N

N

ERTS 2024 - 12th European Congress on Embedded
Real Time Software and Systems
Mohamed Kaaniche, Philippe Cuenot, Kevin Delmas, Jean Marc Gabriel,
Adrien Gauffriau, Christophe Grand, Eric Jenn, Christine Rochange, Marie de

Roquemaurel

» To cite this version:

Mohamed Kaéniche, Philippe Cuenot, Kevin Delmas, Jean Marc Gabriel, Adrien Gauffriau, et al..
ERTS 2024 - 12th European Congress on Embedded Real Time Software and Systems. 12th European
Congress on Embedded Real Time Software and Systems (ERTS 2024), pp.1-489, 2024. hal-04643654

HAL Id: hal-04643654
https://hal.science/hal-04643654
Submitted on 10 Jul 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04643654
https://hal.archives-ouvertes.fr

EMBEDDED
REAL TIME SYSTEMS

11-12 JUNE, TOULOUSE - FRANCE
DIAGORA CONGRESS CENTER

PROCEEDINGS

Editors

Mohamed Kaaniche
Philippe Cuenot
Marie de Roquemaurel
Kevin Delmas
Jean-Marc Gabriel
Adrien Gauffriau
Christophe Grand
Eric Jenn

Christine Rochange

LAAS-CNRS

Continental Automotive
Airbus Defence & Space
Onera

Ampere Software Technology
Airbus

Onera

IRT St Exupéry

IRIT

Contents

Program Committee 7
Tu.1.A — ML/AI Embedded 9
Real-Time Semantic Segmentation of Aerial Images Using an Embedded U-Net: A
Comparison of CPU, GPU, and FPGA Workflows 11
Exploring Neural Network Architectures for Satellite Imagery on FPGA devices . . 23
Tu.1.B — Realtime System 1 33
Runtime Performance Evaluation of a Non-Preemptive Cooperative Multithreading
Framework Through Tracing 35
A Novel Heuristic Framework for Offline IMA Schedule Generation for Multicore
Platforms 45
Tu.1.C — Network 57
Specifying network switches using the P4 language: lessons learned 59

Yet another experience on TSN tools interoperability for critical embedded networks 67

Tu.2.Po — Poster overview 7
Acceleration of Embedded Reasoning in Symbolic AT 79
How to efficiently handle real world ECU traffic in MICROSAR Adaptive 83

Optimal PMP+OR onboard Controls for Multiple Electrified Automotive applications 89
Towards Compact Surface Languages for Specific Modelling Aspects in EAST-ADL 95
Development and Evaluation of a Prototyping Platform for the Simulation, Trans-

mission, and Real-Time Analysis of Realistic AUTOSAR Security Event Traffic . . 99
Timing Architecture Model for Embedded Systems Anomaly Detection. 103
Signal integrity challenges of complex high-speed serial links up to 25 Gbps in an

aeronautic environment oL Lo 0L 0L Lo 109
The Security Analysis of a BLE Connected Health Device 113

Towards Designing a Cybersecurity Testbed for Critical Industrial Control Systems 119
Predictive Maintenance and Control of Memory for Availability in Safety Systems 125
Integrating operator’s cognitive profile for dynamic and human-centric adaptation

of industrial processes 129
Tu.3.A — ML/AI Certification 133
Perspectives on ML Safety Assurance. 135
A study of an ACAS-Xu exact implementation using ED-324/ARP6983 147
On the Feasibility of EASA Learning Assurance Objectives for Machine Learning
Components 159

Tu.3.B — Realtime System 2
Performance and confidence in feasibility analysis of real-time multi-core distributed
Systems e e e e e e
Towards the Certification of Hybrid Architectures: Analysing Interference on Hard-
ware Accelerators through PML o

Tu.3.C — Hardware Security
Onchip Traffic Injection to Counteract Timing Side-Channel Attacks
Approach for High-Performance Random Number Generators for Critical Systems
Considering the Aeronautics Cyber-Security Standards for Multi-Core Platforms

Tu.4.A — Assurance Case for ML
Assurance Cases to face the complexity of ML-based systems verification
Uncertainty in Assurance Case Template for Machine Learning

Tu.4.B — Logical Execution Time
Separation of functional and time interferences concerns for efficient AMC 20-193
compliance e e e
Reducing End-to-End Latencies of Multi-Rate Cause-Effect Chains in Safety Crit-
ical Embedded Systems

Tu.4.C — Security
Security by Default - CHERI ISA Extensions Coupled with a Security-Enhanced
Ada Runtime
Problems and New Approaches for Crypto-Agility in Operational Technology . . .

We.1.A — ML/AI for Critical System 1
Software-Only Semantic Diverse Redundancy for High-Integrity Al-Based Func-
tionalities
Formal description of ML models for unambiguous implementation

We.1.B — Realtime Interference
A Refinement Method for Interference Analysis using the PHYLOG Modeling Lan-
GUALZE + v e v v e e e e e e e e e e e e
Kryptonite++: Localizing Program Interference on Multi-core Embedded Systems

We.1.C — Benchmarking
An Evaluation Bench for the Exploration of Machine Learning Deployment Solu-
tions on Embedded Platforms oL o oo
Multi-core WCET Analysis Using Non-Intrusive Continuous Observation

We.4.A — Autonomous Sytem & Digital Twins
Digital twin for embedded software. State of art in industry and deployment at
Renault Group for powertrain
Towards safe obstacle detection for autonomous train operation: Combining track
and switch detection neural networks for robust railway ego track detection
Partially trustworthy action planning thanks to an easily certified plan validator

We.4.B — Testing

171

173

183

195
197
207
217

229
231
243

253

255

265

275

277
291

303

305
315

325

327
337

347

349
359

369

371

379
389

399

Design by contract formal verification for automotive embedded software robustness 401

Automated Test Suite Augmentation using Language Models: Applying RAG to
Improve Robustness Verification
Mixing tests and mathematical analysis - A launcher use case

We.4.C — Model Driven Development 433
Large legacy systems design maintainability through modeling 435
Coupling optimization using Design Structure Matrices (DSM) and Genetic Algorithm445
Specializing SysMLv2 for Real-Time Safety- Critical Systems — an Experiment with

AADLV2 . . o 455
We.5.A — ML/AI for Critical System 2 465
Certified ML Object Detection for Surveillance Missions 467
How to design a dataset compliant with a ML-based system ODD? 477
Authors index 487

Program Committee

Ahiad, Samia
Anguenot, Yves
Armengaud, Eric
Barrilado, Andres
Baufreton, Philippe
Belmonte, Fabien
Boyer, Marc
Braband, Jens
Bruguier, Florent
Cazorla, Francisco J
Christofi, Nikolena
Claraz, Denis
Cuenot, Philippe
Delmas, Kevin
Dreiseitel, Stefan
Faucou, Sebastien
Florent, Meurville
Frezouls, Benoit
Gabriel, Jean-Marc
Gallina, Barbara
Gaulffriau, Adrien
Gimenez, Pierre-Francois
Gogniat, Guy
Grand, Christophe
Guerin, Joris
Guiochet, Jérémie
Habli, Ibrahim
Heckmann, Reinhold
Jan, Mathieu
Jean-Louis, Boulanger
Jenn, Eric

Johnson, Chris
Kaaniche, Mohamed
Le Calvez, Gilles
Lecomte, Thierry
Leconte, Bertrand
Ledinot, Emmanuel
Lonn, Henrik

VALEO

Aerospace Valley

Armengaud Innovate GmbH
NXP

Safran Electronics & Defense
Alstom Transport SA

ONERA

Siemens AG

LIRMM

Barcelona Supercomputing Center
IRT Saint Exupery

Vitesco Technologies France SAS
Continental

ONERA

Draexlmaier

Université de Nantes

Valeo

CNES

Renault

Malardalen University

Airbus

CentraleSupelec

Université de Bretagne Sud - UEB
ONERA

Université de Montpellier
LAAS-CNRS

University of York

AbsInt GmbH

CEA LIST

certifer

Thales Avionics

Queen’s University Belfast
LAAS-CNRS

VALEO

CLEARSY

Airbus Operations SAS
THALES Research & Technology
Volvo Group

Mader, Ralph
Maillet-Contoz, Laurent
Malenfant, Jacques
Mamalet, Franck
Mekki-Mokhtar, Amina
Morgan, Benoit
Mraidha, Chokri
Métayer, Natacha
Navet, Nicolas
Niemetz, Michael
Pagetti, Claire

Pautet, Laurent
Picard, Celia

Pinot, Frédéric

Pons, Philippe

Prof. Dr. Mottok, Juergen
Quere, Philippe
Rochange, Christine
Ruiz, Jose

Shagdar, Oyunchimeg
Stea, Giovanni
Thomas, Carsten
Totel, Eric
Troubitsyna, Elena
Verdier, Damien
Vigouroux, David
Voget, Stefan

Warns, Timo

Wartel, Franck

de Roquemaurel, Marie

Vitesco Technologies GmbH
STMicroelectronics
Sorbonne Université — LIP6
IRT Saint Exupery

ANSYS

IRIT

CEA LIST

Institut VEDECOM
University of Luxembourg
OTH Regensburg

ONERA

ENST

ENAC

Hitachi rail STS

Aerospace Valley

LaS?, OTH Regensburg
Stellantis

IRIT - Université de Toulouse
AdaCore

Renault

University of Pisa

HTW Berlin

Supelec

KTH

EasyMile

IRT Saint-Exupery
Continental Automotive GmbH
Airbus

AIRBUS Defence and Space
Airbus Defence & Space

Session Tu.1l.A
ML /Al Embedded

Tuesday 11th June
11:30

Auditorium

10

Real-Time Semantic Segmentation of Aerial Images
Using an Embedded U-Net: A Comparison of CPU,
GPU, and FPGA Workflows

Julien Posso*, Hugo Kieffer'*, Nicolas MengaT§, Omar Hlimif, Sébastien Tarris'*,
Hubert Guerard¥, Guy Bois*Y, Matthieu Couderc’®, Eric Jenn'
* Ecole Polytechnique de Montréal
T IRT Saint Exupéry
¥ Viveris Technologies
§ Airbus Defence and Space
T Space Codesign Systems

Abstract—This study introduces a lightweight U-Net model
optimized for real-time semantic segmentation of aerial images,
targeting the efficient utilization of Commercial Off-The-Shelf
(COTS) embedded computing platforms. We maintain the accu-
racy of the U-Net on a real-world dataset while significantly re-
ducing the model’s parameters and Multiply-Accumulate (MAC)
operations by a factor of 16. Our comprehensive analysis covers
three hardware platforms (CPU, GPU, and FPGA) and five
different toolchains (TVM, FINN, Vitis AI, TensorFlow GPU,
and cuDNN), assessing each on metrics such as latency, power
consumption, memory footprint, energy efficiency, and FPGA
resource usage. The results highlight the trade-offs between these
platforms and toolchains, with a particular focus on the practical
deployment challenges in real-world applications. Our findings
demonstrate that while the FPGA with Vitis AI emerges as the
superior choice due to its performance, energy efficiency, and
maturity, it requires specialized hardware knowledge, empha-
sizing the need for a balanced approach in selecting embedded
computing solutions for semantic segmentation tasks.

Index Terms—Deep Learning, Neural Networks, Computer
Vision, Semantic Segmentation, Inference, Embedded Systems,
Aerospace, CPU, GPU, FPGA, MPSoC

I. INTRODUCTION

The advent of deep neural networks, especially Convolu-
tional Neural Networks (CNNs), has revolutionized computer
vision [13], introducing advanced capabilities for embedded
systems in areas such as autonomous navigation [29] and earth
observation [7], [16], [20]. Efficient hardware acceleration is
vital for leveraging this technology, involving CPUs, GPUs,
ASICs, FPGAs [27], and neural network compilers that bridge
the gap between high-level Python libraries and hardware
accelerators [5]. These topics have recently gained significant
attention, as discussed in Section II. However, prior research
has predominantly focused on image classification networks,
specific hardware platforms, and compilers.

In this article, we present a pioneering, comprehensive,
transversal study on the optimized implementation of image
segmentation tasks for UAVs (Unmanned Aerial Vehicles)
and satellites: specifically, the semantic segmentation of aerial
images. We have enhanced a U-Net model for improved

embeddability, reducing its parameters and MAC (Multiply-
Accumulate) operations by a factor of 16 while maintain-
ing accuracy. We evaluate and compare five implementa-
tion schemes (workflows) across three COTS (Commercial
Off-The-Shelf) embedded computing platforms (GPU, CPU,
FPGA), assessing them using metrics such as IoU (Intersection
over Union), accuracy, power, throughput, energy efficiency,
and memory footprint. We also consider engineering metrics
like workflow maturity, usability, documentation, and commu-
nity support. This study addresses key practical challenges and
provides valuable insights for those looking to integrate deep
neural networks into real-world applications.

The structure of this paper is organized as follows: Section II
reviews the literature pertinent to our research, providing foun-
dational context. Section III details our computer vision task,
specifically focusing on the semantic segmentation of aerial
images using a lightweight U-Net to enhance its suitability for
embedded systems. Section IV discusses the embedded com-
puting platforms and examines the five workflows employed
for implementing the neural network on these platforms. Sec-
tion V synthesizes the main results, compares the workflows,
and discusses the limitations of our study. Finally, Section VI
summarizes the study, highlighting the effectiveness of the
workflows and the suitability of the hardware selections for
our specific application domain.

II. RELATED WORKS

The quest for hardware accelerators is crucial for enabling
real-time neural network inference. Central to this acceleration
are technologies such as CPUs, GPUs, ASICs, and FPGAs
[27]. The role of compilers in bridging the gap between
hardware capabilities and neural network performance is well-
documented [5]. Additionally, there is a noticeable shift in the
embedded sector towards the adoption of Commercial Off-
The-Shelf (COTS) computers [24].

Zhao et al. [35] and Li et al. [14] meticulously review
prevalent neural network compilers, including TVM, focusing

primarily on their optimization mechanisms and their im-
pact on the speedup of state-of-the-art image classification
networks. Xing et al. [33] provide an in-depth analysis of
throughput, energy efficiency, and user-friendliness of six
compilers, including TVM, aligning closely with our research.
However, their analysis is confined to image classification net-
works such as ResNet50 and SqueezeNet, and they overlook
potential quality degradation in neural network output due to
the compilation and optimization processes.

Mittal et al. [18] provide a detailed survey of Nvidia Jetson
GPUs within the context of embedded systems, including their
application in semantic segmentation networks. Abdelouahab
et al. [1] and Guo et al. [9] review designs for neural network
accelerators, with a particular emphasis on enhancing FPGA
inference within image classification networks. Reuther et al.
[27] offer a comprehensive yet succinct survey of machine
learning accelerators, focusing on performance and energy
efficiency. Peccerillo et al. [26] examine approximately 100
accelerators, exploring their diverse workflows.

Comparative studies on FPGA and GPU inference perfor-
mance and energy efficiency for standard image classification
networks are detailed by Nurvitadhi et al. [22]. Feng [8] com-
pares FPGA and GPU inference, focusing solely on semantic
segmentation networks on GPUs, notably excluding FPGAs.
Li et al. [15] highlight a performance comparison between
FPGA and GPU inferences of binarized neural networks,
revealing a trade-off between throughput and energy efficiency.

In the embedded domain, Dimitrovski et al. [7] review
neural network architectures for aerial imagery, primarily
focusing on image classification accuracy while neglecting
real-time inference capabilities. Wang et al. [31] and Wu et
al. [32] propose new neural network architectures for real-time
semantic segmentation of aerial images, yet their deployment
on embedded hardware remains unexplored. Moreover, exist-
ing research often limits its focus to single COTS platforms
and toolchains for real-time inference [18], [30].

The literature exhibits significant limitations, predominantly
focusing on image classification networks, which are less
relevant for earth observation via UAVs and satellites. Fur-
thermore, the research largely relies on benchmark datasets
(e.g., ImageNet) and often restricts its experimental scope to
single COTS platforms and toolchains. Studies encompassing
multiple hardware targets or compilers are typically classified
as surveys rather than experimental research.

In contrast, our research stands out due to its comprehensive
approach in several key areas:

« A focus on semantic segmentation, an essential task for
analyzing imagery from UAVs and satellites, diverging
from the common focus on image classification.

o The adoption of a U-Net architecture for image segmen-
tation, which includes both down-sampling (encoder) and
up-sampling (decoder) paths, contrasting with the solely
down-sampling nature of image classification networks.
This approach exposes unique challenges in certain work-
flows that previous studies have not addressed.

o The utilization of the Inria Aerial Image Labeling Dataset
for real-world applications, moving away from the con-
ventional use of benchmark datasets like ImageNet.

o A comprehensive evaluation involving multiple work-
flows and hardware targets, providing a holistic view of
their performance and limitations.

ITI. EMBEDDABLE U-NET-BASED SEMANTIC
SEGMENTATION OF AERIAL IMAGES

A. Semantic Segmentation of Aerial Images

Our research is situated within the context of earth ob-
servation, focusing primarily on two application domains:
satellites and UAVs. These platforms are pivotal in acquiring
high-resolution terrestrial imagery, offering spatial resolutions
ranging from 0.2 to 10 meters, which are critical for numer-
ous remote sensing applications [7], [16], [20]. The primary
limitation lies in the downlink capacity, as satellites and UAVs
lack the capability to transmit all captured images to ground
stations. Consequently, on-board analysis becomes essential
to ensure that only relevant data is transmitted to Earth,
optimizing both bandwidth and data relevance [10].

In this context, semantic segmentation is indispensable as
it enables precise on-board analysis of the high-resolution
imagery acquired by satellites and UAVs. We employ the Inria
Aerial Image Labeling Dataset provided by Inria, renowned
for its utility in benchmarking the generalization capabilities
of semantic segmentation methodologies [17]. This dataset
includes 180 colored satellite photographs, each measuring
5000x5000 pixels (25 Megapixels). The primary task of the
dataset involves semantic segmentation, which entails classi-
fying each pixel of an input image into a specific category;
in our case, this means distinguishing every pixel as either
"building’ or ’not building’. This classification results in a
segmentation map. Figure 3 illustrates this process. To op-
timize for training and model embeddability, we dissect these
images into smaller segments of 256x256 pixels, maintaining
slight overlaps. These segments are subsequently merged to
reconstruct the original 5000x5000 segmentation map post-
inference.

B. U-Net Architecture

We selected a U-Net architecture for our workflow compar-
ison. The U-Net [28], initially proposed for biomedical image
segmentation, has since become a widespread neural network
architecture. It features a low number of parameters, a small
memory footprint, and fewer MAC operations compared to
other semantic segmentation networks, while still maintaining
high accuracy. Additionally, it is designed to be trained with
a limited amount of data, a common scenario in the embed-
ded domain. These characteristics make the U-Net an ideal
candidate for an embedded neural network.

However, we modified the U-Net to enhance its embed-
dability. We trained multiple versions of the U-Net, varying the
number of layers and channels per layer. Figure 1 demonstrates
the necessity of this process in an embedded context. In the
down-sampling path of the U-Net, each block contains two

convolutional layers and one max pooling layer. Similarly,
in the up-sampling path, each block includes one transposed
convolution and two convolutional layers. We adjusted the
number of channels on each layer from 1/32 to 1/2 of
the original U-Net and varied the number of blocks (i.e.
the number of layers) from one to four, while maintaining
symmetry between the down-sampling and up-sampling paths
of the U-Net.

] [] a
0.7 Chosen Model hd
(loU: 0.7108, Params: 1,941,105)
5 []
o
z 0.6 4 e
=]
=
o}
Sos| @
c [
o
Soal °
4 0. @ 1block
£ l @ 2blocks
@ 3blocks
0.34 Y @ 4 blocks
0 1 2 3 4 5 6 7 8
Number of parameters le6

Fig. 1: IoU on the validation set vs. the number of parameters
of the U-Net. Circle size represents the number of channels.

We preserved the core structure of the original U-Net, which
consists of four blocks, but reduced the number of channels
per layer to one-fourth of the original. This adjustment signif-
icantly decreased the number of parameters (from 31 million
to 1.9 million) and MAC (Multiply-Accumulate) operations
(from 55 billion to 3.4 billion) required to process a single
256x256 image, while still maintaining accuracy on the Inria
Aerial Image Labeling Dataset. The number of parameters
and MAC operations is proportional to the square of the
number of channels, underscoring the importance of adapting
neural network architectures to new datasets, especially in
embedded contexts. Figure 2 provides a detailed view of the U-
Net architecture, showing the distribution of MAC operations
and the number of parameters across the down-sampling
(encoder), middle, and up-sampling (decoder) paths. Notably,
the two middle layers of the U-Net contain almost half of the
parameters, while the majority of MAC operations occur in
the up-sampling path. This path is crucial for reconstructing
the feature maps back to the original image size, explaining
the higher number of MAC operations required for accurately
generating the output segmentation map. The inclusion of
transposed convolutions in the up-sampling path, not present
in state-of-the-art image classification neural networks, intro-
duces unique challenges in some workflows.

C. Training Details

We trained our U-Net on an Nvidia RTX 3070 GPU, using
Keras and TensorFlow 2.6, on the Inria Aerial Image Labeling
Dataset, as detailed in Section III-A. Training began with
random initial Float32 weights and utilized the Adam opti-
mization algorithm [11] with TensorFlow’s default parameters
and a learning rate of 1.0 x 10~4 over 108 epochs. Training

was halted after 15 epochs without improvement in the In-
tersection over Union (IoU) computed on the validation set.
We employed the Binary Cross Entropy (BCE) loss function,
which is effective for binary segmentation tasks. To enhance
the model’s robustness and reduce sensitivity to overfitting,
we normalized the input images to a range between 0 and 1
and applied data augmentation techniques using OpenCV 2.5.
These techniques included random rotations (multiples of 90
degrees) and horizontal and vertical flipping.

D. U-Net Evaluation

Table I presents the evaluation of our lightweight U-Net,
compared with the same data, task, and evaluation metrics
used by the Inria team [17]: the IoU of the building class
and pixel accuracy. The Inria team employed a FCN (Fully
Convolutional Network) followed by a MLP (Multi-Layer
Perceptron). Additionally, they discuss the general training
process but lack in-depth technical specifics about the ar-
chitecture configurations, such as the number of parameters
and layers. Nevertheless, the evaluations demonstrate that
our lightweight U-Net outperforms the Inria team’s neural
network. The lightweight U-Net serves as a baseline for
evaluating the five workflows explored in this paper.

TABLE I: Evaluation metrics of our lightweight U-Net on the
validation set

Model TIoU Accuracy
Lightweight U-Net (ours) | 0.7108 0.9546
FCN + MLP (Inria) [17] 0.6467 0.9442

Figure 3 shows an example of our U-Net’s prediction quality
compared to the ground truth on a 256x256 image. The
buildings are generally well-predicted by the neural network,
even if the contours of the predicted buildings are somewhat
blurred, a similar effect was noticed in the original Inria
publication [17].

