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Abstract

Imaging spectroscopy of vegetation requires methods for scaling and generalizing optical signals 

that are reflected, transmitted and emitted in the solar wavelength domain from single leaves and 

observed at the level of canopies by proximal sensing, airborne and satellite spectroradiometers. 

The upscaling embedded in imaging spectroscopy retrievals and validations of plant biochemical 

and structural traits is challenged by natural variability and measurement uncertainties. Sources 

of the leaf-to-canopy upscaling variability and uncertainties are reviewed with respect to: (1) 

implementation of retrieval algorithms and (2) their parameterization and validation of quantitative 

products through in situ field measurements. The challenges are outlined and discussed for 

empirical and physical leaf and canopy radiative transfer modelling components, considering both 

forward and inverse modes. Discussion on optical remote sensing validation schemes includes 
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also description of a multiscale validation concept and its advantages. Impacts of intraspecific 

and interspecific variability on collected field and laboratory measurements of leaf biochemical 

traits and optical properties are demonstrated for selected plant species, and field measurement 

uncertainty sources are listed and discussed specifically for foliar pigments and canopy leaf 

area index. The review concludes with the main findings and suggestions as how to reduce 

uncertainties and include variability in scaling vegetation imaging spectroscopy signals and 

functional traits of single leaves up to observations of whole canopies.

Keywords

Quantitative remote sensing; Imaging spectroscopy; Retrieval of vegetation traits; Radiative 
transfer models; Inversion; Variability; Uncertainty; Scaling; Multiscale validation

1 Introduction

Imaging spectroscopy, also known as hyperspectral remote sensing, measures the Earth 

surface radiance, as a function of the wavelength of the electromagnetic spectrum (from 

visible to long infrared), the illumination and observation geometry (Sun–object–sensor 

angularity) and temporal characteristics (acquisition date and revisit frequency) of a 

particular location represented by geographical coordinates and altitude (Malenovský et 

al. 2007; Schaepman et al. 2009). Consequently, the scale of an imaging spectroscopy 

observation is a function of the observation spatial, spectral and temporal extent and 

resolutions. It depends on spatial characteristics of an observed location, the observational 

geometry (radiance directions), spectral properties of sensed electromagnetic radiation and 

temporal specifications of a given data acquisition. Spatial scale of a remote sensing 

observation, given in the case of space-borne image data by the sensor instantaneous field 

of view (IFOV), might be due to physical and technical constrains different from the scale 

required by an observer or data user. For example, in imaging spectroscopy of vegetation 

one is often interested in biochemical traits of plants at the spatial resolution of single leaves, 

whereas the remotely sensed data represent whole canopies composed of several plant 

functional types. Consequently, the scaling techniques changing the size of a measurement 

unit and allowing us to decipher data acquired at one scale into informational content of 

another scale were established (Dungan 2001). Two general scaling approaches are being 

recognized: (1) upscaling: the bottom-up scaling of detailed information up to coarser 

(larger) units and (2) downscaling: the top-down scaling, which decomposes signals and 

information collected at broader scales into elementary constituents of smaller proportions 

(Marceau and Hay 1999). The general concept of scales in imaging spectroscopy of 

vegetation is further described by Gamon et al. (2019).

An initial error and uncertainty characterization of an imaging spectrometer was proposed 

by Schaepman et al. (2015). It has been later extended by Hueni et al. (2017) with an 

error traceability matrix covering several known error sources. The largest uncertainty 

in their error propagation scheme was assigned to the creation of vegetation products 

from a standardized reflectance image using an upscaling scheme. Sources of variability 

and uncertainty in the process of retrieving plant traits from imaging spectroscopy data 
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of vegetation canopies can be divided into the three broader clusters (Fig. 1): cluster I: 

sensor design, data acquisition and pre-processing (e.g., sensor calibrations, radiometric, 

geometrical and atmospheric data corrections; Hueni et al. 2013); cluster II: retrieval 

algorithm including parameterizations and simplifications imbedded in radiative transfer 

models (Knyazikhin et al. 2013); and cluster III: field data acquired in situ to constrain 

retrievals in the form of the prior knowledge and also to validate the retrieved remote 

sensing products (Mussche et al. 2001; Thimonier et al. 2010).

Assessment of uncertainties related to the acquisition and processing of imaging 

spectroscopy data requires detailed spectral and radiometric characterization of the sensor 

performance and operational set-up (including Sun–object–sensor illumination-viewing 

geometry, acquisition conditions in terms of actual atmospheric parameters including cloud 

cover) and specifications of the processing chain transforming raw image data to the 

radiance and reflectance products. Although the magnitudes of these uncertainties are 

instrument-specific, wavelength-dependent and vary in space and time, their sources are 

well known and can be quantified (Hueni et al. 2017). For instance, Bachmann et al. (2011) 

designed a full error propagation concept for airborne imaging spectroscopy data and also 

analysed the potential influences of spectral and radiometric calibration uncertainties on data 

products of the upcoming space-borne imaging spectroscopy mission EnMAP (Bachmann et 

al. 2015). The data quality assessment is part of good practices for many existing operational 

land-monitoring space-borne multispectral sensors, such as MODIS on Aqua and Terra 

(Vermote et al. 2002; Lyapustin et al. 2014), ETM+ on Landsat (Feng et al. 2012; Claverie 

et al. 2015; Vermote et al. 2016) or MSI on Sentinel-2 satellite platforms (Gascon et al. 

2017; Gorroño et al. 2017). Due to a high similarity with hyperspectral remote sensing, these 

practices are adaptable and applicable also on imaging spectroradiometers.

Since cluster I in Fig. 1 (sensor design, data acquisition and pre-processing) does not contain 

any significant spectral–spatial scaling features, this review focuses on the identification of 

uncertainty and variability knowledge gaps taking place in the two remaining clusters related 

to: (1) empirical and physical upscaling retrieval approaches, including radiative transfer 

modelling (cluster II, Fig. 1) and (2) scaling of field measurements used for parameterization 

of retrieval algorithms and validation of imaging spectroscopy products (cluster III, Fig. 

1). The specific objective is to outline challenges of natural variability and methodological 
uncertainty in spectral and spatial (geometrical) scaling of terrestrial vegetation optical 
properties (i.e. reflected, transmitted and emitted visible and infrared photon fluxes) from 

leaves up to canopies. Main attention is paid to retrievals and validation of biochemical and 

biophysical plant traits (e.g., content of foliar pigments or leaf area index—LAI) obtained 

from remote sensing imaging spectroscopy data at different spatial scales. Although the 

review discusses a concept of the multiscale ground air- and space-borne validation scheme, 

it does not present any quantitative meta-analyses nor error propagation computations, for 

which actual measurements acquired at several spatial scales simultaneously are required. 

