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Real-Time Semantic Segmentation of Aerial Images
Using an Embedded U-Net: A Comparison of CPU,

GPU, and FPGA Workflows
Julien Posso∗, Hugo Kieffer†‡, Nicolas Menga†§, Omar Hlimi†, Sébastien Tarris†‡,

Hubert Guerard¶, Guy Bois∗¶, Matthieu Couderc†§, Eric Jenn†
∗ École Polytechnique de Montréal

† IRT Saint Exupéry
‡ Viveris Technologies

§ Airbus Defence and Space
¶ Space Codesign Systems

Abstract—This study introduces a lightweight U-Net model
optimized for real-time semantic segmentation of aerial images,
targeting the efficient utilization of Commercial Off-The-Shelf
(COTS) embedded computing platforms. We maintain the accu-
racy of the U-Net on a real-world dataset while significantly re-
ducing the model’s parameters and Multiply-Accumulate (MAC)
operations by a factor of 16. Our comprehensive analysis covers
three hardware platforms (CPU, GPU, and FPGA) and five
different toolchains (TVM, FINN, Vitis AI, TensorFlow GPU,
and cuDNN), assessing each on metrics such as latency, power
consumption, memory footprint, energy efficiency, and FPGA
resource usage. The results highlight the trade-offs between these
platforms and toolchains, with a particular focus on the practical
deployment challenges in real-world applications. Our findings
demonstrate that while the FPGA with Vitis AI emerges as the
superior choice due to its performance, energy efficiency, and
maturity, it requires specialized hardware knowledge, empha-
sizing the need for a balanced approach in selecting embedded
computing solutions for semantic segmentation tasks.

Index Terms—Deep Learning, Neural Networks, Computer
Vision, Semantic Segmentation, Inference, Embedded Systems,
Aerospace, CPU, GPU, FPGA, MPSoC

I. INTRODUCTION

The advent of deep neural networks, especially Convolu-
tional Neural Networks (CNNs), has revolutionized computer
vision [13], introducing advanced capabilities for embedded
systems in areas such as autonomous navigation [29] and earth
observation [7], [16], [20]. Efficient hardware acceleration is
vital for leveraging this technology, involving CPUs, GPUs,
ASICs, FPGAs [27], and neural network compilers that bridge
the gap between high-level Python libraries and hardware
accelerators [5]. These topics have recently gained significant
attention, as discussed in Section II. However, prior research
has predominantly focused on image classification networks,
specific hardware platforms, and compilers.

In this article, we present a pioneering, comprehensive,
transversal study on the optimized implementation of image
segmentation tasks for UAVs (Unmanned Aerial Vehicles)
and satellites: specifically, the semantic segmentation of aerial
images. We have enhanced a U-Net model for improved

embeddability, reducing its parameters and MAC (Multiply-
Accumulate) operations by a factor of 16 while maintain-
ing accuracy. We evaluate and compare five implementa-
tion schemes (workflows) across three COTS (Commercial
Off-The-Shelf) embedded computing platforms (GPU, CPU,
FPGA), assessing them using metrics such as IoU (Intersection
over Union), accuracy, power, throughput, energy efficiency,
and memory footprint. We also consider engineering metrics
like workflow maturity, usability, documentation, and commu-
nity support. This study addresses key practical challenges and
provides valuable insights for those looking to integrate deep
neural networks into real-world applications.

The structure of this paper is organized as follows: Section II
reviews the literature pertinent to our research, providing foun-
dational context. Section III details our computer vision task,
specifically focusing on the semantic segmentation of aerial
images using a lightweight U-Net to enhance its suitability for
embedded systems. Section IV discusses the embedded com-
puting platforms and examines the five workflows employed
for implementing the neural network on these platforms. Sec-
tion V synthesizes the main results, compares the workflows,
and discusses the limitations of our study. Finally, Section VI
summarizes the study, highlighting the effectiveness of the
workflows and the suitability of the hardware selections for
our specific application domain.

II. RELATED WORKS

The quest for hardware accelerators is crucial for enabling
real-time neural network inference. Central to this acceleration
are technologies such as CPUs, GPUs, ASICs, and FPGAs
[27]. The role of compilers in bridging the gap between
hardware capabilities and neural network performance is well-
documented [5]. Additionally, there is a noticeable shift in the
embedded sector towards the adoption of Commercial Off-
The-Shelf (COTS) computers [24].

Zhao et al. [35] and Li et al. [14] meticulously review
prevalent neural network compilers, including TVM, focusing



primarily on their optimization mechanisms and their im-
pact on the speedup of state-of-the-art image classification
networks. Xing et al. [33] provide an in-depth analysis of
throughput, energy efficiency, and user-friendliness of six
compilers, including TVM, aligning closely with our research.
However, their analysis is confined to image classification net-
works such as ResNet50 and SqueezeNet, and they overlook
potential quality degradation in neural network output due to
the compilation and optimization processes.

Mittal et al. [18] provide a detailed survey of Nvidia Jetson
GPUs within the context of embedded systems, including their
application in semantic segmentation networks. Abdelouahab
et al. [1] and Guo et al. [9] review designs for neural network
accelerators, with a particular emphasis on enhancing FPGA
inference within image classification networks. Reuther et al.
[27] offer a comprehensive yet succinct survey of machine
learning accelerators, focusing on performance and energy
efficiency. Peccerillo et al. [26] examine approximately 100
accelerators, exploring their diverse workflows.

Comparative studies on FPGA and GPU inference perfor-
mance and energy efficiency for standard image classification
networks are detailed by Nurvitadhi et al. [22]. Feng [8] com-
pares FPGA and GPU inference, focusing solely on semantic
segmentation networks on GPUs, notably excluding FPGAs.
Li et al. [15] highlight a performance comparison between
FPGA and GPU inferences of binarized neural networks,
revealing a trade-off between throughput and energy efficiency.

In the embedded domain, Dimitrovski et al. [7] review
neural network architectures for aerial imagery, primarily
focusing on image classification accuracy while neglecting
real-time inference capabilities. Wang et al. [31] and Wu et
al. [32] propose new neural network architectures for real-time
semantic segmentation of aerial images, yet their deployment
on embedded hardware remains unexplored. Moreover, exist-
ing research often limits its focus to single COTS platforms
and toolchains for real-time inference [18], [30].

The literature exhibits significant limitations, predominantly
focusing on image classification networks, which are less
relevant for earth observation via UAVs and satellites. Fur-
thermore, the research largely relies on benchmark datasets
(e.g., ImageNet) and often restricts its experimental scope to
single COTS platforms and toolchains. Studies encompassing
multiple hardware targets or compilers are typically classified
as surveys rather than experimental research.

In contrast, our research stands out due to its comprehensive
approach in several key areas:

• A focus on semantic segmentation, an essential task for
analyzing imagery from UAVs and satellites, diverging
from the common focus on image classification.

• The adoption of a U-Net architecture for image segmen-
tation, which includes both down-sampling (encoder) and
up-sampling (decoder) paths, contrasting with the solely
down-sampling nature of image classification networks.
This approach exposes unique challenges in certain work-
flows that previous studies have not addressed.

• The utilization of the Inria Aerial Image Labeling Dataset
for real-world applications, moving away from the con-
ventional use of benchmark datasets like ImageNet.

• A comprehensive evaluation involving multiple work-
flows and hardware targets, providing a holistic view of
their performance and limitations.

III. EMBEDDABLE U-NET-BASED SEMANTIC
SEGMENTATION OF AERIAL IMAGES

A. Semantic Segmentation of Aerial Images

Our research is situated within the context of earth ob-
servation, focusing primarily on two application domains:
satellites and UAVs. These platforms are pivotal in acquiring
high-resolution terrestrial imagery, offering spatial resolutions
ranging from 0.2 to 10 meters, which are critical for numer-
ous remote sensing applications [7], [16], [20]. The primary
limitation lies in the downlink capacity, as satellites and UAVs
lack the capability to transmit all captured images to ground
stations. Consequently, on-board analysis becomes essential
to ensure that only relevant data is transmitted to Earth,
optimizing both bandwidth and data relevance [10].

In this context, semantic segmentation is indispensable as
it enables precise on-board analysis of the high-resolution
imagery acquired by satellites and UAVs. We employ the Inria
Aerial Image Labeling Dataset provided by Inria, renowned
for its utility in benchmarking the generalization capabilities
of semantic segmentation methodologies [17]. This dataset
includes 180 colored satellite photographs, each measuring
5000x5000 pixels (25 Megapixels). The primary task of the
dataset involves semantic segmentation, which entails classi-
fying each pixel of an input image into a specific category;
in our case, this means distinguishing every pixel as either
’building’ or ’not building’. This classification results in a
segmentation map. Figure 3 illustrates this process. To op-
timize for training and model embeddability, we dissect these
images into smaller segments of 256x256 pixels, maintaining
slight overlaps. These segments are subsequently merged to
reconstruct the original 5000x5000 segmentation map post-
inference.

B. U-Net Architecture

We selected a U-Net architecture for our workflow compar-
ison. The U-Net [28], initially proposed for biomedical image
segmentation, has since become a widespread neural network
architecture. It features a low number of parameters, a small
memory footprint, and fewer MAC operations compared to
other semantic segmentation networks, while still maintaining
high accuracy. Additionally, it is designed to be trained with
a limited amount of data, a common scenario in the embed-
ded domain. These characteristics make the U-Net an ideal
candidate for an embedded neural network.

However, we modified the U-Net to enhance its embed-
dability. We trained multiple versions of the U-Net, varying the
number of layers and channels per layer. Figure 1 demonstrates
the necessity of this process in an embedded context. In the
down-sampling path of the U-Net, each block contains two



convolutional layers and one max pooling layer. Similarly,
in the up-sampling path, each block includes one transposed
convolution and two convolutional layers. We adjusted the
number of channels on each layer from 1/32 to 1/2 of
the original U-Net and varied the number of blocks (i.e.
the number of layers) from one to four, while maintaining
symmetry between the down-sampling and up-sampling paths
of the U-Net.

Fig. 1: IoU on the validation set vs. the number of parameters
of the U-Net. Circle size represents the number of channels.

We preserved the core structure of the original U-Net, which
consists of four blocks, but reduced the number of channels
per layer to one-fourth of the original. This adjustment signif-
icantly decreased the number of parameters (from 31 million
to 1.9 million) and MAC (Multiply-Accumulate) operations
(from 55 billion to 3.4 billion) required to process a single
256x256 image, while still maintaining accuracy on the Inria
Aerial Image Labeling Dataset. The number of parameters
and MAC operations is proportional to the square of the
number of channels, underscoring the importance of adapting
neural network architectures to new datasets, especially in
embedded contexts. Figure 2 provides a detailed view of the U-
Net architecture, showing the distribution of MAC operations
and the number of parameters across the down-sampling
(encoder), middle, and up-sampling (decoder) paths. Notably,
the two middle layers of the U-Net contain almost half of the
parameters, while the majority of MAC operations occur in
the up-sampling path. This path is crucial for reconstructing
the feature maps back to the original image size, explaining
the higher number of MAC operations required for accurately
generating the output segmentation map. The inclusion of
transposed convolutions in the up-sampling path, not present
in state-of-the-art image classification neural networks, intro-
duces unique challenges in some workflows.

C. Training Details

We trained our U-Net on an Nvidia RTX 3070 GPU, using
Keras and TensorFlow 2.6, on the Inria Aerial Image Labeling
Dataset, as detailed in Section III-A. Training began with
random initial Float32 weights and utilized the Adam opti-
mization algorithm [11] with TensorFlow’s default parameters
and a learning rate of 1.0 × 10−4 over 108 epochs. Training

was halted after 15 epochs without improvement in the In-
tersection over Union (IoU) computed on the validation set.
We employed the Binary Cross Entropy (BCE) loss function,
which is effective for binary segmentation tasks. To enhance
the model’s robustness and reduce sensitivity to overfitting,
we normalized the input images to a range between 0 and 1
and applied data augmentation techniques using OpenCV 2.5.
These techniques included random rotations (multiples of 90
degrees) and horizontal and vertical flipping.

D. U-Net Evaluation

Table I presents the evaluation of our lightweight U-Net,
compared with the same data, task, and evaluation metrics
used by the Inria team [17]: the IoU of the building class
and pixel accuracy. The Inria team employed a FCN (Fully
Convolutional Network) followed by a MLP (Multi-Layer
Perceptron). Additionally, they discuss the general training
process but lack in-depth technical specifics about the ar-
chitecture configurations, such as the number of parameters
and layers. Nevertheless, the evaluations demonstrate that
our lightweight U-Net outperforms the Inria team’s neural
network. The lightweight U-Net serves as a baseline for
evaluating the five workflows explored in this paper.

TABLE I: Evaluation metrics of our lightweight U-Net on the
validation set

Model IoU Accuracy
Lightweight U-Net (ours) 0.7108 0.9546
FCN + MLP (Inria) [17] 0.6467 0.9442

Figure 3 shows an example of our U-Net’s prediction quality
compared to the ground truth on a 256x256 image. The
buildings are generally well-predicted by the neural network,
even if the contours of the predicted buildings are somewhat
blurred, a similar effect was noticed in the original Inria
publication [17].

IV. PLATFORMS AND WORKFLOWS

A. Platforms for Real-Time Inference

We selected two COTS platforms, specifically designed
for embedded applications, to deploy our U-Net model. The
Xilinx Zynq UltraScale+ MPSoC, equipped with four ARM
Cortex-A53 processor cores and programmable logic (com-
monly referred to as an FPGA), has proven effective in both
UAV [12] and space domains [24]. For our implementation,
we utilized three Xilinx Zynq UltraScale+ boards—Ultra96,
ZCU102, and ZCU104—each equipped with the same pro-
cessor but featuring varying FPGA sizes, to host the hardware
accelerators. Nvidia Jetson platforms have also emerged as
strong contenders for real-time inference of neural network-
based vision algorithms, demonstrating applicability in UAV
[30] and space domains [2]. Specifically, we employed the
Nvidia Jetson AGX Xavier System on Module, which boasts
eight ARM Cortex-A57 processor cores and an integrated
GPU, enhancing the acceleration of neural network inference.



Fig. 2: Detailed architecture of the U-Net model

(a) Input image (b) Ground truth (c) U-Net prediction

Fig. 3: Qualitative evaluation of our Float32 Keras lightweight U-Net on a 256x256 image of the validation set

B. Workflows Overview

We evaluated various workflows to implement our U-Net
on CPU, GPU, and FPGA platforms. On the GPU side, we
first assessed the straightforward TensorFlow implementation,
comparing it with the more complex but optimized Nvidia
cuDNN library to understand the trade-offs between ease of
use and performance. For the CPU, we utilized TVM, which
is renowned for supporting major Python frameworks and
offering the best speedup among neural network compilers
[5], further enhanced by its auto-scheduling feature. For the

FPGA, we explored both the open-source FINN framework
and Xilinx’s commercial DPU within the Vitis-AI toolchain.
Although Vitis-AI is considered more mature, FINN offers
experimental yet highly optimized options for creating opti-
mized dataflow implementations [3]. The following sections
will delve into the details of each workflow.