IV. PLATFORMS AND WORKFLOWS
A. Platforms for Real-Time Inference

We selected two COTS platforms, specifically designed
for embedded applications, to deploy our U-Net model. The
Xilinx Zynq UltraScale+ MPSoC, equipped with four ARM
Cortex-A53 processor cores and programmable logic (com-
monly referred to as an FPGA), has proven effective in both
UAV [12] and space domains [24]. For our implementation,
we utilized three Xilinx Zynq UltraScale+ boards—Ultra96,
ZCU102, and ZCU104—each equipped with the same pro-
cessor but featuring varying FPGA sizes, to host the hardware
accelerators. Nvidia Jetson platforms have also emerged as
strong contenders for real-time inference of neural network-
based vision algorithms, demonstrating applicability in UAV
[30] and space domains [2]. Specifically, we employed the
Nvidia Jetson AGX Xavier System on Module, which boasts
eight ARM Cortex-AS57 processor cores and an integrated
GPU, enhancing the acceleration of neural network inference.

Number Number | Number of | Number
Input Output Kernel Output | Number of Number of
Path Block Layer type . i of MAC of MAC | parameters | of MAC
channels | channels size width |parameters - parameters -
(million) (million) (%) (%)
b1 Convolution 3 16 3 256 448 29.4
Convolution 16 16 3 256 2,320 152.0
D2 Convolution 16 32 3 128 4,640 76.0
Convolution 32 32 3 128 9,248 151.5
Down - 293,520 862.7 15.1% 25.0%
D3 Convolution 32 64 3 64 18,496 75.8
Convolution 64 64 3 64 36,928 151.3
D4 Convolution 64 128 3 32 73,856 75.6
Convolution 128 128 3 32 147,584 151.1
. Convolution 128 256 3 16 295,168 75.6
Middle M1 - 885,248.0 226.6 45.6% 6.6%
Convolution 256 256 3 16 590,080 151.1
Transpose conv. 256 128 2 32 131,200 134.3
U1 Convolution 256 128 3 32 295,040 302.1
Convolution 128 128 3 32 147,584 151.1
Transpose conv. 128 64 2 64 32,832 134.5
u2 Convolution 128 64 3 64 73,792 302.3
Convolution 64 64 3 64 36,928 151.3
Up 762,320 2,354.7 39.3% 68.3%
Transpose conv. 64 32 2 128 8,224 134.7
u3 Convolution 64 32 3 128 18,464 302.5
Convolution 32 32 3 128 9,248 151.5
Transpose conv 32 16 2 256 2,064 135.3
U4 Convolution 32 16 3 256 4,624 303.0
Convolution 16 16 3 256 2,320 152.0
Final convolution 16 1 1 256 17 1.1 17 1.1 0.0% 0.0%
Total 1,941,105 | 3,445.2 | 1,941,105 | 3,445.2 100.0% 100.0%

Fig. 2: Detailed architecture of the U-Net model

(a) Input image

(b) Ground truth

(c) U-Net prediction

Fig. 3: Qualitative evaluation of our Float32 Keras lightweight U-Net on a 256x256 image of the validation set

B. Workflows Overview

We evaluated various workflows to implement our U-Net
on CPU, GPU, and FPGA platforms. On the GPU side, we
first assessed the straightforward TensorFlow implementation,
comparing it with the more complex but optimized Nvidia
cuDNN library to understand the trade-offs between ease of
use and performance. For the CPU, we utilized TVM, which
is renowned for supporting major Python frameworks and
offering the best speedup among neural network compilers
[5], further enhanced by its auto-scheduling feature. For the

FPGA, we explored both the open-source FINN framework
and Xilinx’s commercial DPU within the Vitis-Al toolchain.
Although Vitis-Al is considered more mature, FINN offers
experimental yet highly optimized options for creating opti-
mized dataflow implementations [3]. The following sections
will delve into the details of each workflow.

C. GPU Implementation with TensorFlow

1) Workflow Overview: Figure 4 presents the workflow
used to deploy our model on the Nvidia Jetson AGX Xavier

using TensorFlow 2.6. This workflow is straightforward, start-
ing with the training of a Float32 model using Keras, serving
as our baseline for evaluating GPU workflows. Notably, the
model remains in Float32 format throughout, since quantiza-
tion is only available in TensorFlow Lite. Our aim was to
evaluate the most direct method for deploying a neural network
on a Jetson GPU. Furthermore, the Jetson GPU efficiently
processes Float32 operations on its CUDA (Compute Unified
Device Architecture) cores. The trained model is exported
in HDF5 format and then loaded onto the Nvidia Jetson
AGX Xavier development kit. Onboard inference is conducted
through a Python script, representing the simplest deployment
method on the Nvidia Jetson platform, which operates on a
Linux-based system with a Python stack, including Tensor-
Flow.

Train Keras Float32 model

HDF5 export

Deploy HDF5 on Jetson

Fig. 4: GPU workflow from Keras/TensorFlow training to
Nvidia Jetson AGX Xavier inference using TensorFlow

2) Quantitative Evaluation: Table II presents the eval-
uation metrics measured on the validation set throughout
the TensorFlow workflow. The first row shows the results
following training with Keras and TensorFlow in a Float32
format. Subsequent rows detail these metrics when the model
is deployed on an Nvidia Jetson AGX Xavier board. The
consistency observed between the standard computing envi-
ronment and the embedded deployment is expected because
the underlying model remains unchanged between the training
and deployment stages.

TABLE II: Evaluation metrics along the TensorFlow workflow

Model IoU Accuracy
Float32 Keras 0.7062 0.9594
Jetson implementation | 0.7062 0.9594

Table III summarizes the implementation metrics measured
on the Jetson AGX Xavier. In this experiment, we varied
the batch size to analyze its impact on the implementation
metrics. Increasing the batch size to eight proved beneficial
for improving throughput and energy efficiency while main-
taining a reasonable memory footprint. The memory footprint
includes the space needed for the model weights and activation
functions, the batch of images, and additional Python libraries
such as TensorFlow. Further increases in batch size did not
yield significant benefits and resulted in an increased memory
footprint, making a batch size of eight an optimal trade-
off. A batch size of one is deemed beneficial only when
memory footprint or latency is prioritized over throughput or
energy efficiency. During the experiments, we noticed some
variability in execution time, particularly for the first inference.
The first inference with a batch of eight images took 238

milliseconds, while the subsequent inferences averaged around
107 milliseconds (plus or minus 10 milliseconds). The table
also reports the average throughput for the entire validation set.
The observed variability was consistent across all batch sizes,
highlighting the importance of also considering the Worst Case
Execution Time (WCET) in embedded systems where it is a
critical factor.

TABLE III: Implementation metrics on the Nvidia Jetson AGX
Xavier with TensorFlow

Batch | Throughput | Power Ener.gy Memory

size | (FPS) (W) efficiency (GB)
(mJ/image)

1 61.6 13.65 221.6 1.7

8 74.6 14.56 195.2 2.2

16 78.6 14.56 185.2 5.05

32 75.8 14.56 192.1 53

3) Qualitative Evaluation: The TensorFlow workflow tar-
geting the Nvidia Jetson GPU is mature, straightforward, and
well-documented, supported by an active community with
numerous users, examples, and online tutorials. However,
optimization of the neural network is limited within this
framework. The high memory footprint presents significant
concerns for embedded systems, which are often resource-
limited compared to typical desktop or server environments.
Furthermore, this high memory footprint could impact perfor-
mance, energy efficiency, cost, and system stability, especially
when the hardware is required to manage multiple applications
simultaneously.

D. GPU Implementation with CuDNN

1) Workflow Overview: Figure 5 illustrates the workflow
used to deploy our model on the Nvidia Jetson AGX Xavier
utilizing the Nvidia cuDNN 8.4.1 library. Initially, we train
a Float32 version of the model using Keras and export the
trained parameters. Similar to the previous workflow, the
model remains in Float32 format because quantization is only
supported in TensorFlow Lite. The Jetson GPU is capable
of efficiently processing Float32 operations on its CUDA
cores. Subsequently, the neural network must be manually
implemented in C++ with calls to the cuDNN library to
execute operations on the GPU. The neural network is then
cross-compiled for an ARM target using g++ and NVCC
(Nvidia CUDA Compiler), resulting in an executable that is
deployed on the Nvidia Jetson AGX Xavier, which operates a
Linux-based system with the cuDNN library installed.

2) Quantitative Evaluation: During the evaluation, we en-
countered challenges, particularly due to the lack of a cuDNN
implementation for the transposed convolution in the up-
sampling path of the U-Net, as well as for the nearest neighbor
upsampling operation. A feasible solution could have been to
implement these layers in a custom CUDA program; however,
due to limited time and inadequate support on the Nvidia
forum, this approach was not viable. We successfully imple-
mented the down-sampling path and the middle convolution of
the U-Net using cuDNN. The implementation’s accuracy was

Train Keras Float32 model

Export parameters

Neural network manual impl.
C++ code cuDNN

Cross-compilation
ARM CPU + Nvidia GPU

Deploy executable on Jetson

Fig. 5: GPU workflow from Keras/TensorFlow training to
Nvidia Jetson AGX Xavier inference with cuDNN

validated by comparing the intermediate tensor outputs from
the middle convolution produced by cuDNN with those from
TensorFlow, finding them equivalent within an absolute toler-
ance of le — 8. Thus, we conclude that the cuDNN workflow
is unlikely to alter the evaluation metrics significantly.

Table IV presents the evaluation metrics measured on the
validation set for the implemented down-sampling path and
middle convolution of the U-Net using cuDNN. We estimated
the full U-Net implementation performance by considering
that the down-sampling path and middle convolutions com-
prise 31.6% of the MAC operations, and we scaled the
measured latency accordingly to estimate the total latency.
Similarly, since these components represent 60.7% of the
parameters and intermediate feature maps, we adjusted the
memory footprint to estimate the total memory usage. These
estimates should be interpreted with caution.

TABLE IV: Measured and estimated implementation metrics
on the Nvidia Jetson AGX Xavier with cuDNN

Energy
Model %:ltsf;ncy F\({/\;/er efficiency ?ﬁ;{.;l)ory
(mJ/image)
Partial U-Net | 5 g, 561 | 326 795
(measured)
U-Net - (esti- | g 4 5.61 103.3 1310
mated)

3) Qualitative Evaluation: The cuDNN workflow for tar-
geting Nvidia-embedded GPUs is mature yet intricate. cuDNN
is primarily designed for developers of deep neural net-
work (DNN) frameworks such as PyTorch or TensorFlow
[4]. Consequently, it is more complex than other libraries
and lacks extensive examples. Additionally, the absence of
certain neural network layers necessitates a proficiency in
CUDA programming, which is considerably more complex
than using cuDNN alone. We also encountered discrepancies
between the documentation and the actual implementation,
which compounded the difficulty. The level of community
activity is low; for instance, some queries on the Nvidia
forums, particularly concerning transposed convolutions, have
remained unanswered for over a year. While cuDNN is the
optimal choice for achieving an optimized GPU implemen-
tation, especially where the memory footprint is a concern,
this advantage requires a significantly greater development

effort, particularly for neural networks that include layers not
supported by the library.

E. CPU Implementation with TVM

1) Workflow Overview: Figure 6 presents the workflow
used to deploy our model on an ARM processor. We began
by training a Float32 model with Keras, then utilized TVM
0.8 to export the model to Relay, TVM’s intermediate graph
representation. At this stage, quantization of the neural net-
work is optional, which we discuss further in section IV-E2.
We compiled the model using an optimization level of 3,
which in our experiments achieved the best trade-off between
optimization and neural network accuracy. Subsequently, we
employed TVM’s auto-scheduling, conducting 10,000 trials to
optimize the scheduling of the inference on the CPU. The
model was then ready for deployment on the ARM-AS53 target,
operating under a Linux-based system with the TVM runtime
installed.

Train Keras Float32 model
TVM Relay export

TVM quantization (optional)

TVM build (optim. level 3)

v
Deployment on ARM-A53

Fig. 6: CPU workflow from Keras/TensorFlow training to
ARM CPU inference with TVM

2) Quantitative Evaluation: Table V shows the evaluation
metrics obtained on a subset of the validation set, consisting of
1500 images, used in the TVM workflow, as the full validation
set execution time was prohibitively slow on board. To ensure
consistency, we maintained the same sub-validation set from
the Keras evaluation through to the onboard evaluation. The ta-
ble initially reports the metrics following Float32 training with
Keras and TensorFlow. Subsequent rows display the metrics
obtained when deploying the neural network on an Ultra96
board. The TVM workflow, without quantization, preserved
the quality of the neural network’s output. In further experi-
ments, we quantized every weight and activation function to
eight bits, except for the first convolutional layer. We found
that post-training quantization with TVM had a negligible
impact on the evaluation metrics, minimally affecting both IoU
and accuracy.

TABLE V: Evaluation metrics along the TVM workflow

Model TIoU Accuracy
Float32 Keras | 0.7170 0.9546
Float32 TVM | 0.7170 0.9546
Int§ TVM 0.7007 0.9518

Table VI summarizes the performance metrics measured on
the Ultra96 and ZCU104 boards. The ZCU104 demonstrated

approximately ten percent faster execution than the Ultra96,
attributable to its faster DDR memory. However, latency on
both boards was significant, limiting real-time inference of
semantic segmentation neural networks on these CPUs. Power
consumption averaged 1.1W at thermal equilibrium, which
is relatively low and was consistent across both boards and
quantization levels, as the ARM cores were fully utilized
under all conditions. Quantization increased the execution time
threefold, possibly due to a bug in the version of TVM used,
suggesting that the auto-scheduling functionality may not be
fully compatible with the quantized version of our network.
Energy efficiency was slightly better on the ZCU104, but the
difference was minimal, except with the quantized version,
which showed a significant increase. The memory footprint
was reduced further with quantization.

TABLE VI: Implementation metrics on the Xilinx Zynq Ul-
trascale+ boards with TVM

o Energy
Board %l:i?r?_ }_‘;tse;ncy F\%\;/er efficiency I(\{\I;]rgn)ory
(J/image)
Ultra%6 | No 540.7 1.05 0.568 68.4
Ultra%6 | Yes 1687 1.05 1.77 395
ZCU104 | No 489.2 1.11 0.543 78.7

3) Qualitative Evaluation: The TVM workflow for tar-
geting ARM CPUs is well-established, yet it is not without
limitations, particularly due to a quantization bug encountered
during our evaluations. This issue can be circumvented by
utilizing the quantization functionalities of Keras/TensorFlow.
The workflow benefits from being user-friendly, supported
by extensive documentation and numerous examples. The
versatility of the TVM stack allows for deployment on any
ARM CPU that operates a Linux-based system, including
smartphones and Raspberry Pi devices. Switching the target
CPU requires altering only a single line of Python code. The
community behind TVM is highly active, annually hosting
TVMCon, a conference that fosters collaboration between
academia and industry on neural network compilation. TVM’s
fully automated build and auto-scheduling processes facilitate
the deployment and optimization of state-of-the-art convolu-
tional neural networks, rendering the TVM workflow excep-
tionally adaptable.

F. FPGA Implementation with FINN

1) Workflow Overview: Figure 7 presents the workflow
utilized to deploy our model on an FPGA using the FINN
library. As FINN is incompatible with Keras or TensorFlow,
we re-implemented the U-Net model using PyTorch 1.7.1 and
Brevitas 0.6.1. Brevitas is a quantization library designed to
facilitate Quantization Aware Training (QAT) with PyTorch
and to support deployment through FINN [25]. Initially, we
trained a Float32 version of the U-Net using Keras and
exported the weights to the PyTorch/Brevitas version of the
U-Net. We then proceeded with training a quantized version
of the U-Net using QAT in PyTorch/Brevitas, starting from the
Float32 weights to significantly reduce QAT duration. Brevitas

supports mixed-precision quantization, enabling layer-wise bit-
width parametrization for both weights and activation func-
tions. After training, the model was exported to the ONNX
format, which is compatible with FINN. At this stage, the
model is transformed into a graph that contains only FINN
HLS-compatible nodes. Subsequently, we defined the folding
configuration for each graph node to set the parallelism,
aiming to match the target latency without exceeding the
FPGA’s available resources. If the folding configuration ex-
ceeded the FPGA resources, it required returning to the bit-
width parametrization step and reiterating the QAT phase or
adjusting the target latency. FINN’s built-in functions facilitate
the invocation of Vitis HLS to synthesize each node inde-
pendently, integrate them, and then implement the combined
solution as a Vivado 2022.1 project deployed on the FPGA.
FINN also offers rapid prototyping capabilities using the Pynq

library.
T

>

i

Deployment on FPGA

Fig. 7: FPGA workflow from PyTorch/Brevitas training to
FPGA inference using FINN

2) Quantitative Evaluation: Table VII displays the eval-
uation metrics measured on the validation set throughout
the FINN workflow. The initial row recalls the metrics after
Float32 training with Keras. The final row presents the met-
rics for the quantized U-Net post-training, employing binary
weights and 4-bit activation functions across all layers. Despite
aggressive quantization, the accuracy and IoU only showed a
slight decrease. Due to a suspected bug in the FINN library,
we could not perform onboard inference to directly measure
the evaluation metrics, a limitation we will discuss further in
section IV-F3.

TABLE VII: Evaluation metrics along the FINN workflow

Model ToU Accuracy
Float32 Keras 0.7108 0.9531
Quantized Brevitas | 0.6837 0.9488

While onboard inference execution was not possible, we
derived certain results from the Vivado project, synthesis, and
implementation reports. Table VIII summarizes these findings
and estimations. The latency was derived from the synthesis
reports, considering the highest latency across all graph nodes

(786,432 cycles) as the accelerator’s initiation interval. With a
clock frequency of 100 MHz, we estimated the accelerator’s
latency to be 7.86 milliseconds, corresponding to a throughput
of 127 images per second. The on-chip power consumption,
estimated at 5.5 Watts, was obtained from the FINN-generated
Vivado project. The estimated energy efficiency is noteworthy,
given the implementation of a low-bit quantized U-Net, al-
though these results are provisional and should be approached
with caution.

TABLE VIII: Estimation of the implementation metrics on the
Xilinx ZCU104 with the FINN workflow

Energy
Throughput Power g Memory
Board efficiency
(FPS) (W) (J/image) (MB)
ZCU104 | 127.2 5.46 0.043 N/A

Table IX provides a summary of FPGA resource utilization
based on the post-implementation report generated by Vivado,
highlighting LUTs (Lookup Tables) as the primary limiting
factor. The LUTs are predominantly utilized for the convo-
lution computations, namely the im2col algorithm and the
matrix-vector multiplication unit. Notably, the multi-threshold
layers, representing the quantized activation functions, also
consume a substantial number of LUTs, proportional to the
square of the bit-width of the activation functions. We chose
binary weights and 4-bit activations as an optimal balance
between accuracy and estimated throughput. This approach
also eliminated the need for DSPs, reducing the resource
demands significantly. Our experience has shown that the
FPGA resource estimations provided by FINN’s Python script
were found to be unreliable.

TABLE IX: FINN FPGA resource usage on ZCU104 board

Post-
FPGA implementation FINN .Python Available
resource o estimation

utilization
LUT 205,249 (89%) | 155,905 230,400
LUTRAM 43,498 (43%) Not Available 101,760
Flip-Flop 235,448 (51%) | Not available 460,800
BRAM 96 (31%) 233 312
DSP 0 (0%) 0 1,728

3) Qualitative Evaluation: The Brevitas library for training
quantized neural networks targeting FINN implementations
is mature and user-friendly, closely mimicking the PyTorch
experience, albeit lacking in examples. Conversely, the FINN
library is still under development. We encountered and locally
fixed several source code bugs during our experiments. While
some of these issues have been addressed recently, indicating
active development, the community remains relatively small
compared to other libraries. The absence of certain HLS
backend templates, such as transposed convolution, posed
challenges. We circumvented this by substituting with a near-
est neighbor upsampling layer followed by a convolution,
which did not alter the U-Net’s parameter count or MAC
operations.

Utilizing the FINN library can be challenging, particularly
during the transformation phase, which requires users to

meticulously determine the appropriate transformations and
their sequence. Often, modifications to the network archi-
tecture and quantization scheme are necessary to remove
non-HLS compatible nodes. We had to develop two custom
transformations not present in FINN to synthesize the U-Net
effectively. A significant issue related to the U-Net’s shortcuts
prevented us from implementing the neural network on the
FPGA. This issue could stem from a problem with our custom
transformations, a bug in FINN’s handling of concatenation
layers, or FINN’s algorithm not allocating sufficiently large
FIFOs to store the activation functions of the down-sampling
path, thereby hampering the up-sampling path’s ability to per-
form its convolutions. Additionally, the documentation, spread
across various websites and GitHub pages, is fragmented and
challenging to navigate.

The FINN library holds significant potential for energy-
constrained applications and is poised to mature into a highly
energy-efficient method for executing neural network inference
on FPGAs. As it develops, FINN’s approach, with its capacity
for mixed-precision quantization and configurable folding,
will enable tailored optimization for each layer’s bit-width,
accuracy, resource usage, and latency.

G. FPGA Implementation with Xilinx Vitis-Al

1) Workflow Overview: Figure 8 outlines the workflow used
to deploy a neural network on a Xilinx Zynq Ultrascale+
MPSoC using the Vitis-Al framework. This approach, distinct
from rapid prototyping, is focused on actual embedded de-
ployment. The process begins with training a Float32 model
using Keras, followed by exporting it through the Vitis-Al
toolkit version 2.0. Deployment on the MPSoC involves four
primary activities:

o Configuring the DPU (Deep Learning Processor Unit)
accelerator and generating the FPGA bitstream. This
includes selecting the number of DPU cores and their
size, which dictates the operations per clock cycle.

o Generating the application code in C++ to orchestrate
model execution using the VART (Vitis AI Runtime).

o Compiling the model using 8-bit quantization with the
Vitis-Al tools.

o Creating the Board Support Package (BSP) for the
ZCU102 board.

Following these steps, the model is executed on the MPSoC,
with the DPU on the FPGA handling most of the network
operations. However, the CPU may process some layers,
particularly when specific functions like the sigmoid activation
at the end are not supported by the Vitis-Al quantization.

2) Quantitative Evaluation: Table X presents the evaluation
metrics obtained from the validation set using the Vitis-Al
workflow, with the initial line providing a baseline from
Float32 training with Keras. Following the model’s quantiza-
tion to 8-bit using Vitis-Al, no loss in accuracy was observed,
thanks to the toolkit’s effective calibration function. The quan-
tized model was subsequently deployed on the Xilinx DPU on
the ZCU102 board, where no degradation in performance was
noted, suggesting a possible regularization effect.

Train Keras Float32
model

Vitis-Al export

DPU configuration Al
Quantization (8-bit)
User application

FPGA Bitstream
dev. using VART

generation

Vitis-Al compilation

BSP generation

Deployment on Xilinx Zyng MPSoC (CPU + FPGA)

Fig. 8: FPGA workflow from Keras/TensorFlow training to
FPGA/CPU inference using Vitis-Al

TABLE X: Evaluation metrics along the Vitis-Al workflow

Model IoU Accuracy
Float32 Keras | 0.7108 0.9531
Int8 Vitis 0.7156 0.9542
Int§ DPU 0.7263 0.9583

Table XI summarizes the implementation metrics on the
Xilinx ZCU102 board, measured on the validation set. The
configuration uses three DPU cores, each capable of 4096
operations per clock cycle at 100 MHz. This setup was
determined to be the best trade-off for embedded inference,
balancing throughput and power consumption for optimal
energy efficiency.