Also, a temporal scaling of vegetation optical signals is not included, as this topic is 

extensive and requires a specific publication on its own.
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2 Upscaling in Retrievals of Vegetation Traits from Imaging Spectroscopy 

Data

2.1 Empirical Approaches Using Statistical Methods

An operationally highly efficient upscaling approach is a direct statistical relationship 

established between ground measurements of plant traits and imaging spectroscopy 

observations. This method performs satisfactory for canopies with a vertically homogeneous 

architecture (e.g., moss and grass turfs, monocultural crops and plantations) that are, 

however, present less frequently in wild natural landscapes. Upscaling in heterogeneous 

vegetation canopies that are composed of multiple species, resulting in an irregular 

distribution of foliage and wood constituents in horizontal and vertical dimensions (e.g., 

bushlands and forests), requires a more rigorous sampling scheme. Significant investments 

of time and manpower are needed to collect a sufficient number of representative samples 

in order to establish a statistically robust regression model. Additionally, the samples must 

be collected within a short period, close to the time of remote sensing data acquisitions, to 

ensure the overall temporal consistency. Consequently, the number of samples is in reality 

often limited by available resources.

To overcome the complexity and high costs of sampling plants in their natural environments, 

measurements of small-size plant canopies can be for some cases conducted under 

controlled conditions in the laboratory or in experimental field trials. Such experiments 

are simpler and time-efficient, but they tend to be specific for a given site, time and 

plant functional type and consequently difficult to generalize. This approach was applied, 

for instance, in the study of Buddenbaum et al. (2012, 2015a, b), which investigated the 

effects of drought stress on young beech (Fagus sylvatica) trees under fully controlled 

irrigation regimes. Proximal hyperspectral images of the beech canopies were recorded 

once a week during the summer period, when half of the sample trees were cut off 

from water supply. Leaf reflectance and canopy spectral indices were combined with the 

partial least square regression (PLSR) (Wold et al. 2001) to upscale leaf chlorophyll and 

water content of individual leaves to image pixels of beech crowns. In another case study, 

Kanning et al. (2018) demonstrated the application of drone-based hyperspectral imagery 

for estimation of LAI and leaf chlorophyll content aiming to assess a potential yield of 

winter wheat (Triticum aestivum). Field measurements of LAI and leaf chlorophyll content 

were used to calibrate a local PLSR model based on spectral signatures extracted from 

wheat canopies growing under various N-fertilization levels. Direct transfer of an empirical 

retrieval method established in laboratory to imaging spectroscopy data acquired at different 

scales and locations has been demonstrated mostly for structurally simple canopies. For 

example, Malenovský et al. (2015) imposed a gradual water stress on three Antarctic 

moss species in laboratory-controlled environment. Laboratory measurements of moss traits 

and complementary spectroscopic measurements were used to train and optimize machine 

learning algorithms (support vector regressions) estimating chlorophyll content and effective 

leaf density of moss turfs as the quantitative stress indicators. Subsequent application of 

the machine learning models on drone-acquired imaging spectroscopy data of two Antarctic 

moss beds showed an acceptable accuracy of both estimated functional traits (Malenovský 

et al. 2017). To increase universality and applicability of the empirical upscaling schemes 
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to more complex canopies, various automatized field and laboratory high-throughput plant 

phenotyping systems combining a large number of multisensor (hyperspectral, chlorophyll 

fluorescence and thermal) imaging measurements of plants or even small trees have recently 

been developed (see review by Humplík et al. 2015). A high number of controlled 

environmental variables in plant phenotyping system allow researchers to build models 

that are more robust and potentially transferable to other plant types growing at different 

locations and conditions.

2.2 Physically Based Approaches Using Radiative Transfer Models

Mechanistic principals of spectral and spatial scaling effects can be studied with physically 

based radiative transfer models (RTMs). RTMs are computer algorithms that allow us 

to scale remotely sensed signals from detailed local to coarser regional and global 

scales based on our knowledge about light–object physical interactions (Liang 2004). The 

fundamental role of RTMs is to describe the structural, geometrical and optical effects 

that modulate remotely sensed signal at different scales. These models are particularly 

applicable for vegetation canopies, as they are able to simulate the complex nature of 

vegetation structures leading to specific effects when scaling from leaves to individual 

plants, fields and stands or whole ecosystems. Reflectance of single leaves is related to 

canopy hemispherical–directional reflectance function (HDRF) through the combination of 

structural (e.g., leaf angular distribution, leaf vertical and horizontal clumping and canopy 

cover causing spatially explicit self-shading effects), optical (reflectance and transmittance 

of leaves, branches and trunks) and geometrical (solar irradiation and sensor viewing 

geometries) properties of vegetation remote observations (Knipling 1970). Leaf optical 

properties simulated with leaf-level RTMs can be physically upscaled in the canopy-level 

RTMs.

2.2.1 Leaf-Level RTMs—The reflection and transmission of light incident on a leaf 

are determined by biophysical properties of its surface and the inner structures. The 

incoming photons penetrate deeper into the leaf and interact with its cellular, sub-cellular 

and intercellular structures, such as mesophyll cells, their organelles and intercellular air 

spaces. The optical properties of leaves, i.e. amount of absorbed and scattered (reflected 

and transmitted) light, are driven by the concentrations of light absorbing compounds (e.g., 

pigment pools, dry matter and water content) and by structural properties of leaves (e.g., 

thickness and arrangement of inner leaf surfaces). While the specific absorption coefficients 

of biochemical compounds and refractive index of inner leaf surfaces are usually retrieved 

from optical measurements, leaf structure can be reconstructed from, for instance, confocal 

microscopic images of leaf cross sections (Albrechtová et al. 2007). Leaf optical properties 

can be directly measured (Lukeš et al. 2017; Hovi et al. 2017) as well as modelled using 

leaf-level RTMs.

One of the most commonly used leaf RTMs is PROSPECT (Jacquemoud and Baret 1990). 

This model approximates the leaf inner structure by the plate model (Allen and Wette 1969, 

extended for non-compact leaves by Breece and Holmes 1971). The original PROSPECT 

model requires a relatively small number of input parameters (contents of chlorophylls a and 

b, dry matter and water content, and inner structural parameter N), which makes it easy to 
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run in forward and also inverse directions. It was later extended to simulate the influence of 

leaf carotenoid (Féret et al. 2008) and anthocyanin contents (Féret et al. 2017). It was also 

incorporated into the FLUSPECT model, which reproduces the chlorophyll fluorescence 

emission of the photosystems I and II (Vilfan et al. 2016) and spectral manifestation 

of the photoprotective xanthophyll de-epoxidation cycle (Vilfan et al. 2018). Apart from 

PROSPECT, Dawson et al. (1998) developed the LIBERTY needle–leaf model to simulate 

the optical properties of needles, which are anatomically different from plate-like broad 

leaves. To account for differences in optical properties of the adaxial and abaxial leaf sides, 

Stuckens et al. (2009) developed the Dorsiventral leaf radiative transfer model (DLM). This 

model is able to reproduce optical differences between leaf sides based on few additional 

input parameters related to leaf inner structures.