C. GPU Implementation with TensorFlow

1) Workflow Overview: Figure 4 presents the workflow
used to deploy our model on the Nvidia Jetson AGX Xavier



using TensorFlow 2.6. This workflow is straightforward, start-
ing with the training of a Float32 model using Keras, serving
as our baseline for evaluating GPU workflows. Notably, the
model remains in Float32 format throughout, since quantiza-
tion is only available in TensorFlow Lite. Our aim was to
evaluate the most direct method for deploying a neural network
on a Jetson GPU. Furthermore, the Jetson GPU efficiently
processes Float32 operations on its CUDA (Compute Unified
Device Architecture) cores. The trained model is exported
in HDF5 format and then loaded onto the Nvidia Jetson
AGX Xavier development kit. Onboard inference is conducted
through a Python script, representing the simplest deployment
method on the Nvidia Jetson platform, which operates on a
Linux-based system with a Python stack, including Tensor-
Flow.

Fig. 4: GPU workflow from Keras/TensorFlow training to
Nvidia Jetson AGX Xavier inference using TensorFlow

2) Quantitative Evaluation: Table II presents the eval-
uation metrics measured on the validation set throughout
the TensorFlow workflow. The first row shows the results
following training with Keras and TensorFlow in a Float32
format. Subsequent rows detail these metrics when the model
is deployed on an Nvidia Jetson AGX Xavier board. The
consistency observed between the standard computing envi-
ronment and the embedded deployment is expected because
the underlying model remains unchanged between the training
and deployment stages.

TABLE II: Evaluation metrics along the TensorFlow workflow

Model IoU Accuracy
Float32 Keras 0.7062 0.9594
Jetson implementation 0.7062 0.9594

Table III summarizes the implementation metrics measured
on the Jetson AGX Xavier. In this experiment, we varied
the batch size to analyze its impact on the implementation
metrics. Increasing the batch size to eight proved beneficial
for improving throughput and energy efficiency while main-
taining a reasonable memory footprint. The memory footprint
includes the space needed for the model weights and activation
functions, the batch of images, and additional Python libraries
such as TensorFlow. Further increases in batch size did not
yield significant benefits and resulted in an increased memory
footprint, making a batch size of eight an optimal trade-
off. A batch size of one is deemed beneficial only when
memory footprint or latency is prioritized over throughput or
energy efficiency. During the experiments, we noticed some
variability in execution time, particularly for the first inference.
The first inference with a batch of eight images took 238

milliseconds, while the subsequent inferences averaged around
107 milliseconds (plus or minus 10 milliseconds). The table
also reports the average throughput for the entire validation set.
The observed variability was consistent across all batch sizes,
highlighting the importance of also considering the Worst Case
Execution Time (WCET) in embedded systems where it is a
critical factor.

TABLE III: Implementation metrics on the Nvidia Jetson AGX
Xavier with TensorFlow

Batch
size

Throughput
(FPS)

Power
(W)

Energy
efficiency
(mJ/image)

Memory
(GB)

1 61.6 13.65 221.6 1.7
8 74.6 14.56 195.2 2.2
16 78.6 14.56 185.2 5.05
32 75.8 14.56 192.1 5.3

3) Qualitative Evaluation: The TensorFlow workflow tar-
geting the Nvidia Jetson GPU is mature, straightforward, and
well-documented, supported by an active community with
numerous users, examples, and online tutorials. However,
optimization of the neural network is limited within this
framework. The high memory footprint presents significant
concerns for embedded systems, which are often resource-
limited compared to typical desktop or server environments.
Furthermore, this high memory footprint could impact perfor-
mance, energy efficiency, cost, and system stability, especially
when the hardware is required to manage multiple applications
simultaneously.

D. GPU Implementation with CuDNN

1) Workflow Overview: Figure 5 illustrates the workflow
used to deploy our model on the Nvidia Jetson AGX Xavier
utilizing the Nvidia cuDNN 8.4.1 library. Initially, we train
a Float32 version of the model using Keras and export the
trained parameters. Similar to the previous workflow, the
model remains in Float32 format because quantization is only
supported in TensorFlow Lite. The Jetson GPU is capable
of efficiently processing Float32 operations on its CUDA
cores. Subsequently, the neural network must be manually
implemented in C++ with calls to the cuDNN library to
execute operations on the GPU. The neural network is then
cross-compiled for an ARM target using g++ and NVCC
(Nvidia CUDA Compiler), resulting in an executable that is
deployed on the Nvidia Jetson AGX Xavier, which operates a
Linux-based system with the cuDNN library installed.

2) Quantitative Evaluation: During the evaluation, we en-
countered challenges, particularly due to the lack of a cuDNN
implementation for the transposed convolution in the up-
sampling path of the U-Net, as well as for the nearest neighbor
upsampling operation. A feasible solution could have been to
implement these layers in a custom CUDA program; however,
due to limited time and inadequate support on the Nvidia
forum, this approach was not viable. We successfully imple-
mented the down-sampling path and the middle convolution of
the U-Net using cuDNN. The implementation’s accuracy was



Fig. 5: GPU workflow from Keras/TensorFlow training to
Nvidia Jetson AGX Xavier inference with cuDNN

validated by comparing the intermediate tensor outputs from
the middle convolution produced by cuDNN with those from
TensorFlow, finding them equivalent within an absolute toler-
ance of 1e− 8. Thus, we conclude that the cuDNN workflow
is unlikely to alter the evaluation metrics significantly.

Table IV presents the evaluation metrics measured on the
validation set for the implemented down-sampling path and
middle convolution of the U-Net using cuDNN. We estimated
the full U-Net implementation performance by considering
that the down-sampling path and middle convolutions com-
prise 31.6% of the MAC operations, and we scaled the
measured latency accordingly to estimate the total latency.
Similarly, since these components represent 60.7% of the
parameters and intermediate feature maps, we adjusted the
memory footprint to estimate the total memory usage. These
estimates should be interpreted with caution.

TABLE IV: Measured and estimated implementation metrics
on the Nvidia Jetson AGX Xavier with cuDNN

Model Latency
(ms)

Power
(W)

Energy
efficiency
(mJ/image)

Memory
(MB)

Partial U-Net
(measured) 5.82 5.61 32.6 795

U-Net (esti-
mated) 18.4 5.61 103.3 1310

3) Qualitative Evaluation: The cuDNN workflow for tar-
geting Nvidia-embedded GPUs is mature yet intricate. cuDNN
is primarily designed for developers of deep neural net-
work (DNN) frameworks such as PyTorch or TensorFlow
[4]. Consequently, it is more complex than other libraries
and lacks extensive examples. Additionally, the absence of
certain neural network layers necessitates a proficiency in
CUDA programming, which is considerably more complex
than using cuDNN alone. We also encountered discrepancies
between the documentation and the actual implementation,
which compounded the difficulty. The level of community
activity is low; for instance, some queries on the Nvidia
forums, particularly concerning transposed convolutions, have
remained unanswered for over a year. While cuDNN is the
optimal choice for achieving an optimized GPU implemen-
tation, especially where the memory footprint is a concern,
this advantage requires a significantly greater development

effort, particularly for neural networks that include layers not
supported by the library.

E. CPU Implementation with TVM

1) Workflow Overview: Figure 6 presents the workflow
used to deploy our model on an ARM processor. We began
by training a Float32 model with Keras, then utilized TVM
0.8 to export the model to Relay, TVM’s intermediate graph
representation. At this stage, quantization of the neural net-
work is optional, which we discuss further in section IV-E2.
We compiled the model using an optimization level of 3,
which in our experiments achieved the best trade-off between
optimization and neural network accuracy. Subsequently, we
employed TVM’s auto-scheduling, conducting 10,000 trials to
optimize the scheduling of the inference on the CPU. The
model was then ready for deployment on the ARM-A53 target,
operating under a Linux-based system with the TVM runtime
installed.

Fig. 6: CPU workflow from Keras/TensorFlow training to
ARM CPU inference with TVM

2) Quantitative Evaluation: Table V shows the evaluation
metrics obtained on a subset of the validation set, consisting of
1500 images, used in the TVM workflow, as the full validation
set execution time was prohibitively slow on board. To ensure
consistency, we maintained the same sub-validation set from
the Keras evaluation through to the onboard evaluation. The ta-
ble initially reports the metrics following Float32 training with
Keras and TensorFlow. Subsequent rows display the metrics
obtained when deploying the neural network on an Ultra96
board. The TVM workflow, without quantization, preserved
the quality of the neural network’s output. In further experi-
ments, we quantized every weight and activation function to
eight bits, except for the first convolutional layer. We found
that post-training quantization with TVM had a negligible
impact on the evaluation metrics, minimally affecting both IoU
and accuracy.

TABLE V: Evaluation metrics along the TVM workflow

Model IoU Accuracy
Float32 Keras 0.7170 0.9546
Float32 TVM 0.7170 0.9546
Int8 TVM 0.7007 0.9518

Table VI summarizes the performance metrics measured on
the Ultra96 and ZCU104 boards. The ZCU104 demonstrated



approximately ten percent faster execution than the Ultra96,
attributable to its faster DDR memory. However, latency on
both boards was significant, limiting real-time inference of
semantic segmentation neural networks on these CPUs. Power
consumption averaged 1.1W at thermal equilibrium, which
is relatively low and was consistent across both boards and
quantization levels, as the ARM cores were fully utilized
under all conditions. Quantization increased the execution time
threefold, possibly due to a bug in the version of TVM used,
suggesting that the auto-scheduling functionality may not be
fully compatible with the quantized version of our network.
Energy efficiency was slightly better on the ZCU104, but the
difference was minimal, except with the quantized version,
which showed a significant increase. The memory footprint
was reduced further with quantization.

TABLE VI: Implementation metrics on the Xilinx Zynq Ul-
trascale+ boards with TVM

Board Quanti-
zation

Latency
(ms)

Power
(W)

Energy
efficiency
(J/image)

Memory
(MB)

Ultra96 No 540.7 1.05 0.568 68.4
Ultra96 Yes 1687 1.05 1.77 39.5
ZCU104 No 489.2 1.11 0.543 78.7

3) Qualitative Evaluation: The TVM workflow for tar-
geting ARM CPUs is well-established, yet it is not without
limitations, particularly due to a quantization bug encountered
during our evaluations. This issue can be circumvented by
utilizing the quantization functionalities of Keras/TensorFlow.
The workflow benefits from being user-friendly, supported
by extensive documentation and numerous examples. The
versatility of the TVM stack allows for deployment on any
ARM CPU that operates a Linux-based system, including
smartphones and Raspberry Pi devices. Switching the target
CPU requires altering only a single line of Python code. The
community behind TVM is highly active, annually hosting
TVMCon, a conference that fosters collaboration between
academia and industry on neural network compilation. TVM’s
fully automated build and auto-scheduling processes facilitate
the deployment and optimization of state-of-the-art convolu-
tional neural networks, rendering the TVM workflow excep-
tionally adaptable.

F. FPGA Implementation with FINN

1) Workflow Overview: Figure 7 presents the workflow
utilized to deploy our model on an FPGA using the FINN
library. As FINN is incompatible with Keras or TensorFlow,
we re-implemented the U-Net model using PyTorch 1.7.1 and
Brevitas 0.6.1. Brevitas is a quantization library designed to
facilitate Quantization Aware Training (QAT) with PyTorch
and to support deployment through FINN [25]. Initially, we
trained a Float32 version of the U-Net using Keras and
exported the weights to the PyTorch/Brevitas version of the
U-Net. We then proceeded with training a quantized version
of the U-Net using QAT in PyTorch/Brevitas, starting from the
Float32 weights to significantly reduce QAT duration. Brevitas

supports mixed-precision quantization, enabling layer-wise bit-
width parametrization for both weights and activation func-
tions. After training, the model was exported to the ONNX
format, which is compatible with FINN. At this stage, the
model is transformed into a graph that contains only FINN
HLS-compatible nodes. Subsequently, we defined the folding
configuration for each graph node to set the parallelism,
aiming to match the target latency without exceeding the
FPGA’s available resources. If the folding configuration ex-
ceeded the FPGA resources, it required returning to the bit-
width parametrization step and reiterating the QAT phase or
adjusting the target latency. FINN’s built-in functions facilitate
the invocation of Vitis HLS to synthesize each node inde-
pendently, integrate them, and then implement the combined
solution as a Vivado 2022.1 project deployed on the FPGA.
FINN also offers rapid prototyping capabilities using the Pynq
library.

Fig. 7: FPGA workflow from PyTorch/Brevitas training to
FPGA inference using FINN

2) Quantitative Evaluation: Table VII displays the eval-
uation metrics measured on the validation set throughout
the FINN workflow. The initial row recalls the metrics after
Float32 training with Keras. The final row presents the met-
rics for the quantized U-Net post-training, employing binary
weights and 4-bit activation functions across all layers. Despite
aggressive quantization, the accuracy and IoU only showed a
slight decrease. Due to a suspected bug in the FINN library,
we could not perform onboard inference to directly measure
the evaluation metrics, a limitation we will discuss further in
section IV-F3.

TABLE VII: Evaluation metrics along the FINN workflow

Model IoU Accuracy
Float32 Keras 0.7108 0.9531
Quantized Brevitas 0.6837 0.9488

While onboard inference execution was not possible, we
derived certain results from the Vivado project, synthesis, and
implementation reports. Table VIII summarizes these findings
and estimations. The latency was derived from the synthesis
reports, considering the highest latency across all graph nodes



(786,432 cycles) as the accelerator’s initiation interval. With a
clock frequency of 100 MHz, we estimated the accelerator’s
latency to be 7.86 milliseconds, corresponding to a throughput
of 127 images per second. The on-chip power consumption,
estimated at 5.5 Watts, was obtained from the FINN-generated
Vivado project. The estimated energy efficiency is noteworthy,
given the implementation of a low-bit quantized U-Net, al-
though these results are provisional and should be approached
with caution.

TABLE VIII: Estimation of the implementation metrics on the
Xilinx ZCU104 with the FINN workflow

Board Throughput
(FPS)

Power
(W)

Energy
efficiency
(J/image)

Memory
(MB)

ZCU104 127.2 5.46 0.043 N/A

Table IX provides a summary of FPGA resource utilization
based on the post-implementation report generated by Vivado,
highlighting LUTs (Lookup Tables) as the primary limiting
factor. The LUTs are predominantly utilized for the convo-
lution computations, namely the im2col algorithm and the
matrix-vector multiplication unit. Notably, the multi-threshold
layers, representing the quantized activation functions, also
consume a substantial number of LUTs, proportional to the
square of the bit-width of the activation functions. We chose
binary weights and 4-bit activations as an optimal balance
between accuracy and estimated throughput. This approach
also eliminated the need for DSPs, reducing the resource
demands significantly. Our experience has shown that the
FPGA resource estimations provided by FINN’s Python script
were found to be unreliable.