TABLE XI: Implementation metrics on the Xilinx ZCU102
with the Vitis-Al workflow

Energy

Throughput Power b Peak mem-
Board efficiency

(FPS) (W) (Jfimage) ory (MB)
ZCU102 | 46.9 2.51 53.5 31

Table XII shows the FPGA resource utilization, with DSPs
and BRAMs being the primary limiting factors due to their
roles in MAC operations and storage of weights and inter-
mediate feature maps, respectively. LUTs, LUTRAMs, and
Flip-Flops still have available capacity, providing potential for
future increases in the size or number of DPU cores.

TABLE XII: Vitis-AI FPGA resource usage with 3-core DPU
on ZCU102 board

FPGA resource | Post-implementation utilization | Available
LUT 133,425 (49%) 274,080
LUTRAM 17,027 (12%) 144,000
Flip-Flop 297,576 (54%) 548,160
BRAM 771 (84%) 912
DSP 2,070 (82%) 2520

3) Qualitative Evaluation: The Vitis-Al workflow is robust,
demonstrating significant maturity, particularly with toolchain
updates in versions 2.0 and 2.5 that resolved previously en-
countered bugs. This versatile workflow supports a wide array
of neural network layers, and users can incorporate custom
IP blocks to introduce new operations. Xilinx provides com-
prehensive documentation and end-to-end examples through
the Vitis-Al Model Zoo. The community surrounding Vitis-Al
has grown rapidly, although the learning curve remains steep

due to the complexity of integrating various components such
as BSP, Vivado, Petalinux, and Vitis-Al tools. Additionally,
while most components of Vitis Al are open source, some ele-
ments, such as the Vitis AI Compiler, remain proprietary, and
certain tools within the Xilinx ecosystem require a commercial
license.

V. SYNTHESIS
A. Synthesis and Workflow Comparison

Table XIII synthesizes the evaluation and implementation
metrics results across the five workflows. As discussed in
Section IV, onboard implementation was not achievable for
the cuDNN and FINN workflows. Consequently, the imple-
mentation results from these workflows are estimates and
should be interpreted with caution. Quantization is employed
only when the hardware target does not support Float32
operations. The CPU and GPU workflows maintain the neural
network’s output quality, thus achieving the same accuracy
and Intersection over Union (IoU) as their respective baselines.
The FINN workflow causes a slight degradation in accuracy
and IoU, which is minimal considering the use of low-bit
quantization. Conversely, the Vitis-Al workflow marginally
improves the evaluation metrics on the validation set due
to its quantization and calibration mechanisms, introducing
a regularization effect. All workflows are compared at iso-
accuracy levels. Nevertheless, there are significant differences
in throughput and power consumption across the platforms
and workflows. As expected, the CPU exhibits the lowest
throughput, resulting in poor energy efficiency. The FPGA
workflows, utilizing FINN or Vitis-Al, demonstrate superior
energy efficiency. Both FINN and Vitis-Al enable the creation
of customizable neural network accelerators, allowing for tai-
lored FPGA resource usage, which in turn affects throughput
and power consumption. Additionally, the use of quantization
contributes to reduced power consumption. In contrast, GPU
workflows and platforms have a considerably higher memory
footprint compared to CPU and FPGA workflows and targets,
presenting potential challenges in an embedded context.

Table XIV synthesizes the engineering metrics across the
five workflows. Overall, TensorFlow and TVM stand out in
the comparison. Both are open-source, mature, user-friendly,
well-documented, and supported by large, active communities.
Close behind, the Vitis-Al workflow exhibits similar positive
attributes but is more challenging to use due to its incor-
poration of proprietary components and a requirement for
hardware engineering expertise. Nevertheless, it offers greater
customization capabilities than the TVM and TensorFlow
workflows. The post-training 8-bit quantization in Vitis-Al,
while adding complexity and development time, enhances
energy efficiency. The cuDNN workflow is primarily designed
for developers of deep neural network frameworks, such as
PyTorch and TensorFlow, reflecting its maturity but also its
limited suitability for embedded inference. Furthermore, the
absence of certain operators, like transposed convolution and
nearest neighbor upsampling, necessitates intricate and labor-
intensive development. At the bottom of our comparison is

TABLE XIII: Synthesis of the evaluation and implementation metrics of the five workflows

Platform Nvidia GPU Xilinx Zynq UltraScale+ MPSoC
Board Jetson AGX Xavier ZCU104 ZCU102
Workflow TensorFlow | cuDNN | TVM (CPU) | FINN (FPGA) | Vitis-Al (FPGA)
Implementation Yes No Yes No Yes
Numeric precision Float32 Float32 Float32 WIA4 Int8
Accuracy change (vs. baseline) 0% 0% 0% -0.43% +0.52%
IoU change (vs. baseline) 0 0 0 -0.0271 +0.0155
Throughput (FPS) 74.6 54.3 2.04 127 46.9
Power (W) 14.6 5.61 1.11 5.46 2.51
Energy efficiency (mJ/image) 195 103 543 43.0 53.5
Memory (MB) 2200 1310 78.70 N/A 31

TABLE XIV: Synthesis of the engineering metrics of the five workflows. Metrics are quantified as high, medium, and low.

Platform Nvidia Jetson AGX GPU Xilinx Zynq UltraScale+ MPSoC
Workflow TensorFlow cuDNN TVM (CPU) | FINN (FPGA) | Vitis-AlI (FPGA)
Maturity High High High Low High

Ease of Use High Low High Low Medium
Documentation and Examples High Medium High Medium High
Community Support High Low High Low High

the FINN workflow. Its current maturity level is low, with
identified bugs, and it presents significant usability challenges.
The need to develop custom transformations not available in
the FINN library further complicates its usage. Although the
community is active, it is relatively small compared to the
others. Documentation and examples exist but are dispersed
across various websites and GitHub repositories, which com-
plicates the comprehension process. Additionally, FINN’s lack
of support for certain operators, such as transposed convolu-
tion, necessitates alterations in the neural network architecture.

B. Limitations and Future Works

The conclusions presented in this paper reflect observations
from 2021 to 2023. Nevertheless, the field of neural networks
is rapidly evolving, and significant changes in these frame-
works are anticipated in the near future. For instance, during
the course of our project, we observed maturation in both the
FINN and Vitis-Al workflows.

On the GPU front, our research focused on the high-level
TensorFlow and the low-level cuDNN workflows. Nvidia’s
TensorRT, an intermediate, open-source workflow for DNN
inference, represents a potential area for future research [23].
Future investigations should also explore quantization to fully
leverage the capabilities of Nvidia’s Tensor Cores in embedded
GPUs, potentially narrowing the energy efficiency gap with
FPGA:s.

Further research should evaluate the use of more powerful
CPUs, such as those based on Intel x86 architectures, with
compilers like TVM or Intel nGraph that have shown effec-
tiveness on these processors [14]. Due to time constraints, this
study did not explore ASICs for neural network inference, such
as Google’s Edge TPU or Intel’s Movidius VPUs [27], which
appear to be promising for embedded applications and warrant
future evaluation.

Lastly, the embedded domain poses unique challenges re-
garding robustness and explainability, aspects not covered in
this paper. These topics are currently active research areas

in both academic [21], [34] and industrial spheres [6], [19],
deserving attention in future studies.

VI. CONCLUSION

This paper has demonstrated the necessity of adapting
advanced neural network architectures to novel datasets within
an embedded framework. We introduced a lightweight U-Net
that achieves the same accuracy with 16 times fewer param-
eters and Multiply-Accumulate (MAC) operations, validated
on an aerial image segmentation dataset [17]. Furthermore,
this study provided an extensive evaluation and comparison
of various methods for real-time semantic segmentation of
aerial images, employing three contemporary Commercial Off-
The-Shelf (COTS) embedded computers across five distinct
workflows.

The FPGA target, utilizing Vitis-Al, emerged as the superior
choice due to its performance, energy efficiency, and system
maturity. However, its implementation necessitates specialized
hardware expertise. The ARM CPU target, leveraging TVM, is
notable for its user-friendliness and maturity, yet its relatively
low energy efficiency and throughput pose significant chal-
lenges for embedded system applications. The GPU target,
utilizing TensorFlow, is acknowledged for its maturity and
ease of use but is more appropriate for rapid prototyping than
for actual embedded solutions. Conversely, the GPU target
employing cuDNN is better aligned with embedded deploy-
ment but suffers from complexity and a lack of support for
various neural network layers. Lastly, the FPGA target using
FINN shows high potential for energy-constrained applications
but necessitates additional development to become a practical
option.

VII. ACKNOWLEDGEMENTS

This work was conducted within the SPOC project at the
French Institute of Technology (IRT) Saint Exupéry. Funding
was provided by the French Research Agency (ANR) and
by the industrial partners of the IRT Scientific Cooperation
Foundation (FCS).

(1]
[2]

(3]

[4]
(3]

[6]

(71

[8]

[91

[10]

[11]

[12]

(13]

(14]

[15]

(16]

(17]

[18]

(19]
[20]

(21]

REFERENCES

K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry. Accelerating CNN
inference on FPGAs: A Survey, May 2018. arXiv:1806.01683 [cs].

C. Adams, A. Spain, J. Parker, M. Hevert, J. Roach, and D. Cotten.
Towards an Integrated GPU Accelerated SoC as a Flight Computer for
Small Satellites. In 2019 IEEE Aerospace Conference, pages 1-7, Mar.
2019. ISSN: 1095-323X.

M. Blott, T. B. PreuBer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers. FINN- R: An End-to-End
Deep-Learning Framework for Fast Exploration of Quantized Neural
Networks. ACM Transactions on Reconfigurable Technology and Sys-
tems, 11(3):1-23, Dec. 2018.

L. Brown. Accelerate Machine Learning with the cuDNN Deep Neural
Network Library, Sept. 2014.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 578-594, 2018.

Confiance AL Un collectif frangais d’envergure inédite pour concevoir et
industrialiser des systémes a base d’intelligence artificielle de confiance,
2023. Accessed: 2023-05-01.

I. Dimitrovski, I. Kitanovski, D. Kocev, and N. Simidjievski. Current
trends in deep learning for Earth Observation: An open-source bench-
mark arena for image classification. ISPRS Journal of Photogrammetry
and Remote Sensing, 197:18-35, Mar. 2023.

X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li. Computer vision algo-
rithms and hardware implementations: A survey. Integration, 69:309—
320, Nov. 2019.

K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang. [DL] A Survey of
FPGA-based Neural Network Inference Accelerators. ACM Transactions
on Reconfigurable Technology and Systems, 12(1):2:1-2:26, Mar. 2019.
D. Karapetyan, S. Mitrovic Minic, K. T. Malladi, and A. P. Punnen.
Satellite downlink scheduling problem: A case study. Omega, 53:115—
123, June 2015.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization,
Jan. 2017. arXiv:1412.6980 [cs].

B. B. Kovari and E. Ebeid. MPDrone: FPGA-based Platform for
Intelligent Real-time Autonomous Drone Operations. In 2027 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), pages 71-76, Oct. 2021. ISSN: 2475-8426.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
521(7553):436-444, May 2015. Number: 7553 Publisher:
Publishing Group.

M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian. The Deep Learning Compiler: A Comprehensive
Survey. arXiv:2002.03794 [cs], Aug. 2020. arXiv: 2002.03794.

Y. Li, Z. Liu, K. Xu, H. Yu, and F. Ren. A GPU-Outperforming
FPGA Accelerator Architecture for Binary Convolutional Neural Net-
works. ACM Journal on Emerging Technologies in Computing Systems,
14(2):18:1-18:16, 2018.

Z. Lv, T. Liu, J. A. Benediktsson, and N. Falco. Land Cover Change
Detection Techniques: Very-high-resolution optical images: A review.
IEEE Geoscience and Remote Sensing Magazine, 10(1):44-63, Mar.
2022. Conference Name: IEEE Geoscience and Remote Sensing
Magazine.

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez. Can semantic
labeling methods generalize to any city? the inria aerial image labeling
benchmark. In 2017 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pages 3226-3229, Fort Worth, TX, July 2017.
IEEE.

S. Mittal. A Survey on optimized implementation of deep learning
models on the NVIDIA Jetson platform. Journal of Systems Architecture,
97:428-442, Aug. 2019.

A. Mojsilovic. Introducing Al Explainability 360, Aug. 2019.

K. Muhammad, S. Khan, M. Elhoseny, S. Hassan Ahmed, and
S. Wook Baik. Efficient Fire Detection for Uncertain Surveillance
Environment. IEEE Transactions on Industrial Informatics, 15(5):3113—
3122, May 2019. Conference Name: IEEE Transactions on Industrial
Informatics.

H. Nori, S. Jenkins, P. Koch, and R. Caruana. InterpretML: A
Unified Framework for Machine Learning Interpretability, Sept. 2019.
arXiv:1909.09223 [cs, stat].

Nature,
Nature

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and
G. Boudoukh. Can FPGAs Beat GPUs in Accelerating Next-Generation
Deep Neural Networks? In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’17, pages 5-14, New York, NY, USA, Feb. 2017. Association for
Computing Machinery.
NVIDIA Corporation.
TensorRT, 2023.

A. P érez, A. Rodriguez, A. Otero, D. G. Arjona, A. Jiménez-Peralo,
M. A. Verdugo, and E. De La Torre. Run-Time Reconfigurable MPSoC-
Based On-Board Processor for Vision-Based Space Navigation. IEEE
Access, 8:59891-59905, 2020. Conference Name: IEEE Access.

A. Pappalardo. Xilinx/brevitas, June 2021. original-date: 2018-07-
10T22:37:01Z.

B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini. A survey on
hardware accelerators: Taxonomy, trends, challenges, and perspectives.
Journal of Systems Architecture, 129:102561, Aug. 2022.

A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner. Survey of Machine Learning Accelerators. 2020 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1-12, Sept.
2020. arXiv: 2009.00993.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation, May 2015. arXiv:1505.04597 [cs].
S. Sharma, C. Beierle, and S. D’Amico. Pose estimation for non-
cooperative spacecraft rendezvous using convolutional neural networks.
In 2018 IEEE Aerospace Conference, pages 1-12, Mar. 2018.

N. Tijtgat, W. Van Ranst, B. Volckaert, T. Goedeme, and F. De Turck.
Embedded Real-Time Object Detection for a UAV Warning System. In
2017 IEEE International Conference on Computer Vision Workshops
(ICCVW), pages 2110-2118, Venice, Oct. 2017. IEEE.

F. Wang, X. Luo, Q. Wang, and L. Li. Aerial-BiSeNet: A real-
time semantic segmentation network for high resolution aerial imagery.
Chinese Journal of Aeronautics, 34(9):47-59, Sept. 2021.

M. Wu, C. Zhang, J. Liu, L. Zhou, and X. Li. Towards Accurate
High Resolution Satellite Image Semantic Segmentation. /EEE Access,
7:55609-55619, 2019. Conference Name: IEEE Access.

Y. Xing, J. Weng, Y. Wang, L. Sui, Y. Shan, and Y. Wang. An In-depth
Comparison of Compilers for Deep Neural Networks on Hardware.
In 2019 IEEE International Conference on Embedded Software and
Systems (ICESS), pages 1-8, June 2019.

F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu. Explainable
AI: A Brief Survey on History, Research Areas, Approaches and
Challenges. In J. Tang, M.-Y. Kan, D. Zhao, S. Li, and H. Zan, editors,
Natural Language Processing and Chinese Computing, Lecture Notes in
Computer Science, pages 563-574, Cham, 2019. Springer International
Publishing.

R. Zhao, S. Liu, H.-C. Ng, E. Wang, J. J. Davis, X. Niu, X. Wang, H. Shi,
G. A. Constantinides, P. Y. K. Cheung, and W. Luk. Hardware Com-
pilation of Deep Neural Networks: An Overview. In 2018 IEEE 29th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pages 1-8, July 2018. ISSN: 2160-052X.

Nvidia tensorrt. https://github.com/NVIDIA/

Exploring Neural Network Architectures for
Satellite Imagery on FPGA devices

Jean-Baptiste Chaudron and Jacques Gatard
EMBRYA, Toulouse, France
jean-baptiste.chaudron @embrya.io
jacques.gatard @embrya.io

Abstract—Today, Artificial Intelligence (AI) solutions are de-
ployed for various applications in several technological domains.
Deep Learning (DL) methods, especially, Artificial Neural Net-
works (ANN) are considered for space systems to provide new
perspectives for complex earth observation or space exploration
missions that request in-orbit data processing. However, the
inherent complexity of such algorithms in terms of arithmetic
operations and associated memory usage limits their integration
on on-board components and, usually, requires special accelera-
tor entities dedicated to perform such tasks. For space systems,
due to limitations on energy availability, Field Programmable
Gate-Array (FPGA) devices are usually preferred over more
power-consuming Graphical Processing Units (GPU). Nonethe-
less, the design and implementation processes are more complex
for FPGA and must be carefully analyzed. In this paper, we
describe our approach from initial prototyping to implementation
for an industrial test-case about satellite imagery: the Airbus
Ship Detection Challenge (ASDC). We discuss the applications
considerations for classification and semantic segmentation and
describe a set of selected ANN architectures together with the
training environment. We conduct an evaluation strategy to
select small and efficient architectures that provide good trade-
off in terms of accuracy and performance. Finally, we detail
optimization techniques and experiment on-board performances
of our EMBRYA’s Enki core-ip on a selection of FPGA based
embedded devices.

Index Terms—FPGA, Classification, Semantic Segmentation,
CNN

I. INTRODUCTION AND BACKGROUND

Artificial Neural Networks (ANN) algorithms have a very
long history which started in 1943 with the invention of the
perceptron concept [40] followed by its first implementation
in 1957 [54] and extension to multi-layers structures in 1958
[55]. These first approaches had limited learning capabilities
and several initiatives have been proposed over the years to fill
this gap [30] [4] [35]. In 1982, the back-propagation method
was formulated [68] and then experimented [56] providing the
baselines of the key feature of ANN: their ability to learn.
Based on this foundation, an immense amount of research
has been conducted to refine and expand the ANN concepts.
Thus, a large variety of architectures have been proposed in
the literature which can be classified in three main types:

o The Multi-Layer Perceptrons (MLP), or Fully Connected
(FC) networks, regroups the extensions to multiple layers
of the original perceptron structure [29].

o The Recurrent Neural Networks (RNN) are extensions of
MLP which integrate a feedback loop [31] or an internal
memory [11]. These adds-on address a limitation inherent
to the MLP structure, which is its reliance solely on inputs
for predicting the output. Thus, it enables the capture
of dependencies between the previously processed output
and the subsequent output. These days, Long-Short Term
Memory (LSTM) [17] and Gated Recurrent Unit (GRU)
[7] are the most used architectures of this kind.

o The Convolutional Neural Networks (CNN) are special-
ized for computer vision applications. Their architectures,
derived from the neocognitron concept invented in 1980
[14], are capable of processing images by regions to
capture geometric 2-Dimensional (2D) relationships. The
first CNN, based on matrix convolution operations, was
implemented in 1998 [33] for the MNIST! handwritten
digit recognition task. The differences between the three
ANN types mentioned above are illustrated in Figure 1.

MLP architecture -
RNN architecture

2

Fig. 1: MLP, CNN of RNN neural network types

Over the years, the expansion of ANN has marked a
significant milestone in various fields, consistently outper-
forming more traditional methods such as image and speech
recognition. For space applications as well, ANN provide
substantial opportunities to improve the functionality and
efficiency of space systems across a wide range of uses and
applications. [58]. More specifically, ANN can contribute to

Uhttp://yann.lecun.com/exdb/mnist/

autonomous navigation and control of spacecraft which is
crucial for space missions beyond direct human control due
to distance or complexity. By processing vast amounts of
data from various sensors, neural networks can help in real-
time decisions for path correction, navigation and obstacle
avoidance [61]. Also, ANN can help to improve the efficiency
and reliability of space communication systems [13], for ex-
ample, with noise reduction [52] or interference mitigation [8].
This is particularly important for deep space missions where
communication delays and signal degradation are significant
challenges. Finally, in Earth observation missions, ANN are
used for processing and analyzing data collected from satel-
lites [59] to enhance the ability to monitor climate change,
natural disasters and urban development. By processing data
directly on the satellite, only relevant information needs to be
transmitted to Earth such as cloud detection for image quality
[19]. This significantly reduces the bandwidth requirements
and data transmission costs, a critical consideration given the
high volume of data generated by Earth observation satellites.
The integration of such resource-intensive computer vision
algorithms into on-board embedded systems requires careful
consideration and analysis, especially considering the limited
memory and processing power of these systems.

This paper introduces a first step forward for the develop-
ment of our EMBRYA’s Enki core-ip prototype, deployed on
Field Programmable Gate-Array (FPGA) devices, by applying
it to a comprehensive study on ASDC satellite imagery dataset
covering aspects from initial conceptualization to on-board
implementation. We will detail the dataset and explore the
associated tasks of classification and semantic segmentation
associated with it. Our work investigates various CNN archi-
tectures, examining their original designs and exploring their
reductions to enhance on-board performance. Specific opti-
mization details and experimental results are also presented.
Furthermore, a thorough bibliography is provided throughout
the document to substantiate our methodology. The structure
of this paper is organized as follows:

« Section II explains the background with the emergence of
hardware accelerators for Al inference and the motivation
behind our new generation Enki technology.

o Section III describes the application in focus. We will
present the ASDC dataset, detailing its characteristics and
features. Following this, we will delve into the binary
classification and semantic segmentation tasks that will
be applied to this dataset.

« Section IV provides a description of the CNN architec-
tures under investigations and associated training environ-
ments and presents results for our complete exploration
strategy. We select different architectures that we analyze
and experiment for effective on-board implementations.

o Section V explains the optimization strategy and shows
experimental results of ENKI on a set of selected SoC
FPGA hardware devices and, finally, Section VI con-
cludes and proposes some perspectives.

II. BACKGROUND
A. ASIC IA accelerators

Nowadays, due to the raise of Al based algorithms, several
Application-Specific Integrated Circuits (ASIC) based acceler-
ators are proposed to support these computing intensive tasks
[51]. GPU based solutions are the mainstream approach to
process ANN and other Al based algorithms in particular with
the expansion of NVIDIA and the development of CUDA,
an open source language similar to C++ used to directly
program low level functions on NVIDIA GPUs. In addition,
NVIDIA devices (and CUDA) supports many deep learning
frameworks widely used nowadays [23]. For embedded sys-
tems, NVIDIA also offers several scaled-down GPU versions
which are integrated with a CPU on a System-on-Chip (i.e.
SoC with integrated GPUs or iGPUs). These small GPU
devices, such as Jetson Nano, have shown that they can operate
in a space environment [62]. However due to peak power
consumption (associated to heat dissipation) the integration of
such hardware is still problematic for satellite [18]. Therefore,
for space applications, other ASIC based solutions such as
Google Coral TPU (Tensor Processing Unit) or Intel Myriad
Vision Processing Units (VPU) are preferred [15] offering
good performances with low power consumption [49]. Re-
cently, the Intel Myriad VPU was the first Al accelerator to
be integrated on-board in a satellite [20].