As demonstrated in numerous studies, the inversion of leaf RTMs allows for non-invasive 

retrieval of the input model parameters (typically leaf biochemical properties) from 

measured leaf optical properties (Ustin et al. 2009). For example, Barry et al. (2009) inverted 

the PROSPECT model to estimate the chlorophyll content of Eucalyptus leaves measured 

with a spectroradiometer coupled with an integrating sphere. Their chlorophyll retrieval 

achieved the average root mean square errors (RMSE) of 5 μg cm−2 and 3 μg cm−2 for 

juvenile and adult leaves, respectively. Similarly, Malenovský et al. (2006) adjusted and 

inverted the PROSPECT model for the estimation of its inputs from the optical properties 

of Norway spruce needles. They minimized the prediction uncertainties in dry matter and 

water content by implementing the prior information of known inputs’ dynamic ranges (i.e. 

minimal and maximal measured values) and achieved estimations with RMSE of 0.0019 g 

cm−2 and 0.0006 cm−2, respectively.

2.2.2 Canopy-Level RTMs—A large variety of canopy RTMs have been developed 

to scale the optical signatures of leaves up to canopy scales (Liang 2004). They can 

be categorized based on their approach for radiative transfer through vegetation canopies 

into six groups (Table 1): (1) turbid medium, (2) kernel-driven, (3) spectral invariants, 

(4) geometrical–optical, (5) discrete geometrical and voxel-based, and (6) Monte Carlo 

ray-tracing models. Each group has been designed for its specific purpose, which implies 

that they possess specific conceptual and computational assumptions with different levels 

of uncertainties. Table 1 summarizes the abilities of the RTM groups to represent canopy 

spatial and structural heterogeneities. It indicates their computational speed and some 

examples of the models. It is important to note that Table 1 does not present an exhaustive 

listing of all existing models. More extensive overview of canopy RTMs is available at, 

for instance, the Internet portal of the European Council Joint Research Centre (http://rami-

benchmark.jrc.ec.europa.eu/HTML/Home.php), which presents a performance comparison 

of various RTMs carried out within the systematic radiative transfer model intercomparison 

(RAMI) exercise (Widlowski et al. 2007, 2013, 2015).

Quantitative assessment of forward modelling uncertainty can be conducted through the 

systematic sensitivity analysis, where the most accurate modelling solution, e.g., photon 

ray-tracing simulation applied on a detailed vegetation representation, is taken as a 

reference. The reference results are then compared to outcomes of simulations with a 

systematically varying input parameterization, more generalized assumptions or increased 
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levels of simplification. Apart from the direct comparison exercise, the global sensitivity 

analysis (GSA) can be performed to identify the most important inputs that modulate 

strongly the spectral outputs of RTMs (Verrelst and Rivera-Caicedo 2017). However, GSA 

is applicable only in case of a simple model with a limited number of input variables 

(e.g., SAIL; Verhoef 1984). As the theoretical uncertainty of RTMs increases with their 

increasing complexity, it can be reduced in complex models only by including available 

prior information. Consequently, the paradigm that the more detailed model is capable of 

producing more realistic and accurate simulations might not be true, if the uncertainty 

behind the model inputs (variables and a prior knowledge) is high. On the other hand, it 

is important to highlight that novel progressive techniques, such as close-range (ground-, 

tower- or drone-based) laser scanning (Schneider et al. 2014, 2019; Wallace et al. 2016; 

Janoutová et al. 2019) and proximal high-resolution imaging spectroscopy (Malenovský et 

al. 2015, 2017; Wyber et al. 2017), can satisfy the demands of complex RTMs for detailed 

unbiased inputs and prior information on plant structural, optical and biochemical properties.

A combination of leaf and canopy RTMs in an inverse mode has been frequently applied 

on imaging spectroscopy data to retrieve various model input parameters, i.e. leaf-level 

biochemical or canopy structural traits (Schlerf and Atzberger 2006; Homolová et al. 2013; 

Schneider et al. 2017; Verrelst et al. 2019). The two basic model inversion approaches are: 

(1) direct mathematical inversion (Laurent et al. 2013, 2014) and (2) indirect approach based 

on pre-simulated spectral look-up tables (Kimes et al. 2000). In the case of direct inversion, 

independent simulations are performed for each image pixel separately and model inputs of 

the most optimal radiative transfer solution are being sought. As the model inversion needs 

to be run multiple times, the method is not suitable for computationally intensive RTMs, 

but it allows each retrieval to be performed for different sets of model input parameters 

of simpler RTMs. This may increase the retrieval accuracy, especially if the site-specific 

prior information is included. In case of the indirect approach, all model runs are executed 

and stored in a pre-computed spectral database called look-up table. The best fit between 

the measured and simulated signal is then determined later using optimization or regression 

algorithms, such as minimization of the merit functions, artificial neural networks, genetic 

algorithms and many others. Since the inversion algorithms may differ in the retrieval 

accuracy, their appropriate selection is equally important to the selection of the suitable 

RTMs (Rivera et al. 2013). Selection of inappropriate model or incorrect set-up of the 

retrieval algorithm may result in an inversion ambiguity caused by the fact that the different 

combinations of model inputs result in identical spectral simulations. The ambiguity, also 

called a mathematically ill-posed problem, can be reduced or even removed by incorporating 

a prior knowledge on the simulated vegetation canopy (Combal et al. 2002).

Retrievals of vegetation traits via inversion of RTMs have been successfully applied at 

different spatial scales ranging from individual tree crowns and canopies of forest stands 

and crops up to global ecosystems. For example, Jay et al. (2016) achieved a high accuracy 

when retrieving leaf traits from close-range hyperspectral images of five tree species using 

the PROSPECT leaf model coupled with the COSINE close-range model accounting for 

specular reflection at leaf surface and local leaf orientation. Malenovský et al. (2013) used 

adjusted PROSPECT implemented in the discrete anisotropic radiative transfer (DART) 

model to retrieve leaf chlorophyll content per crown of a Norway spruce (Picea abies) forest 
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stand. They generated a RTMs look-up table in order to design a new chlorophyllsensitive 

and LAI-insensitive optical index, which applied to airborne imaging spectroscopy data 

showed similar retrieval RMSE of 2.42 μg cm−2 as an artificial neural network retrieval. 