TABLE IX: FINN FPGA resource usage on ZCU104 board

FPGA
resource

Post-
implementation
utilization

FINN Python
estimation Available

LUT 205,249 (89%) 155,905 230,400
LUTRAM 43,498 (43%) Not Available 101,760
Flip-Flop 235,448 (51%) Not available 460,800
BRAM 96 (31%) 233 312
DSP 0 (0%) 0 1,728

3) Qualitative Evaluation: The Brevitas library for training
quantized neural networks targeting FINN implementations
is mature and user-friendly, closely mimicking the PyTorch
experience, albeit lacking in examples. Conversely, the FINN
library is still under development. We encountered and locally
fixed several source code bugs during our experiments. While
some of these issues have been addressed recently, indicating
active development, the community remains relatively small
compared to other libraries. The absence of certain HLS
backend templates, such as transposed convolution, posed
challenges. We circumvented this by substituting with a near-
est neighbor upsampling layer followed by a convolution,
which did not alter the U-Net’s parameter count or MAC
operations.

Utilizing the FINN library can be challenging, particularly
during the transformation phase, which requires users to

meticulously determine the appropriate transformations and
their sequence. Often, modifications to the network archi-
tecture and quantization scheme are necessary to remove
non-HLS compatible nodes. We had to develop two custom
transformations not present in FINN to synthesize the U-Net
effectively. A significant issue related to the U-Net’s shortcuts
prevented us from implementing the neural network on the
FPGA. This issue could stem from a problem with our custom
transformations, a bug in FINN’s handling of concatenation
layers, or FINN’s algorithm not allocating sufficiently large
FIFOs to store the activation functions of the down-sampling
path, thereby hampering the up-sampling path’s ability to per-
form its convolutions. Additionally, the documentation, spread
across various websites and GitHub pages, is fragmented and
challenging to navigate.

The FINN library holds significant potential for energy-
constrained applications and is poised to mature into a highly
energy-efficient method for executing neural network inference
on FPGAs. As it develops, FINN’s approach, with its capacity
for mixed-precision quantization and configurable folding,
will enable tailored optimization for each layer’s bit-width,
accuracy, resource usage, and latency.

G. FPGA Implementation with Xilinx Vitis-AI

1) Workflow Overview: Figure 8 outlines the workflow used
to deploy a neural network on a Xilinx Zynq Ultrascale+
MPSoC using the Vitis-AI framework. This approach, distinct
from rapid prototyping, is focused on actual embedded de-
ployment. The process begins with training a Float32 model
using Keras, followed by exporting it through the Vitis-AI
toolkit version 2.0. Deployment on the MPSoC involves four
primary activities:

• Configuring the DPU (Deep Learning Processor Unit)
accelerator and generating the FPGA bitstream. This
includes selecting the number of DPU cores and their
size, which dictates the operations per clock cycle.

• Generating the application code in C++ to orchestrate
model execution using the VART (Vitis AI Runtime).

• Compiling the model using 8-bit quantization with the
Vitis-AI tools.

• Creating the Board Support Package (BSP) for the
ZCU102 board.

Following these steps, the model is executed on the MPSoC,
with the DPU on the FPGA handling most of the network
operations. However, the CPU may process some layers,
particularly when specific functions like the sigmoid activation
at the end are not supported by the Vitis-AI quantization.

2) Quantitative Evaluation: Table X presents the evaluation
metrics obtained from the validation set using the Vitis-AI
workflow, with the initial line providing a baseline from
Float32 training with Keras. Following the model’s quantiza-
tion to 8-bit using Vitis-AI, no loss in accuracy was observed,
thanks to the toolkit’s effective calibration function. The quan-
tized model was subsequently deployed on the Xilinx DPU on
the ZCU102 board, where no degradation in performance was
noted, suggesting a possible regularization effect.



Fig. 8: FPGA workflow from Keras/TensorFlow training to
FPGA/CPU inference using Vitis-AI

TABLE X: Evaluation metrics along the Vitis-AI workflow

Model IoU Accuracy
Float32 Keras 0.7108 0.9531
Int8 Vitis 0.7156 0.9542
Int8 DPU 0.7263 0.9583

Table XI summarizes the implementation metrics on the
Xilinx ZCU102 board, measured on the validation set. The
configuration uses three DPU cores, each capable of 4096
operations per clock cycle at 100 MHz. This setup was
determined to be the best trade-off for embedded inference,
balancing throughput and power consumption for optimal
energy efficiency.

TABLE XI: Implementation metrics on the Xilinx ZCU102
with the Vitis-AI workflow

Board Throughput
(FPS)

Power
(W)

Energy
efficiency
(J/image)

Peak mem-
ory (MB)

ZCU102 46.9 2.51 53.5 31

Table XII shows the FPGA resource utilization, with DSPs
and BRAMs being the primary limiting factors due to their
roles in MAC operations and storage of weights and inter-
mediate feature maps, respectively. LUTs, LUTRAMs, and
Flip-Flops still have available capacity, providing potential for
future increases in the size or number of DPU cores.

TABLE XII: Vitis-AI FPGA resource usage with 3-core DPU
on ZCU102 board

FPGA resource Post-implementation utilization Available
LUT 133,425 (49%) 274,080
LUTRAM 17,027 (12%) 144,000
Flip-Flop 297,576 (54%) 548,160
BRAM 771 (84%) 912
DSP 2,070 (82%) 2520

3) Qualitative Evaluation: The Vitis-AI workflow is robust,
demonstrating significant maturity, particularly with toolchain
updates in versions 2.0 and 2.5 that resolved previously en-
countered bugs. This versatile workflow supports a wide array
of neural network layers, and users can incorporate custom
IP blocks to introduce new operations. Xilinx provides com-
prehensive documentation and end-to-end examples through
the Vitis-AI Model Zoo. The community surrounding Vitis-AI
has grown rapidly, although the learning curve remains steep

due to the complexity of integrating various components such
as BSP, Vivado, PetaLinux, and Vitis-AI tools. Additionally,
while most components of Vitis AI are open source, some ele-
ments, such as the Vitis AI Compiler, remain proprietary, and
certain tools within the Xilinx ecosystem require a commercial
license.

V. SYNTHESIS

A. Synthesis and Workflow Comparison

Table XIII synthesizes the evaluation and implementation
metrics results across the five workflows. As discussed in
Section IV, onboard implementation was not achievable for
the cuDNN and FINN workflows. Consequently, the imple-
mentation results from these workflows are estimates and
should be interpreted with caution. Quantization is employed
only when the hardware target does not support Float32
operations. The CPU and GPU workflows maintain the neural
network’s output quality, thus achieving the same accuracy
and Intersection over Union (IoU) as their respective baselines.
The FINN workflow causes a slight degradation in accuracy
and IoU, which is minimal considering the use of low-bit
quantization. Conversely, the Vitis-AI workflow marginally
improves the evaluation metrics on the validation set due
to its quantization and calibration mechanisms, introducing
a regularization effect. All workflows are compared at iso-
accuracy levels. Nevertheless, there are significant differences
in throughput and power consumption across the platforms
and workflows. As expected, the CPU exhibits the lowest
throughput, resulting in poor energy efficiency. The FPGA
workflows, utilizing FINN or Vitis-AI, demonstrate superior
energy efficiency. Both FINN and Vitis-AI enable the creation
of customizable neural network accelerators, allowing for tai-
lored FPGA resource usage, which in turn affects throughput
and power consumption. Additionally, the use of quantization
contributes to reduced power consumption. In contrast, GPU
workflows and platforms have a considerably higher memory
footprint compared to CPU and FPGA workflows and targets,
presenting potential challenges in an embedded context.

Table XIV synthesizes the engineering metrics across the
five workflows. Overall, TensorFlow and TVM stand out in
the comparison. Both are open-source, mature, user-friendly,
well-documented, and supported by large, active communities.
Close behind, the Vitis-AI workflow exhibits similar positive
attributes but is more challenging to use due to its incor-
poration of proprietary components and a requirement for
hardware engineering expertise. Nevertheless, it offers greater
customization capabilities than the TVM and TensorFlow
workflows. The post-training 8-bit quantization in Vitis-AI,
while adding complexity and development time, enhances
energy efficiency. The cuDNN workflow is primarily designed
for developers of deep neural network frameworks, such as
PyTorch and TensorFlow, reflecting its maturity but also its
limited suitability for embedded inference. Furthermore, the
absence of certain operators, like transposed convolution and
nearest neighbor upsampling, necessitates intricate and labor-
intensive development. At the bottom of our comparison is



TABLE XIII: Synthesis of the evaluation and implementation metrics of the five workflows

Platform Nvidia GPU Xilinx Zynq UltraScale+ MPSoC
Board Jetson AGX Xavier ZCU104 ZCU102
Workflow TensorFlow cuDNN TVM (CPU) FINN (FPGA) Vitis-AI (FPGA)
Implementation Yes No Yes No Yes
Numeric precision Float32 Float32 Float32 W1A4 Int8
Accuracy change (vs. baseline) 0% 0% 0% -0.43% +0.52%
IoU change (vs. baseline) 0 0 0 -0.0271 +0.0155
Throughput (FPS) 74.6 54.3 2.04 127 46.9
Power (W) 14.6 5.61 1.11 5.46 2.51
Energy efficiency (mJ/image) 195 103 543 43.0 53.5
Memory (MB) 2200 1310 78.70 N/A 31

TABLE XIV: Synthesis of the engineering metrics of the five workflows. Metrics are quantified as high, medium, and low.

Platform Nvidia Jetson AGX GPU Xilinx Zynq UltraScale+ MPSoC
Workflow TensorFlow cuDNN TVM (CPU) FINN (FPGA) Vitis-AI (FPGA)
Maturity High High High Low High
Ease of Use High Low High Low Medium
Documentation and Examples High Medium High Medium High
Community Support High Low High Low High

the FINN workflow. Its current maturity level is low, with
identified bugs, and it presents significant usability challenges.
The need to develop custom transformations not available in
the FINN library further complicates its usage. Although the
community is active, it is relatively small compared to the
others. Documentation and examples exist but are dispersed
across various websites and GitHub repositories, which com-
plicates the comprehension process. Additionally, FINN’s lack
of support for certain operators, such as transposed convolu-
tion, necessitates alterations in the neural network architecture.

B. Limitations and Future Works

The conclusions presented in this paper reflect observations
from 2021 to 2023. Nevertheless, the field of neural networks
is rapidly evolving, and significant changes in these frame-
works are anticipated in the near future. For instance, during
the course of our project, we observed maturation in both the
FINN and Vitis-AI workflows.

On the GPU front, our research focused on the high-level
TensorFlow and the low-level cuDNN workflows. Nvidia’s
TensorRT, an intermediate, open-source workflow for DNN
inference, represents a potential area for future research [23].
Future investigations should also explore quantization to fully
leverage the capabilities of Nvidia’s Tensor Cores in embedded
GPUs, potentially narrowing the energy efficiency gap with
FPGAs.

Further research should evaluate the use of more powerful
CPUs, such as those based on Intel x86 architectures, with
compilers like TVM or Intel nGraph that have shown effec-
tiveness on these processors [14]. Due to time constraints, this
study did not explore ASICs for neural network inference, such
as Google’s Edge TPU or Intel’s Movidius VPUs [27], which
appear to be promising for embedded applications and warrant
future evaluation.

Lastly, the embedded domain poses unique challenges re-
garding robustness and explainability, aspects not covered in
this paper. These topics are currently active research areas

in both academic [21], [34] and industrial spheres [6], [19],
deserving attention in future studies.

VI. CONCLUSION

This paper has demonstrated the necessity of adapting
advanced neural network architectures to novel datasets within
an embedded framework. We introduced a lightweight U-Net
that achieves the same accuracy with 16 times fewer param-
eters and Multiply-Accumulate (MAC) operations, validated
on an aerial image segmentation dataset [17]. Furthermore,
this study provided an extensive evaluation and comparison
of various methods for real-time semantic segmentation of
aerial images, employing three contemporary Commercial Off-
The-Shelf (COTS) embedded computers across five distinct
workflows.

The FPGA target, utilizing Vitis-AI, emerged as the superior
choice due to its performance, energy efficiency, and system
maturity. However, its implementation necessitates specialized
hardware expertise. The ARM CPU target, leveraging TVM, is
notable for its user-friendliness and maturity, yet its relatively
low energy efficiency and throughput pose significant chal-
lenges for embedded system applications. The GPU target,
utilizing TensorFlow, is acknowledged for its maturity and
ease of use but is more appropriate for rapid prototyping than
for actual embedded solutions. Conversely, the GPU target
employing cuDNN is better aligned with embedded deploy-
ment but suffers from complexity and a lack of support for
various neural network layers. Lastly, the FPGA target using
FINN shows high potential for energy-constrained applications
but necessitates additional development to become a practical
option.
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Abstract—Today, Artificial Intelligence (AI) solutions are de-
ployed for various applications in several technological domains.
Deep Learning (DL) methods, especially, Artificial Neural Net-
works (ANN) are considered for space systems to provide new
perspectives for complex earth observation or space exploration
missions that request in-orbit data processing. However, the
inherent complexity of such algorithms in terms of arithmetic
operations and associated memory usage limits their integration
on on-board components and, usually, requires special accelera-
tor entities dedicated to perform such tasks. For space systems,
due to limitations on energy availability, Field Programmable
Gate-Array (FPGA) devices are usually preferred over more
power-consuming Graphical Processing Units (GPU). Nonethe-
less, the design and implementation processes are more complex
for FPGA and must be carefully analyzed. In this paper, we
describe our approach from initial prototyping to implementation
for an industrial test-case about satellite imagery: the Airbus
Ship Detection Challenge (ASDC). We discuss the applications
considerations for classification and semantic segmentation and
describe a set of selected ANN architectures together with the
training environment. We conduct an evaluation strategy to
select small and efficient architectures that provide good trade-
off in terms of accuracy and performance. Finally, we detail
optimization techniques and experiment on-board performances
of our EMBRYA’s Enki core-ip on a selection of FPGA based
embedded devices.

Index Terms—FPGA, Classification, Semantic Segmentation,
CNN

I. INTRODUCTION AND BACKGROUND

Artificial Neural Networks (ANN) algorithms have a very
long history which started in 1943 with the invention of the
perceptron concept [40] followed by its first implementation
in 1957 [54] and extension to multi-layers structures in 1958
[55]. These first approaches had limited learning capabilities
and several initiatives have been proposed over the years to fill
this gap [30] [4] [35]. In 1982, the back-propagation method
was formulated [68] and then experimented [56] providing the
baselines of the key feature of ANN: their ability to learn.
Based on this foundation, an immense amount of research
has been conducted to refine and expand the ANN concepts.
Thus, a large variety of architectures have been proposed in
the literature which can be classified in three main types:

• The Multi-Layer Perceptrons (MLP), or Fully Connected
(FC) networks, regroups the extensions to multiple layers
of the original perceptron structure [29].

• The Recurrent Neural Networks (RNN) are extensions of
MLP which integrate a feedback loop [31] or an internal
memory [11]. These adds-on address a limitation inherent
to the MLP structure, which is its reliance solely on inputs
for predicting the output. Thus, it enables the capture
of dependencies between the previously processed output
and the subsequent output. These days, Long-Short Term
Memory (LSTM) [17] and Gated Recurrent Unit (GRU)
[7] are the most used architectures of this kind.

