliminary technical results

We provide in this section some preliminary results that
will be used for the proof of Theorem 3. For these proofs,
we will study the linearization of (1) along a trajectory
f t(x0), that is

v+ =
∂f

∂x
(f t(x0)) v, v ∈ Tft(x0)R

n = Rn. (24)

We will denote ∂f
∂x

t
(x0)v0 as a trajectory of (24) at time

t initialized at v0 at t = 0. We now recall (with a mild
reformulation) a result on the quadratic cone field criterion
[Berger and Jungers, 2020, Theorem 1]. 1

Theorem 4. Consider system (1) and let S ⊊ Rn be
a compact forward invariant set. Assume f is a diffeo-
morphism and suppose there exist a bounded symmet-
ric matrix-valued function P : Rn → Rn×n of inertia
Inc(P (x)) = (k−1, 0, n−k+1) for all x ∈ S and satisfying
(22). Moreover, assume there exists a strictly positive real
constant µ ∈ R>0 such that

∂f

∂x
(x)⊤P (f(x))

∂f

∂x
(x) ≺ µ2P (x), ∀x ∈ S. (25)

Then, for all x ∈ S, there exists an invariant splitting
TxRn = Vx ⊕ Hx, i.e. there exists a continuous mapping
T : Rn → Rn×n invertible for any x ∈ S and satisfying

T(x) := [Th(x) Tv(x)] , (26)

where Th : Rn → Rn×n−k+1 and Tv : Rn → Rn×k−1

satisfy
Im Th(x) = Hx, Im Tv(x) = Vx. (27)

Moreover, there exist a scalar ch > 0 such that∣∣∣∣∂f∂x t

(x) [Th(x) 0] v

∣∣∣∣ ≤ chµ
t |[Th(x) 0] v| , (28)

holds for all (t, x, v) ∈ N× S × TxRn.

Notice that inequality (23b) with µk−1 strictly smaller
than 1, implies contraction in a subspace of dimension
n − k + 1 of the tangent space for all x ∈ S by The-
orem 4. Nonetheless, this is not a sufficient condition
for k-contraction, since the unstable subspace could be
expanding at faster rate. This motivates (23a). We clarify
the effects of (23a) via the following lemma.

1 In [Berger and Jungers, 2020], Theorem 4 is proposed as a non-

strict inequality of the form ∂f
∂x

(x)⊤P (f(x)) ∂f
∂x

(x) ⪯ −µ2P (x)− εI
for all x ∈ S and some positive constant ε. Nonetheless, since we are
considering compact sets and Pi(x) for i ∈ {1, k − 1} are bounded,
the strict formulation (25) allows for the same conclusions.

Lemma 3. Consider system (1), suppose f is a diffeo-
morphism and assume there exist a forward invariant com-
pact set S ⊊ Rn, a bounded positive definite matrix-valued
function P0 : Rn → Rn×n satisfying (22), and a scalar µ0

satisfying (23a) for all x ∈ S. Then there exists a constant
cv > 0 such that∣∣∣∣∂f∂x t

(x)v

∣∣∣∣ ≤ cvµ
t
0 |v| , ∀(t, x, v) ∈ N× S × TxRn. (29)

Proof: The proof directly follows from Theorem 4 by
noting that, since P0(x) is strictly positive and bounded
for all x ∈ S, we have that Hx = TxRn. □

Condition (23a) can be seen as imposing a bound on the
maximum expansion rate of the subspace Vx in (27), which
is related to the contraction rate of the subspace Hx by
(23c). We now link this property to k-contraction. As a
first step, we present a technical lemma related to matrix
compounds.

Lemma 4. Consider a time-varying matrix M(t) ∈ Rn×n

M(t) = [H(t) V (t)] ,

with H(t) ∈ Rn×n−p, V (t) ∈ Rn×p and p ∈ [0, n).
Assume there exist real numbers ch, cv > 0, a real constant
α ∈ (0, 1) and a real constant β ≥ 1 such that

|H(t)| ≤ chα
t, |V (t)| ≤ cvβ

t, ∀t ∈ N. (30)

If αβk−1 < 1 for some integer k ∈ [p + 1, n], there exist
some real numbers c > 0 and ε ∈ (0, 1) such that

|M(t)(k)| ≤ cεt, ∀t ∈ N. (31)

Proof: Each element ofM(t)(k) is a kth-order minor of the
original matrix M(t), i.e., it is the determinant of a k × k
submatrix of M(t), see Definition 2. Since k ≥ p+ 1, each
k×k submatrix contains at least one column composed of
elements of H(t). That is, in the minimum case