Atzberger and Richter (2012) used the PROSPECT-SAIL model for inversion of crops traits 

from simulated Sentinel-2 satellite spectral observations. To reduce inversion ambiguity, 

they introduced object-based retrieval that takes into account also spatial information of 

several adjacent pixels. This way, they reduced the RMSE of LAI retrieval from 1.46 to 

0.54 m2 m−2. Strictly speaking, Sentinel-2 MSI as well as MODIS sensors on the Terra and 

Aqua satellites are not imaging spectroradiometers, but multispectral sensors. Still, MODIS 

products of LAI and the fraction of absorbed photosynthetically active radiation (Myneni 

et al. 2002) provide good examples of global vegetation traits produced operationally using 

canopy radiative transfer solutions that can be retrieved also from upcoming space-borne 

spectroscopy images.

Validation of vegetation traits retrieved from optical remotely sensed data is an essential part 

of the estimation process indicating its fidelity. Deviations of remote sensing products from 

hypothetically true values obtained through collection of ground measurements indicate 

the physical uncertainties (see Sect. 3), whereas uncertainties that cannot be assessed 

through a direct comparison with reference values are called theoretical uncertainties. 

The uncertainties provide the additional complementary information about potentially 

oversimplified parameterization, inappropriate assumptions or imperfect optimization of 

RTMs and retrieval algorithms. The theoretical uncertainties can be computed in the form 

of: (1) spectral residuals or standard deviations, when an ensemble of multiple optimal 

solutions is retrieved (Rivera et al. 2013) or (2) as a likelihood of values estimated in frame 

of statistical fuzzy approaches such as Bayesian methods (Cooper and Herskovits 1992). 

Several powerful retrieval methods originating from the field of Bayesian nonparametric 

statistic, as, for instance, the family of Gaussian processes regression (GPR; Camps-Valls 

et al. 2016), can deliver high accuracies and at the same time uncertainty intervals of 

their predictions (Verrelst et al. 2012). The uncertainty intervals indicate how confident the 

model is in a per-pixel prediction relative to what it has been presented during its training 

phase. Uncertainty can be used to mask out areas where the actual estimates exceeded the 

acceptable threshold of 20%, as proposed by the Global Climate Observing System (GCOS 

2011). Additionally, it can be used to check transferability of locally trained models through 

spatial and temporal scales. As an example, Verrelst et al. (2013) trained and successfully 

validated a GPR model to estimate the total leaf chlorophyll content, which was based on 

locally selected training pixels of the space-borne image acquired with the CHRIS/PROBA 

mission of ESA over agricultural fields at Barrax region in Spain. The trained GPR model 

was then applied to an airborne imagery of a higher spatial resolution, acquired with a 

CASI imaging spectroradiometer. Per-pixel uncertainties obtained for selected pixels of both 

datasets indicated a potentially good transferability of the GPR model in case of selected 

agricultural crops, but they also revealed a failure of the model to retrieve reliably leaf 

chlorophyll content across the whole airborne image. This validation identified regions 

where more training data were required to improve robustness and accuracy of the GPR 

retrieval. More details about the imaging spectroscopy methods for retrieval vegetation traits 

can be found in Verrelst et al. (2019).
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3 Upscaling of Ground Measurements for Validation of Imaging 

Spectroscopy Products

3.1 Remote Sensing Validation Schemes

Remote sensing products retrieved empirically or physically from imaging spectroscopy 

data need to be accompanied with a proper validation indicating of their reliability and 

fidelity. It is important to note that collections of data for validation purposes as well as 

for parameterization of the empirical and the physical model-based retrievals are affected 

by the same sampling and upscaling issues. Validation can be understood as a process of 

analytical comparison with reference data measured usually in situ, which is presumed to 

represent the true target value (Justice et al. 2000). Validation can be, in a broader sense, 

considered as a combination of several activities, including comparison with: (1) precise 

fiducial reference measurements (when a few but very precise measurements are available), 

(2) other in situ reference measurements (when more but less precise measurements are 

available), (3) other satellite products, (4) outputs of models and (5) results from monitoring 

tools assessing spatial and temporal consistency. The term truth should be used with care, 

while keeping in mind that any ground or laboratory measurement is at best an unbiased 

traceable representation of the true value with an associated uncertainty (Hueni et al. 2017). 

The uncertainty is a combination of measurement precision (i.e. the closeness of two or 

more measurements represented by numbers of given digits) and accuracy (i.e. the closeness 

of a measured value to a standard of known value). Final ground-truth measurement 

uncertainties are specific to applied measurement protocols, where a sensor ground sampling 

distance and swath determine the number and spatial extent of field measurements and 

a vegetation type and traits under investigation determine the most appropriate sampling 

scheme, instrumentation and data processing. The first step towards a representative number 

of samples is creation of an appropriately sized elementary sampling unit (ESU). The ESU 

scheme is a well-established concept for indirect optical measurements of LAI and leaf 

inclination distribution of agricultural crops and also forest canopies (Weiss et al. 2004; 

Baret et al. 2005; Morisette et al. 2006). Still, different sampling and measurement strategies 

are used for LAI measurement than for quantification of leaf pigments, but also for low and 

homogenous crops than for tall and heterogeneous forest stands (Weiss et al. 2004). Being 

carried out by tree climbers (Schlerf et al. 2010), shotguns (Féret and Asner 2011), pole 

pruners (Singh et al. 2015), line launchers (Collis and Harris 1973) or crossbows (Wang 

et al. 2016), this sampling might be conducted in a less representative way. Singh et al. 

(2015) measured several leaf traits in mixed forest stands from the lower, middle and upper 

crown parts and compared different foliage sampling weighting schemes with the remote 

sensing signal. Based on the results, they used the foliar biomass per species derived from 

diameter–biomass relationships to scale foliar traits up to the canopy of each test plot. 

Despite practical difficulties to trace the field and laboratory measurement uncertainties, 

direct validation using ground truth is regarded as a fundamental effort for assessing fidelity 

of airborne and space-borne vegetation products.

Over the last two decades, several globally produced vegetation products were derived 

from time series of medium-resolution satellite sensors such as SPOT/Vegetation (Baret et 

al. 2007), MODIS (Myneni et al. 2002) or MERIS (Bacour et al. 2006) and significant 
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efforts have been spent in their validation and assessment of their spatial and temporal 

consistency. The field validation ground-truth data have been for a variety of vegetation 

types obtained through dedicated field campaigns coordinated locally or internationally 

within operational science data networks. One of the largest international networks 

that operate worldwide is FLUXNET (www.fluxnet.fluxdata.org; Baldocchi et al. 2001). 