• The Convolutional Neural Networks (CNN) are special-
ized for computer vision applications. Their architectures,
derived from the neocognitron concept invented in 1980
[14], are capable of processing images by regions to
capture geometric 2-Dimensional (2D) relationships. The
first CNN, based on matrix convolution operations, was
implemented in 1998 [33] for the MNIST1 handwritten
digit recognition task. The differences between the three
ANN types mentioned above are illustrated in Figure 1.

Fig. 1: MLP, CNN of RNN neural network types

Over the years, the expansion of ANN has marked a
significant milestone in various fields, consistently outper-
forming more traditional methods such as image and speech
recognition. For space applications as well, ANN provide
substantial opportunities to improve the functionality and
efficiency of space systems across a wide range of uses and
applications. [58]. More specifically, ANN can contribute to

1http://yann.lecun.com/exdb/mnist/



autonomous navigation and control of spacecraft which is
crucial for space missions beyond direct human control due
to distance or complexity. By processing vast amounts of
data from various sensors, neural networks can help in real-
time decisions for path correction, navigation and obstacle
avoidance [61]. Also, ANN can help to improve the efficiency
and reliability of space communication systems [13], for ex-
ample, with noise reduction [52] or interference mitigation [8].
This is particularly important for deep space missions where
communication delays and signal degradation are significant
challenges. Finally, in Earth observation missions, ANN are
used for processing and analyzing data collected from satel-
lites [59] to enhance the ability to monitor climate change,
natural disasters and urban development. By processing data
directly on the satellite, only relevant information needs to be
transmitted to Earth such as cloud detection for image quality
[19]. This significantly reduces the bandwidth requirements
and data transmission costs, a critical consideration given the
high volume of data generated by Earth observation satellites.
The integration of such resource-intensive computer vision
algorithms into on-board embedded systems requires careful
consideration and analysis, especially considering the limited
memory and processing power of these systems.

This paper introduces a first step forward for the develop-
ment of our EMBRYA’s Enki core-ip prototype, deployed on
Field Programmable Gate-Array (FPGA) devices, by applying
it to a comprehensive study on ASDC satellite imagery dataset
covering aspects from initial conceptualization to on-board
implementation. We will detail the dataset and explore the
associated tasks of classification and semantic segmentation
associated with it. Our work investigates various CNN archi-
tectures, examining their original designs and exploring their
reductions to enhance on-board performance. Specific opti-
mization details and experimental results are also presented.
Furthermore, a thorough bibliography is provided throughout
the document to substantiate our methodology. The structure
of this paper is organized as follows:

• Section II explains the background with the emergence of
hardware accelerators for AI inference and the motivation
behind our new generation Enki technology.

• Section III describes the application in focus. We will
present the ASDC dataset, detailing its characteristics and
features. Following this, we will delve into the binary
classification and semantic segmentation tasks that will
be applied to this dataset.

• Section IV provides a description of the CNN architec-
tures under investigations and associated training environ-
ments and presents results for our complete exploration
strategy. We select different architectures that we analyze
and experiment for effective on-board implementations.

• Section V explains the optimization strategy and shows
experimental results of ENKI on a set of selected SoC
FPGA hardware devices and, finally, Section VI con-
cludes and proposes some perspectives.

II. BACKGROUND

A. ASIC IA accelerators

Nowadays, due to the raise of AI based algorithms, several
Application-Specific Integrated Circuits (ASIC) based acceler-
ators are proposed to support these computing intensive tasks
[51]. GPU based solutions are the mainstream approach to
process ANN and other AI based algorithms in particular with
the expansion of NVIDIA and the development of CUDA,
an open source language similar to C++ used to directly
program low level functions on NVIDIA GPUs. In addition,
NVIDIA devices (and CUDA) supports many deep learning
frameworks widely used nowadays [23]. For embedded sys-
tems, NVIDIA also offers several scaled-down GPU versions
which are integrated with a CPU on a System-on-Chip (i.e.
SoC with integrated GPUs or iGPUs). These small GPU
devices, such as Jetson Nano, have shown that they can operate
in a space environment [62]. However due to peak power
consumption (associated to heat dissipation) the integration of
such hardware is still problematic for satellite [18]. Therefore,
for space applications, other ASIC based solutions such as
Google Coral TPU (Tensor Processing Unit) or Intel Myriad
Vision Processing Units (VPU) are preferred [15] offering
good performances with low power consumption [49]. Re-
cently, the Intel Myriad VPU was the first AI accelerator to
be integrated on-board in a satellite [20].

B. FPGA Solutions

Despite their efficiency, ASIC based systems have several
drawbacks. Especially, ASIC are purpose-built for specific
capabilities and therefore cannot be reprogrammed. In addi-
tion, the design of a dedicated ASIC solution requires a long
and costly development cycle which might not be suitable
for some projects and applications. In this context, FPGA
technology provides elegant alternative with a no hard etched-
it circuity. Thus, it can be reprogrammed and require low
power consumption which makes it an excellent alternative to
ASIC for development. The use of FPGA based devices has
been analyzed for years for integration on space applications
[22]. Therefore, the raise of AI algorithms has also pushed
a lot of initiatives and to develop and deploy AI chip-ips on
FGPA [67]. Currently, there are two main approaches to deploy
AI/ML based applications on FPGA-based systems [47] :

1) The design of specialized custom chip-ips for executing
specific neural networks [21]. Currently, the main ap-
proach is to use automatic HDL generators frameworks
which ease the development of hardware chip-ip by
translating machine learning algorithms and generating
the design of dedicated chip-ip solutions for integration
into FPGA such as FINN [65], HLS4ML [12], MATLAB
HDL Coder [38]. Recently, FPG-AI framework has been
characterized on NanoXplore FPGAs [34].

2) The use of stand-alone generic AI chip-ip accelerators
such as Microchip CoreVector Blox Neural Network
Engine [41], Intel FPGA AI Suite IP [3] or Xilinx Deep
Processing Unit (DPU) [73]. The performance and energy



efficiency of the Xilinx DPU accelerator is among the
most competitive nowadays [2], it has already been used
for space applications [48] and analyzed for radiation-
tolerance [1]. These generic chip-ips are usually designed
per FPGA providers and dedicated to their edge devices
which makes it difficult to deploy on custom hardware or
new technologies. Also, these chip-ips usually target SoC
technology combining the FPGA with a CPU. Thus, the
chip-ip accelerator is used as a co-processor controlled
by means of dedicated instructions sent per the CPU.

C. Why ENKI?

This paper presents the first deployment of our Enki pro-
totype based on a technology under patent review. It offers
a new concept for a generic full AI ASIC processor (and
not only a co-processor). Currently, for development purpose,
Enki is being deployed on FPGA devices and therefore can
be considered as one of these generic chip-ip AI accelerators
described in Section II-B. From the conceptual point of view,
Enki addresses some restrictions compared to current stand-
alone generic AI chip-ip solutions:

• Genericity: Current solutions are generally oriented to-
ward pure performance of CNN within very strict gener-
icity bounds (type of layers, activation, ...) and are not
usable outside these bounds. For example, CNN can’t
be directly combined with RNN on the same generic
chip-ip. Also, it is not possible to integrate some other
feature extraction techniques, such as the Hough trans-
form [9] or Non-Maximum Suppression (NMS) useful
to complement CNN based image processing solutions.
Also, on Enki, you can load multiples neural network
configurations.

• Precision: Due to the limitation of FPGA logic and
memory, chip-ip accelerators use integer datatypes such
as Xilinx DPU using int8 representation. The migration
process from floating point model msut be handled using
dedicated tool to ensure a proper conversion with a
limited loss in precision. Following the recent standard-
ization extension of Open Neural Network Exchange
(ONNX) to quantized version QONNX [44], Enki use the
scaled integer quantization combining floating point data-
types for scales (costly in term of resource nonetheless)
with integer datatypes (that can be bit-wise fine tuned).
This principle combined with direct quantized training
ensures higher accuracy of the quantized models. The
migration details are described in Section V-A and Enki
is, to the best of our knowledge, the first QONNX
compliant generic FPGA chip-ip accelerator.

• Deployment: Enki HDL code can be synthesized to any
technology-dependent netlist and then implemented (op-
timization, placement and routing) on a dedicated FPGA.
In addition, the concepts behind Enki are not restricted to
SoC architecture and can be deployed on a non intrusive
FPGA only solution (such as an FPGA connected an
Ethernet network).

• Learning: Finally, all AI chip-ip accelerators are opti-
mized for inference following the offline training, on-
line learning paradigm which is very well suited for
supervised learning models. However, nowadays, some
more advanced AI concepts are emerging and offering
new perspectives such as Federated Learning (FL) for
satellites constellations [39] or Reinforcement Learning
(RL) applicable in the context of spacecraft control [64].
These new algorithms requires the learning capability
non existing nowadays on state of the art accelerators.
A comparison overview is summarized in Table I.

TABLE I: Comparison of Enki (Overview)

Enki Xilinx DPU HLS4ML/FINN

Inference X X X

External memory X X X

Genericity (Chip-ip) XX X X

Performance X XX XX

Online Training XX X X

III. APPLICATION DESCRIPTION

A. The ASDC dataset
The rise in maritime incidents such as illegal fishing, cargo

theft, AIS spoofing, drug trafficking and shipwrecks, has made
it crucial to detect ships to oversee and curb maritime crime
effectively. Researchers are continually working to overcome
the challenges of automatically detecting ships, especially
in remote sensing. This effort has significantly contributed
to ensuring safety, identifying illegal activities, monitoring
pollution, and tracking oil spills. In the field, ASDC is a well-
known satellite imagery data-set [28] hosted on Kaggle2, a
popular website for data science competitions. The ASDC
serves as a tangible benchmark for the development and
comparison of various computer vision and machine learning
algorithms. Its large dataset of 31.4 GB is composed of a
set of 208162 RGB images (3 channels) with a resolution of
768×768 pixels, 192556 images that can be used for training
(labelled) and 15606 images that are used for testing (non
labelled). The final goal of the competition was to accurately
identify and locate ships within the images of the test set. It
presents unique challenges, including the detection of small or
partially hidden ships, distinguishing ships from other objects
or natural formations, and adapting to diverse lighting and
weather conditions. Satellite imagery in the dataset can feature
either a single ship, multiple ships, or no ships at all, as
illustrated in Figure 2. The breakdown of how ships are
distributed across the images in the training dataset is detailed
in Table II and shows a very unbalanced distribution which
might be considered for properly training the selected CNN
models (see Section IV).

2https://www.kaggle.com/competitions/airbus-ship-detection



Fig. 2: ASDC images with and without ship

TABLE II: Ships distribution across the training dataset

Ship(s) None 1 2 3 4
(and more)

Number 149999 27104 7674 2954 4824
of images

Percentage 77,9% 14,1% 4,0% 1,5% 2,5%

B. Classification and Segmentation

The ASDC challenge can be tackled using two synergistic
methods: classification and semantic segmentation. Focusing
initially on classification, we opted for a binary classification
approach to determine whether the input image contains a ship
(one or many) or none as depicted in Figure 3.

Fig. 3: Binary classification for ASDC

Since the inception of the first CNN initiative [33], the
CNN architectures have expanded to address more intricate
image classification challenges, such as those presented by
the CIFAR3 or ILSVRC4 [57] datasets. Consequently, sophis-
ticated CNN architectures like AlexNet [32] or ResNet [27]
have been developed. These architectures are highly effec-
tive in solving image classification problems, which involve
determining whether an image belongs to a given specific
class. In the top-performing solutions on the ASDC challenge
leaderboard on Kaggle5, common models used to address the
classification problem are standard variants of ResNet [27] as
well as more advanced variants such as ResNeXt [69]. Consid-
ering the semantic segmentation aspect of ASDC, traditional

3https://www.cs.toronto.edu/ kriz/cifar.html
4https://www.image-net.org/challenges/LSVRC/
5https://www.kaggle.com/competitions/airbus-ship-detection/leaderboard

CNN architectures for classification cannot be directly applied.
As depicted in Figure 4 for ASDC, semantic segmentation
enhances classification to operate at a pixel level. In this
approach, the model is required to determine the class for each
pixel in the input image. The model’s output is a probability
distribution across various classes for every pixel of the input
image. It is important to note that for both classification
and segmentation tasks, it is often necessary to down-sample
the original image to manage memory usage and reduce the
number of arithmetic operations required.

Fig. 4: Semantic Segmentation for ASDC

Many of the leading solutions for semantic segmentation
in the ASDC challenge, as seen on the Kaggle leaderboard,
utilize primarily the UNet architecture [53]. For identifying
ships, some solutions opt for instance segmentation, often
employing Mask-RCNN [24] or You Only Look Once (YOLO)
[46], instead of semantic segmentation.

C. Our application design

For efficiency purpose, in our application design we used a
combination of detection and semantic segmentation to avoid
the unnecessary runs of a deep semantic segmentation model
directly on the input image if it isn’t containing a ship. There-
fore, our application first use a detection algorithm on down-
sampled 64 × 64 image issued from the 768 × 768 original
input image. Then, if a ship is detected, the application runs
the segmentation model to create the expected segmentation
matrix to locate the ships on a bigger image 224 × 224
(still downsampled from the original input one). This efficient
implementation concept is illustrated in Figure 5.

Fig. 5: Optimizing Segmentation with preliminary detection



IV. EXPLORING CNNS ARCHITECTURES

A. Architectures under investigation

For the classification task, we have selected 2 types of CNN
for evaluation: VGG [36] based on a traditional architecture
and the more sophisticated ResNet [27] containing parallel
residual connections in its structure. For the semantic segmen-
tation, we have selected 2 types of Encoder-Decoder CNN ar-
chitectures: Unet [53] and Segnet [5]. These have very similar
architectures, Unet shares feature maps between the encoder
and the decoder while Segnet shares max-pooling indexes6 [6].
As mentioned in III-C, because of the resource constrained
systems of space systems, our goal is to find the smallest
architectures that perform well and offer a good balance
between accuracy and performance. Therefore, we explore the
internal designs of these architectures by reducing the internal
number of channels in order to evaluate the balance between
accuracy and performance (in terms of memory usage). We
ended up with 4 architectures from big model size (>50 MB)
to low size (<1 MB) more suitable for FPGA deployment. In
addition, for each of these architectures, we experimented 4
different activation functions: well known Relu, PRelu [25],
Silu [10] and Gelu [50]. These CNN architectures and their
sizes are resumed in Table VI.

TABLE III: Size (MB) for model architectures

Type Arch. 1 Arch. 2 Arch. 3 Arch. 4

Resnet 50.3 12.6 4.6 0.15

Vgg 54.5 13.9 4.0 0.14

Unet 124.3 11.5 4.6 0.8

Segnet 117.9 13.1 5.2 0.7

B. Training Environment

Based on the original ASDC dataset, we built two test cases:
one for the detection (i.e. classification) with down-sampled
64 × 64 images and one for the semantic segmentation
with down-sampled 224 × 224 images. Considering that the
detection algorithm would be first used to detect if the image
contains a boat we considered the images of ASDC that are
containing one (or many) boat(s) for semantic segmentation.
We divided the official training set containing ship into new
training and validation sets with a ratio of roughly 85%
and 15% respectively. For classification, we kept the same
ratio of 85% and 15% for training/testing sets and integrated
images without boat to the training set and validation set as
illustrated in Figure 6.