B. FPGA Solutions

Despite their efficiency, ASIC based systems have several
drawbacks. Especially, ASIC are purpose-built for specific
capabilities and therefore cannot be reprogrammed. In addi-
tion, the design of a dedicated ASIC solution requires a long
and costly development cycle which might not be suitable
for some projects and applications. In this context, FPGA
technology provides elegant alternative with a no hard etched-
it circuity. Thus, it can be reprogrammed and require low
power consumption which makes it an excellent alternative to
ASIC for development. The use of FPGA based devices has
been analyzed for years for integration on space applications
[22]. Therefore, the raise of Al algorithms has also pushed
a lot of initiatives and to develop and deploy Al chip-ips on
FGPA [67]. Currently, there are two main approaches to deploy
AI/ML based applications on FPGA-based systems [47] :

1) The design of specialized custom chip-ips for executing
specific neural networks [21]. Currently, the main ap-
proach is to use automatic HDL generators frameworks
which ease the development of hardware chip-ip by
translating machine learning algorithms and generating
the design of dedicated chip-ip solutions for integration
into FPGA such as FINN [65], HLS4ML [12], MATLAB
HDL Coder [38]. Recently, FPG-AI framework has been
characterized on NanoXplore FPGAs [34].

2) The use of stand-alone generic Al chip-ip accelerators
such as Microchip CoreVector Blox Neural Network
Engine [41], Intel FPGA Al Suite IP [3] or Xilinx Deep
Processing Unit (DPU) [73]. The performance and energy

efficiency of the Xilinx DPU accelerator is among the
most competitive nowadays [2], it has already been used
for space applications [48] and analyzed for radiation-
tolerance [1]. These generic chip-ips are usually designed
per FPGA providers and dedicated to their edge devices
which makes it difficult to deploy on custom hardware or
new technologies. Also, these chip-ips usually target SoC
technology combining the FPGA with a CPU. Thus, the
chip-ip accelerator is used as a co-processor controlled
by means of dedicated instructions sent per the CPU.

C. Why ENKI?

This paper presents the first deployment of our Enki pro-
totype based on a technology under patent review. It offers
a new concept for a generic full AI ASIC processor (and
not only a co-processor). Currently, for development purpose,
Enki is being deployed on FPGA devices and therefore can
be considered as one of these generic chip-ip Al accelerators
described in Section II-B. From the conceptual point of view,
Enki addresses some restrictions compared to current stand-
alone generic Al chip-ip solutions:

o Genericity: Current solutions are generally oriented to-
ward pure performance of CNN within very strict gener-
icity bounds (type of layers, activation, ...) and are not
usable outside these bounds. For example, CNN can’t
be directly combined with RNN on the same generic
chip-ip. Also, it is not possible to integrate some other
feature extraction techniques, such as the Hough trans-
form [9] or Non-Maximum Suppression (NMS) useful
to complement CNN based image processing solutions.
Also, on Enki, you can load multiples neural network
configurations.

e Precision: Due to the limitation of FPGA logic and
memory, chip-ip accelerators use integer datatypes such
as Xilinx DPU using int 8 representation. The migration
process from floating point model msut be handled using
dedicated tool to ensure a proper conversion with a
limited loss in precision. Following the recent standard-
ization extension of Open Neural Network Exchange
(ONNX) to quantized version QONNX [44], Enki use the
scaled integer quantization combining floating point data-
types for scales (costly in term of resource nonetheless)
with integer datatypes (that can be bit-wise fine tuned).
This principle combined with direct quantized training
ensures higher accuracy of the quantized models. The
migration details are described in Section V-A and Enki
is, to the best of our knowledge, the first QONNX
compliant generic FPGA chip-ip accelerator.

o Deployment: Enki HDL code can be synthesized to any
technology-dependent netlist and then implemented (op-
timization, placement and routing) on a dedicated FPGA.
In addition, the concepts behind Enki are not restricted to
SoC architecture and can be deployed on a non intrusive
FPGA only solution (such as an FPGA connected an
Ethernet network).

e Learning: Finally, all Al chip-ip accelerators are opti-
mized for inference following the offline training, on-
line learning paradigm which is very well suited for
supervised learning models. However, nowadays, some
more advanced Al concepts are emerging and offering
new perspectives such as Federated Learning (FL) for
satellites constellations [39] or Reinforcement Learning
(RL) applicable in the context of spacecraft control [64].
These new algorithms requires the learning capability
non existing nowadays on state of the art accelerators.
A comparison overview is summarized in Table L.

TABLE I: Comparison of Enki (Overview)

Enki Xilinx DPU | HLS4ML/FINN
Inference v v v
External memory v v X
Genericity (Chip-ip) vV v X
Performance v vV v
Online Training vV X X

III. APPLICATION DESCRIPTION
A. The ASDC dataset

The rise in maritime incidents such as illegal fishing, cargo
theft, AIS spoofing, drug trafficking and shipwrecks, has made
it crucial to detect ships to oversee and curb maritime crime
effectively. Researchers are continually working to overcome
the challenges of automatically detecting ships, especially
in remote sensing. This effort has significantly contributed
to ensuring safety, identifying illegal activities, monitoring
pollution, and tracking oil spills. In the field, ASDC is a well-
known satellite imagery data-set [28] hosted on Kaggle?, a
popular website for data science competitions. The ASDC
serves as a tangible benchmark for the development and
comparison of various computer vision and machine learning
algorithms. Its large dataset of 31.4 GB is composed of a
set of 208162 RGB images (3 channels) with a resolution of
768 <768 pixels, 192556 images that can be used for training
(labelled) and 15606 images that are used for testing (non
labelled). The final goal of the competition was to accurately
identify and locate ships within the images of the test set. It
presents unique challenges, including the detection of small or
partially hidden ships, distinguishing ships from other objects
or natural formations, and adapting to diverse lighting and
weather conditions. Satellite imagery in the dataset can feature
either a single ship, multiple ships, or no ships at all, as
illustrated in Figure 2. The breakdown of how ships are
distributed across the images in the training dataset is detailed
in Table II and shows a very unbalanced distribution which
might be considered for properly training the selected CNN
models (see Section IV).

Zhttps://www.kaggle.com/competitions/airbus-ship-detection

One ship Multiple ships

Fig. 2: ASDC images with and without ship

TABLE II: Ships distribution across the training dataset

Ship(s) None 1 2 3 4
(and more)
Number 149999 | 27104 | 7674 | 2954 4824
of images
Percentage 77,9% 14,1% | 4,0% | 1,5% 2.5%

B. Classification and Segmentation

The ASDC challenge can be tackled using two synergistic
methods: classification and semantic segmentation. Focusing
initially on classification, we opted for a binary classification
approach to determine whether the input image contains a ship
(one or many) or none as depicted in Figure 3.

High Low
Resolution Resolution
Image

Image
¥ IEEEEEE

FHEREHE HHHHH
tHEH

has_ship = true
probability = 94,7%

Binary
Classification

CNN processing

Downsampling

Fig. 3: Binary classification for ASDC

Since the inception of the first CNN initiative [33], the
CNN architectures have expanded to address more intricate
image classification challenges, such as those presented by
the CIFAR? or ILSVRC* [57] datasets. Consequently, sophis-
ticated CNN architectures like AlexNet [32] or ResNet [27]
have been developed. These architectures are highly effec-
tive in solving image classification problems, which involve
determining whether an image belongs to a given specific
class. In the top-performing solutions on the ASDC challenge
leaderboard on Kaggle®, common models used to address the
classification problem are standard variants of ResNet [27] as
well as more advanced variants such as ResNeXt [69]. Consid-
ering the semantic segmentation aspect of ASDC, traditional

3https://www.cs.toronto.edu/ kriz/cifar.html
“https://www.image-net.org/challenges/LSVRC/
Shttps://www.kaggle.com/competitions/airbus-ship-detection/leaderboard

CNN architectures for classification cannot be directly applied.
As depicted in Figure 4 for ASDC, semantic segmentation
enhances classification to operate at a pixel level. In this
approach, the model is required to determine the class for each
pixel in the input image. The model’s output is a probability
distribution across various classes for every pixel of the input
image. It is important to note that for both classification
and segmentation tasks, it is often necessary to down-sample
the original image to manage memory usage and reduce the
number of arithmetic operations required.

High Low (pixel =)
Resolution Resolution part_of_ship = true
Image Image
T

probability = 91,3%

TT

T
T
T

e — CNN processing
Downsampling

Semantic
Segmentation

Fig. 4: Semantic Segmentation for ASDC

Many of the leading solutions for semantic segmentation
in the ASDC challenge, as seen on the Kaggle leaderboard,
utilize primarily the UNet architecture [53]. For identifying
ships, some solutions opt for instance segmentation, often
employing Mask-RCNN [24] or You Only Look Once (YOLO)
[46], instead of semantic segmentation.

C. Our application design

For efficiency purpose, in our application design we used a
combination of detection and semantic segmentation to avoid
the unnecessary runs of a deep semantic segmentation model
directly on the input image if it isn’t containing a ship. There-
fore, our application first use a detection algorithm on down-
sampled 64 x 64 image issued from the 768 x 768 original
input image. Then, if a ship is detected, the application runs
the segmentation model to create the expected segmentation
matrix to locate the ships on a bigger image 224 x 224
(still downsampled from the original input one). This efficient
implementation concept is illustrated in Figure 5.

Prediction
> Is there a ship?
(probability P)

Detection
(Classification)

64x64

Input images
(768x768)

if yes (P>thresold)

Segmentation
Matrix

X \
Semantic

Segmentation

224x224 L I

N

Fig. 5: Optimizing Segmentation with preliminary detection

IV. EXPLORING CNNS ARCHITECTURES
A. Architectures under investigation

For the classification task, we have selected 2 types of CNN
for evaluation: VGG [36] based on a traditional architecture
and the more sophisticated ResNet [27] containing parallel
residual connections in its structure. For the semantic segmen-
tation, we have selected 2 types of Encoder-Decoder CNN ar-
chitectures: Unet [53] and Segnet [5]. These have very similar
architectures, Unet shares feature maps between the encoder
and the decoder while Segnet shares max-pooling indexes® [6].
As mentioned in III-C, because of the resource constrained
systems of space systems, our goal is to find the smallest
architectures that perform well and offer a good balance
between accuracy and performance. Therefore, we explore the
internal designs of these architectures by reducing the internal
number of channels in order to evaluate the balance between
accuracy and performance (in terms of memory usage). We
ended up with 4 architectures from big model size (>50 MB)
to low size (<1 MB) more suitable for FPGA deployment. In
addition, for each of these architectures, we experimented 4
different activation functions: well known Relu, PRelu [25],
Silu [10] and Gelu [50]. These CNN architectures and their
sizes are resumed in Table VI.

TABLE III: Size (MB) for model architectures

Type Arch. 1 | Arch. 2 | Arch.3 | Arch. 4
Resnet 50.3 12.6 4.6 0.15
Vgg 54.5 13.9 4.0 0.14
Unet 124.3 11.5 4.6 0.8
Segnet 117.9 13.1 5.2 0.7

B. Training Environment

Based on the original ASDC dataset, we built two test cases:
one for the detection (i.e. classification) with down-sampled
64 x 64 images and one for the semantic segmentation
with down-sampled 224 x 224 images. Considering that the
detection algorithm would be first used to detect if the image
contains a boat we considered the images of ASDC that are
containing one (or many) boat(s) for semantic segmentation.
We divided the official training set containing ship into new
training and validation sets with a ratio of roughly 85%
and 15% respectively. For classification, we kept the same
ratio of 85% and 15% for training/testing sets and integrated
images without boat to the training set and validation set as
illustrated in Figure 6.

We trained our architectures using Pytorch framework [45].
For classification, we used weighted Adam optimizer [37]

SNote that Segnet is an example of CNN that can’t be deployed as if on
Xilinx DPU due to its max unpool layers

ASDC Training Set
192556 images

v v

Part with Ships Part without Ships
42557 images/81723 masks 149999 images/masks
85% . 15% 45% 8%
70000 : 11723 ¢ 70000 11723
masks masks masks

i masks :

I A S

i v A 4

Fig. 6: ASDC handling for Classification and Segmentation

over 50 epochs with a learning rate of 0.005 and momentum
values (betas) equals to 0.9 and 0.999 respectively and training
batches with a size of 256 and a simple Binary Cross Entropy
error. For segmentation, we used the same optimizer over 100
epochs with a learning rate of 0.001 (with the same 0.9 and
0.999 for momentum values) and training batches with a size
of 16. We normalized the RGB format of the input image
pixel from 0-255 range to 0-1 range and we initialized our
weights of our architecture using Kaiming methods [26]. As
the choice of loss function is crucial in deep learning tasks
[63], especially in imbalanced datasets like the ASDC. We
selected a combination of Dice and Focal Losses to provide
a more balanced approach. The Dice Loss is suitable for data
with class imbalance, as it measures the overlap between the
predicted segmentation and the ground truth and makes it
more sensitive to the pixels of the minority class (ships in
this case). On the other hand, the Focal Loss is designed
to address class imbalance by down-weighting the loss for
well-classified examples. This allows the model to focus on
hard, misclassified examples. The combination of these two
loss functions is very efficient as shown in Section IV-D.

C. Classification Results

For classification, the accuracy representing the percentage
of correct prediction compared to label is used to evaluate the
correctness of the model. The results for the accuracy on the
validation set are synthesized in Table IV.

As expected, the biggest models are performing better
than the small ones. However, we can observe that the very
small models still provide a very good accuracy and being
extremely smalls (above 0.9 for Vgg and around 0.9 for
Resnet). Overall, in general, the Vgg architecture is the one
performing the best for all sizes. For these detection archi-
tectures, in the general case, the use of other Gelu and Silu
activation functions doesn’t bring significantly better results
than Relu while adding more complexity for the on-board
process of these models. The Prelu activation function can
thus be considered for implementation providing good results,
as this is depicted in Figure 7 for the biggest (Arch.1) and the
smallest (Arch.4) Vgg architectures where we can observe that

TABLE IV: Classification accuracy (Val.) for 64 x64 images

Type Act Arch. 1 | Arch. 2 | Arch. 3 | Arch. 4
Resnet | [(relu) 0.930 0.925 0.924 0.898
Vgg 1 (relu) 0.939 0.933 0.932 0.920
Resnet | 2 (prelu) 0.934 0.931 0.929 0.898
Vgg 2 (prelu) 0.941 0.939 0.933 0.919
Resnet | 3 (silu) 0.926 0.925 0.924 0.905
Vgg 3 (silu) 0.934 0.935 0.933 0.917
Resnet | 4 (gelu) 0.928 0.927 0.927 0.901
Vgg 4 (gelu) 0.937 0.935 0.931 0.917

Prelu outperforms the other activation functions for the biggest
architecture (conf11 and conf41) while the Relu is the best
one for the smallest architecture (conf12 and conf42).

My_correct_vgg_conf11
my_correct_vgg_conf12
my_correct_vgg_conf13

Accurac
My_correct_vgg_conf14

094 1 P . _

0,92 [~

Mv_correct_vgg_conf41

0,90 - my_correct_vgg_conf42
Mv_correct_vgg_conf43
[| v_correct_vgg_conf44
0,88 | ||
0,86 -

r T T T T

0 10 20 30 40 50

Fig. 7: Evolution of accuracy for Vgg architectures

D. Segmentation Results

To measure the accuracy of our models, we use Intersection
over Union (noted IoU), one of the most used metrics for
the evaluation of semantic segmentation models [42]. ToU
considers the number of common pixels between the label and
prediction masks (the intersection of the two sets) divided by
the total number of pixels present in the two masks (the union
of the two sets). The results, obtained on the validation set, are
synthesized in Table V. We can observe that we are obtaining
very good results with high IoU for all the architectures
showing the efficiency of our combined Dice/Focal Loss
function. As expected, similarly to classification architectures,
the biggest models are better than the small ones, still offering

very good results. The most efficient CNN in our experiment
is Unet which outperforms Segnet. Table V also shows that the
use of other activation functions might be relevant to increase
the accuracy of semantic segmentation models especially for
small architectures. In general, Silu and Gelu are the most
performing activation functions in our tests. To illustrate this,
Figure 8 presents the evolution of the IoU for the validation set
over the training epochs for Unet, the best performing CNN,
taking its biggest architecture (Arch.1) and its smallest one
(Arch.4). We can see that the validation IoU for Silu (conf13
and conf43) and Gelu (conf14 and conf44) are the ones
that have the best evolution curves over Relu (conf11 and
conf41l) thus these activation functions might be considered
to enhance the ANN accuracy.

TABLE V: Segmentation IoU metrics for 224 x224 images

Type Act Arch. 1 | Arch. 2 | Arch. 3 | Arch. 4
Unet 1 (relu) 0.874 0.852 0.837 0.774
Segnet | 1 (relu) 0.779 0.762 0.754 0.710
Unet | 2 (prelu) 0.884 0.842 0.840 0.772
Segnet | 2 (prelu) 0.775 0.756 0.753 0.711
Unet 3 (silu) 0.891 0.871 0.850 0.792
Segnet | 3 (silu) 0.784 0.763 0.753 0.735
Unet 4 (gelu) 0.894 0.875 0.843 0.783
Segnet | 4 (gelu) 0.783 0.770 0.753 0.715

My_miou_unet_conf11
Hy_miou_unet_conf12
My_miou_unet_conf13
Bv_miou_unet_conf14

0,9 P
0,8 - S — —
0,7 1 Bv_miou_unet_conf41
Bv_miou_unet_conf42
0,6 1 Bv_miou_unet_conf43
v_miou_unet_conf44
0,5
0,4 -
0,3 |
i
o
0 20 40 60 80 100

Fig. 8: Evolution of IoU for Unet architectures

V. ON-BOARD IMPLEMENTATIONS
A. Discussion and optimization strategy

The high constraints on FPGA devices to deploy a neural
network usually induces a lot of step to migrate, to highly
optimize (pruning, quantization, ...), to generate FPGA bit-
stream and deploy the system on-board. Unlike the other
approaches, we want to deploy target networks with a simple
optimization strategy. Moreover, the results from Section IV-C
and IV-D show that, by using the Pytorch framework with
proper training settings (loss function, ...), we can design and
train small and accurate models. We have selected Vgg 41
(Relu) and 42 (Prelu) for classification and Unet 41 (Prelu)
and 43 (Silu) for segmentation on which we applied two
optimization steps:

1) Remove Batch Normalization (BN): BN layers are mainly
introduced to improve training, by increasing convergence
speed and avoiding local minima. In order to improve the
execution time while preserving semantic performance
batch normalization parameters are folded into the previ-
ous convolutional or dense layers weights and biases’.

2) Migrate to QONNX: In order to alleviate storage require-
ments and limit floating point operations, quantization
is applied. On our side, we use QONNX representation
based on scaled integer quantization which works by
shifting and scaling numbers to fit within an integer
range. To do so, we used Brevitas library [43] compliant
with Pytorch and directly integrated in our environment.
Brevitas supports both Post-Training Quantization (PTQ)
and Quantization-Aware Training (QAT) techniques. We
applied a merge of these two techniques by retrain the
quantized Brevitas twins after the batch normalization
fusion. This simple optimization process is illustrated in
Figure 9 and Figure 10.

Pytorch trained model
(float)

Brevitas twin model
(Quantized)

Fuse Batch Norm
and copy weight/bias

Fig. 9: Batch Normalization fusion and weight copy (Step 1)

B. Hardware platforms

To deploy our scaled integer quantized models, we have
chosen 3 Xilinx SoC architectures:

o A small device: Zedboard (XC7Z020 SoC) [70]

e A medium device: Kria KR260 (XCK26 MPSoC) [72]

o A large device: ZCU 102 (XCZU9EG MPSoC) [71]

Table VII summarizes the data issued from the three afore-
mentioned documents regarding the internal characteristics of
the devices. It is important to note that Block RAM is a
dedicated type of RAM that does not require extra Look-Up

7https:/nenadmarkus.com/p/fusing-batchnorm-and-conv/

Quantized
Brevitas twin model weights
(Quantized) Train again on ASDC dataset (int8)
with small learning rate
4 and SGD optimizer
A A B | e
— d
= | | | e,
g Scales
and bias
(half)

Fig. 10: Quantization-Aware (re)training (Step 2)

TABLE VI: Accuraccy and IoU results for quantized models

Type Original | Quantized
Veg 41 (relu) 0.920 0.916
42 (prelu) 0.919 0.915
Unet 41 (relu) 0.774 0.758
Unet 43 (silu) 0.792 0.776
Vgg size (MB) 0.14 0.04
Unet size (MB) 0.8 0.22

Tables (LUTS), in contrast to distributed RAM, which is using
LUTs.

TABLE VII: Xilinx SoC FPGA under consideration

‘ ID ‘ Zedboard Kria KR260 | ZCU 102
System Logic Cells 85000 256200 599550
CLB Flip-Flops (FF) 106400 234240 548160

CLB LUTs 53200 117120 274080
Distributed RAM (Mb) - 3.5 8.8
Block RAM (36Kb) 140 144 912
Block RAM (Mb) 4.9 5.1 32.1
UltraRAM Blocks 0 64 0
DSP Slices 220 1248 2520
PC-PL DDR 512MB (3) 4GB 4) 4GB 4)

C. Enki results

We synthesized and implemented our Enki prototype for
each of those SoC FPGA targets. We have been able to
integrate the full version of Enki on the ZCU 102 and Kria
260 while we had to set up a reduced version, using less
BRAM memory for feature map intermediary data and with
less features, for the Zedboard. The full chip-ip of this first
version includes features to perform Convolution, Transposed
Convolution, and Linear, Max and Average Pooling layers.
Also, it supports full float Sigmoid and Hyperbolic Tangent

(Tanh) as well as Relu, Silu and Prelu. The full version also
has the capability to load 4 configurations for 4 Networks.
Thus, Vgg 11, Vgg 12, Unet 11 and Unet 13 are loaded within
Enki and can be executed. Note that these configurations
can be easily changed without modifying the bitstream. The
reduced version is restricted by only supporting a single NN
configuration for execution and removing the support to full
float activation functions. The resource utilization of the Enki
chip-ip for each device is summarized in Table VIII and the on-
board latency results are shown in Table IX. Execution times
are expressed in milliseconds (ms) and represent the duration
of one execution step to process one input image.