FLUXNET data have been used to validate gross primary production (GPP), LAI, fraction of 

absorbed photosynthetically active radiation (FPAR) and albedo products of MODIS (Turner 

et al. 2006). Extensive regional validation campaigns were conducted, for instance, by the 

Big-Foot project for validation of MODIS vegetation products (Cohen and Justice 1999), 

the VALERI project for validation of the European Space Agency (ESA) instruments such 

as MERIS (Baret et al. 2005) or through a series of ESA coordinated campaigns such 

as SEN2FLEX and SEN3EXP for validation of Sentinel-based products. Although these 

satellite sensors are multispectral, their validation schemes are adjustable and transferable 

to upcoming hyperspectral space missions, such as the Italian national mission PRISMA 

(Amato et al. 2013) or the German national mission EnMAP (Guanter et al. 2015).

The importance of data quality control and uncertainty quantification has been addressed 

in the Quality Assurance Framework for Earth Observation (QA4EO 2009) created by the 

Committee on Earth Observation Satellites (CEOS), requesting that all datasets and derived 

products contain a fully traceable indicator of their quality. Consequently, the Land Product 

Validation (LPV; http://lpvs.gsfc.nasa.gov) subgroup of CEOS developed a framework for 

intercomparison and validation of global land products, such as LAI, FPAR and fraction 

of vegetation cover (fCover). LPV released the community established best practices and 

guidelines, which adopted a hierarchical approach with four validation stages (Fernandes et 

al. 2014). In the first stage, product accuracy is assessed from a small (< 30) set of selected 

locations and time periods by comparison with ground-truth or other suitable reference data. 

In the second stage, the same validation is carried out for a significant set of locations 

and times, and spatial and temporal consistency is evaluated globally. In the third stage, 

the product uncertainties and their structure are quantified in a statistically robust way over 

multiple locations and times globally. The last fourth stage includes systematic and regular 

updates of the third stage results to match releases of new products, new versions or simply 

to monitor the performances of the product as long as the satellite time series expands. LPV 

is searching for supersites with fully characterized land surfaces and vegetation types, which 

is a prerequisite for their parameterization in 3D radiative transfer models. These sites will 

serve as test beds for in situ sampling strategies and product algorithm intercomparisons. 

The LPV activities also resulted in an On Line Interactive Validation Exercise platform 

(OLIVE; http://calvalportal.ceos.org/web/olive; Weiss et al. 2014) hosted by ESA. OLIVE 

permits the validation of global LAI, FPAR and fCover products within the two ensembles 

of sites: (1) 445 BELMANIP2 sites (Baret et al. 2006), containing selected sites of existing 

sensor networks (FLUXNET, AERONET, VALERI and BigFoot), and (2) 113 DIRECT sites 

(Garrigues et al. 2008a, b). The OLIVE platform has a potential to be extended towards 

biophysical products derived from newer medium-spatial resolution satellite data, e.g., from 

the OLCI sensor onboard of Sentinel-3. However, validation of vegetation products with 

a higher spatial resolution and inclusion of new products (e.g., leaf chlorophyll content) 
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would require significant changes in the OLIVE validation reference data structures and 

procedures.

Validation of vegetation products that are not delivered by any satellite platform on 

the operational basis (e.g., leaf chlorophyll, carotenoid and water content) are less 

internationally coordinated and their global validation datasets are rare (e.g., Croft et al. 

in review). ESA funded in 2018 the Fiducial Reference Measurements for Vegetation 

(FRM4VEG) project (https://frm4veg.org/), aiming to establishing protocols required for 

traceable in situ measurements of vegetation-related parameters for validation of Copernicus 

products from multispectral sensors of Sentinel-2, Sentinel-3 and PROBA-V. The fiducial 

reference measurements should ensure units’ traceability in validation schemes that are 

independent from retrieval procedures and accompanied by an uncertainty budget. The 

standardized ground truth is planned to be measured for remote sensing products as surface 

reflectance, FPAR and canopy chlorophyll content.

3.2 Multiscale Validation Approach

Since the validation data must be collected within a time frame, for which the validated 

variable remains unchanged, the ground-truth datasets are often limited in size due to 

resource restrictions and time constraints. As it is hard to collect a representative number 

of ground measurements in few days after the data acquisition, a validation of global 

remote sensing products with a limited number of sampling points might be unreliable. 

One possible way to improve the validation process is to apply a multiscale (multilayer) 

validation approach. The multiscale validation incorporates local-to-regional high-spatial 

resolution airborne or satellite data, as an upscaling intermediate layer that is placed 

between field measurements and a medium-to-low-spatial resolution space-borne product 

(see Fig. 2). This scheme offers an opportunity to split the validation into two consecutive 

steps. In the first step, pixels of an airborne high-resolution map are compared and 

validated against the corresponding truth of field measurements. In the second step, 

the airborne vegetation product is enlarged by new clusters of high-resolution pixels 

and compared to values of corresponding medium-to-low-resolution satellite pixels. The 

first validation step may take advantage of the very high spatial resolution (< 1 m) 

allowing to extract from the field sampling locations, e.g., ESU or sampled tree crowns, 

only those pixels that are not contaminated by unwanted landscape elements (e.g., bare 

soil or other surrounding vegetation types (Kükenbrink et al. 2019). Within the second 

step, one may identify and include a higher number of suitable corresponding validation 

pixel clusters from airborne and space-borne products, which may potentially increase 

the representativeness of validation. Additionally, spatial aggregation of high-resolution 

airborne pixels reassembles spectral information of a low-resolution satellite data more 

precisely than an integration of spatially limited ground measurements. Practical application 

of the multiscale validation, however, requires fulfilling of several technical conditions. 

First, to allow the quantitative assessment, all compared variables must be collected 

simultaneously, i.e. during the same vegetation growth stage, and have to be expressed 

in the same physical units, preferably in accordance with the International Systems of 

Units (SI). Second, all datasets must be spatially co-registered within the same geographical 

projection system and precisely geocoded with an acceptable positional error (smaller than 
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the data ground sampling distance). Only then can any of the evaluated variables from 

any location and of any scale be mutually compared. Besides the quantitative accuracy 

assessment, a spatial consistency of estimated vegetation traits can be assessed from a 

pattern comparison of the airborne and satellite products. It may reveal the existence of 

the product spatial inhomogeneity and local anomalies due to insufficiencies in spectral, 

radiometric, geometrical and atmospheric calibrations and corrections. For instance, a wide 

field of view of airborne spectroradiometers causes a strong reflectance angular anisotropy, 

known as the bidirectional reflectance distribution function (BRDF) effect (Weyermann et 

al. 2014). Since this effect is less prominent in images of orbiting space sensors, one can 

investigate its impact by comparing both products, preferably accompanied with ground 

truth collected across the whole airborne image swaths.