We trained our architectures using Pytorch framework [45].
For classification, we used weighted Adam optimizer [37]

6Note that Segnet is an example of CNN that can’t be deployed as if on
Xilinx DPU due to its max unpool layers

Fig. 6: ASDC handling for Classification and Segmentation

over 50 epochs with a learning rate of 0.005 and momentum
values (betas) equals to 0.9 and 0.999 respectively and training
batches with a size of 256 and a simple Binary Cross Entropy
error. For segmentation, we used the same optimizer over 100
epochs with a learning rate of 0.001 (with the same 0.9 and
0.999 for momentum values) and training batches with a size
of 16. We normalized the RGB format of the input image
pixel from 0-255 range to 0-1 range and we initialized our
weights of our architecture using Kaiming methods [26]. As
the choice of loss function is crucial in deep learning tasks
[63], especially in imbalanced datasets like the ASDC. We
selected a combination of Dice and Focal Losses to provide
a more balanced approach. The Dice Loss is suitable for data
with class imbalance, as it measures the overlap between the
predicted segmentation and the ground truth and makes it
more sensitive to the pixels of the minority class (ships in
this case). On the other hand, the Focal Loss is designed
to address class imbalance by down-weighting the loss for
well-classified examples. This allows the model to focus on
hard, misclassified examples. The combination of these two
loss functions is very efficient as shown in Section IV-D.

C. Classification Results

For classification, the accuracy representing the percentage
of correct prediction compared to label is used to evaluate the
correctness of the model. The results for the accuracy on the
validation set are synthesized in Table IV.

As expected, the biggest models are performing better
than the small ones. However, we can observe that the very
small models still provide a very good accuracy and being
extremely smalls (above 0.9 for Vgg and around 0.9 for
Resnet). Overall, in general, the Vgg architecture is the one
performing the best for all sizes. For these detection archi-
tectures, in the general case, the use of other Gelu and Silu
activation functions doesn’t bring significantly better results
than Relu while adding more complexity for the on-board
process of these models. The Prelu activation function can
thus be considered for implementation providing good results,
as this is depicted in Figure 7 for the biggest (Arch.1) and the
smallest (Arch.4) Vgg architectures where we can observe that



TABLE IV: Classification accuracy (Val.) for 64×64 images

Type Act Arch. 1 Arch. 2 Arch. 3 Arch. 4

Resnet 1 (relu) 0.930 0.925 0.924 0.898

Vgg 1 (relu) 0.939 0.933 0.932 0.920

Resnet 2 (prelu) 0.934 0.931 0.929 0.898

Vgg 2 (prelu) 0.941 0.939 0.933 0.919

Resnet 3 (silu) 0.926 0.925 0.924 0.905

Vgg 3 (silu) 0.934 0.935 0.933 0.917

Resnet 4 (gelu) 0.928 0.927 0.927 0.901

Vgg 4 (gelu) 0.937 0.935 0.931 0.917

Prelu outperforms the other activation functions for the biggest
architecture (conf11 and conf41) while the Relu is the best
one for the smallest architecture (conf12 and conf42).

Fig. 7: Evolution of accuracy for Vgg architectures

D. Segmentation Results

To measure the accuracy of our models, we use Intersection
over Union (noted IoU), one of the most used metrics for
the evaluation of semantic segmentation models [42]. IoU
considers the number of common pixels between the label and
prediction masks (the intersection of the two sets) divided by
the total number of pixels present in the two masks (the union
of the two sets). The results, obtained on the validation set, are
synthesized in Table V. We can observe that we are obtaining
very good results with high IoU for all the architectures
showing the efficiency of our combined Dice/Focal Loss
function. As expected, similarly to classification architectures,
the biggest models are better than the small ones, still offering

very good results. The most efficient CNN in our experiment
is Unet which outperforms Segnet. Table V also shows that the
use of other activation functions might be relevant to increase
the accuracy of semantic segmentation models especially for
small architectures. In general, Silu and Gelu are the most
performing activation functions in our tests. To illustrate this,
Figure 8 presents the evolution of the IoU for the validation set
over the training epochs for Unet, the best performing CNN,
taking its biggest architecture (Arch.1) and its smallest one
(Arch.4). We can see that the validation IoU for Silu (conf13
and conf43) and Gelu (conf14 and conf44) are the ones
that have the best evolution curves over Relu (conf11 and
conf41) thus these activation functions might be considered
to enhance the ANN accuracy.

TABLE V: Segmentation IoU metrics for 224×224 images

Type Act Arch. 1 Arch. 2 Arch. 3 Arch. 4

Unet 1 (relu) 0.874 0.852 0.837 0.774

Segnet 1 (relu) 0.779 0.762 0.754 0.710

Unet 2 (prelu) 0.884 0.842 0.840 0.772

Segnet 2 (prelu) 0.775 0.756 0.753 0.711

Unet 3 (silu) 0.891 0.871 0.850 0.792

Segnet 3 (silu) 0.784 0.763 0.753 0.735

Unet 4 (gelu) 0.894 0.875 0.843 0.783

Segnet 4 (gelu) 0.783 0.770 0.753 0.715

Fig. 8: Evolution of IoU for Unet architectures



V. ON-BOARD IMPLEMENTATIONS

A. Discussion and optimization strategy

The high constraints on FPGA devices to deploy a neural
network usually induces a lot of step to migrate, to highly
optimize (pruning, quantization, ...), to generate FPGA bit-
stream and deploy the system on-board. Unlike the other
approaches, we want to deploy target networks with a simple
optimization strategy. Moreover, the results from Section IV-C
and IV-D show that, by using the Pytorch framework with
proper training settings (loss function, ...), we can design and
train small and accurate models. We have selected Vgg 41
(Relu) and 42 (Prelu) for classification and Unet 41 (Prelu)
and 43 (Silu) for segmentation on which we applied two
optimization steps:

1) Remove Batch Normalization (BN): BN layers are mainly
introduced to improve training, by increasing convergence
speed and avoiding local minima. In order to improve the
execution time while preserving semantic performance
batch normalization parameters are folded into the previ-
ous convolutional or dense layers weights and biases7.

2) Migrate to QONNX: In order to alleviate storage require-
ments and limit floating point operations, quantization
is applied. On our side, we use QONNX representation
based on scaled integer quantization which works by
shifting and scaling numbers to fit within an integer
range. To do so, we used Brevitas library [43] compliant
with Pytorch and directly integrated in our environment.
Brevitas supports both Post-Training Quantization (PTQ)
and Quantization-Aware Training (QAT) techniques. We
applied a merge of these two techniques by retrain the
quantized Brevitas twins after the batch normalization
fusion. This simple optimization process is illustrated in
Figure 9 and Figure 10.

Fig. 9: Batch Normalization fusion and weight copy (Step 1)

B. Hardware platforms

To deploy our scaled integer quantized models, we have
chosen 3 Xilinx SoC architectures:

• A small device: Zedboard (XC7Z020 SoC) [70]
• A medium device: Kria KR260 (XCK26 MPSoC) [72]
• A large device: ZCU 102 (XCZU9EG MPSoC) [71]
Table VII summarizes the data issued from the three afore-

mentioned documents regarding the internal characteristics of
the devices. It is important to note that Block RAM is a
dedicated type of RAM that does not require extra Look-Up

7https://nenadmarkus.com/p/fusing-batchnorm-and-conv/

Fig. 10: Quantization-Aware (re)training (Step 2)

TABLE VI: Accuraccy and IoU results for quantized models

Type Original Quantized

Vgg 41 (relu) 0.920 0.916

42 (prelu) 0.919 0.915

Unet 41 (relu) 0.774 0.758

Unet 43 (silu) 0.792 0.776

Vgg size (MB) 0.14 0.04

Unet size (MB) 0.8 0.22

Tables (LUTs), in contrast to distributed RAM, which is using
LUTs.

TABLE VII: Xilinx SoC FPGA under consideration

ID Zedboard Kria KR260 ZCU 102

System Logic Cells 85000 256200 599550

CLB Flip-Flops (FF) 106400 234240 548160

CLB LUTs 53200 117120 274080

Distributed RAM (Mb) - 3.5 8.8

Block RAM (36Kb) 140 144 912

Block RAM (Mb) 4.9 5.1 32.1

UltraRAM Blocks 0 64 0

DSP Slices 220 1248 2520

PC-PL DDR 512MB (3) 4GB (4) 4GB (4)

C. Enki results

We synthesized and implemented our Enki prototype for
each of those SoC FPGA targets. We have been able to
integrate the full version of Enki on the ZCU 102 and Kria
260 while we had to set up a reduced version, using less
BRAM memory for feature map intermediary data and with
less features, for the Zedboard. The full chip-ip of this first
version includes features to perform Convolution, Transposed
Convolution, and Linear, Max and Average Pooling layers.
Also, it supports full float Sigmoid and Hyperbolic Tangent



(Tanh) as well as Relu, Silu and Prelu. The full version also
has the capability to load 4 configurations for 4 Networks.
Thus, Vgg 11, Vgg 12, Unet 11 and Unet 13 are loaded within
Enki and can be executed. Note that these configurations
can be easily changed without modifying the bitstream. The
reduced version is restricted by only supporting a single NN
configuration for execution and removing the support to full
float activation functions. The resource utilization of the Enki
chip-ip for each device is summarized in Table VIII and the on-
board latency results are shown in Table IX. Execution times
are expressed in milliseconds (ms) and represent the duration
of one execution step to process one input image.

TABLE VIII: Enki FPGA ressource usage

ID Zedboard Kria KR260 ZCU 102
reduced full full

CLB Flip-Flops (FF) 31654 37813 43991
30% 16% 8%

CLB LUTs 32921 42434 41637
62% 26% 15%

Block RAM (36Kb) (36Kb) 48 36 168
34% 25% 18%

UltraRAM Blocks NA 52 NA
81%

DSP Slices 182 234 237
83% 19% 9%

TABLE IX: Enki latencies

ID Zedboard Kria KR260 ZCU 102
50 Mhz 125 Mhz 250 Mhz

Vgg 41 (relu) 246 ms 88 ms 43 ms

Vgg 42 (prelu) 247 ms 88 ms 43 ms

Unet 41 (relu) NA 911 ms 473 ms

Unet 43 (silu) NA 918 ms 477 ms

D. Discussion

The first above-mentioned development results of our tech-
nology highlighted the successful deployment capacity of Enki
and several points may be highlighted:

• The latency results are lower than we expected and to
what can be achieved on the Xilinx DPU8. This first
version of the full chip-ip Enki is not optimized yet.
On the Kria and the ZCU 102, the footprint is relatively
small which open the path for plenty of adjustments and
optimizations. Moreover, we selected some clock settings
that are below the maximum achievable on these card.

• Only latencies have been measured, since reconfiguration
is part of Enki technology. Each model already configured

8Additional optimization steps using Xilinx software library might be
required to simple optimization steps described in this document

on Enki can be executed instantaneously via a simple
command. The reconfiguration with new external models
can be summarized to the cost of a copy into the correct
DDR area (so few microseconds) and therefore negligible
compared to inference latency execution time.

• The results from the reduced IP needs to be further
analyzed and compared to the full IP on the same board.

• It seems that there are some improvements with the use of
URAM memories on the Kria. The latency is a little less
than twice the latency of the ZCU 102. Again, it must be
confirmed per execution with and without URAM usage
on the same board (using the reduced IP for example).

• The Prelu execution compared to Relu is negligible how-
ever, the use of the Silu has an impact on the execution
time using the full float (taylor approximated) sigmoid
activation function. We are currently replacing these per
interpolation tables to speed up the process.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have successfully validated our bottom up
approach for an ship detection and segmentation application.
We have investigated several architectures from literature
and have set up a complete evaluation campaign to complete
the ASDC dataset. As expected, deeper and complex model
architecture provides the best accuracy but are not suitable
for on-board deployment. We have highlighted that small
models with simple optimization strategy can be deployed
and offer a good compromise between accuracy and on-board
performance. This work required the mastering on several
aspects from the early phase of the application design to
the on-board testing on SoC FPGA devices. A complete
bibliography is also presented along this document to
illustrate our argumentation and statements. Last but not
least, we successfully developed and tested the first prototype
of our Enki technology. This first prototype doesn’t include
optimization to enhance its performance, the latency results
are lower than expected. On the other hand, the current
resource usage on the selected devices shows that we have
a lot of available hardware to do so. Many perspectives
are under discussion to follow up this work. We first want
to instrument and explore a complete comparison analysis
with the Xilinx DPU including some energy consumption
measurements. Even if Enki offers limited latency compared
to Xilinx DPU, we believe that the overall pixel per Watt ratio
is still good due to our resource usage and clock settings. In
addition, we must complement this with a thorough analysis
on the impact of the configuration parameters for ENKI for
energy efficiency (such has been done on the Xilinx DPU
[66]). From the application point of view, we are currently
extending our work on to panoptic segmentation strategies
and applying it to PASTIS dataset [16]. Our first results are
very encouraging and we may combines it the use of CNN
with RNN concepts in ConvLSTM [60] to extract properly
the temporal relation in the image sequences.
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Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learn-
ing phrase representations using RNN encoder-decoder for statistical
machine translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1724–1734. ACL, 2014.

[8] Saed Daoud, Geoffrey Eappen, Flor Ortiz, Eva Lagunas, Wallace Mar-
tins, and Symeon Chatzinotas. Cnn-based on-board interference detec-
tion in satellite systems: An analysis of dataset impact on performance.
In 2023 IEEE International Conference on Acoustics, Speech, and Signal
Processing Workshops (ICASSPW), pages 1–5, 2023.

[9] Richard O Duda and Peter E Hart. Use of the hough transformation
to detect lines and curves in pictures. Communications of the ACM,
15(1):11–15, 1972.

[10] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted
linear units for neural network function approximation in reinforcement
learning. Neural Networks, 107:3–11, 2018. Special issue on deep
reinforcement learning.

[11] Jeffrey L. Elman. Finding structure in time. Cognitive Science,
14(2):179–211, 1990.

[12] Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer,
Sergo Jindariani, Nhan Tran, Luca P. Carloni, Giuseppe Di Guglielmo,
Philip C. Harris, Jeffrey D. Krupa, Dylan S. Rankin, Manuel Blanco
Valentin, Josiah D. Hester, Yingyi Luo, John Mamish, Seda Ogrenci
Memik, Thea Aarrestad, Hamza Javed, Vladimir Loncar, Maurizio
Pierini, Adrian Alan Pol, Sioni Summers, Javier M. Duarte, Scott Hauck,
Shih-Chieh Hsu, Jennifer Ngadiuba, Mia Liu, Duc Hoang, Edward
Kreinar, and Zhenbin Wu. hls4ml: An open-source codesign workflow
to empower scientific low-power machine learning devices. CoRR,
abs/2103.05579.