Mk(t) = [h(t) v1(t) . . . vk−1(t)] , (32)

where Mk(t) ∈ Rk×k is a submatrix of M(t), h(t) ∈ Rk

is a vector with components of H(t) and vi(t) ∈ Rk for
i = 1, . . . , k − 1 is a vector with components of V (t). By
following [Cecilia et al., 2023, Proof of Lemma 13] up to
equation (65), it holds

det(Mk(t)) =

k∑
i1=1

· · ·
k∑

ik=1

hi1(t)vi22 (t) . . . vikk−1(t)Ek, (33)

where Ek := (ei1 ∧ ei2 ∧ · · · ∧ eik), ei are the elements of
the canonical vector in Rn and vij , h

i are the ith element
of the vectors vj , h, respectively. By (30), we have

|hi(t)| ≤ chα
t, |vi(t)| ≤ cvβ

t.

Moreover, the factor Ek will be either zero or an element
of the canonical basis in Rn multiplied by plus or minus
one. Thus, using the triangle inequality, one obtains

|det(Mk(t))| ≤ κchc
k−1
v (αβ(k−1))t

where κ > 0 is a positive constant related to the number
of non-zero instances of Ek. Now, since αβ(k−1) < 1 by
assumption, by continuity there always exists ε ∈ (0, 1)
such that ε−1αβ(k−1) < 1. Then,

|M(t)(k)| = |εtε−tM(t)(k)| ≤ εt|ε−tM(t)(k)|.
By considering the worst-case (32), we have

εt|det(Mk(t))| ≤ c̄(ε−1αβ(k−1))t,



for some c̄ > 0. Hence, since ε−1αβ(k−1) < 1, each element
of εtM(t)(k) is exponentially decreasing and the norm
|εtM(t)(k)| is uniformly bounded for all t ∈ N. □

Leveraging on the previous lemmas, we provide a bound
on the compound of the variational system (24).

Lemma 5. Consider system (1) and assume there exist
a forward invariant compact set S ⊊ Rn, two symmet-
ric matrix-valued functions P0, Pk−1 : Rn → Rn×n of
respective inertia Inc(P0) = (0, 0, n) and Inc(Pk−1) = (k−
1, 0, n−k+1) for all x ∈ S which are bounded, that is, they
satisfy (22), and strictly positive constants µ0, µk−1 ∈ R>0

such that (23) is satisfied. Then, there exist a constant
c > 0 and ε ∈ (0, 1) such that∣∣∣∣∂f∂x t

(x)(k)
∣∣∣∣ ≤ cεt, ∀(t, x) ∈ N× S. (34)

Proof: The proof follows the same steps as [Cecilia et al.,
2023, Proof of Lemma 14], by adapting the exponential
bounds of the form ceεt with the proper t-powers of scalars
of the form cεt, similar to the proof of Lemma 4. □

With these technical results in mind, we can now present
the proof of Theorem 3.

4.2 Proof of Theorem 3

Consider Φ ∈ Ik such that Im(Φ) ⊆ S, with Ik being the
set of submanifolds defined in (2). By following the first
steps of the proof of Theorem 1, dynamics (7) imply

Γr(r, t)
(k) =

t∏
i=0

∂f

∂x
(Γ(r, i))(k)Γr(r, 0)

(k)

=

(
∂f

∂x

t

(Γ(r, 0))

)(k)

Γr(r, 0)
(k).

Then, by means of Lemma 5 and (34) we deduce the
following bound∣∣∣Γr(r, t)

(k)
∣∣∣ ≤ ∣∣∣∣∣

(
∂f

∂x

t

(Γ(r, 0))

)(k)
∣∣∣∣∣ ∣∣∣Γr(r, 0)

(k)
∣∣∣

≤ cεt
∣∣∣Γr(r, 0)

(k)
∣∣∣ .

Then, by selecting P (x) in (3) as the identity matrix, by
(8) we obtain

V k(ψt ◦ Φ) =
∫
[0,1]k

∣∣∣Γr(r, t)
(k)
∣∣∣ dr ≤ ∫

[0,1]k
cεt
∣∣∣Γr(r, 0)

(k)
∣∣∣ dr

≤ cεt
∫
[0,1]k

∣∣∣Γr(r, 0)
(k)
∣∣∣ dr ≤ cεtV k(Φ) ,

thus concluding the proof.

5. CONCLUSIONS

In this work, we derive sufficient conditions for k-
contraction in discrete-time systems, by adapting and ex-
panding some results in [Cecilia et al., 2023]. First, we
present a condition based on multiplicative matrix com-
pounds and state-dependent metrics. Second, we provide
sufficient conditions based on cone fields. These conditions
are proven to be necessary in the linear framework. Future
works will focus on exploiting the compound-free condi-
tions to derive k-contraction feedback designs.
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