The potential use and advantages of the multiscale validation scheme has been outlined and 

demonstrated by Baret et al. (2006) in the case of upscaling the information collected within 

the standardized ESU to: (1) high-spatial resolution and (2) medium-spatial resolution 

space-borne observations. Although several multiscale experimental validation campaigns 

were designed in the similar fashion, e.g., SEN2FLEX (Delegido et al. 2010; Corbari et al. 

2013), SEN3EXP (Sobrino et al. 2012) or recently FLEXSense 2018 (Rascher et al. personal 

communication), the multiscale concept has not been, to our best knowledge, implemented 

as a standard validation component of any operationally produced global vegetation remote 

sensing product. Nonetheless, the concept is expected to receive more attention with 

an increasing affordability and availability of the very high-spatial resolution imaging 

spectroscopy data produced by manned and recently also unmanned airborne system (UAS) 

platforms (e.g., Lucieer et al. 2014; Juszak et al. 2017). In particular, UAS platforms might 

be of a high interest in this sense. They are offering data acquisitions with an unprecedent 

high detail due to short ground sampling distances and can be deployed multiple times 

over the same area on demand, which increases representatives and reduces potential errors 

in their quantitative measurements. Additionally, several studies have demonstrated that 

UAS is able to provide detailed measurements of vegetation canopy biochemical as well 

as structural parameters (Zarco-Tejada et al. 2012; Wallace et al. 2016; Malenovský et al. 

2017).

3.3 Natural Variability and Measurement Uncertainty in Upscaling Validation Schemes

Uncertainty behind in situ measurements of a validation field data is related to the intrinsic 

natural variability of vegetation parameters in space and time, and to the nature of a 

measurement method. To illustrate this concept, Fig. 3 shows a hypothetical example 

of a remote sensing uncertainty assessment demonstrated on five virtual validation sites/

scenarios (VS). The measurement and the estimation uncertainties, driven by actual 

precisions and accuracies, are presented as a purple ellipse. In all cases, the ground-truth 
measurement uncertainty is expected to be smaller than the uncertainty of a corresponding 

estimate. Hence, the measurement uncertainty is given by an ellipse minor axis and the 

uncertainty of an estimate is given by its major axis. Horizontal black arrows are showing 

a real within-site natural variability of a given parameter, while grey zones illustrate a 

variability captured in validation measurements collected at given VS. Dashed line indicates 

the one-to-one line, i.e. the expected best fit between measured and estimated values. 
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When interpreting individual cases shown in Fig. 3, VS1 represents a slightly inaccurate 

(underestimated) retrieval with a high precision (the retrieval uncertainty interval is small). 

It is representative for a given site (the within-site variability equals the validation data 

variability); however, it captures only a small part of the total parameter natural variability. 

VS2 represents a very accurate but less precise retrieval (the retrieval uncertainty interval 

is larger than for VS1), which is covering a significant part of a total natural variability; 

however, it is non-representative for the site. (The within-site variability is larger than the 

actual variability of validation dataset.) VS3 represents a validation case similar to VS1 

(i.e. of a high precision and representative for a given location), but with a low accuracy 

due to the retrieval overestimation. VS4 is also significantly inaccurate (an underestimated 

retrieval) and, moreover, most imprecise out of all presented cases (the retrieval uncertainty 

is the largest); however, it is representative for a given site and covers a significant part of 

the natural variability. Finally, VS5 represents an ideal scenario, which has a high accuracy 

without any bias and an acceptable precision. Additionally, VS5 is fully representative for 

the sampled site and captures a large portion of the existing natural variability. The most 

accurate, and subsequently successful, validation results should contain cases similar to VS5 

that would be ideally distributed across the entire natural variability of a retrieved vegetation 

parameter (as shown in Fig. 3).

3.3.1 Origins and Impact of Natural Vegetation Variability—Natural variability 

of vegetation parameters is determined by variations in environmental conditions as 

light, nutrients and water availability, but also by plant species composition, i.e. species 

biodiversity. Additionally, an important contribution to the overall variability of leaf-level 

plant traits, such as specific leaf area, leaf nitrogen, chlorophyll and water content and 

others, is the intraspecific variability within the single species. While the interspecific 

variability, i.e. variations between different species, typically explains about 50–90% of 

the total leaf trait variability (Albert et al. 2010; de Bello et al. 2011), about 20–30% 

can be explained by the intraspecific variability (Auger and Shipley 2013). Figure 4a 

shows the interspecific variability in four leaf biochemical traits, serving as inputs into 

the leaf radiative transfer model PROSPECT (Jacquemoud and Baret 1990), measured for 

upper-canopy sunlit branches sampled from nine common central European tree species. 

This graph also illustrates the importance of the sample set representativeness relying 

on the actual sample size. While the sample collections for spruce and beech species 

are sufficiently large to capture existing variability of their leaf traits, the size of the 

remaining leaf sample sets is insufficient (n ≤ 12) and subsequently diminishing the true 

natural variability, which is expected to be between 10 and 80 μg of chlorophyll a + 

b per cm2 of the leaf area. Some tree species exhibit a significant variability in leaf 

traits within the individuals as an adaptation to canopy light gradients (Niinemets 2010). 

This is especially prominent in leaves exposed to direct sunlight (sunlit leaves), which 

contain higher levels of dry matter and photo-protective pigments in comparison with their 

shaded counterparts (Lichtenthaler et al. 2007). A good example is a shade-tolerant Norway 

spruce that demonstrates a large variability in leaf traits. Figure 4b shows that except the 

needle water content, which was found to be independent from the age of leaves, all other 

investigated traits of sunlit and shaded needles respond to the combination of needle age 

cohorts with a varying availability of direct and diffuse solar radiation.
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Differences in leaf biochemistry and inner leaf structure are imprinted in leaf optical 

properties, i.e. leaf reflectance, transmittance and absorbance (Kokaly et al. 2009), which 

consequently vary among and within species (Lukeš et al. 2013; Noda et al. 2013; Atherton 

et al. 2017). Despite identical environmental conditions and similar leaf biochemical 

properties, the optical properties of the two broadleaf species displayed in Fig. 5, narrow-

leafed ash (Fraxinus angustifolia) and silver poplar (Populus alba), exhibit a different 

spectral behaviour when comparing the adaxial (upper) and the abaxial (bottom) leaf sides. 

When considering only the adaxial optical properties, both species are comparable, but 

the abaxial reflectance of poplar is significantly higher due to the layer of a white scurfy 

down (i.e. trichomes). This example demonstrates that differences in leaf adaxial and abaxial 

optical properties, which alternate the canopy reflectance, represent yet another upscaling 

uncertainty that is seldom considered during ground-truth field sampling (Stuckens et 

al. 2009). This leaf morphological adaptation is of a high importance for plants that 

are changing the actual leaf angularity in order to protect themselves from adverse 

environmental conditions of excessive solar irradiation intensity, as, for instance, olive trees 

(Olea europaea).