[13] Fares Fourati and Mohamed-Slim Alouini. Artificial intelligence for
satellite communication: A review. Intelligent and Converged Networks,
2(3):213–243, 2021.

[14] Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics, 36:193–202, 1980.

[15] Gianluca Furano, Gabriele Meoni, Aubrey Dunne, David Moloney,
Veronique Ferlet-Cavrois, Antonis Tavoularis, Jonathan Byrne, Lonie
Buckley, Mihalis Psarakis, Kay-Obbe Voss, and Luca Fanucci. Towards
the use of artificial intelligence on the edge in space systems: Challenges
and opportunities. IEEE Aerospace and Electronic Systems Magazine,
35(12):44–56, 2020.

[16] Vivien Sainte Fare Garnot and Loic Landrieu. Panoptic segmentation
of satellite image time series with convolutional temporal attention
networks, 2022. http://arxiv.org/abs/2107.07933 arXiv:2107.07933.

[17] Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. Learn-
ing to forget: Continual prediction with lstm. Neural Comput.,
12(10):24512471, 2000.

[18] Max Ghiglione and Vittorio Serra. Opportunities and challenges of ai on
satellite processing units. In Proceedings of the 19th ACM International
Conference on Computing Frontiers, CF ’22, page 221224, New York,
NY, USA, 2022. Association for Computing Machinery.

[19] Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni, Matej Bati, Lonie
Buckley, Aubrey Dunne, Chris van Dijk, Marco Esposito, John Hefele,
Nathan Vercruyssen, Gianluca Furano, Massimiliano Pastena, and Josef
Aschbacher. The -sat-1 mission: The first on-board deep neural network
demonstrator for satellite earth observation. IEEE Transactions on
Geoscience and Remote Sensing, 60:1–14, 2022.

[20] Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni, Matej Bati, Lonie
Buckley, Aubrey Dunne, Chris van Dijk, Marco Esposito, John Hefele,
Nathan Vercruyssen, Gianluca Furano, Massimiliano Pastena, and Josef
Aschbacher. The -sat-1 mission: The first on-board deep neural network
demonstrator for satellite earth observation. IEEE Transactions on
Geoscience and Remote Sensing, 60:1–14, 2022.

[21] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang.
[dl] a survey of fpga-based neural network inference accelerators. ACM
Transactions on Reconfigurable Technology and Systems, 12(1), mar
2019.

[22] Sandi Habinc. Suitability of reprogrammable fpgas in space applications.
2002.

[23] William Grant Hatcher and Wei Yu. A survey of deep learning:
Platforms, applications and emerging research trends. IEEE Access,
6:24411–24432, 2018.

[24] Kaiming He, Georgia Gkioxari, Piotr Dollr, and Ross Girshick. Mask
r-cnn. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2980–2988, 2017.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification, 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1026–1034, 2015.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[28] Jeff Inversion and Martin Faudi. Airbus ship detection challenge, 2018.
URL: https://kaggle.com/competitions/airbus-ship-detection.

[29] Irie and Miyake. Capabilities of three-layered perceptrons. In IEEE 1988
International Conference on Neural Networks, pages 641–648 vol.1,
1988.

[30] A.G. Ivakhnenko and V.G. Lapa. Cybernetic predicting devices. Tech-
nical Report 37803, U.S. Department of Commerce, 1966.

[31] M I Jordan. Serial order: a parallel distributed processing approach.
technical report, june 1985-march 1986.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira, C.J.
Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc.,
2012.

[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[34] Vasileios Leon, Ioannis Stamoulias, George Lentaris, Dimitrios Soudris,
David Gonzalez-Arjona, Ruben Domingo, David Merodio Codinachs,
and Isabelle Conway. Development and testing on the european space-
grade brave fpgas: Evaluation of ng-large using high-performance dsp
benchmarks. IEEE Access, 9:131877–131892, 2021.

[35] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error.
BIT Computer Science and Numerical Mathematics, 16(2):146160, june
1976.

[36] Shuying Liu and Weihong Deng. Very deep convolutional neural
network based image classification using small training sample size.
In 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR),
pages 730–734, 2015.

[37] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization
in adam. CoRR, abs/1711.05101, 2017.

[38] Inc MathWorks. Hdl coder - evaluation reference guide. Technical
Report R2023a-R2023b, 2023.

[39] Bho Matthiesen, Nasrin Razmi, Israel Leyva-Mayorga, Armin Dekorsy,
and Petar Popovski. Federated learning in satellite constellations. IEEE
Network, pages 1–16, 2023.

[40] Warren Mcculloch and Walter Pitts. A logical calculus of ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics,
5:127–147, 1943.



[41] Microchip (Microsemi). Corevectorblox handbook. Technical Report
HB0919, November 2020.

[42] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser
Kehtarnavaz, and Demetri Terzopoulos. Image segmentation using deep
learning: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(7):3523–3542, 2022.

[43] Alessandro Pappalardo. Xilinx/brevitas, 2023.
[44] Alessandro Pappalardo, Yaman Umuroglu, Michaela Blott, Jovan

Mitrevski, Ben Hawks, Nhan Tran, Vladimir Loncar, Sioni Summers,
Hendrik Borras, Jules Muhizi, Matthew Trahms, Shih-Chieh Hsu, Scott
Hauck, and Javier Duarte. Qonnx: Representing arbitrary-precision
quantized neural networks, 2022. http://arxiv.org/abs/2206.07527
arXiv:2206.07527.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
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Abstract—In the aerospace and automotive domains, there is a
growing trend towards delegating more tasks to embedded soft-
ware, employing sophisticated algorithms and machine learning-
based solutions. As a result of this trend, the complexity of
embedded software is escalating rapidly. Classical performance
analysis methods, such as static worst-case execution time anal-
ysis, struggle to cope with this complexity without providing
prohibitively over-approximated upper bounds.

In this paper, we introduce a tracing-based performance analy-
sis approach tailored to data flow space applications. We illustrate
how traces are leveraged to extract arrival curves, minimum
distance functions, and execution times. We showcase the utility
of tracing in design decisions using an aerospace use case, e.g.,
optimising the number of cores to reduce end-to-end latency.
Furthermore, we extracted and presented debugging information
graphically. While our tracing-based performance analysis may
introduce overhead on the extracted timing properties, such as
worst-case execution time, this overhead is bounded by 6.5%.
Finally, we demonstrated the efficacy of our proposed tracing-
based analysis approach through its application in a space
application scenario.

I. INTRODUCTION

Modern space applications, including Earth observation, in-
orbit servicing, and autonomous spacecraft and rover mis-
sions on distant celestial bodies, entail intensive on-board
data processing and sophisticated control algorithms. These
applications can become very complex, with high requirements
for reliability and performance. The high demand for small
satellites, such as cube-sats, necessitates more modular and
reusable software that meets mission requirements, including
timing requirements.

Multi-core platforms can offer high performance with low
power consumption compared to single-core platforms. How-
ever, the parallel execution and simultaneous access to shared
resources on multi-core platforms introduce additional com-
plexity to embedded software. Furthermore, reading from
sensors involves a significant time delay relative to computing
time. Although self-suspending processes are employed for
sensor reading, they contribute to more intricate and less
predictable timing models. Event-driven execution models,

   $

Execution Trace file Visualisation

Timing
Analyses

Fig. 1. Workflow of the tracing discussed in this paper: the execution of
a program equipped with tracing results in a trace file which can either be
graphically displayed or further analysed.

such as the publisher-subscriber model in Robotic Operating
System version 2 (ROS2) [1], are also commonly employed
for improved data predictability. In this case, a common
industry practice is to assign tasks to a pool of threads
where the threads cooperate to execute the tasks under a non-
preemptive manner [1], [2]. Nevertheless, these models do not
simplify timing considerations; instead, they introduce their
own complexities.

Measurement-based performance analyses are widely uti-
lized in the industry; however, they cannot guarantee complete
coverage of all corner cases. Static methods, on the other hand,
can offer formal guarantees on performance and are primarily
employed for safety-critical applications. Despite providing
over-approximated results, static methods struggle to smoothly
scale with the complexity of modern hardware/software. Con-
temporary research often leans towards proposing hybrid ap-
proaches to address the heightened complexity of modern
hardware/software and compute reliable guarantees. Tracing
emerges as a versatile approach to extract crucial runtime in-
formation from complex embedded software to enhance formal
methods. For instance, tracers have been used to define the
activation pattern of tasks in the Real-Time Calculus (RTC) [3]
approach and the Symbolic Timing Analysis for Systems



(SymTA/S) [4] approach. This technique finds application in
various domains, such as robotics [5] and automotive [6],
where it aids in extracting timing properties and establishing
precedence relations between software components. Tracing
is preferred over regular debugging, as the latter may lead
to breakpoints violating timing requirements or skewing the
observed performance.

In this work, we aim to extract timing properties of applica-
tions with complex timing behaviour, namely applications ex-
ecuted by cooperating thread pools. For that end, our proposal
utilizes a tracing mechanism. Also, we present how to visualise
these traces, and how to extract debugging information from
them, using open-source tools. An overview of our proposed
workflow is summerised in Fig.1. Our work employs the
Common Trace Format (CTF) [7] to write traces. and the
TraceCompass [8] to visualise the traces. Also, we use Babel-
trace [9] to extract timing properties from the traces. We im-
plemented our proposed tracing mechanism on an event-driven
multithreading framework, namely Tasking Framework [2]. As
our applications are intended to run on different operating
systems, primarily Linux and RTEMS, we are focused on
developing a cross-platform tracing mechanism.

In the following section, we explore the related work. In
Section III, we briefly introduce Tasking Framework and its
main features. In Section IV, we elaborate on the imple-
mentation of the tracing mechanism. Section V presents our
approach to extract timing properties. The overhead of the
proposed tracing mechanism is discussed in Section VI. We
demonstrate the applicability of the proposed approach on
a realistic case study in Section VII. Finally, Section VIII
concludes the paper.

II. STATE OF THE ART

The extraction of runtime information is vital for the de-
veloping process. Knowing the execution behaviour is key
to debugging and, later on, the optimisation of a system. An
established way of extracting runtime information is tracing.
Tracing records the behaviour of a system during its execution
by placing hooks, called tracepoints, in the code [10]. At its
core, tracing produces a trace file that can be read and analysed
after it is produced [11]. Depending on the tracepoints and
their eventual content, the runtime information gained with
tracing can vary, depending on the observed system. If the
system structure is not known or only known partially, the
focus when extracting runtime information may lie in getting
a more complete system model such as in [12], [13]. In other
cases, such as in [5], runtime information, such as response
times, is collected to aid in analysing timing behaviour.

Facing unknown behaviour in a real-time system, [12]’s
approach uses execution traces and a task definition to model
the system’s runtime behaviour as a set of independent peri-
odic tasks. All tasks occurring in a given execution trace are
categorised as either periodic or non-periodic. Furthermore,

they extract additional information on the periodic tasks such
as their period and response time profile.

Usually, traces are extracted using Tracers, tools that use
already existing or custom hooks to instrument the code for
recording during runtime. A popular tracer for Linux applica-
tions is the Linux Trace Toolkit: next Generation (LTTng) [14],
that is capable of tracing processes both in the kernel and
user space. For kernel tracing, it uses tracepoints already
embedded in the Linux kernel. For user space tracing, LTTng
needs the application to be instrumented using either LTTng-
style tracepoints or Java or Python logging statements that
are then fed to a LTTng handler. LTTng uses a binary format
called Common Trace Format (CTF) [7] to write its traces
in a compact manner. LTTng is also used as a basis for
other tracing tools, such as in [5], which presents a range
of multi-purpose tracing tools for the ROS 2 that use LTTng
as their tracing backend. LTTng is used because it has both
user and kernel space tracing capabilities, making the trace as
comprehensive as possible for Linux applications, as well its
low overhead and real-time compatibility.

[13] employs the extended Berkeley Packet Filter (eBPF)
for tracing in ROS 2. Other than LTTng, it does not require di-
rect instrumentation, which would lead to having to recompile
ROS2 standard libraries. Tracing is used in [13] to extract the
flow of information within the system, since this information
may not be directly accessible in industry scenarios. It does so
by identifying and tracking ROS 2 nodes and callbacks during
execution.

LTTng only runs on Linux systems, making it unsuitable for
cross-platform applications. However, the format that LTTng
uses, CTF, is an open standard that is intelligible to both indus-
try tools such as Tracealyzer [15] and open-source solutions
like TraceCompass [8]. Its binary nature makes CTF a very
compact format already, its high flexibility regarding form and
content of individual events, instances of tracepoints being
passed, allows to control the amount of overhead and size
of the resulting trace file.

To cope with the emerged challenges from using new
programming language like Rust, Wang et al. proposed in [16]
a context aware tracing for estimating the execution time of
asynchronous tasks. The main concern of [16] is the Rust
programs that are implemented as coroutines. Hence, the ap-
plicability of [16] is limited to Rust asynchronous programs.

III. TASKING FRAMEWORK

The Tasking Framework is an open-source1 non-preemptive,
cooperative multithreading C++ framework and execution
platform, mainly used in the development of space applica-
tions [2]. It is being developed by the German Aerospace
Center. While it supports different platforms such as Linux,

1https://github.com/DLR-SC/tasking-framework
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Fig. 2. The optical navigation subsystem in ATON [17] in Tasking Framework.

RTEMS and FreeRTOS, it can also be run on bare-
metal. Tasking Framework has been used in several space
projects, including Autonomous Terrain-based Optical Navi-
gation (ATON) [17], Euglena Combined Organic food Pro-
duction In Space (Eu:CROPIS) [18], and Scalable On-Board
Computing for Space Avionics (ScOSA) [19].

In Tasking Framework, applications are modelled as a graph
of tasks, channels and inputs, as can be seen in Fig.2, which
models the optical navigation subsystem of ATON. This task
and channel model is modelled after Petri nets, with tasks
analogous to transitions and channels likened to places. As
with Petri nets, channels and tasks are connected through
inputs. Channels can be thought of as data storage while tasks
are processing units that take their input from and push their
output to channels. Once data is pushed on a channel, the
inputs that connect tasks to the channel are notified of the
new data on the channel. This may lead to the activation of
the connected tasks. In addition, there are also events. Events
are used to either periodically trigger a task or to trigger the
task after a time-out.

The point in time at which a task is activated, that means
marked as ready to be executed, depends on the activation
model used for this task. Tasking Framework supports different
activation models, meaning the conditions of activation can be
chosen individually for each task. Thus, a task may wait for a
push on all, one or some channels that it is connected to or may
require multiple pushes on a channel before activation. The
activation model for a task is chosen at compile time, however,
the task barrier structure, a specialised kind of channel, may be
used if the amount of pushes required for task activation has
to be changed during runtime. The default call semantic for
tasks is asynchronous, however, the task group structure can
be used to implement synchronicity among a group of tasks,
meaning that a task once executed can only be executed again
after all other tasks in the group have also executed regardless
of its own activation status.