TABLE VIII: Enki FPGA ressource usage

ID Zedboard | Kria KR260 | ZCU 102
reduced full full
CLB Flip-Flops (FF) 31654 37813 43991
30% 16% 8%
CLB LUTs 32921 42434 41637
62% 26% 15%
Block RAM (36Kb) (36Kb) 48 36 168
34% 25% 18%
UltraRAM Blocks NA 52 NA
81%
DSP Slices 182 234 237
83% 19% 9%
TABLE IX: Enki latencies
ID Zedboard | Kria KR260 | ZCU 102
50 Mhz 125 Mhz 250 Mhz
Vgg 41 (relu) 246 ms 88 ms 43 ms
Veg 42 (prelu) 247 ms 88 ms 43 ms
Unet 41 (relu) NA 911 ms 473 ms
Unet 43 (silu) NA 918 ms 477 ms

D. Discussion

The first above-mentioned development results of our tech-
nology highlighted the successful deployment capacity of Enki
and several points may be highlighted:

o The latency results are lower than we expected and to
what can be achieved on the Xilinx DPU®. This first
version of the full chip-ip Enki is not optimized yet.
On the Kria and the ZCU 102, the footprint is relatively
small which open the path for plenty of adjustments and
optimizations. Moreover, we selected some clock settings
that are below the maximum achievable on these card.

« Only latencies have been measured, since reconfiguration
is part of Enki technology. Each model already configured

8 Additional optimization steps using Xilinx software library might be
required to simple optimization steps described in this document

on Enki can be executed instantaneously via a simple
command. The reconfiguration with new external models
can be summarized to the cost of a copy into the correct
DDR area (so few microseconds) and therefore negligible
compared to inference latency execution time.

e The results from the reduced IP needs to be further
analyzed and compared to the full IP on the same board.

« It seems that there are some improvements with the use of
URAM memories on the Kria. The latency is a little less
than twice the latency of the ZCU 102. Again, it must be
confirmed per execution with and without URAM usage
on the same board (using the reduced IP for example).

o The Prelu execution compared to Relu is negligible how-
ever, the use of the Silu has an impact on the execution
time using the full float (taylor approximated) sigmoid
activation function. We are currently replacing these per
interpolation tables to speed up the process.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have successfully validated our bottom up
approach for an ship detection and segmentation application.
We have investigated several architectures from literature
and have set up a complete evaluation campaign to complete
the ASDC dataset. As expected, deeper and complex model
architecture provides the best accuracy but are not suitable
for on-board deployment. We have highlighted that small
models with simple optimization strategy can be deployed
and offer a good compromise between accuracy and on-board
performance. This work required the mastering on several
aspects from the early phase of the application design to
the on-board testing on SoC FPGA devices. A complete
bibliography is also presented along this document to
illustrate our argumentation and statements. Last but not
least, we successfully developed and tested the first prototype
of our Enki technology. This first prototype doesn’t include
optimization to enhance its performance, the latency results
are lower than expected. On the other hand, the current
resource usage on the selected devices shows that we have
a lot of available hardware to do so. Many perspectives
are under discussion to follow up this work. We first want
to instrument and explore a complete comparison analysis
with the Xilinx DPU including some energy consumption
measurements. Even if Enki offers limited latency compared
to Xilinx DPU, we believe that the overall pixel per Watt ratio
is still good due to our resource usage and clock settings. In
addition, we must complement this with a thorough analysis
on the impact of the configuration parameters for ENKI for
energy efficiency (such has been done on the Xilinx DPU
[66]). From the application point of view, we are currently
extending our work on to panoptic segmentation strategies
and applying it to PASTIS dataset [16]. Our first results are
very encouraging and we may combines it the use of CNN
with RNN concepts in ConvLSTM [60] to extract properly
the temporal relation in the image sequences.

(1]

(2]

(31
[4]
(3]

[6]

(7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

Space DPU: Constructing a Radiation-Tolerant, FPGA-based Platform
for Deep Learning Acceleration on Space Payloads. Zenodo, November
2021.

Survey of High-Performance Processors and FPGAs for On-Board
Processing and Machine Learning Applications. Zenodo, November
2021.

Intel (Altera). Fpga ai suite - ip reference manual. Technical Report
R2023a-R2023b, 2023.

Shunichi Amari. A theory of adaptive pattern classifiers.
Transactions on Electronic Computers, EC-16(3):299-307, 1967.
Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(12):2481-2495, 2017.

Jean-Baptiste Chaudron and Alfonso Mascarenas-Gonzalez. Exploring
segnet architectures for igpu embedded devices. In NCTA 2023 -
15th International Joint Conference on Neural Computation Theory and
Applications, 2023.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learn-
ing phrase representations using RNN encoder-decoder for statistical
machine translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1724-1734. ACL, 2014.

Saed Daoud, Geoffrey Eappen, Flor Ortiz, Eva Lagunas, Wallace Mar-
tins, and Symeon Chatzinotas. Cnn-based on-board interference detec-
tion in satellite systems: An analysis of dataset impact on performance.
In 2023 IEEE International Conference on Acoustics, Speech, and Signal
Processing Workshops (ICASSPW), pages 1-5, 2023.

Richard O Duda and Peter E Hart. Use of the hough transformation
to detect lines and curves in pictures. Communications of the ACM,
15(1):11-15, 1972.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted
linear units for neural network function approximation in reinforcement
learning. Neural Networks, 107:3—11, 2018. Special issue on deep
reinforcement learning.

Jeffrey L. Elman. Finding structure in time.
14(2):179-211, 1990.

Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer,
Sergo Jindariani, Nhan Tran, Luca P. Carloni, Giuseppe Di Guglielmo,
Philip C. Harris, Jeffrey D. Krupa, Dylan S. Rankin, Manuel Blanco
Valentin, Josiah D. Hester, Yingyi Luo, John Mamish, Seda Ogrenci
Memik, Thea Aarrestad, Hamza Javed, Vladimir Loncar, Maurizio
Pierini, Adrian Alan Pol, Sioni Summers, Javier M. Duarte, Scott Hauck,
Shih-Chieh Hsu, Jennifer Ngadiuba, Mia Liu, Duc Hoang, Edward
Kreinar, and Zhenbin Wu. hls4ml: An open-source codesign workflow
to empower scientific low-power machine learning devices. CoRR,
abs/2103.05579.

Fares Fourati and Mohamed-Slim Alouini. Artificial intelligence for
satellite communication: A review. Intelligent and Converged Networks,
2(3):213-243, 2021.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics, 36:193-202, 1980.

Gianluca Furano, Gabriele Meoni, Aubrey Dunne, David Moloney,
Veronique Ferlet-Cavrois, Antonis Tavoularis, Jonathan Byrne, Lonie
Buckley, Mihalis Psarakis, Kay-Obbe Voss, and Luca Fanucci. Towards
the use of artificial intelligence on the edge in space systems: Challenges
and opportunities. IEEE Aerospace and Electronic Systems Magazine,
35(12):44-56, 2020.

Vivien Sainte Fare Garnot and Loic Landrieu. Panoptic segmentation
of satellite image time series with convolutional temporal attention
networks, 2022. http://arxiv.org/abs/2107.07933 arXiv:2107.07933.
Felix A. Gers, Jirgen A. Schmidhuber, and Fred A. Cummins. Learn-
ing to forget: Continual prediction with Istm. Neural Comput.,
12(10):24512471, 2000.

Max Ghiglione and Vittorio Serra. Opportunities and challenges of ai on
satellite processing units. In Proceedings of the 19th ACM International
Conference on Computing Frontiers, CF ’22, page 221224, New York,
NY, USA, 2022. Association for Computing Machinery.

IEEE

Cognitive Science,

[19]

[20

[21]

[22]

[23

[24]

[25]

[26]

[27]

[28

[29]

[30]
[31]

[32]

[33]

[34

[35]

[36]

[37

[38]

[39

[40]

Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni, Matej Bati, Lonie
Buckley, Aubrey Dunne, Chris van Dijk, Marco Esposito, John Hefele,
Nathan Vercruyssen, Gianluca Furano, Massimiliano Pastena, and Josef
Aschbacher. The -sat-1 mission: The first on-board deep neural network
demonstrator for satellite earth observation. [EEE Transactions on
Geoscience and Remote Sensing, 60:1-14, 2022.

Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni, Matej Bati, Lonie
Buckley, Aubrey Dunne, Chris van Dijk, Marco Esposito, John Hefele,
Nathan Vercruyssen, Gianluca Furano, Massimiliano Pastena, and Josef
Aschbacher. The -sat-1 mission: The first on-board deep neural network
demonstrator for satellite earth observation. [EEE Transactions on
Geoscience and Remote Sensing, 60:1-14, 2022.

Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang.
[dl] a survey of fpga-based neural network inference accelerators. ACM
Transactions on Reconfigurable Technology and Systems, 12(1), mar
2019.

Sandi Habinc. Suitability of reprogrammable fpgas in space applications.
2002.

William Grant Hatcher and Wei Yu. A survey of deep learning:
Platforms, applications and emerging research trends. [EEE Access,
6:24411-24432, 2018.

Kaiming He, Georgia Gkioxari, Piotr Dollr, and Ross Girshick. Mask
r-cnn. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2980-2988, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification, 2015.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 770-778,
2016.

Jeff Inversion and Martin Faudi. Airbus ship detection challenge, 2018.
URL: https://kaggle.com/competitions/airbus-ship-detection.

Irie and Miyake. Capabilities of three-layered perceptrons. In IEEE 1988
International Conference on Neural Networks, pages 641-648 vol.1,
1988.

A.G. Ivakhnenko and V.G. Lapa. Cybernetic predicting devices. Tech-
nical Report 37803, U.S. Department of Commerce, 1966.

M I Jordan. Serial order: a parallel distributed processing approach.
technical report, june 1985-march 1986.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira, C.J.
Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc.,
2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278—
2324, 1998.

Vasileios Leon, Ioannis Stamoulias, George Lentaris, Dimitrios Soudris,
David Gonzalez-Arjona, Ruben Domingo, David Merodio Codinachs,
and Isabelle Conway. Development and testing on the european space-
grade brave fpgas: Evaluation of ng-large using high-performance dsp
benchmarks. IEEE Access, 9:131877-131892, 2021.

Seppo Linnainmaa. Taylor expansion of the accumulated rounding error.
BIT Computer Science and Numerical Mathematics, 16(2):146160, june
1976.

Shuying Liu and Weihong Deng. Very deep convolutional neural
network based image classification using small training sample size.
In 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR),
pages 730-734, 2015.

Tlya Loshchilov and Frank Hutter. Fixing weight decay regularization
in adam. CoRR, abs/1711.05101, 2017.

Inc MathWorks. Hdl coder - evaluation reference guide.
Report R2023a-R2023b, 2023.

Bho Matthiesen, Nasrin Razmi, Israel Leyva-Mayorga, Armin Dekorsy,
and Petar Popovski. Federated learning in satellite constellations. /EEE
Network, pages 1-16, 2023.

Warren Mcculloch and Walter Pitts. A logical calculus of ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics,
5:127-147, 1943.

Technical

[41]

[42]

(43]
(44]

[45]

[46]

(47]

[48]

(49]

(50]

[51]

[52]

[53]

(54]

[55]

[56]

[57]

(58]

(591

Microchip (Microsemi). Corevectorblox handbook. Technical Report
HB0919, November 2020.

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser
Kehtarnavaz, and Demetri Terzopoulos. Image segmentation using deep
learning: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(7):3523-3542, 2022.

Alessandro Pappalardo. Xilinx/brevitas, 2023.

Alessandro Pappalardo, Yaman Umuroglu, Michaela Blott, Jovan
Mitrevski, Ben Hawks, Nhan Tran, Vladimir Loncar, Sioni Summers,
Hendrik Borras, Jules Muhizi, Matthew Trahms, Shih-Chieh Hsu, Scott
Hauck, and Javier Duarte. Qonnx: Representing arbitrary-precision
quantized neural networks, 2022. http://arxiv.org/abs/2206.07527
arXiv:2206.07527.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Z.
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning
library. CoRR, abs/1912.01703, 2019. http://arxiv.org/abs/1912.01703
arXiv:1912.01703.

Krishna Patel, Chintan Bhatt, and Pier Luigi Mazzeo. Deep learning-
based automatic detection of ships: An experimental study using satellite
images. Journal of Imaging, 8(7), 2022.

Michael Petry, Patrick Gest, Andreas Koch, Max Ghiglione, and Martin
Werner. Accelerated deep-learning inference on fpgas in the space
domain. In Proceedings of the 20th ACM International Conference on
Computing Frontiers, CF °23, page 222228, New York, NY, USA, 2023.
Association for Computing Machinery.

Michael Petry, Patrick Gest, Andreas Koch, Max Ghiglione, and Martin
Werner. Accelerated deep-learning inference on fpgas in the space
domain. In Proceedings of the 20th ACM International Conference on
Computing Frontiers, CF *23, page 222228, New York, NY, USA, 2023.
Association for Computing Machinery.

Tobiasz Rafal, Wilczynski Grzegorz, Graszka Piotr, Czechowski Niko-
dem, and Luczak Sebastian. Edge devices inference performance com-
parison. Journal of Computing Science and Engineering, 17(2):5159,
June 2023.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activa-
tion functions, 2017. http://arxiv.org/abs/1710.05941 arXiv:1710.05941.
Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally,
Siddharth Samsi, and Jeremy Kepner. Survey and benchmarking of
machine learning accelerators. In 2019 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1-9, 2019.

Brianna I. Robertson and Aaron Smith. Optimizing space communica-
tions using deep learning. In 2021 IEEE Cognitive Communications for

Aerospace Applications Workshop (CCAAW), pages 1-8, 2021.
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. In Nassir

Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi,
editors, Medical Image Computing and Computer-Assisted Intervention
— MICCAI 2015, pages 234-241, Cham, 2015. Springer International
Publishing.

Frank Rosenblatt. The Perceptron - A Perceiving and Recognizing Au-
tomaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory,
1957.

Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65:386—
408, 1958.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal
Representations by Error Propagation, page 318362. MIT Press,
Cambridge, MA, USA, 1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211-252, 2015.

Antonia Russo and Gianluca Lax. Using artificial intelligence for space
challenges: A survey. Applied Sciences, 12(10), 2022.

S. Salcedo-Sanz, P. Ghamisi, M. Piles, M. Werner, L. Cuadra,
A. Moreno-Martnez, E. Izquierdo-Verdiguier, J. Muoz-Mar, Amirhosein
Mosavi, and G. Camps-Valls. Machine learning information fusion in
earth observation: A comprehensive review of methods, applications and
data sources. Information Fusion, 63:256-272, 2020.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
[71]
[72]

[73]

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin
Wong, and Wang-chun Woo. Convolutional Istm network: A machine
learning approach for precipitation nowcasting. NIPS’15, page 802810,
Cambridge, MA, USA, 2015. MIT Press.

Stefano Silvestrini and Michle Lavagna. Deep learning and artificial neu-
ral networks for spacecraft dynamics, navigation and control. Drones,
6(10), 2022.

Windy S. Slater, Nayana P. Tiwari, Tyler M. Lovelly, and Jesse K. Mee.
Total ionizing dose radiation testing of nvidia jetson nano gpus. In 2020
IEEE High Performance Extreme Computing Conference (HPEC), pages
1-3, 2020.

Juan Terven, Diana M. Cordova-Esparza, Alfonso Ramirez-Pedraza, and
Edgar A. Chavez-Urbiola. Loss functions and metrics in deep learning,
2023. http://arxiv.org/abs/2307.02694 arXiv:2307.02694.

Massimo Tipaldi, Raffaele Iervolino, and Paolo Roberto Massenio.
Reinforcement learning in spacecraft control applications: Advances,
prospects, and challenges. Annual Reviews in Control, 54:1-23, 2022.

Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela
Blott, Philip Heng Wai Leong, Magnus Jahre, and Kees A. Vissers.
FINN: A framework for fast, scalable binarized neural network infer-
ence. CoRR, abs/1612.07119, 2016. http://arxiv.org/abs/1612.07119
arXiv:1612.07119.

Jurgen Vandendriessche, Bruno Da Silva, and Abdellah Touhafi. Fre-
quency evaluation of the xilinx dpu towards energy efficiency. In
IECON 2022 48th Annual Conference of the IEEE Industrial Electronics
Society, pages 1-6, 2022.

Teng Wang, Chao Wang, Xuehai Zhou, and Huaping Chen. An overview
of fpga based deep learning accelerators: Challenges and opportunities.
In 2019 IEEE 2l1st International Conference on High Performance
Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pages 1674-1681, 2019.

Paul J. Werbos. Applications of advances in nonlinear sensitivity
analysis. In R. F. Drenick and F. Kozin, editors, System Modeling and
Optimization, pages 762—770, Berlin, Heidelberg, 1982. Springer Berlin
Heidelberg.

Saining Xie, Ross Girshick, Piotr Dollr, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks. In 2077
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5987-5995, 2017.

Xilinx. Zyng-7000 soc data sheet: Overview. Technical Report DS190,
v1.11.1, July 2018.

Xilinx. Zynq ultrascale+ mpsoc data sheet: Overview. Technical Report
DS891, v1.10, February 2022.

Xilinx. Kria k26 som data sheet. Technical Report DS987, v1.4.1, July
2023.

Xilinx. Dpucahx8I for convolutional neural networks - product guide.
Technical Report PG366, v1.0, March 2024.

Session Tu.1.B

Realtime System

Tuesday 11th June
11:30

Lauragais Room

33

34

Runtime Performance Evaluation of a
Non-Preemptive Cooperative Multithreading
Framework Through Tracing

Lea Jungmann, Zain A. H. Hammadeh, Jan Sommer, Daniel Liidtke
Institute for Software Technology

German Aerospace Center (DLR)
Braunschweig, Germany
lea.jungmann@dlr.de, zain.hajhammadeh@dlr.de, jan.sommer@dlIr.de, daniel.luedtke @dlr.de

Abstract—In the aerospace and automotive domains, there is a
growing trend towards delegating more tasks to embedded soft-
ware, employing sophisticated algorithms and machine learning-
based solutions. As a result of this trend, the complexity of
embedded software is escalating rapidly. Classical performance
analysis methods, such as static worst-case execution time anal-
ysis, struggle to cope with this complexity without providing
prohibitively over-approximated upper bounds.

In this paper, we introduce a tracing-based performance analy-
sis approach tailored to data flow space applications. We illustrate
how traces are leveraged to extract arrival curves, minimum
distance functions, and execution times. We showcase the utility
of tracing in design decisions using an aerospace use case, e.g.,
optimising the number of cores to reduce end-to-end latency.
Furthermore, we extracted and presented debugging information
graphically. While our tracing-based performance analysis may
introduce overhead on the extracted timing properties, such as
worst-case execution time, this overhead is bounded by 6.5%.
Finally, we demonstrated the efficacy of our proposed tracing-
based analysis approach through its application in a space
application scenario.

I. INTRODUCTION

Modern space applications, including Earth observation, in-
orbit servicing, and autonomous spacecraft and rover mis-
sions on distant celestial bodies, entail intensive on-board
data processing and sophisticated control algorithms. These
applications can become very complex, with high requirements
for reliability and performance. The high demand for small
satellites, such as cube-sats, necessitates more modular and
reusable software that meets mission requirements, including
timing requirements.

Multi-core platforms can offer high performance with low
power consumption compared to single-core platforms. How-
ever, the parallel execution and simultaneous access to shared
resources on multi-core platforms introduce additional com-
plexity to embedded software. Furthermore, reading from
sensors involves a significant time delay relative to computing
time. Although self-suspending processes are employed for
sensor reading, they contribute to more intricate and less
predictable timing models. Event-driven execution models,

Execution Trace file Visualisation
Timing
f,_r; Analyses

Fig. 1. Workflow of the tracing discussed in this paper: the execution of
a program equipped with tracing results in a trace file which can either be
graphically displayed or further analysed.

such as the publisher-subscriber model in Robotic Operating
System version 2 (ROS2) [1], are also commonly employed
for improved data predictability. In this case, a common
industry practice is to assign tasks to a pool of threads
where the threads cooperate to execute the tasks under a non-
preemptive manner [1], [2]. Nevertheless, these models do not
simplify timing considerations; instead, they introduce their
own complexities.

Measurement-based performance analyses are widely uti-
lized in the industry; however, they cannot guarantee complete
coverage of all corner cases. Static methods, on the other hand,
can offer formal guarantees on performance and are primarily
employed for safety-critical applications. Despite providing
over-approximated results, static methods struggle to smoothly
scale with the complexity of modern hardware/software. Con-
temporary research often leans towards proposing hybrid ap-
proaches to address the heightened complexity of modern
hardware/software and compute reliable guarantees. Tracing
emerges as a versatile approach to extract crucial runtime in-
formation from complex embedded software to enhance formal
methods. For instance, tracers have been used to define the
activation pattern of tasks in the Real-Time Calculus (RTC) [3]
approach and the Symbolic Timing Analysis for Systems

(SymTA/S) [4] approach. This technique finds application in
various domains, such as robotics [5] and automotive [6],
where it aids in extracting timing properties and establishing
precedence relations between software components. Tracing
is preferred over regular debugging, as the latter may lead
to breakpoints violating timing requirements or skewing the
observed performance.

In this work, we aim to extract timing properties of applica-
tions with complex timing behaviour, namely applications ex-
ecuted by cooperating thread pools. For that end, our proposal
utilizes a tracing mechanism. Also, we present how to visualise
these traces, and how to extract debugging information from
them, using open-source tools. An overview of our proposed
workflow is summerised in Fig.1. Our work employs the
Common Trace Format (CTF) [7] to write traces. and the
TraceCompass [8] to visualise the traces. Also, we use Babel-
trace [9] to extract timing properties from the traces. We im-
plemented our proposed tracing mechanism on an event-driven
multithreading framework, namely Tasking Framework [2]. As
our applications are intended to run on different operating
systems, primarily Linux and RTEMS, we are focused on
developing a cross-platform tracing mechanism.

In the following section, we explore the related work. In
Section III, we briefly introduce Tasking Framework and its
main features. In Section IV, we elaborate on the imple-
mentation of the tracing mechanism. Section V presents our
approach to extract timing properties. The overhead of the
proposed tracing mechanism is discussed in Section VI. We
demonstrate the applicability of the proposed approach on
a realistic case study in Section VII. Finally, Section VIII
concludes the paper.

II. STATE OF THE ART

The extraction of runtime information is vital for the de-
veloping process. Knowing the execution behaviour is key
to debugging and, later on, the optimisation of a system. An
established way of extracting runtime information is tracing.
Tracing records the behaviour of a system during its execution
by placing hooks, called tracepoints, in the code [10]. At its
core, tracing produces a trace file that can be read and analysed
after it is produced [11]. Depending on the tracepoints and
their eventual content, the runtime information gained with
tracing can vary, depending on the observed system. If the
system structure is not known or only known partially, the
focus when extracting runtime information may lie in getting
a more complete system model such as in [12], [13]. In other
cases, such as in [5], runtime information, such as response
times, is collected to aid in analysing timing behaviour.

Facing unknown behaviour in a real-time system, [12]’s
approach uses execution traces and a task definition to model
the system’s runtime behaviour as a set of independent peri-
odic tasks. All tasks occurring in a given execution trace are
categorised as either periodic or non-periodic. Furthermore,

they extract additional information on the periodic tasks such
as their period and response time profile.