It is beyond the capabilities of this review to address the full range of variations in plant 

traits and their spectral properties. Nonetheless, the following suggestions, recommending 

how to proceed towards better understanding and inclusion of the vegetation-related 

variability, can be outlined:

• First, combining data from multiple studies and field measurement campaigns 

into large and open-access databases would help scientists to reveal the true size 

of natural variability in plant traits and spectral properties. It would subsequently 

become possible to incorporate a large volume of data they contain in remote 

sensing scaling studies. Several initiatives of such a kind already exist. For 

instance, the global data-base of plant traits TRY (https://www.try-db.org, Kattge 

et al. 2011) has recently been used to derive global maps of specific leaf 

area, leaf dry matter content, leaf nitrogen, phosphorus concentrations and leaf 

nitrogen-to-phosphorus ratio (Moreno-Martínez et al. 2018). Field spectroscopy 

measurements have already been shared for a few years through online spectral 

databases such as SpecNet (https://specnet.info/, Gamon et al. 2006), EcoSIS 

(https://ecosis.org/) and Specchio (http://specchio.ch, Hueni et al. 2009). Shared 

databases, however, require fully standardized protocols for measurements of 

field traits and optical properties to be compatible.

• Second, a possible way to address large-scale variability in vegetation imaging 

spectroscopy is to organize multiscale and multidisciplinary measurements 

campaigns that involve several research teams conducting concurrent field 

measurements at multiple sites simultaneously with drone-, air- and space-

borne imaging spectroscopy acquisitions. Good examples of such joint efforts 

are multiscale field/flight campaigns supported by ESA in the context of 

validation of current operational Sentinel missions (e.g., SEN2FLEX in 2005 

and SEN3EXP campaign in 2009) and in preparation of the upcoming missions 
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as the FLEX Earth Explorer (e.g., HYFLEX in 2012 or FLEXSense campaign in 

2018).

• Third, an additional way to better capture plant trait and spectral variability in 

the physically based retrieval scaling schemes is to improve representation of 

distinct vegetation functional types in existing RTMs. For example, a genuine 

architectural and structural representation of heterogenous forest canopies can 

be efficiently reconstructed from terrestrial laser scans of individual trees or 

sparse stands (Calders et al. 2015; Schneider et al. 2019). Such a semi-automatic 

approach allows us to separate non-photosynthetic and photosynthetic tree parts 

as well as sun- and shade-adapted leaves and adapt accordingly in RTMs vertical 

distribution of photosynthetic foliar pigment inputs, specifically chlorophylls and 

carotenoids (e.g., Janoutová et al. 2019).

3.3.2 Sources of Field Data Measurement Uncertainty—Most prominent sources 

of uncertainty in field vegetation measurements are related to sampling methods and 

to data measurement and post-processing protocols, including technical capabilities of 

instrumentation. The existing sampling schemes for validation of remote sensing product 

are outlined in Sects. 3.1 and 3.2. As indicated before, sampling approaches are expected 

to capture the natural variability of vegetation parameters within an area of interest, but 

in practice they are limited by available time and resources (manpower and technical 

equipment). Random sampling methods, which require a minimum prior knowledge on the 

parameter variability space, assume that collected samples are spatially independent. At the 

same time, practical constraints and failures in designing the truly random sampling scheme 

are often enforcing a compromise between a statistically optimal and an experimentally 

feasible sampling. Therefore, the random sampling methods are less suitable for species rich 

canopies, where omitting some important species due to the recombination of randomness 

results in an undersampling (Baraloto et al. 2010). Although no versatile field sampling 

scheme has been established yet, several attempts were made to standardize sampling 

schemes and protocols for certain vegetation traits, e.g., the already mentioned VALERI 

scheme developed for validation of space-borne LAI estimates (Baret et al. 2005).

Several systematic and non-systematic measurement uncertainties of eco-physiologically 

important vegetation parameters can be reduced only by establishing standardized 

measurement and data post-processing protocols (Pérez-Harguindeguy et al. 2013) and by 

using the state-of-the-art, accurate and well-calibrated instrumentation. For example, the 

uncertainty of optical hand-held devices for quick determination of leaf pigment contents, 

which are frequently used to validate remote sensing products for crops and broadleaf 

canopies, is significantly impacted by errors in instrument calibration (Cerovic et al. 2012; 

Parry et al. 2014). Another example is the determination of canopy or a single-tree crown 

LAI, which is conducted with several indirect optical methods (Bréda 2003; Jonckheere 

et al. 2004). LAI measurements by means of hemispherical photography were found to 

be accurate for short-stature crops (Garrigues et al. 2008a, b), but still challenging in 

forest canopies, where additional effects of woody elements, foliage clumping and the 

corresponding appropriate camera exposure settings have to be considered (Zhang et al. 

2005; Macfarlane et al. 2007; Thimonier et al. 2010; Liu et al. 2015). Some studies reported 
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disagreement in forest LAI measurements between digital hemispherical photography and 

other optical indirect instruments, such as the widely used LiCor Plant Canopy Analyser or 

AcuPAR, especially in dense canopies with a higher LAI (Mussche et al. 2001; Thimonier et 

al. 2010; Eckrich et al. 2013). The foliage clumping has a pronounced effect on computation 

of the total LAI (LAIt), especially in coniferous forest stands (Chen et al. 1997). It 

can enhance the final LAIt uncertainty, if being underrated or, respectively, overrated, 

especially in forests where trunks are part of its computation. Bao et al. (2018) showed that 

exclusion of trunks in a spruce (Picea crassifolia) forest led to a reduction in the average 

LAIt by 19.6% and 8.9%, depending on applied clumping estimation method. Hence, the 

clumping correction coefficient counts for an additional and important error source of LAI 

measurements that require a standardized measurement protocol.

4 Conclusions

Empirical retrievals of vegetation traits from imaging spectroscopy data use direct upscaling 

approaches, such as statistical regressions established between ground and remotely sensed 

measurements. Due to their simplicity, they require few inputs and consequently have fewer 

sources of potential uncertainties. More recent machine learning statistical methods (e.g., 

Gaussian Processes Regression) can additionally produce assessments of the theoretical 

uncertainty intervals in the form of the performance likelihood computed during their 

training phase. However, these methods are tightly linked to the conditions and spatial 

relations for which they were trained. Hence, their transferability to other locations 

and applicability on other type of imaging spectroscopy data can potentially result in 

unacceptable retrieval accuracy. The physically based retrievals that involve radiative 

transfer simulations of photon interactions with vegetation are in principle more versatile 

and transferable across scales and space, but inclusion of sophisticated and complex 

radiative transfer models brings a higher demand on number of input parameters. Field and 

laboratory measurements, which are collected to satisfy this demand, introduce additional 

sources of potential uncertainties (i.e. imprecisions and inaccuracies) that have to be 

quantified and if possible reduced.