When a task is activated, it will be queued for execution.
Tasks are executed using a pool of threads, called executors,
that collaborate on the execution of tasks. Tasks are executed

by Tasking Framework in non-preemptive manner. Fig. 3
illustrates the execution model in Tasking Framework. There
are three scheduling policies supported in Tasking Framework,
namely First-In First-Out (FIFO); Last-In First-Out (LIFO);
Fixed Priority. The scheduling is work-conservative, i.e., there
is no idle executor as long as the ready queue is not empty.
Executors collaborate in a load-balancing manner and every
task can be executed by any available executor.

Currently, the application programming interface (API) of
Tasking Framework supports only C++. Developing applica-
tions using different programming languages is not supported
up to now.

IV. IMPLEMENTATION

This section outlines how a tracing mechanism was inte-
grated into Tasking Framework and how it can be displayed
with TraceCompass [8]. Tracing the Tasking Framework is
reliant on the instrumentation of its code, i.e. the hooks placed
in the source code to record a Tasking Framework application.
We use the Common Trace Format (CTF) [7], which is a
flexible and lightweight binary format, to write traces. The
Tasking Framework is large enough that it would cause too
much overhead to record every single action that is executed
during the runtime. Thus, one must identify a configuration of
points within Tasking Framework that give an accurate picture
of the inner happenings of the framework. Preferably, with as
few points as possible as to avoid causing too much overhead.
These tracepoints are:

1) A push on a channel. The push on a channel happens
whenever new data is made available to the channel.
In turn, all connected inputs are notified informing the
connected tasks that new data is available on the channel.

2) Activation of a task. The activation of a task signals that
a task is ready to be executed and has been queued by
the scheduler to wait for the next free execution slot.

3) Task starts & stops executing. This shows how long the
task had to wait before being executed and how long it
was executed.

Pushes are triggers for task activation and their presence or
absence in a trace can contribute to error searches. The timing



Fig. 3. The execution model in Tasking Framework.

information on the activation, start and stop of the execution
of a task can provide information on execution and queueing
wait times. The tracer class is implemented as a singleton to
prevent conflicting write processes, especially when multiple
threads are running and generating events at the same time.
Customising the trace format also gives control over the
amount of overhead produced by the tracer because custom
events can use only the exact amount of data needed and do
not have to fill fields with empty data to conform to standards.
Custom events pose the question of how exactly their payloads
are supposed to look like. Keeping the payload small is
imperative to keeping the overhead small. Each tracepoint
generates an event upon execution. Hence, the four custom
events are:

• push on a channel λl, denoted by πl
• activation of a task τi, denoted by αi

• start of a task execution, denoted by σ↑i
• stop of a task execution, denoted by σ↓i

We introduce the trace θ as a finite set of these events.
Each of these events requires at least the identification

number of the relevant task or channel in order to match the
events to their corresponding tasks or channels. While this is
enough to complete necessary calculations and calculate corre-
sponding graphs, these graphs are not particularly readable for
humans. The number associated to each task is not a speaking
name and would require the developer or user to look up the
numbers in Tasking Framework in a time-inefficient manner.
To prevent this, the payload of each custom event includes
not only the identification number of a task but also its four-
character name that is used for display purposes and for user
interaction.

We use TraceCompass [8] to visualise our traces. Trace-
Compass is an Eclipse Rich Client Platform (RCP) tool to
read, visualise and analyse traces. TraceCompass provides a
variety of charts. These charts allow for inspecting, measur-
ing and analysing the opened trace. Like all Eclipse RCPs,
TraceCompass can be modularly expanded with the help of

plug-ins to add more functionality. Plug-ins for TraceCompass
include plug-ins for additional analyses, scripting, global filters
and support for additional trace types by different tracers
and profilers. Since TraceCompass is built and specialised
on Linux kernel and user space traces, it does not include
many charts for custom traces. In fact, a completely custom
CTF trace imported into TraceCompass will get two charts
generated by TraceCompass, the Statistics chart, that shows
the absolute and relative frequencies of the events in the trace,
and a list of all events and their payloads contained in the trace,
that is by default chronologically ordered. While manageable
for very small traces, these two charts are not very helpful
when used with traces that contain more than a handful of
events. Additionally, while CTF does not have a limitation
on the length of individual traces, there is a limit of about
1.6 million events that can be loaded into and displayed in
TraceCompass. For traces containing more events, there are
other tools such as Babeltrace [9], that are able to handle trace
files of that size.

Making a custom graph is possible using a Python script
and the EASE scripting module integrated into TraceCompass.
The script takes the currently opened trace as input and iterates
over the events. Each event whose name can be matched to
one of the defined custom events is used to extract its quark,
which in TraceCompass stands for a unique identifier for an
object. In this case, the quark is generated from the event
name, meaning the events are sorted by task or channel name.
The event is then added to the state system using the quark
and the timestamp to sort it to the right position. Once all
eligible events are added to the state system, it is used to
create a TimeGraph. TimeGraph lists all states, in this case
tasks and channels, on the left side of the diagram while using
a timeline as x-axis. This custom TimeGraph will be referred
to as Tasking Graph. An example of a Tasking Graph can be
seen in Fig.4, which displays the Tasking Graph of a trace
of a skeleton implementation of the ATON optical navigation
subsystem shown in Fig.2. This means, each task or channel



Fig. 4. Tasking Graph of the use case shown in Fig.2.

gets its own individual timeline that displays how the object
changes states during the runtime. Activation and Execution
periods for each task (light and dark blue respectively) are
displayed on task timelines, while channel timelines display
pushes (green).

V. EXTRACTING TIMING PROPERTIES

Next to the graphical representation of the trace, which can
be useful for debugging, the generated trace can give more
insights into the system behaviour. This information can then
be used to decide whether a system needs traffic shaping or
reconfiguring. The tracepoints on task activation and start of
execution help to determine how long a task has to wait in
each instance before it gets executed while the start and end
times give insight to the execution time of a task. Let tevent

represent the timestamp of the event.
The instance k of τi experiences a queuing time qki :

qki = tσ↑i − tαi (1)

Hence, the maximum queuing time that τi suffers is:

Qi = max{qki |∀k ∈ θ} (2)

The instance k of τi experiences an execution time cki :

cki = tσ↓i − tσ↑i (3)

The longest observable execution time of τi is:

Ci = max{cki |∀k ∈ θ} (4)

When tracing the activations and executions of a task, one
can also analyse the trace to study possibly emerging patterns
in the task behaviour and use them to predict system behaviour.
For systems that run, ideally, in perpetuity or for very long
stretches of time, tracing can only offer a snapshot of the
system behaviour. However, graphical analysis is not the only
analysis that can be applied to a trace. The recorded events
of a Tasking Framework trace allow for the extraction of the
following information: execution time of every instance of a
particular task, activation times and queuing times, as well as
push behaviour.

In practice, we use Babeltrace and its python bindings to
iterate over the trace. This allows us to extract execution and
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Fig. 5. Arrival curve η+(∆t) of the navigation task (navi) of ATON.

queuing times, as well as compute arrival curves and distance
functions.

A. Arrival Curves

An arrival curve is a function that can be applied to a
trace or any other timeline of events. The minimum and
maximum arrival curves η−(∆t) and η+(∆t), are defined as
functions on R+ → N+, so that for any half-open time interval
[t, t + ∆t) they return respectively either the minimum or
maximum number of task activations α that can occur within
the interval [20], [21]. An example of a maximum arrival
curve can be seen in Fig.5. Arrival curves are non-decreasing,
with η+(∆t) being sub-additive, meaning that the following
is always true for η+(∆t):

∀∆t,∆t′ ∈ R+ : η+(∆t+∆t′) ≤ η+(∆t) + η+(∆t′) (5)

B. Distance Functions

Distance functions are the pseudo-inverse of arrival curves.
The minimum (maximum) distance function δ−(n) (respec-
tively δ+(n)) is defined on N+ → R+ and returns the smallest
(largest) time interval ∆t that contains at least (at most) n
events. An example for a minimum distance function can be
seen in Fig.6. Minimum distance functions are non-decreasing
and super-additive [21], meaning that every minimum distance
function fulfils the following:

∀n, n′ ∈ N+ : δ−(n) + δ−(n′) ≤ δ−(n+ n′) (6)

C. Extrapolating Trace Data

Exploiting the sub-additive and super-additive properties of
η+(∆t) and δ−(n), it is possible to extrapolate data for the
behaviour of a traced system under the following assumption:
the δ−(2), which was observed within the trace, is also the
global minimum. With this assumption in mind, distance
functions can be extrapolated as follows:

δ−(n+ 1) = δ−(n) + δ−(2). (7)

While arrival curves can be extrapolated with:

η+(∆t+∆t′) = η+(∆t) + η+(∆t′) (8)
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Fig. 6. Distance function δ−(n) for the navigation task (navi) of ATON.

When using this extrapolation, it has to be noted that this is
a safe extrapolation. Meaning, the extrapolated data has to be
treated as lower or upper bound for the distance function and
arrival curve respectively, meaning in case of a distance func-
tion that the extrapolated values represent the smallest possible
value with no indication of an upper limit. Meanwhile, for the
arrival curve the extrapolated data represents an upper bound
with no indication for a lower bound.

VI. OVERHEAD OF TRACING

To measure the overhead caused by the tracing mechanism,
example applications were profiled, resulting in a detailed
overview of how much time the applications spent in which
function. These example applications use dummy tasks, which
are tasks with negligible computational effort, to replicate real-
world applications in their structure. The offline overhead, i.e.,
the overhead of all functions that are involved in tracing, lies at
around 15%-20%, depending on the profiler that is used. More
relevant, however, is the overhead that is actively interfering
with the timing behaviour of the tasks. The overhead of the
tracing functions that affect the timing behaviour is caused by
three functions, namely the ones that record pushes on a chan-
nel and the start and stop of a task executing. Their overhead
sums up to 5.8%-6.5%, depending on the used profiler. Note,
that the execution times of the tracing function are mostly
fixed, since they always write the same amount of data. That
means, if a task executes longer, the percentage of the overhead
goes down accordingly. We computed the overhead using
almost empty dummy tasks. Hence, the overhead shown here
is likely to be an upper boundary of the possible overhead.

VII. USE CASE

We are considering a use case inspired by the optical
navigation subsystem of the ATON project, utilizing the Linux
operating system and ARM Cortex-A53 (1.2 GHz) as an

embedded quad core processor. The aim of the experiments
in this section is to showcase the effectiveness of our pro-
posed tracing mechanism as a performance analysis approach,
focusing on extracting the timing properties of our use case.
We conducted three experiments to exemplify how our tracing-
based performance analysis is seamlessly integrated into the
design process of safety-critical applications.

We have recorded a trace of 83523 events and extracted
arrival curves and distance functions for event-driven tasks.
Figures 5 and 6 illustrate η+(∆t) and δ−(n) respectively for
the navigation task (navi). Since the task is event-driven, its
activation pattern is non-periodic. Our use case represents a
graph of tasks. Therefore, we are interested not only in the
timing properties of each task but also in the timing properties
of different chains defined within the graph, specifically the
end-to-end latency. We define a chain as the execution of a
sequence of tasks from a source to a sink. In our use case,
cam1 and cam2 are sources, and ter1 and ter2 are sinks. Hence,
there are four chains. Let χ denote a chain, thus:
χ1 : cam1→ craT→ navi→ ter1
χ2 : cam1→ craT→ navi→ ter2
χ3 : cam2→ feaT→ navi→ ter2
χ4 : cam2→ feaT→ navi→ ter1

A. Design decision 1: Platform

The goal of this experiment is to demonstrate the capability
of our tracing mechanism to be cross-platform. Hence, beside
the above mentioned settings (Linux + Cortex-A53), we com-
piled our case study to run on RTEMS using the GR712RC
board with LEON3 processor (40 MHz), which is the default
radiation-hardened processor for space systems. We present
the execution time and queuing time experienced by each task
considering FIFO scheduling with one executor in Fig. 7 for
Linux + Cortex-A53 platform. Also, in Fig. 8 we consider
FIFO scheduling with one executor for RTEMS + LEON3
platform. The end-to-end latency for both platforms is pre-
sented in Fig. 9. RTEMS, as an RTOS, produces results with
less variation and suffering from less interference thanks to the
RTOS kernel. Therefore, the range between the minimum and
maximum values is smaller compared to the results obtained
from the Linux OS. However, the maximum observable exe-
cution times are not improved, nor the queuing times. In fact,
the third quartile values using the RTEMS + LEON3 platform
for both the execution time and the queuing time are about
100 times larger than the third quartile values using Linux
+ Cortex-A53. The main reason is the very slow radiation-
hardened processor (LEON3 with 40 MHz) which is about 30
times slower than the high-performance platform (Cortex-A53
with 1.2GHz). The need for more on-board processing power
is a major concern for researchers and space companies. Many
missions aim to integrate high-performance commercial off-
the-shelf (COTS) processors alongside the radiation-hardened
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Fig. 7. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using one executor on the Linux + Cortex-A53 platform.
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Fig. 8. The execution time and the queuing time of the tasks in the use case under the FIFO scheduling using one executor on the RTEMS + LEON3
platform.
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Fig. 9. The end-to-end latency of the chains under the FIFO scheduling considering one executor. In the left figure (in red), we consider the Linux +
Cortex-A53 platform, and we consider the RTEMS + LEON3 platform for the right figure (in blue).

processors [22]–[24] to meet the required on-board processing
power.

B. Design decision 2: Scheduling policy

In this experiment, we utilize our tracing mechanism to
study the impact of scheduling policies and priority assign-
ments on the timing behavior of tasks. Accordingly, we
generated a new trace on Linux + Cortex-A53 architecture
considering fixed priority scheduling, with priorities assigned
as outlined in Table I2. The new results are presented in
Fig. 10. As the Tasking Framework executes tasks in a non-
preemptive manner, the queuing time of tasks may exceed
their execution time. However, employing priority scheduling
reduces the queuing time and improves task execution times.

2We refer here to the FIFO and priority scheduling implemented in the
Tasking Framework, as depicted in Fig. 3

TABLE I
PRIORITY ASSIGNMENTS WHERE 1 IS THE HIGHEST PRIORITY

Task cam1 cam2 craT feaT navi ter1 ter2
Priority 1 1 3 2 4 5 5

Consequently, the end-to-end latency is enhanced. Fig. 11 il-
lustrates the end-to-end latency for FIFO scheduling (depicted
in red on the left) and priority scheduling (shown in blue
on the right). Under FIFO scheduling, data processed from
cam1 to ter1, in χ1, experience the longest end-to-end latency.
Conversely, under priority scheduling, χ2 exhibits the longest
latency.

With this experiment we show that it is possible to extract
enough data using tracing to come to a sound decision regard-
ing scheduling policy. In this paper, unless stated otherwise,
we use FIFO scheduling for all other experiments.
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Fig. 10. The execution time and the queuing time of the tasks in the use case under the fixed priority scheduling using one executor on Linux + Cortex-A53
platform.