Usually, traces are extracted using Tracers, tools that use
already existing or custom hooks to instrument the code for
recording during runtime. A popular tracer for Linux applica-
tions is the Linux Trace Toolkit: next Generation (LTTng) [14],
that is capable of tracing processes both in the kernel and
user space. For kernel tracing, it uses tracepoints already
embedded in the Linux kernel. For user space tracing, LTTng
needs the application to be instrumented using either LTTng-
style tracepoints or Java or Python logging statements that
are then fed to a LTTng handler. LTTng uses a binary format
called Common Trace Format (CTF) [7] to write its traces
in a compact manner. LTTng is also used as a basis for
other tracing tools, such as in [5], which presents a range
of multi-purpose tracing tools for the ROS 2 that use LTTng
as their tracing backend. LTTng is used because it has both
user and kernel space tracing capabilities, making the trace as
comprehensive as possible for Linux applications, as well its
low overhead and real-time compatibility.

[13] employs the extended Berkeley Packet Filter (eBPF)
for tracing in ROS 2. Other than LTTng, it does not require di-
rect instrumentation, which would lead to having to recompile
ROS2 standard libraries. Tracing is used in [13] to extract the
flow of information within the system, since this information
may not be directly accessible in industry scenarios. It does so
by identifying and tracking ROS 2 nodes and callbacks during
execution.

LTTng only runs on Linux systems, making it unsuitable for
cross-platform applications. However, the format that LTTng
uses, CTF, is an open standard that is intelligible to both indus-
try tools such as Tracealyzer [15] and open-source solutions
like TraceCompass [8]. Its binary nature makes CTF a very
compact format already, its high flexibility regarding form and
content of individual events, instances of tracepoints being
passed, allows to control the amount of overhead and size
of the resulting trace file.

To cope with the emerged challenges from using new
programming language like Rust, Wang et al. proposed in [16]
a context aware tracing for estimating the execution time of
asynchronous tasks. The main concern of [16] is the Rust
programs that are implemented as coroutines. Hence, the ap-
plicability of [16] is limited to Rust asynchronous programs.

III. TASKING FRAMEWORK

The Tasking Framework is an open-source' non-preemptive,

cooperative multithreading C++ framework and execution
platform, mainly used in the development of space applica-
tions [2]. It is being developed by the German Aerospace
Center. While it supports different platforms such as Linux,

Uhttps://github.com/DLR-SC/tasking-framework

cam1 Img10

inputTrigger

craT CraterPos

I—)D—)‘M Img45 P@—)‘ feaT k—) FeaturePos /L>D—>

‘ Task ‘ {Input} Channel

navi

processTrigger @@ —>

Fig. 2. The optical navigation subsystem in ATON [17] in Tasking Framework.

RTEMS and FreeRTOS, it can also be run on bare-
metal. Tasking Framework has been used in several space
projects, including Autonomous Terrain-based Optical Navi-
gation (ATON) [17], Euglena Combined Organic food Pro-
duction In Space (Eu:CROPIS) [18], and Scalable On-Board
Computing for Space Avionics (ScOSA) [19].

In Tasking Framework, applications are modelled as a graph
of tasks, channels and inputs, as can be seen in Fig.2, which
models the optical navigation subsystem of ATON. This task
and channel model is modelled after Petri nets, with tasks
analogous to transitions and channels likened to places. As
with Petri nets, channels and tasks are connected through
inputs. Channels can be thought of as data storage while tasks
are processing units that take their input from and push their
output to channels. Once data is pushed on a channel, the
inputs that connect tasks to the channel are notified of the
new data on the channel. This may lead to the activation of
the connected tasks. In addition, there are also events. Events
are used to either periodically trigger a task or to trigger the
task after a time-out.

The point in time at which a task is activated, that means
marked as ready to be executed, depends on the activation
model used for this task. Tasking Framework supports different
activation models, meaning the conditions of activation can be
chosen individually for each task. Thus, a task may wait for a
push on all, one or some channels that it is connected to or may
require multiple pushes on a channel before activation. The
activation model for a task is chosen at compile time, however,
the task barrier structure, a specialised kind of channel, may be
used if the amount of pushes required for task activation has
to be changed during runtime. The default call semantic for
tasks is asynchronous, however, the task group structure can
be used to implement synchronicity among a group of tasks,
meaning that a task once executed can only be executed again
after all other tasks in the group have also executed regardless
of its own activation status.

When a task is activated, it will be queued for execution.
Tasks are executed using a pool of threads, called executors,
that collaborate on the execution of tasks. Tasks are executed

by Tasking Framework in non-preemptive manner. Fig. 3
illustrates the execution model in Tasking Framework. There
are three scheduling policies supported in Tasking Framework,
namely First-In First-Out (FIFO); Last-In First-Out (LIFO);
Fixed Priority. The scheduling is work-conservative, i.e., there
is no idle executor as long as the ready queue is not empty.
Executors collaborate in a load-balancing manner and every
task can be executed by any available executor.

Currently, the application programming interface (API) of
Tasking Framework supports only C++. Developing applica-
tions using different programming languages is not supported
up to now.

IV. IMPLEMENTATION

This section outlines how a tracing mechanism was inte-
grated into Tasking Framework and how it can be displayed
with TraceCompass [8]. Tracing the Tasking Framework is
reliant on the instrumentation of its code, i.e. the hooks placed
in the source code to record a Tasking Framework application.
We use the Common Trace Format (CTF) [7], which is a
flexible and lightweight binary format, to write traces. The
Tasking Framework is large enough that it would cause too
much overhead to record every single action that is executed
during the runtime. Thus, one must identify a configuration of
points within Tasking Framework that give an accurate picture
of the inner happenings of the framework. Preferably, with as
few points as possible as to avoid causing too much overhead.
These tracepoints are:

1) A push on a channel. The push on a channel happens

whenever new data is made available to the channel.
In turn, all connected inputs are notified informing the
connected tasks that new data is available on the channel.

2) Activation of a task. The activation of a task signals that

a task is ready to be executed and has been queued by
the scheduler to wait for the next free execution slot.

3) Task starts & stops executing. This shows how long the

task had to wait before being executed and how long it
was executed.
Pushes are triggers for task activation and their presence or
absence in a trace can contribute to error searches. The timing

Tasking Framework

Graph of tasks
—_

@ Executorsﬁ
s/ ¢
@ policy
@ @ L » Event Queue »

Task Queue

(threads)

Executor’s life cycle:

wait(&cond_var)

Scheduling policies:

LIFO

§E§ Priori
aan ;

waeors = /= [T =

platform 3 FIFO

* Work-conserving scheduling
* The load is balanced on the
available executors

Fig. 3. The execution model in Tasking Framework.

information on the activation, start and stop of the execution
of a task can provide information on execution and queueing
wait times. The tracer class is implemented as a singleton to
prevent conflicting write processes, especially when multiple
threads are running and generating events at the same time.
Customising the trace format also gives control over the
amount of overhead produced by the tracer because custom
events can use only the exact amount of data needed and do
not have to fill fields with empty data to conform to standards.
Custom events pose the question of how exactly their payloads
are supposed to look like. Keeping the payload small is
imperative to keeping the overhead small. Each tracepoint
generates an event upon execution. Hence, the four custom
events are:

o push on a channel)\;, denoted by 7
« activation of a task 7;, denoted by «;
« start of a task execution, denoted by o;
o stop of a task execution, denoted by o ;

We introduce the trace 6 as a finite set of these events.

Each of these events requires at least the identification
number of the relevant task or channel in order to match the
events to their corresponding tasks or channels. While this is
enough to complete necessary calculations and calculate corre-
sponding graphs, these graphs are not particularly readable for
humans. The number associated to each task is not a speaking
name and would require the developer or user to look up the
numbers in Tasking Framework in a time-inefficient manner.
To prevent this, the payload of each custom event includes
not only the identification number of a task but also its four-
character name that is used for display purposes and for user
interaction.

We use TraceCompass [8] to visualise our traces. Trace-
Compass is an Eclipse Rich Client Platform (RCP) tool to
read, visualise and analyse traces. TraceCompass provides a
variety of charts. These charts allow for inspecting, measur-
ing and analysing the opened trace. Like all Eclipse RCPs,
TraceCompass can be modularly expanded with the help of

plug-ins to add more functionality. Plug-ins for TraceCompass
include plug-ins for additional analyses, scripting, global filters
and support for additional trace types by different tracers
and profilers. Since TraceCompass is built and specialised
on Linux kernel and user space traces, it does not include
many charts for custom traces. In fact, a completely custom
CTF trace imported into TraceCompass will get two charts
generated by TraceCompass, the Statistics chart, that shows
the absolute and relative frequencies of the events in the trace,
and a list of all events and their payloads contained in the trace,
that is by default chronologically ordered. While manageable
for very small traces, these two charts are not very helpful
when used with traces that contain more than a handful of
events. Additionally, while CTF does not have a limitation
on the length of individual traces, there is a limit of about
1.6 million events that can be loaded into and displayed in
TraceCompass. For traces containing more events, there are
other tools such as Babeltrace [9], that are able to handle trace
files of that size.

Making a custom graph is possible using a Python script
and the EASE scripting module integrated into TraceCompass.
The script takes the currently opened trace as input and iterates
over the events. Each event whose name can be matched to
one of the defined custom events is used to extract its quark,
which in TraceCompass stands for a unique identifier for an
object. In this case, the quark is generated from the event
name, meaning the events are sorted by task or channel name.
The event is then added to the state system using the quark
and the timestamp to sort it to the right position. Once all
eligible events are added to the state system, it is used to
create a TimeGraph. TimeGraph lists all states, in this case
tasks and channels, on the left side of the diagram while using
a timeline as x-axis. This custom TimeGraph will be referred
to as Tasking Graph. An example of a Tasking Graph can be
seen in Fig.4, which displays the Tasking Graph of a trace
of a skeleton implementation of the ATON optical navigation
subsystem shown in Fig.2. This means, each task or channel

6:31:20.451100 08:31:20.451110 08:31:20.451120 08:31:20.45113) 08:31:20.451140 08:31:20.451150

¥ aton
proc
navi Y T S Executing
outP 1

w2 L Activated =]
=

inpu
cam? Executing

com ! —— QI I Eecuting

ima5 ']

im10 8

feal T I EEcuting

cral T M Eeiting

feaP 1
crab]

Fig. 4. Tasking Graph of the use case shown in Fig.2.

gets its own individual timeline that displays how the object
changes states during the runtime. Activation and Execution
periods for each task (light and dark blue respectively) are
displayed on task timelines, while channel timelines display
pushes (green).

V. EXTRACTING TIMING PROPERTIES

Next to the graphical representation of the trace, which can
be useful for debugging, the generated trace can give more
insights into the system behaviour. This information can then
be used to decide whether a system needs traffic shaping or
reconfiguring. The tracepoints on task activation and start of
execution help to determine how long a task has to wait in
each instance before it gets executed while the start and end
times give insight to the execution time of a task. Let ¢¢v¢™!
represent the timestamp of the event.

The instance k of 7; experiences a queuing time ¢:

g =t — 1)
Hence, the maximum queuing time that 7; suffers is:

Qi = maz{qF|Vk € 0} 2)

k.

i

The instance k of 7; experiences an execution time ¢
e =ton o 3)

The longest observable execution time of 7; is:
C; = maz{cF|Vk € 6} 4

When tracing the activations and executions of a task, one
can also analyse the trace to study possibly emerging patterns
in the task behaviour and use them to predict system behaviour.
For systems that run, ideally, in perpetuity or for very long
stretches of time, tracing can only offer a snapshot of the
system behaviour. However, graphical analysis is not the only
analysis that can be applied to a trace. The recorded events
of a Tasking Framework trace allow for the extraction of the
following information: execution time of every instance of a
particular task, activation times and queuing times, as well as
push behaviour.

In practice, we use Babeltrace and its python bindings to
iterate over the trace. This allows us to extract execution and

Number of Activations
«
&

[
0.085 0304 0522 0741 0959 1178 1397 1615 1.834 2.052 2.271 2489 2.708 2.927
Maximal Interval (ns) le10

Fig. 5. Arrival curve T (At) of the navigation task (navi) of ATON.

queuing times, as well as compute arrival curves and distance
functions.

A. Arrival Curves

An arrival curve is a function that can be applied to a
trace or any other timeline of events. The minimum and
maximum arrival curves = (At) and n*(At), are defined as
functions on Rt — N, so that for any half-open time interval
[t,t + At) they return respectively either the minimum or
maximum number of task activations « that can occur within
the interval [20], [21]. An example of a maximum arrival
curve can be seen in Fig.5. Arrival curves are non-decreasing,
with n™(At) being sub-additive, meaning that the following
is always true for n*(At):

VAL, A € RT it (At + AY) <t (At) + T (AY) (5)

B. Distance Functions

Distance functions are the pseudo-inverse of arrival curves.
The minimum (maximum) distance function d~(n) (respec-
tively 6% (n)) is defined on N* — R and returns the smallest
(largest) time interval At that contains at least (at most) n
events. An example for a minimum distance function can be
seen in Fig.6. Minimum distance functions are non-decreasing
and super-additive [21], meaning that every minimum distance
function fulfils the following:

Vn,n' € NT: 6 (n)+0~(n') <6 (n+n) (6)

C. Extrapolating Trace Data

Exploiting the sub-additive and super-additive properties of
nT(At) and 6 (n), it is possible to extrapolate data for the
behaviour of a traced system under the following assumption:
the 67 (2), which was observed within the trace, is also the
global minimum. With this assumption in mind, distance
functions can be extrapolated as follows:

" (n+1)=6"(n)+d5(2). @)
While arrival curves can be extrapolated with:

0t (At + At') = T (At) + nt (A) ®)

lel0

2.879 1
2.657 4 o
2.436 4 C
2.214 4 X
1.993 A e
1.771 1
1.550
1.329
1.107 A
0.886 -
0.664 -
0.443
0.221
0.000
0

Minimal Interval (ns)

10 20 30 40 50 60 70 80 90 100
Number of Activations

Fig. 6. Distance function 6~ (n) for the navigation task (navi) of ATON.

When using this extrapolation, it has to be noted that this is
a safe extrapolation. Meaning, the extrapolated data has to be
treated as lower or upper bound for the distance function and
arrival curve respectively, meaning in case of a distance func-
tion that the extrapolated values represent the smallest possible
value with no indication of an upper limit. Meanwhile, for the
arrival curve the extrapolated data represents an upper bound
with no indication for a lower bound.

VI. OVERHEAD OF TRACING

To measure the overhead caused by the tracing mechanism,
example applications were profiled, resulting in a detailed
overview of how much time the applications spent in which
function. These example applications use dummy tasks, which
are tasks with negligible computational effort, to replicate real-
world applications in their structure. The offline overhead, i.e.,
the overhead of all functions that are involved in tracing, lies at
around 15%-20%, depending on the profiler that is used. More
relevant, however, is the overhead that is actively interfering
with the timing behaviour of the tasks. The overhead of the
tracing functions that affect the timing behaviour is caused by
three functions, namely the ones that record pushes on a chan-
nel and the start and stop of a task executing. Their overhead
sums up to 5.8%-6.5%, depending on the used profiler. Note,
that the execution times of the tracing function are mostly
fixed, since they always write the same amount of data. That
means, if a task executes longer, the percentage of the overhead
goes down accordingly. We computed the overhead using
almost empty dummy tasks. Hence, the overhead shown here
is likely to be an upper boundary of the possible overhead.

VII. USE CASE

We are considering a use case inspired by the optical
navigation subsystem of the ATON project, utilizing the Linux
operating system and ARM Cortex-A53 (1.2 GHz) as an

embedded quad core processor. The aim of the experiments
in this section is to showcase the effectiveness of our pro-
posed tracing mechanism as a performance analysis approach,
focusing on extracting the timing properties of our use case.
We conducted three experiments to exemplify how our tracing-
based performance analysis is seamlessly integrated into the
design process of safety-critical applications.

We have recorded a trace of 83523 events and extracted
arrival curves and distance functions for event-driven tasks.
Figures 5 and 6 illustrate 7 (At) and 6~ (n) respectively for
the navigation task (navi). Since the task is event-driven, its
activation pattern is non-periodic. Our use case represents a
graph of tasks. Therefore, we are interested not only in the
timing properties of each task but also in the timing properties
of different chains defined within the graph, specifically the
end-to-end latency. We define a chain as the execution of a
sequence of tasks from a source to a sink. In our use case,
cam] and cam?2 are sources, and terl and ter2 are sinks. Hence,
there are four chains. Let y denote a chain, thus:

x1 : caml — craT — navi — terl

x2 : caml — craT — navi — ter2

X3 : cam2 — feaT — navi — ter2

X4 : cam2 — feaT — navi — terl

A. Design decision 1: Platform

The goal of this experiment is to demonstrate the capability
of our tracing mechanism to be cross-platform. Hence, beside
the above mentioned settings (Linux + Cortex-A53), we com-
piled our case study to run on RTEMS using the GR712RC
board with LEON3 processor (40 MHz), which is the default
radiation-hardened processor for space systems. We present
the execution time and queuing time experienced by each task
considering FIFO scheduling with one executor in Fig. 7 for
Linux + Cortex-A53 platform. Also, in Fig. 8 we consider
FIFO scheduling with one executor for RTEMS + LEON3
platform. The end-to-end latency for both platforms is pre-
sented in Fig. 9. RTEMS, as an RTOS, produces results with
less variation and suffering from less interference thanks to the
RTOS kernel. Therefore, the range between the minimum and
maximum values is smaller compared to the results obtained
from the Linux OS. However, the maximum observable exe-
cution times are not improved, nor the queuing times. In fact,
the third quartile values using the RTEMS + LEON3 platform
for both the execution time and the queuing time are about
100 times larger than the third quartile values using Linux
+ Cortex-A53. The main reason is the very slow radiation-
hardened processor (LEON3 with 40 MHz) which is about 30
times slower than the high-performance platform (Cortex-A53
with 1.2GHz). The need for more on-board processing power
is a major concern for researchers and space companies. Many
missions aim to integrate high-performance commercial off-
the-shelf (COTS) processors alongside the radiation-hardened

104

103

n

10

IITTIII

101

Execution time (u sec)

100 | | | | | | |
caml cam2 craT feaT mnavi terl ter2

—_
[en}
=

—_
[en)
w

[TIIT1

| | | | | | |
caml cam2 craT feaT navi terl ter2

Queueing time (1 sec)
— —
o o
— ¢

—_
[en}
o

Fig. 7. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using one executor on the Linux + Cortex-A53 platform.

CTTTITTTITIT

102

101

Execution time (u sec)

100 | | | | | | |
caml cam2 craT feaT mnavi terl ter2

—
o
'S

—_
[en)
w

Queueing time (1 sec)
—_ —_
o o
— ©

| | | | | | |
caml cam2 craT feaT navi terl ter2

—_
[en}
o

Fig. 8. The execution time and the queuing time of the tasks in the use case under the FIFO scheduling using one executor on the RTEMS + LEON3

platform.

[|
X4 |- T i

[|
X2 |- i i

102
End-to-End Latency (u sec)

xif —
X3 - |_|_|
X2 |- |_|_|
af —
Lol Lol L
102 103 104 10°

End-to-End Latency (u sec)

Fig. 9. The end-to-end latency of the chains under the FIFO scheduling considering one executor. In the left figure (in red), we consider the Linux +
Cortex-A53 platform, and we consider the RTEMS + LEON3 platform for the right figure (in blue).

processors [22]-[24] to meet the required on-board processing
power.

B. Design decision 2: Scheduling policy

In this experiment, we utilize our tracing mechanism to
study the impact of scheduling policies and priority assign-
ments on the timing behavior of tasks. Accordingly, we
generated a new trace on Linux + Cortex-AS3 architecture
considering fixed priority scheduling, with priorities assigned
as outlined in Table I?. The new results are presented in
Fig. 10. As the Tasking Framework executes tasks in a non-
preemptive manner, the queuing time of tasks may exceed
their execution time. However, employing priority scheduling
reduces the queuing time and improves task execution times.

2We refer here to the FIFO and priority scheduling implemented in the
Tasking Framework, as depicted in Fig. 3

TABLE I
PRIORITY ASSIGNMENTS WHERE 1 IS THE HIGHEST PRIORITY
Task caml cam2 craT feaT —navi terl ter2
Priority 1 1 3 2 4 5 5

Consequently, the end-to-end latency is enhanced. Fig. 11 il-
lustrates the end-to-end latency for FIFO scheduling (depicted
in red on the left) and priority scheduling (shown in blue
on the right). Under FIFO scheduling, data processed from
caml to terl, in X1, experience the longest end-to-end latency.
Conversely, under priority scheduling, y2 exhibits the longest
latency.

With this experiment we show that it is possible to extract
enough data using tracing to come to a sound decision regard-
ing scheduling policy. In this paper, unless stated otherwise,
we use FIFO scheduling for all other experiments.

g 104

SENE

g

el TITT

o

g

w100 | | | | | | |

caml cam2 craT feaT mnavi terl ter2

104

103

102

@1lllll

100 | | | | | | |
caml cam2 craT feaT navi terl ter2

10!

Queueing time (1 sec)

Fig. 10. The execution time and the queuing time of the tasks in the use case under the fixed priority scheduling using one executor on Linux + Cortex-A53

platform.

[|
X4 |- T {

End-to-End Latency (u sec)

l |
X4 1

xs3

End-to-End Latency (u sec)

Fig. 11. The end-to-end latency of the chains considering one executor on the Linux + Cortex-A53 platform. In the left figure (in red), we consider the FIFO
scheduling, and we consider the priority scheduling for the right figure (in blue).

C. Design decision 3: Number of executors

We aim to address a design question: how many cores
should be allocated to the ATON optical navigation subsystem
to strike a balance between delay and the number of cores?
To achieve this, we executed our code under FIFO schedul-
ing, considering two and three executors, respectively. The
results are presented in Fig. 12 and Fig. 13. Comparing the
results of one executor (Fig. 7) with two executors (Fig. 12),
we observed that the execution times were better with two
executors, but the maximum values increased. This can be
attributed to the increased ratio of cache misses that tasks
may experience when executed by two different executors on
different cores. Consequently, the maximum queuing time of
the tasks also increased significantly, although the minimum
values improved. Fig. 14 demonstrates that the minimum end-
to-end latency improved compared to the scenario with one
executor under FIFO and priority scheduling. However, the
maximum end-to-end latency increased significantly.

D. Comparing with static methods

Industrial embedded software are complex and formal meth-
ods cannot cope with it. Using languages like C, C++, RUST
makes the analysis even more complicated. For instance, using
virtual methods in C++ leads to indirect jumps, beside the indi-
rect jumps caused by the switch-case statements and functions
pointers in C and C++. Also, the objected-oriented program-
ming in C++ makes bounding the loop more challenging for

tools depend on the source code like oRange [25]. Solutions
that use dynamic symbolic execution, like e.g. DELOOP [26],
can help us to resolve indirect jumps and compute safe bounds
on the bounded loops. In [26], the dynamic symbolic execution
was used to compute flow facts for Tasking Framework. These
flow facts were forwarded to OTAWA [27] to compute the
WCET of the Tasking Framework functions, for instance,
the push function. The main drawbacks of dynamic symbolic
execution based solutions that they are platform dependent. As
DELOOP was developed for armv7 architecture, it cannot be
used out of the box to compute the execution time for, e.g.,
X86 architecture. Using portable tracing based solution like
our proposed solution can overcome the challenges emerged
from different programming languages and it is platform
independent. Table II shows the WCET of the push function in
all tasks of our use case for ARM Cortex-M3. The results in
Table II are more pessimistic than the results computed using
the traces because they consider the longest execution path in
the push function, which may not observable in the trace.