The upscaling validation schemes of imaging spectroscopy vegetation products share with 

the retrieval processes several sources of natural variability and measurement uncertainties, 

especially those related to field data collections. The magnitude of uncertainty triggered 

by a number of measured upscaling inputs can be reduced by developing and sharing 

standardized measurement protocols that use novel and more accurate measurement 

techniques (e.g., a laser scanning of vegetation structural features). The measurements 

must be conducted with precise and accurate instrumentation, in which calibrations are 

refereed to international standards. Additionally, the multiscale ground air- and space-borne 

validation schemes, carried out within a cooperative international validation campaigns, 

would increase robustness of vegetation remote sensing products by facilitating direct 

identification of actual estimation inaccuracies and by collecting sufficient amount of data 

for a comprehensive computation of imaging spectroscopy error propagation.

Unlike the measurement uncertainty, it is unfeasible and undesirable to diminish the natural 

variability in plant functional traits. The existing variability must be properly characterized 
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and included in model parameterization and product validation efforts. Regrettably, field 

measurements often suffer from insufficient sampling designs, resulting in an inadequate 

cover of the traits’ variability. Here, fast technological advancements in high-throughput 

measurement techniques (as, for instance, rapid repetitive observations from unmanned 

airborne systems) and an open-access sharing of the plant spectral and functional trait 

databases can assist scientists with increasing representativeness of groundtruth data 

for upscaling imaging spectroscopy retrievals and validations from leaves to vegetation 

canopies.
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Fig. 1. 
Sources of variability and uncertainty encumbering imaging spectroscopy of vegetation 

originating from: I. sensor design, remote sensing data acquisition and pre-processing, II. 

design of algorithms retrieving quantitative vegetation traits using empirical and radiative 

transfer modelling (RTM) and III. parameterization of retrievals and validation of their 

accuracy using field data
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Fig. 2. 
Schematic description of a multiscale upscaling strategy for validation of remotely sensed 

vegetation traits using the three scale levels: (1) ground measurements collected within 

elementary sampling units (ESU) or from individual trees (i.e. crown samples), (2) clusters 

of canopy pixels or individual tree crowns (i.e. crown pixels) from a very high-spatial 

resolution airborne imagery and (3) space-borne pixels of a lower spatial resolution 

corresponding to pixel clusters of ESU or tree crowns
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Fig. 3. 
Theoretical validation of imaging spectroscopy retrieval estimates for five virtual validation 

sites (VS; modified according to ESA-ESTEC FLEX Bridge Study Final Report, 2016)
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Fig. 4. 
Interspecific (a) and intraspecific (b) species variability of four foliar biochemical traits: 

chlorophyll a + b (green), total carotenoids (red; × 5), dry matter (grey) and water content 

(blue). Data were collected at the FLUXNET sites in the Czech Republic (McGloin et al. 

2018): Norway spruce site Bílý Kříž (49°30′07.55″N, 18°32′2,74″; 2016), European beech 

site Štítná nad Vláří (49°02′09.51″N, 17°58′1,64″; 2013) and mixed floodplain forest site 

Lanžhot (48°40′53.57″N, 16°56′46.79″; 2015). Leaf traits are expressed per hemisurface 

leaf area (i.e. half of the total leaf area). Horizontal line of each box indicates the median, 

the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively, and 

the whiskers extend to 1.5 times of the interquartile range. Numbers in brackets indicate 

number of collected leaf samples (n)
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Fig. 5. 
Differences in two-sided leaf optical properties, i.e. reflectance (bottom signatures) and 

transmittance (upper signatures), measured at adaxial side (blue) and abaxial side (green) of 

two broadleaved species (Fraxinus angustifolia and Populus alba) sampled at Lanžhot mixed 

floodplain forest stands (Czech Republic; 48°40′53.57″N, 16°56′46.79″E; 2015)
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Table 1
Characteristics of canopy-level radiative transfer models (RTMs) and their spatial error 
sources

Type of RTM Spatial representation of 
canopy

Ability to capture canopy 
heterogeneity

Computational speed 
(Cause)

Examples 
(Reference)

Turbid medium Horizontally infinite layers of 
infinitely small leaves with 
a random spatial distribution 
and specific statistical angular 
functions

Cannot describe heterogeneity of 
forest canopies (contains only an 
empirical hotspot description)

Very fast (only few input 
parameters)

SAIL (Verhoef 1984), 
SCOPE (Van Der Tol 
et al. 2009)

Kernel-driven Semi-empirical kernels 
representing isotropic, 
volumetric and geometrical 
scattering by 3D objects

The generic geometrical kernel 
that accounts for shadowing 
effects between tree crowns (and 
also for the hot spot effect)

Very fast (reasonable 
number of input parameters)

Ross-Thick Li-Sparse 
(Schaaf et al. 
2002), Rahman–
Pinty–Verstraete 
(Rahman etal. 1993)

Spectral 
invariants

Spectral invariants—photon 
recollision probability and 
directional escape factor, 
which require a high canopy 
closure

Semi-empirical approach with 
physical representation of 
multiple scatterings, applicable 
specially in coniferous stands

Very fast (inputs are 
represented by a small 
number of spectral 
invariants)

PARAS (Rautiainen 
and Stenberg 2005)

Geometrical-
optical

Geometrically explicit but 
simple 3D objects with 
defined shapes and optical 
properties

Specifically designed to model 
discontinuous canopies (e.g., 
forests), but do not have a 
vertical distribution of biomass

Fast (only geometrical–
optical calculations of 
sunlit and shaded canopy 
fractions)

FRT (Kuusk et 
al. 2014), FLIGHT 
(North 1996)

Discrete 
geometrical 
(voxel-based 
flux tracking)

Geometrically explicit 
3D objects or voxel 
representation of landscapes. 
Each voxel has specific 
optical (scattering) properties

Exact parameterization of 
complex vegetation structures, 
including horizontal and vertical 
biomass distribution and 
topography

Computationally intensive 
(high number of 
input parameters, the 
computational time 
increases with increasing 
size of simulated scene)

DART (Gastellu-
Etchegorry et al. 
1996, 2017) Spatially 
explicit

Monte Carlo 
raytracing

Geometrically explicit or 
voxel 3D representation of 
objects

Depends on the detail of 3D 
structures of vegetation canopy 
created in the model

Computationally highly 
intensive (high number 
of input parameters, 
simulates all photon–object 
interactions)

Raytran (Govaerts 
and Verstraete 1998) 
Librat (Lewis 1999)
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