TABLE 1T
RESULTS OF THE WCET ANALYSIS FOR THE PUSH FUNCTION IN THE USE
CASE
Task WCET (cycles)
caml 2435
cam?2 2435
craT 3635
feaT 3635
navi 4800

106

103
102
101

Execution time (u sec)

1lrll1]

100

caml cam2 craT feaT mnavi terl ter2

106
10°
104
103
102
10!

100 | | | | | | |
caml cam2 craT feaT navi terl ter2

[

Queueing time (i sec)

Fig. 12. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using two executors on the Linux + Cortex-AS53

platform.

-
|

Execution time (u sec)
=
o
w

tllrI]

caml cam2 craT feaT mnavi terl ter2

109
10
104
103
102
10t
100

ff{J_}{J_}TTEI:i

| | | | | | |
caml cam2 craT feaT navi terl ter2

Queueing time (u sec)

Fig. 13. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using three executors on the Linux + Cortex-A53

platform.

l | |
X4 |- 1 1

l |
X3 | 1

X2

X1

N T

103 10* 10° 106
End-to-End Latency (i sec)

107

102

X4 |- |
X3 |- |
X2 - |

X1 - |
N T Y N T e WA 11
103 104 10° 106
End-to-End Latency (i sec)

107

102

Fig. 14. The end-to-end latency of the chains considering the FIFO scheduling on the Linux + Cortex-A53 platform. In the left figure (in green), we use two

executors, and we use three executors in the right figure (in yellow).

VIII. CONCLUSION AND OUTLOOK

With the increasing complexity of embedded software, es-
pecially on-board software, performance analysis using static
methods faces the challenge of providing tight yet safe guaran-
tees. Extracting timing properties using tracing is a promising
technique to assist static methods to cope with the growing
complexity of embedded software. In this work, we presented
a tracing mechanism for performance analysis of data flow
space applications that reuses open-source tools to offer a
cross-platform solution. We showed how to use our solution to
extract debugging and timing properties of a use case inspired
by the optical navigation subsystem. Also, we studied the
overhead of our solution.

Any tracing solution suffers from two main points: 1) the
need for code instrumentation, 2) the overhead of the events.

As eliminating the two points is not realistic, reducing the
overhead or the impact of the overhead on the measured pa-
rameters is a topic for future improvements. Additionally, code
instrumentation can be automated using auto-code generators
to guarantee less error-prone instrumentation. For this, we
aim to employ the Timing Modeling Language (TML) [28]
to automatically instrument the auto-generated code for our
applications. In such a step, the developer can generate the
traceable code and resulting traces with minimum effort and
minimum human errors. Fig. 15 illustrates the TML model-
ing interface that would make such an automated approach
possible.

REFERENCES

[1] D. Casini, T. BlaB, I. Liitkebohle, and B. B. Brandenburg, “Response-
time analysis of ROS 2 processing chains under reservation-based

Task Camera{

Name valueType size source inputs{

< double A FLOAT B ¢ M No Value trigger;
4uinB2t 2 INTEGER iy W ctinth)

< uint8_t = INTEGER Wi W stdinth outputs{

image : Can|
] 1 —
DataType Cameralmage { Cameralmage

parameters{
apertru;

dataArray : uint8_t[1024][500];

} }

[d) *TaskingEnvironment.tml_system 52 -8
2¢ Palette P
NS ©

IR cameral analyserl (= Task Definitions <

[Camera
Gimer. ti9gEr image tFIFO input Reciever
(= Channel Defi... <
camera2 analyzer2 TFIFO
= Timing
tri image

TimeEvent

tFIFO input

Fig. 15. The Timing Modeling Language (TML): an auto-code generator for
Tasking Framework.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(1

(10]

(11]

[12]

(13]

scheduling,” in 3Ist Euromicro Conference on Real-Time Systems
(ECRTS 2019), vol. 133. Dagstuhl, Germany: Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2019, pp. 6:1-6:23.

Z. A. H. Hammadeh, T. Franz, O. Maibaum, A. Gerndt, and D. Liidtke,
“Event-driven multithreading execution platform for real-time on-board
software systems,” in Proceedings of the 15th annual workshop on
Operating Systems Platforms for Embedded Real-time Applications,
July 2019, pp. 29-34. [Online]. Available: https://elib.dlr.de/128249/
S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in Proceedings of the Conference on Design, Automation and
Test in Europe - Volume I, ser. DATE *03. USA: IEEE Computer
Society, 2003, p. 10190.

R. Henia, “System level performance analysis — the SymTA/S
approach,” IEE Proceedings - Computers and Digital Techniques, vol.
152, pp. 148-166(18), March 2005. [Online]. Available: https://digital-
library.theiet.org/content/journals/10.1049/ip-cdt_20045088

C. Bédard, I. Liitkebohle, and M. Dagenais, “ROS2_tracing: Multipur-
pose low-overhead framework for real-time tracing of ROS2,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 6511-6518, 2022.
S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean,
and R. Ernst, “Typical worst case response-time analysis and its use
in automotive network design,” in Proceedings of the 51st Annual
Design Automation Conference, ser. DAC ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 1-6. [Online].
Available: https://doi.org/10.1145/2593069.2602977

M. Desnoyers. Common trace format (ctf) specification (v1.8.3).
[Online]. Available: https://diamon.org/ctf

Tracecompass documentation. [Online]. Available:
https://www.eclipse.org/tracecompass/
The babeltrace 2 documentation. [Online]. Available:

https://babeltrace.org/

B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Transactions on Software Engineering, vol. 35,
no. 5, pp. 684-702, 2009.

N. Ezzati-Jivan, G. Bastien, and M. R. Dagenais, “High latency cause
detection using multilevel dynamic analysis,” in 2018 Annual IEEE
International Systems Conference (SysCon). 1EEE, 2018, pp. 1-8.

O. Iegorov, R. Torres, and S. Fischmeister, “Periodic task mining in
embedded system traces,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017, pp. 331-340.
H. Abaza, D. Roy, S. Fan, S. Saidi, and A. Motakis, “Trace-enabled
timing model synthesis for ROS 2-based autonomous applications,” in
2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2024, pp. 1-6.

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

The Ittng documentation. [Online]. Auvailable:
https://lttng.org/docs/v2.13/
Percepio Tracealyzer. [Online]. Available:

https://percepio.com/tracealyzer/tracealyzer-for-linux/

T.-Y. Wang, S.-H. Wang, C.-H. Tu, and W.-Y. Liang, “CAT: Context
aware tracing for rust asynchronous programs,” in Proceedings of the
38th ACM/SIGAPP Symposium on Applied Computing, ser. SAC ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
483-492. [Online]. Available: https://doi.org/10.1145/3555776.3577669
S. Theil, N. A. Ammann, F. Andert, T. Franz, H. Kriiger, H. Lehner,
M. Lingenauber, D. Liidtke, B. Maass, C. Paproth, and J. Wohlfeil,
“ATON (autonomous terrain-based optical navigation) for exploration
missions: recent flight test results,” CEAS Space Journal, March 2018.
[Online]. Available: https://elib.dlr.de/119557/

O. Maibaum and A. Heidecker, “Software evolution from TET-1 to
Eu:CROPIS,” in 10th International Symposium on Small Satellites for
Earth Observation, R. Sandau, H.-P. Roser, and A. Valenzuela, Eds.
Wissenschaft & Technik Verlag, April 2015, pp. 195-198. [Online].
Available: https://elib.dlr.de/100859/

A. Lund, Z. A. Haj Hammadeh, P. Kenny, V. Vishav, A. Kovalov,
H. Watolla, A. Gerndt, and D. Liidtke, “ScOSA system software: the
reliable and scalable middleware for a heterogeneous and distributed
on-board computer architecture,” CEAS Space Journal, vol. 14, no. 1,
pp. 161-171, 2022.

S. Kiinzli and L. Thiele, “Generating event traces based on arrival
curves,” in 13th GI/ITG Conference-Measuring, Modelling and Eval-
uation of Computer and Communication Systems. VDE, 2006.

Z. A. Haj Hammadeh, “Deadline miss models for temporarily over-
loaded systems,” Ph.D. dissertation, Technische Universitit Braun-
schweig, 2019.

G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou,
D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and
G. Furano, “High-performance embedded computing in space:
Evaluation of platforms for vision-based navigation,” Journal of
Aerospace Information Systems, vol. 15, no. 4, pp. 178-192, 2018.
[Online]. Available: https://doi.org/10.2514/1.1010555

D. Keymeulen, S. Shin, J. Riddley, M. Klimesh, A. Kiely, E. Liggett,
P. Sullivan, M. Bernas, H. Ghossemi, G. Flesch, M. Cheng, S. Dolinar,
D. Dolman, K. Roth, C. Holyoake, K. Crocker, and A. Smith, “High
performance space computing with system-on-chip instrument avionics
for space-based next generation imaging spectrometers (ngis),” in 2018
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2018,
pp. 33-36.

D. Liidtke, T. Firchau, C. G. Cortes, A. Lund, A. M. Nepal, M. M. Elbar-
rawy, Z. H. Hammadeh, J.-G. MeB, P. Kenny, F. Bromer, M. Mirzaagha,
G. Saleip, H. Kirstein, C. Kirchhefer, and A. Gerndt, “Scosa on the way
to orbit: Reconfigurable high-performance computing for spacecraft,” in
2023 IEEE Space Computing Conference (SCC), 2023, pp. 34-44.

A. Bonenfant, M. de Michiel, and P. Sainrat, “oRange: A tool for static
loop bound analysis,” in Workshop on Resource Analysis, University of
Hertfordshire, Hatfield, UK, vol. 9, no. 09, 2008, p. 08.

H. Abaza, Z. A. Haj Hammadeh, and D. Liidtke, “DELOOP: Automatic
flow facts computation using dynamic symbolic execution,” in 20th
International Workshop on Worst-Case Execution Time Analysis (WCET
2022), ser. Open Access Series in Informatics (OASIcs), C. Ballabriga,
Ed., vol. 103. Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, 2022, pp. 3:1-3:12. [Online]. Available: https://drops-
dev.dagstuhl.de/entities/document/10.4230/0OASIcs. WCET.2022.3

C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an
open toolbox for adaptive WCET analysis,” in IFIP International Work-
shop on Software Technolgies for Embedded and Ubiquitous Systems.
Springer, 2010, pp. 35-46.

T. Franz, A. M. Nepal, Z. A. Haj Hammadeh, O. Maibaum, A. Gerndt,
and D. Liidtke, “Tasking Modeling Language: A toolset for model-based
engineering of data-driven software systems,” in OBDP2021 - 2nd
European Workshop on On-Board Data Processing, no. 2, June 2021.
[Online]. Available: https://elib.dIr.de/145077/

A Novel Heuristic Framework for Offline IMA
Schedule Generation for Multicore Platforms

Alexandre Esper*T, Jatin Arora’’, Geoffrey Nelissen?, Eduardo Tovar®
*Capgemini Engineering, Porto, Portugal TCISTER, ISEP, Porto, Portugal $VORTEX CoLab, Portugal
*Eindhoven University of Technology, Eindhoven, the Netherlands

I. INTRODUCTION

In recent years, the industry has been confronted with
the inevitable trend towards multicore processing platforms,
which allows to greatly improve the performance/cost ratio
of the system. Concurrently, the industry has shown an
increasing interest in developing methods and tools to imple-
ment, deploy, validate, and certify independently developed
applications of different “criticalities” on the same computing
node. Such integrated systems are commonly referred to as
mixed-criticality systems (MCS) [5], [30]. In our previous
work [11], we provided an industrial view on the notion of
mixed-criticality systems and showed that some of the existing
works that are built upon the Vestal model [30] have some
limitations, e.g, it considers that lower criticality tasks can
be suspended in case higher criticality tasks overshoot their
execution budget. This can be problematic, as safety-critical
systems such as avionics generally require strict space and
time partitioning among tasks of different criticalities execut-
ing on the same platform. In the aeronautical domain, this
partitioning approach is referred to as the Integrated Modular
Avionics (IMA) concept. ARINC-653 [2] is a standard widely
adopted in the avionics industry for the development of IMA
systems to enforce strong time and space partitioning. This
allows applications of different criticalities (also known as
Design Assurance Levels) to be developed and run indepen-
dently on the same hardware platform. Although the ARINC-
653 was originally defined for single-core architectures, it has
been extended to multicore computing platforms [1] [16].

Ensuring temporal predictability is one of the most im-
portant factors while designing applications for the avion-
ics domain. Consequently, time-triggered scheduling (TT) is
prevalent in safety-critical systems such as [22], because TT
scheduling is more predictable as the schedule is constructed
at design time and is enforced at run-time. This allows system
designers to determine the precise timing of each event, which
is particularly important, for instance, in the design of control
systems. Among others, some of the most important goals for
solutions implementing TT scheduling of IMA applications
are: 1) generation ARINC-653 compliant TT schedule; 2)
efficient generation of a TT schedule, i.e., within a reasonable
time; 3) generation of a TT schedule that efficiently utilizes
the computing platform; 4) generation of a TT schedule that
is scalable as per the requirements of modern avionic systems.

Several approaches exist in the literature [7], [8], [18], [22],
[24], [31] that focus on TT scheduling of IMA applications.
However, these existing approaches are either not compli-
ant with ARINC-653 specifications [31] or are not scalable
to large IMA applications and the number of processing
cores [7], [8], [24]. This can be problematic as the aeronautics
industry is witnessing an unprecedented increase in the com-
plexity of aircraft-embedded computers [12]. Consequently,
the traditional aviation development processes are having
difficulties keeping up with the development requirements
of large-scale complex avionics systems, mainly in terms of
cost, time, and reusability [9]. This trend suggests that future
avionics systems will require also more sophisticated methods

and tools that will enable handling larger systems with a
higher number of cores [20]. For instance, the Boeing 787,
which also uses an IMA architecture, hosts over 80 different
applications in the core processor cabinet [13]. With such an
increase in size and complexity, the importance of efficient,
scalable, and effective real-time scheduling solutions becomes
even more critical.

To achieve this goal, this paper proposes a novel heuristic
framework for the next-generation avionics systems that can
run a large number of ARINC-653 compliant IMA appli-
cations on top of multi/many core platform. The proposed
framework can be used to efficiently generate a TT schedule
for a large number of ARINC-653 IMA applications running
on a large-scale multi/many-core platforms. Furthermore, the
proposed framework allows partition instances of the same
IMA application to be executed in any core to efficiently
utilize the computing platform. The experimental results re-
veals that the proposed framework can outperform the state-
of-the-art [24] by improving the schedulability ratio up to 46%
even for the threshold timeout limit, i.e., the maximum time
allowed to find a solution, of 4 hours.

The main contributions of the proposed heuristic frame-
work are:

1. A novel algorithm for building a graph of the hierarchy of
IMA applications partitions instances in an efficient manner
based on a set of defined rules, which takes into account the
impact of IMA partitions instances with smaller execution
demands on IMA partitions instances with larger execution
demands.

2. A novel algorithm to build a graph that abstracts the sched-
ule in a hierarchy of smaller schedule intervals (sub-intervals),
which is built based on a set of defined rules and that allows us
to transform a large NP-Hard problem into a series of smaller
problems that are relatively straightforward to solve;

3. A novel multi-core schedulability test that allows us to
efficiently search for suitable sub-intervals in the schedule
sub-intervals graph to allocate the partition instances of each
IMA application; and

4. A novel scheduling strategy that allows to efficiently build
the schedule, by scheduling the partition instances assigned
to each sub-interval of the schedule sub-intervals graph.

II. SYSTEM MODEL

We consider a multicore platform comprising m identical
cores, denoted by IIy,Ils, ... II,,, with m € Z™, where Z™
is the set of positive integers. We consider a set of n IMA
hosted applications denoted by o = {1, aa, ..., an }, where
each application oy, 1 < i < n, with n € ZT. Associated
with the n applications we have m processing partitions
Py, ..., P,. Each application «; is associated to a single
processing partition P;. Each P; is defined by an activation
period T;, an execution budget B;, a relative deadline D;
and an offset O; in relation to the start of the period Tj,
which means that the partitions are asynchronous in relation
to the start of the schedule. The value of B; can be computed
using existing methods [29]. We assume that each P; has

constrained deadline, i.e., D; < T;. We assume that each P;
releases an infinite number of processing partitions instances,
which we denote as F; ;. Each instance P; ; of a processing
partition of an application «; is released periodically with
period 7; until the end of the Major Frame (MAF). The
length of the MAF is the Icm of all partition periods, i.e.,
MAF :=lcmg,eca{T;}. The absolute release time (resp. start
time) of the j*" instance of processing partition P; is denoted
as r; ; (resp. s; ;). The absolute deadline of the j** instance of
P; is denoted as d; ;. We designate this set of input parameters
of each P; ; as P; ; and the set of all P; ; as P.

As we consider an offset O; associated to each application
a;, we need to ensure that our schedule can be successfully
repeated towards infinity. Hence, we extend the MAF defini-
tion to an observation window OBW. The OBW is defined
as OBW = Opee + MAF, where Opqp = Mmaza,eq0;.
To build our repetitive schedule, we only consider that
VP, ri; < OBW. Within OBW, we also define the total
utilization wzor as V; @ ugor = 1 Bl /(m x OBW), where
BiT is the sum of the B; of all o; partitions instances P; ;
within OBW, i.e., with r; ; < OBW.

We assume that each P; ; of an «; can execute on any of
the m cores. This property brings an advantage over existing
solutions [18], [24] that restrict the P; ; of an «; to run on the
same core, because it allows more efficient utilization of the
computing platform. We assume in this work that the IMA
processes of an «; that run inside the P; ; will always resume
its execution in the same state after a migration (either on
the same or another core). Ensuring that the processor cache
is always flushed whenever a migration occurs is one of the
methods that can be used to ensure that these migrations can
be safely performed. The discussion of other methods that
can be used in conjunction with cache flushing to ensure safe
migration are left outside the scope of this work.

To ensure deterministic scheduling of the partitions, we
define the following set of assumptions:

« Partitions are scheduled on a fixed cyclic basis - a Major
Frame (MAF) of fixed duration is maintained by the OS
scheduler, which is usually defined as a multiple of the
least common multiple of all partition periods;

o The partitions are then allocated to one or more execution
windows within the MAF;

« Partitions are activated according to the defined offset
from the start of the MAF and remain active for the
duration of their execution windows;

o The sequence of activation of the partitions are defined
during design time using configuration tables;

o The configuration table for the partition schedule con-
tains the order of activation and the length of the execu-
tion windows within the MAF;

A partition periodically releases a potential infinite num-
ber of “partition instances";

o The processing partitions can be mapped to any of the
available processing cores;

o Mapping of a partition instance between cores is not
allowed, but each processing partition instance released
by the same application may run on different cores.

The problem of synchronizing access to I/O resources is
out of the scope of this paper and is kept for future work.

Although our heuristic framework does not use a CP
approach, we do formulate some constraints that must be
respected by our implementation. First, we need to ensure that
the start time of all P; ; of all «; is not negative (Constraint
(1)) and that the deadlines of each «; are always respected,
i.e., the completion time of each P;; is no later than its
corresponding application’s absolute deadline (Constraint (2)).
Since partitions are executed periodically, the corresponding

P; ; cannot be released before the beginning of each applica-
tion period (Constraint (3)).

VP ;:5; >0 (1)
VP ;:sij+ B <D;)
VP jirig> (G —1) xT; 3)

Knowing that only one P; ; can execute on a given core m
at a time, we must ensure that the P; ; of different partitions

allocated to that core do not overlap with each other. This is
enforced by defining Constraint (4), where j and [denotes
the j*" and [*" instances of processing partitions P; and P,
respectively, with 1 <i<nand 1 <k <n.

Vm,VP; j,VPy|Pij # Prj: Sij > Skg+ By V
Sk > Sij + Bij

“)

The number of constraints defined by (4) can rapidly
grow with the number of applications, thus reducing the
effectiveness of the CP approach, especially with higher
number of cores under high load. Our proposed heuristic
framework addresses this problem by efficiently breaking
down this NP-hard problem [15] into a series of smaller and
simpler problems that are relatively straightforward to solve,
as discussed in the next section.

III. PROPOSED HEURISTIC FRAMEWORK

The goal of our heuristic framework is to efficiently gen-
erate an offline IMA-compliant schedule, where each P; ; is
mapped to any of the m cores and is assigned a start time s; ;,
such that all the previously defined constraints are respected.
Our heuristic consists of a set of deterministic algorithms
that run sequentially, i.e., given a defined set of inputs, the
heuristic will always produce exactly the same schedule. We
use directed acyclic graphs (DAG), and more specifically aug-
mented trees, to create hierarchical abstractions of partitions
instances and schedule sub-intervals. This heuristic process
consists of four phases. In Phase 1, we construct a graph
reflecting the P; ; hierarchy. This graph is used to decide the
order in which we schedule each P; ;. In Phase 2, we build
another graph, which abstracts the schedule in a hierarchy
of smaller schedule intervals, thus simplifying the scheduling
problem. Then in Phase 3, we traverse the graph built in
Phase 2 and allocate each P; ; to a schedule interval. Finally,
in Phase 4, we allocate each P;; to one of the m cores
within the allocated intervals and assign a start time s; ; to it.
The referred phases are explained in detail in the following
sections.

A. Phase 1 - IMA Partitions Hierarchy Graph Construction

This phase takes input a set of parameters of each IMA
application «;, namely P. Based on these inputs, we create
the IMA Partitions Hierarchy Graph, Py;.qpn, which is a DAG
object with its properties and methods (functions), which
is built upon a set of defined rules. P, is used in our
heuristic to determine the order in which we allocate the
partitions to schedule sub-intervals. Py,qpp is formally defined
as Pyrapn = (Vp, &p), Where each vertex v, € Vp is an object
representing an IMA partition instance P; ;, with p € [1.7TF],
where T = |P|. Each v, also has properties and methods
associated to it. We store several important data in each v,
object, including the input parameters from P. We use the
"." operator to access the data stored in wv,. For example,
to retrieve the deadline of the P;; stored in a v, object,
we perform the following operation: 7;; < vp.deadline.
Note that given a P; ;, it is possible to access the respec-
tive v, object from Py, through the following operation:
Up < Pyrapn[p]. The edges e, of P4y, connect the vertices

vp in a hierarchical way, according to a set of defined criteria
that will be explained in the following sections.

Figure la depicts an example schedule with the intuition
behind Py,qp, construction process. In this scenario, we
consider a set of random partitions P1 to P6 with their
respective releases 7; ; and deadlines d; ; in absolute time
units. From this simple example, we can intuitively verify
that P1 is more constrained by P4, P5, and P6, and not
so much by P2 and P3. This principle leads to the idea
of creating a graph of the partitions hierarchy, where each
partition corresponds to a vertex of the graph, connected by
edges in such a way that a hierarchy of those partitions is
formed.

Equation 5 defines the condition to determine the hierarchi-
cal relationship between partitions. The equation establishes
that for a partition P} ; to be considered a child of another
partition F; ;, two conditions must be met. Firstly, P; ; must
encompass Py, i.e., it must have an earlier release time and a
later deadline than P ;. Secondly, there should not exist any
other distinct P, ; that simultaneously encompasses P, ; and
is encompassed by P; ;.

VPei, (3P 5,0 #k, | 1 <rpaNdiyg < dij) A

(3Ps,tas 7é ka S 7£ i, | ((Ti,5 < Tst N\ ds,t < di,j) AN (5)
(7ot <rpaANdiy <dsy)))

Note that according to Equation 5, a parent partition P; ;,
can have only one child P ; in the interval [ry ;, d], but one
child partition Py ; is allowed to have several parents P; ;. For
example, in Figure la, if the deadline of P2 were equal to
26, then P2 would also be considered as a parent of P6, thus
both P2 and P3 would be considered as parents of P6.

Next, we describe Phase I sub-phases to create Py,qph.
Sub-Phase 1.1 - Generation of a list of schedule events and
Initialization of partitions hierarchy graph. The purpose of
this sub-phase of our heuristic is twofold: the generation of
the schedule events data set £ and the initialization of Py,.qpn
vertices v,. € is defined as &€ = {T1,..,T,}, ¢ € Z". Each
T. € E, x € [1,q], is defined as T, = {tz, {E1,.., Ei}},
l € Z%, where 0 < t, < dj,st, and where dj,g; is the latest
absolute deadline among all P;; with r; ; < OBW. Each
E, € T associated with a P; ; with identifier p is represented
as B, = {"release" V "deadline", p}, with p € [1..T'*]. For
the sake of simplicity, we designate each E), as either £ or
Eg, to represent the release or deadline events of a P ;.

This sub-phase takes P as input, and performs the following
actions:

o initialize Py.qpp vertex with identifier p

o iterate over all P; ; € P to:

— add the vertices objects v,, representing each P; ; to
P, graphs
- add the £, or Eg of P;; to &;

o sort £ in ascending order of time stamps ¢ to yield £°.

It is important to highlight that at this stage the vertices v,
are not connected by the respective edges.

Sub-Phase 1.2 - Construction of Py..p,. In this sub-
phase, we use function ConstructPartitionHierarchyGraph()
(Algorithm 1) to build P,qpn. This function iterates over all
T € €9 to determine the hierarchical parents of each P
that satisfy the condition given by Equation 5. The analysis
of each 7 € £9 is composed of three parts. In the first part
(lines 2 to 6), we iterate over all £, € 7, and determine
the set A, containing the identifiers b of the P;; that are
active at time ¢, € 7. A P, ; is considered to be active when
;.5 < ty < d; ;. Note that being active at ¢, is a pre-condition
for a P; ; to be a parent of Py ;, with ¢ # k. In the second
part of the analysis we determine the parent(s) of each Py,

Algorithm 1: Sub-phase 1.2: P,y construction

Output: Py;.,pp construction completed
1 Function ConstructPartitionHierarchyGraph (P, £°,

-Pgraph) :

2 Az 1}

3 for 7 € £° do

4 for E € T do

5 if Event e € E is a "release” then

6 | Get P; ; identifier b € E and append to Ay
7 O+ {}

8 for E € T do

9 Get Py identifier a € E

10 if (Event e € E is a "deadline") N\ (|Az| > 0) then
1 Ay {1}

12 forb €¢ A do

13 if (@#b) A(bg Q) A

14 (vp.r < Va.7r A vg.d < vp.d) then

15 if (vy.r = vq.7 A vg.d = vp.d) then
16 Pyraph-AddParent(vy, va)

1 Pyraph-AddChild(va, vy)

18 Ay —

19 Append a to Q

20 break

21 else

2 | Append b to A,

23 A, — Ay

24 p_found = FALSE

25 for b € A, do

26 if p_found = FALSE then

27 for c € A, do

28 if (c#b) A

29 (vp.r < ve.r Ave.d < vp.d) then
30 if |[Az| =1 then

31 p_found = TRUE
32 break

33 else

34 L Remove ¢ from A,
35 for b € A, do

36 Pyraph-AddParent(vy, va)

¥ | Pyraph-AddChild(va, vp)
38 for E € T do

39 if Event e € E is a "deadline" then

40 Get P; ; identifier b€ E

a if b € Ay then

22 L Remove b from A,

(lines 7 to 34). We iterate again over all £ € T (line 8) to
determine the P; ; with identifier b, with b € E,,, that can be
a parent of each Pj; with identifier a. The auxiliary set Q
initialized in line 7 is simply used to prevent a child vertex
from being added as a parent of its parent. In line 9 we get
the identifier a of the P ;. If e € E is a deadline event and
A, is not empty (line 10), we initialize the set A, (line 11)
that will store the candidate parents P; ; of Py ;. Then in line
12, we iterate over all active F; ; with identifier b € A,. The
condition in lines 13 and 14 filters the P; ; that are candidate
parents. In line 15 we test the special case where a Py, ; with
identifier a has exactly the same release and deadline as that of
the P; ; with identifier k. The operations vy.r, v4.1 and vy.d,
v,.d allow us to retrieve the releases and deadlines stored in
the objects v, and v, respectively. If that is the case, we can
add it straight away as parent of Py ; (lines 16 and 17), reset
A, (line 18), and add a to Q, to prevent P ; from being
added as parent of P; ;. We then break the loop (line 20) and
proceed to the analysis of the next event £,. Otherwise, if the

“ Release ‘ “ Absolute Deadline ‘ ‘ Leaf Partitions

P4 P5 P6
(a) Intuition behind Pg.qpp construction.

A

q + 1levels

(10,40)

| (0,5) | | (3,15) | | (10,25) | | (20,40) | }

q + 1intervals at the base

(b) Intuition behind Iy;.qpp construction.

Fig. 1: Examples describing the intuition behind the construc-
tion process of Pyrqpn and Igrapn.

condition in line 15 is not satisfied, we add b to A, (line 22)
and proceed to the next stage (lines 23 to 34) to select the
parent(s) among the candidates in A,. To achieve that goal,
we must test all combinations among the F; ; stored in A,
through the for loops in lines 25 and 27, to check if they are
a parent of one another, thus violating the condition given by
Equation 5 (lines 28 and 29). But before that, as preparation,
we make a copy A, of A, (line 23) to avoid interfering with
the iteration control variable and initialize the flag to detect
when a parent has been found (line 24). If the condition in
lines 28 and 29 is true, we remove the P; ; with identifier
¢ from A, (line 34). We proceed with this iteration until all
parents are found or until only one parent is left in A, (line
30). Once this analysis is finalized, we simply add the P, ;
with identifier b € A, as parent(s) of the P ; with identifier a
(lines 35 to 37). The final part of the analysis (lines 38 to 42),
consists simply of deactivating all P; ; with deadline events
E,‘j at time ¢ associated with event subset 7. The approach is
the same as the one used in lines 3 to 6 but with a deadline
event instead of a release.

B. Phase 2 - IMA Partitions Interval Hierarchy Graph Con-
struction

Once Pyrqpn has been built, the next phase is the construc-
tion of the IMA partitions intervals hierarchy graph, which is
also a DAG object with its properties and methods (functions),
similar to Py,qpp,. We define this DAG as Igyapn = Vi, Ek).
Each vertex vy € Vi is an object representing a IMA
schedule sub-interval I, defined as a tuple (t,t.), where
0<ty,<te N tp <te <OBW. Given an Iy, it is possible
to retrieve the respective v; object from Ig.qp, through the
following operation: vy, <— Igrqpn [Ix]. The edges e of Igrapn
connect the vertices v in a hierarchical way, according to a
set of defined criteria. The construction process of Iy qpn iS
implemented by Algorithm 2.

Phase 2.1 Construction of £LP and LZ. The purpose of
this sub-phase is twofold: (i) the creation of the set LP, which

contains the list of identifiers p associated with the leaf vertex
Vp € Pyrapn; (i) the initialization of Ig,.qpp, leaf vertices. A
Vp € Pyrapn is defined as a leaf iff v,.gerChild()= (), where
getChild() is a function of v,, that returns the set of identifiers
of the children of v,. Similarly, a vy € Igrqpn is defined as a
leaf iff vy.getChild()= (. We designate each interval of LP
as Ly, with k € [0..|£Z| — 1]. This sub-phase is implemented
by function constructLeafPartitionList() (line 4 of Algorithm
2), which performs the the following procedure steps:
o lIterate over each v, € Pyrapn:
— If v,.getChild= 0:
x Add p to LP;
*x Add the interval I, =(vp.release, vy.deadline) to
LT,
* Create the vertex vy, associated with Iy, in Igpqpn;
o Sort L7 in ascending order of interval start time ¢.

Algorithm 2: Phase 2.1: I,q,n construction

Output: /,,p, construction completed
1 Function
constructIntervalHierarchyGraph (P, Pyraph, &9, P,
IB, LI):
2 SCHEDULE_START + 0O
3 SCHEDULE_END < max(getEventsTime(E©))
4 constructLeafPartitionList (P, LP, LI)
5 constructintervalGraphBaseList(LZ, TB, SCHEDULE_START,
SCHEDULE_END)
6 Lgraph < createlntervalGraph()
7 graph_depth < | IB |
8 constructRightDiagonalVertices(ZB, Iyrapn, graph_depth)
9 constructLeftDiagonalVertices(LB, 1grqph, graph_depth)
10 addLeaflntervals(LZ, IB, 1grapn)
11 return

Phase 2.2 Construction of ZB. In this sub-phase we use
the set £Z to build another set ZB3, which will contain the
intervals at the base of Iy,qp,. This sub-phase is implemented
by function constructlntervalGraphBaseList() (line 5 of Algo-
rithm 2), which performs the following procedure steps:

« Build the first interval as
Itirst = (SCHEDULE_START,Iy(1]), where Iy[1]
means the upper bound of the first interval Iy € LZ;

e append Iy to ZB and add it to g apn;

o Iterate over each I, € LZ, with k € [0..|CZ| — 1]:

— Build the subsequent intervals, except for the
last interval, according to the following rule:
(L4 0], T [1]):
— Append each I, to ZB and add it to Igrqpn;
o Build the last interval as oot =
(I.[0], SCHEDULE_END), where e = |LZ| — 1,

« Append each Ij,5; to ZB and add it to g apn;

Phase 2.3 Construction of /,,,,, right diagonal vertices.
In this sub-phase we create and connect the remaining vertices
of Igrqph, taking the set as the starting point ZB. This sub-
phase is implemented by the function constructRightDiago-
nalVertices() (line 8 of Algorithm 2). Our strategy consists in
building the graph diagonally. Formally, we iterate over all
intervals J, € ZB, with k € [0..|ZB| — 1], compute the new
interval Iy, as (Jx[0], Jx+1[1]), add Iy to Iy.qpn and connect
I, with I._1.

Phase 2.4 Construction of /., left diagonal vertices.
Since in the previous sub-phase we have created all vertices of
Igrapn, to finalize the construction process of Ig.qpn We just
need to connect the remaining vertices of Ig.qpn. We follow
the same process from the previous sub-phase, but iterating
now from the last interval of ZB to the first. This sub-phase is
implemented by the function constructLeftDiagonalVertices()
(line 9 of Algorithm 2).

We now use Figures la and 1b to illustrate the intuition
behind the overall construction concept of Ig;.qp,. According
to sub-phase 2.1, we take all the leaves of the partitions
hierarchy graph Pgy,qpn (i€., P4, P5 and P6) to build LP.
From LP, we extract the releases and deadlines of P4, P5
and P6, and build £LZ, i.e., (3,5), (10, 15), (20, 25) in Figure
1b. Then according to phase 2.2, we take the leaf intervals
LT, augment by instants ¢t = 0 (i.e. SCHEDULE_START) and
t = OBW (i.e., SCHEDULE_END = 40), to build Z3, which
is given by intervals (0, 5), (3, 15), (10, 25), (20, 40). To build
interval (0,5), we take the beginning of the schedule (i.e.,
t = 0) as the start time of the interval, and the upper bound
of the first interval in £Z, i.e. the upper bound of (3,5). To
build the next interval (3, 15), we take the lower bound of the
first interval in £Z, and the upper bound of the second interval
(10, 15). We continue with this process until the last interval
of LZ, i.e., (20,25). To build last interval (20,40) of Z5,
we take the lower bound of the last interval (20,25) of LT
and augment it with SCHEDULE_END. Then we build the
Igrapn right diagonal vertices based on ZB as per the process
defined in sub-phase 2.2. To build the right diagonals of this
example graph, we start with interval (0,5), then we create
interval (0,15) and connect it with (0,5). Then we proceed
with (0, 25) up to (0,40). Then we follow the same process to
build the remaining right diagonals, restarting at (3, 15) up to
(3.40), and so on. To finalize the graph according to phase 2.4,
we construct the left diagonal using the same process, which
means connecting intervals (20, 40), (10, 40), (3, 40), (0,40),
then (10, 25), (3,25), (0,25) and so on, until all vertices are
connected.

C. Phase 3 - Allocating Partitions to Schedule Sub-Intervals

Phase 3.1 P, ., traversal. The goal of this this phase is
to decide which FP; ; will be assigned next to an interval Iy,
in Igrqpn or not. Our strategy to traverse FPy,qpn consists of
a bottom-up approach described in Algorithm 3. To perform
the traversal, we use two FIFO queues, which we designate
as p_queue and p_wait_queue, and that we initialized in lines
2 and 3. We start the process by iterating over all leaf F; ;
whose identifiers p are stored in LP (line 4), assigning them
to their parent interval in the base intervals ZB with the
largest lower bound ¢; and enqueuing their parents (lines 5
to 8). The interval search process is implemented by function
intervalSearch() (line 15 and line 24), which is explained in
Phase 3.2. In case during the first attempt to find an interval
to assign each P; ; we detect that we have two options to
choose from in the search path (lines 11 to 21), we opt not
to assign P; ; to any of those two intervals yet, and function
intervalSearch() returns TRUE (line 15). We then append
p to p_wait_queue (line 17). This strategy allows us to reduce
the number of decisions that we need to take, by giving all
P; ; a first chance to try to find an interval as low as possible
towards the base of I,.qpn. We proceed iterating over p_queue
(lines 10 to 21) and p_wait_queue (lines 22 to 27) in this
order, until both queues are empty, meaning that all P; ; have
been assigned to an [j. Note that the return value in line 24
will never be used, since we don’t give a third chance for
finding a suitable interval for q.

Phase 3.2 I, traversal. After selecting the F; ; that
must be assigned to an interval in the previous phase, we now
initiate or resume the interval downward search (top-down)
process to allocate the P; ; to an I in Ig.qpn. This process
is implemented by Algorithm 4. This algorithm implements
a set of four criteria that allow us to decide which downward
path we will follow, i.e., whether a child interval I will be
allowed in the i_queue or not. Next, we define each criterion.

Criteria 1. Enqueue child Iy, in i_queue iff: (msst = TRUE)
NIy € LI N Iy ¢ IB) = FALSE). Rationale: we

enqueue the child [j if it passes the msst and if it is not
a leaf interval. For example, in Figure 1b, the leaf intervals
are (3,5), (10,15) and (20, 25).

Criteria 2. Enqueue in i_gueue the child I}, with the highest
value stored in the set Af,,, given by max(A7J,,;). The set
AF, ., is defined is section IV. Rationale: we enqueue the child
I, with the highest available CPU processing time to increase
the likelihood of being able to run the P; ; in that I;,. Note
that in the rest of this paper we use the terms CPU processing
time and CPU time interchangeably.

Algorithm 3: Phase 3.1: Pg.qpp traversal

Output: All P; ; assigned to an interval in Iy,.qpp
1 Function reversePartitionGraphTraversal (Pyraph,
LP):

2 p_queue < {}
3 p_wait_queue < {}
4 for p € LP do
5 p_int =
(Pgraph[p)-getRelease(), Pyraph [p].get Deadline())
6 Assign p to the parent in Z3 with the largest ¢,
7 p_parents = Pyrqpn[p].getParent()
8 Add p_parents to p_queue
9 while |p_queue| > 0 A |p_wait_queue| > 0 do
10 temp_p_queue < p_queue
11 for p € temp_p_queue do
12 if Pyrqpn[p].allChildScheduled() = FALSE
then
13 Add p to the end of the p_queue
14 L break
15 p_has_options = intervalSearch(p)
16 if p_has_options = TRUE then
17 | Append p to p_wait_queue
18 else
19 L p_parents = Pyrqpn[p].get Parent()
20 Append p_parents to p_queue
21 Remove p from p_queue
2 temp_p_wait_queue < p_wail_queue
23 for g € temp_p_wait_queue do
24 q_has_options = intervalSearch(q)
25 q_parents = Pyrqpnlq].getParent()
26 Append q_parents to p_queue
27 Remove ¢ from p_wait_queue
28 return

Criteria 3. Enqueue in i_queue the child I; with the
highest value of A¥ . If we designate any pair of child
vertices as vy, vy, then AZ, . is computed as follows: AY = =
maz(maz(AL,,), maz(AL.). A%, is computed during the
construction of Ig.qpp, for all I and stored in each wvy.
Rationale: The value of A]'*" is a metric that allows us to
choose a search path towards child intervals with potentially
larger values of available CPU time.

Criteria 4. Given two child intervals I; and I,., such that
I;[0] < I.[0], then enqueue I,[0] in i_queue. Rationale: at
this point we must force a decision, so we select the child
interval with the latest largest lower bound.

Next, we described Algorithm 4 in detail. To perform the
interval search, we also use a FIFO queue, which we designate
as i_queue. This algorithm takes as inputs the P; ; identifier
p and the flag p_from_queue. If this flag is TRUFE, it
means the F; ; comes from p_queue, otherwise, it comes from
p_wait_queue.

If it comes from p_queue (line 4), we need first to compute
the interval search starting point for P; ; in Ig.qpn, which we
designate as 1o, = (Lpound, Ubound). To compute Iy, lower
and upper bounds, we use function getTopInterval() (line
5). This function takes the P; ; release 7; ; and deadline d; ;,
and iterates over ZB to search for the intervals Iy, I; € I8,

with k£ < [, whose lower and upper bounds satisfy respectively
the following rules:

Liound = Ix[0] | Ix[0] < 755 < Ij41(0] (6)
Ubound = L[1] | L1—1[1] < d; ; < L[1] (N

For instance, in Figure 1, if we apply the above rule to
compute the I;,, of P2 in Figure la, it would yield the
interval (0,25) in Figure 1b.

Algorithm 4: Phase 3.2: I,.qpn traversal

Output: All P; ; assigned to an interval in Ig,.qpp
Data: £9, Pyraph
1 Function intervalSearch (Igraph, P, p_from_queue):

2 p_bi = graph[p]-getBUdget()

3 i_queue < {}

4 if p_from_queue = TRUE then

5 p_top_int = getTopInterval(p)

6 p_top_msst_result, A AL, =
per formMSST (p, p_top_int, p_bi)

7 if p_top_msst_result = TRUE then

8 L update_Az_params(p_top_int, p, At°t AT 1)

9 Append p_top_int to i_queue

10 else

11 L EXIT - application set not schedulable

12 else

13 p_restart_int = Pgy,qph[p].getIntervals

14 Append p_restart_int to i_queue

15 while |i_queue| > 0 do

16 next_i = pop(i_queue)

17 i_child = Iyrqpn[next_i].getSortedChild()

18 candidate_ints < {}

19 if |i_child| > O then

20 for each_child € i_child do

21 p_msst_result, A, AT =

per formM SST (next_p, ¢, p_bi)

22 if Criteria_1 = TRUEFE then

23 L Append each_child to candidate_ints

24 if
(|candidate_ints| = 2) A (p_from_queue = TRUE)
then

25 assignPtoInt(p, next_i)

26 return TRUE

27 else if (|candidate_ints| = 2) A (p_from_queue =
FALSE) then

28 if (Evaluation of Criteria 2 was successful) then

29 update_Az_params(next_i, p, At AT L)

30 Append selected candidate_ints to i_queue

31 else if (Evaluation of Criteria 3 was successful) then

32 update_Az_params(next_i, p, A AT)

33 Append selected candidate_ints to i_queue

34 else

35 Apply Criteria 4

36 Append selected candidate_ints to i_queue

37 else if
(lcandidate_ints| = 0) A (p_from_queue = TRUE)
then

38 assignPtoInt(p, next_i)

39 return FALSE

40 else if (|candidate_ints| = 0) A (p_from_queue =
FALSE) then

a4 if next_i # p_restart_int then

2 | assignPtolnt(p, next_i)

43 return FALSE

44 else

45 update_Ax_params(next_i, p, At AT)

46 Append selected candidate_ints to i_queue

Once we have determined the I;,, of a P; ;, before we can
assign the P; ; to I,,, we must check if the interval I;,, has
sufficient CPU time available to run the candidate F; ;. To

perform this check, we have developed a novel schedulability
test for TT systems that we designate simply as msst. This
is implemented by function performMSST() (line 6 of
Algorithm 4). Due to msst complexity, and because it is one of
the key contributions of this paper, we opt to describe it in the
dedicated section IV. At this point, it suffices to say whether
an attempt to assign a F; ; to an interval I, was successful
or not, i.e., whether it has passed the msst or not. The msst
is a function that returns the result of the test (pass or fail)
and a set of parameters that are used to determine whether an
I}, has sufficient CPU time available in any of the cores to
run a certain F; ; or not. Now, we designate these parameters
as A'°' and A7, ,, which are stored in the [,q,, vertices vg
associated with an Iy, and that help us track the available
CPU time in each I;. These parameters will be explained in
detail in section IV. In line 7 we check the msst result. If it
is a pass, we use function update_Ax_params() to update the
A’ and A7, parameters of Ij, and to store them in vy (line
8). We then append the p_top_int to i_queue to continue the
search process (line 9). For the case where the msst fails when
trying to assign a P; ; to its Iz, (line 10), we halt the process
and deem the system as unschedulable by our heuristic.

In case the condition in line 4 yields FALSE, it means
that the P; ; that comes from the p_wait_qgueue, so we don’t
need to recompute its I;,,, because we simply resume the
downward search from the interval where the F; ; first search
attempt was halted, when more than one option was detected.
Hence, we just retrieve the interval where the search was
previously halted (line 13) and append it to i_qgueue (line
14). We are now ready to initiate the downward search for an
interval to assign F; ; by iterating over ¢_queue (lines 15 to
46). In this part of the algorithm, we take each child interval
and apply the four defined Criteria, taking into consideration
the number of selected children, and whether P; ; comes from
the p_queue queue or not.

D. Phase 4 - Scheduling of Partitions

The last phase of our heuristic is the scheduling of the
partitions assigned to each interval of Iy,.pn, Which means
that we assign a start time s;_; to each partition P; ; and a core
for it to execute. Algorithm 5 defines our scheduling strategy.
It consists in building the schedule backward, by traversing the
Igrapn "diagonally" from right to left and from bottom to top.
For example, in the graph in Figure 1b, we would sche