102 103 104 105

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

102 103 104 105

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

Fig. 11. The end-to-end latency of the chains considering one executor on the Linux + Cortex-A53 platform. In the left figure (in red), we consider the FIFO
scheduling, and we consider the priority scheduling for the right figure (in blue).

C. Design decision 3: Number of executors

We aim to address a design question: how many cores
should be allocated to the ATON optical navigation subsystem
to strike a balance between delay and the number of cores?
To achieve this, we executed our code under FIFO schedul-
ing, considering two and three executors, respectively. The
results are presented in Fig. 12 and Fig. 13. Comparing the
results of one executor (Fig. 7) with two executors (Fig. 12),
we observed that the execution times were better with two
executors, but the maximum values increased. This can be
attributed to the increased ratio of cache misses that tasks
may experience when executed by two different executors on
different cores. Consequently, the maximum queuing time of
the tasks also increased significantly, although the minimum
values improved. Fig. 14 demonstrates that the minimum end-
to-end latency improved compared to the scenario with one
executor under FIFO and priority scheduling. However, the
maximum end-to-end latency increased significantly.

D. Comparing with static methods

Industrial embedded software are complex and formal meth-
ods cannot cope with it. Using languages like C, C++, RUST
makes the analysis even more complicated. For instance, using
virtual methods in C++ leads to indirect jumps, beside the indi-
rect jumps caused by the switch-case statements and functions
pointers in C and C++. Also, the objected-oriented program-
ming in C++ makes bounding the loop more challenging for

tools depend on the source code like oRange [25]. Solutions
that use dynamic symbolic execution, like e.g. DELOOP [26],
can help us to resolve indirect jumps and compute safe bounds
on the bounded loops. In [26], the dynamic symbolic execution
was used to compute flow facts for Tasking Framework. These
flow facts were forwarded to OTAWA [27] to compute the
WCET of the Tasking Framework functions, for instance,
the push function. The main drawbacks of dynamic symbolic
execution based solutions that they are platform dependent. As
DELOOP was developed for armv7 architecture, it cannot be
used out of the box to compute the execution time for, e.g.,
X86 architecture. Using portable tracing based solution like
our proposed solution can overcome the challenges emerged
from different programming languages and it is platform
independent. Table II shows the WCET of the push function in
all tasks of our use case for ARM Cortex-M3. The results in
Table II are more pessimistic than the results computed using
the traces because they consider the longest execution path in
the push function, which may not observable in the trace.

TABLE II
RESULTS OF THE WCET ANALYSIS FOR THE PUSH FUNCTION IN THE USE

CASE

Task WCET (cycles)
cam1 2435
cam2 2435
craT 3635
feaT 3635
navi 4800
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Fig. 12. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using two executors on the Linux + Cortex-A53
platform.
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Fig. 13. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using three executors on the Linux + Cortex-A53
platform.

102 103 104 105 106 107

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

102 103 104 105 106 107

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

Fig. 14. The end-to-end latency of the chains considering the FIFO scheduling on the Linux + Cortex-A53 platform. In the left figure (in green), we use two
executors, and we use three executors in the right figure (in yellow).

VIII. CONCLUSION AND OUTLOOK

With the increasing complexity of embedded software, es-
pecially on-board software, performance analysis using static
methods faces the challenge of providing tight yet safe guaran-
tees. Extracting timing properties using tracing is a promising
technique to assist static methods to cope with the growing
complexity of embedded software. In this work, we presented
a tracing mechanism for performance analysis of data flow
space applications that reuses open-source tools to offer a
cross-platform solution. We showed how to use our solution to
extract debugging and timing properties of a use case inspired
by the optical navigation subsystem. Also, we studied the
overhead of our solution.

Any tracing solution suffers from two main points: 1) the
need for code instrumentation, 2) the overhead of the events.

As eliminating the two points is not realistic, reducing the
overhead or the impact of the overhead on the measured pa-
rameters is a topic for future improvements. Additionally, code
instrumentation can be automated using auto-code generators
to guarantee less error-prone instrumentation. For this, we
aim to employ the Timing Modeling Language (TML) [28]
to automatically instrument the auto-generated code for our
applications. In such a step, the developer can generate the
traceable code and resulting traces with minimum effort and
minimum human errors. Fig. 15 illustrates the TML model-
ing interface that would make such an automated approach
possible.

REFERENCES

[1] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
time analysis of ROS 2 processing chains under reservation-based



Data

Components

Task Graph

Fig. 15. The Timing Modeling Language (TML): an auto-code generator for
Tasking Framework.

scheduling,” in 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), vol. 133. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019, pp. 6:1–6:23.

[2] Z. A. H. Hammadeh, T. Franz, O. Maibaum, A. Gerndt, and D. Lüdtke,
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I. INTRODUCTION

In recent years, the industry has been confronted with
the inevitable trend towards multicore processing platforms,
which allows to greatly improve the performance/cost ratio
of the system. Concurrently, the industry has shown an
increasing interest in developing methods and tools to imple-
ment, deploy, validate, and certify independently developed
applications of different “criticalities” on the same computing
node. Such integrated systems are commonly referred to as
mixed-criticality systems (MCS) [5], [30]. In our previous
work [11], we provided an industrial view on the notion of
mixed-criticality systems and showed that some of the existing
works that are built upon the Vestal model [30] have some
limitations, e.g, it considers that lower criticality tasks can
be suspended in case higher criticality tasks overshoot their
execution budget. This can be problematic, as safety-critical
systems such as avionics generally require strict space and
time partitioning among tasks of different criticalities execut-
ing on the same platform. In the aeronautical domain, this
partitioning approach is referred to as the Integrated Modular
Avionics (IMA) concept. ARINC-653 [2] is a standard widely
adopted in the avionics industry for the development of IMA
systems to enforce strong time and space partitioning. This
allows applications of different criticalities (also known as
Design Assurance Levels) to be developed and run indepen-
dently on the same hardware platform. Although the ARINC-
653 was originally defined for single-core architectures, it has
been extended to multicore computing platforms [1] [16].

Ensuring temporal predictability is one of the most im-
portant factors while designing applications for the avion-
ics domain. Consequently, time-triggered scheduling (TT) is
prevalent in safety-critical systems such as [22], because TT
scheduling is more predictable as the schedule is constructed
at design time and is enforced at run-time. This allows system
designers to determine the precise timing of each event, which
is particularly important, for instance, in the design of control
systems. Among others, some of the most important goals for
solutions implementing TT scheduling of IMA applications
are: 1) generation ARINC-653 compliant TT schedule; 2)
efficient generation of a TT schedule, i.e., within a reasonable
time; 3) generation of a TT schedule that efficiently utilizes
the computing platform; 4) generation of a TT schedule that
is scalable as per the requirements of modern avionic systems.

Several approaches exist in the literature [7], [8], [18], [22],
[24], [31] that focus on TT scheduling of IMA applications.
However, these existing approaches are either not compli-
ant with ARINC-653 specifications [31] or are not scalable
to large IMA applications and the number of processing
cores [7], [8], [24]. This can be problematic as the aeronautics
industry is witnessing an unprecedented increase in the com-
plexity of aircraft-embedded computers [12]. Consequently,
the traditional aviation development processes are having
difficulties keeping up with the development requirements
of large-scale complex avionics systems, mainly in terms of
cost, time, and reusability [9]. This trend suggests that future
avionics systems will require also more sophisticated methods

and tools that will enable handling larger systems with a
higher number of cores [20]. For instance, the Boeing 787,
which also uses an IMA architecture, hosts over 80 different
applications in the core processor cabinet [13]. With such an
increase in size and complexity, the importance of efficient,
scalable, and effective real-time scheduling solutions becomes
even more critical.

To achieve this goal, this paper proposes a novel heuristic
framework for the next-generation avionics systems that can
run a large number of ARINC-653 compliant IMA appli-
cations on top of multi/many core platform. The proposed
framework can be used to efficiently generate a TT schedule
for a large number of ARINC-653 IMA applications running
on a large-scale multi/many-core platforms. Furthermore, the
proposed framework allows partition instances of the same
IMA application to be executed in any core to efficiently
utilize the computing platform. The experimental results re-
veals that the proposed framework can outperform the state-
of-the-art [24] by improving the schedulability ratio up to 46%
even for the threshold timeout limit, i.e., the maximum time
allowed to find a solution, of 4 hours.

The main contributions of the proposed heuristic frame-
work are:
1. A novel algorithm for building a graph of the hierarchy of
IMA applications partitions instances in an efficient manner
based on a set of defined rules, which takes into account the
impact of IMA partitions instances with smaller execution
demands on IMA partitions instances with larger execution
demands.
2. A novel algorithm to build a graph that abstracts the sched-
ule in a hierarchy of smaller schedule intervals (sub-intervals),
which is built based on a set of defined rules and that allows us
to transform a large NP-Hard problem into a series of smaller
problems that are relatively straightforward to solve;
3. A novel multi-core schedulability test that allows us to
efficiently search for suitable sub-intervals in the schedule
sub-intervals graph to allocate the partition instances of each
IMA application; and
4. A novel scheduling strategy that allows to efficiently build
the schedule, by scheduling the partition instances assigned
to each sub-interval of the schedule sub-intervals graph.

II. SYSTEM MODEL

We consider a multicore platform comprising m identical
cores, denoted by Π1,Π2, . . .Πm, with m ∈ Z+, where Z+

is the set of positive integers. We consider a set of n IMA
hosted applications denoted by α = {α1, α2, ..., αn}, where
each application αi, 1 ≤ i ≤ n, with n ∈ Z+. Associated
with the n applications we have n processing partitions
P1, ..., Pn. Each application αi is associated to a single
processing partition Pi. Each Pi is defined by an activation
period Ti, an execution budget Bi, a relative deadline Di

and an offset Oi in relation to the start of the period Ti,
which means that the partitions are asynchronous in relation
to the start of the schedule. The value of Bi can be computed
using existing methods [29]. We assume that each Pi has



constrained deadline, i.e., Di ≤ Ti. We assume that each Pi

releases an infinite number of processing partitions instances,
which we denote as Pi,j . Each instance Pi,j of a processing
partition of an application αi is released periodically with
period Ti until the end of the Major Frame (MAF). The
length of the MAF is the lcm of all partition periods, i.e.,
MAF := lcmαi∈α{Ti}. The absolute release time (resp. start
time) of the jth instance of processing partition Pi is denoted
as ri,j (resp. si,j). The absolute deadline of the jth instance of
Pi is denoted as di,j . We designate this set of input parameters
of each Pi,j as Pi,j and the set of all Pi,j as P .

As we consider an offset Oi associated to each application
αi, we need to ensure that our schedule can be successfully
repeated towards infinity. Hence, we extend the MAF defini-
tion to an observation window OBW. The OBW is defined
as OBW = Omax + MAF , where Omax = maxαi∈αOi.
To build our repetitive schedule, we only consider that
∀Pi,j , ri,j < OBW . Within OBW , we also define the total
utilization utot as ∀i : utot =

∑n
1 B

T
i /(m × OBW ), where

BT
i is the sum of the Bi of all αi partitions instances Pi,j

within OBW , i.e., with ri,j < OBW .
We assume that each Pi,j of an αi can execute on any of

the m cores. This property brings an advantage over existing
solutions [18], [24] that restrict the Pi,j of an αi to run on the
same core, because it allows more efficient utilization of the
computing platform. We assume in this work that the IMA
processes of an αi that run inside the Pi,j will always resume
its execution in the same state after a migration (either on
the same or another core). Ensuring that the processor cache
is always flushed whenever a migration occurs is one of the
methods that can be used to ensure that these migrations can
be safely performed. The discussion of other methods that
can be used in conjunction with cache flushing to ensure safe
migration are left outside the scope of this work.

To ensure deterministic scheduling of the partitions, we
define the following set of assumptions:

• Partitions are scheduled on a fixed cyclic basis - a Major
Frame (MAF) of fixed duration is maintained by the OS
scheduler, which is usually defined as a multiple of the
least common multiple of all partition periods;

• The partitions are then allocated to one or more execution
windows within the MAF;

• Partitions are activated according to the defined offset
from the start of the MAF and remain active for the
duration of their execution windows;

• The sequence of activation of the partitions are defined
during design time using configuration tables;

• The configuration table for the partition schedule con-
tains the order of activation and the length of the execu-
tion windows within the MAF;

• A partition periodically releases a potential infinite num-
ber of “partition instances";

• The processing partitions can be mapped to any of the
available processing cores;

• Mapping of a partition instance between cores is not
allowed, but each processing partition instance released
by the same application may run on different cores.

The problem of synchronizing access to I/O resources is
out of the scope of this paper and is kept for future work.

Although our heuristic framework does not use a CP
approach, we do formulate some constraints that must be
respected by our implementation. First, we need to ensure that
the start time of all Pi,j of all αi is not negative (Constraint
(1)) and that the deadlines of each αi are always respected,
i.e., the completion time of each Pi,j is no later than its
corresponding application’s absolute deadline (Constraint (2)).
Since partitions are executed periodically, the corresponding

Pi,j cannot be released before the beginning of each applica-
tion period (Constraint (3)).

∀Pi,j : si,j ≥ 0 (1)
∀Pi,j : si,j +Bi ≤ Di (2)
∀Pi,j : ri,j ≥ (j − 1)× Ti (3)

Knowing that only one Pi,j can execute on a given core m
at a time, we must ensure that the Pi,j of different partitions
allocated to that core do not overlap with each other. This is
enforced by defining Constraint (4), where j and l denotes
the jth and lth instances of processing partitions Pi and Pk,
respectively, with 1 ≤ i ≤ n and 1 ≤ k ≤ n.

∀m,∀Pi,j ,∀Pk,l|Pi,j ̸= Pk,l : si,j ≥ sk,l +Bk,l ∨
sk,l ≥ si,j +Bi,j

(4)

The number of constraints defined by (4) can rapidly
grow with the number of applications, thus reducing the
effectiveness of the CP approach, especially with higher
number of cores under high load. Our proposed heuristic
framework addresses this problem by efficiently breaking
down this NP-hard problem [15] into a series of smaller and
simpler problems that are relatively straightforward to solve,
as discussed in the next section.

III. PROPOSED HEURISTIC FRAMEWORK

The goal of our heuristic framework is to efficiently gen-
erate an offline IMA-compliant schedule, where each Pi,j is
mapped to any of the m cores and is assigned a start time si,j ,
such that all the previously defined constraints are respected.
Our heuristic consists of a set of deterministic algorithms
that run sequentially, i.e., given a defined set of inputs, the
heuristic will always produce exactly the same schedule. We
use directed acyclic graphs (DAG), and more specifically aug-
mented trees, to create hierarchical abstractions of partitions
instances and schedule sub-intervals. This heuristic process
consists of four phases. In Phase 1, we construct a graph
reflecting the Pi,j hierarchy. This graph is used to decide the
order in which we schedule each Pi,j . In Phase 2, we build
another graph, which abstracts the schedule in a hierarchy
of smaller schedule intervals, thus simplifying the scheduling
problem. Then in Phase 3, we traverse the graph built in
Phase 2 and allocate each Pi,j to a schedule interval. Finally,
in Phase 4, we allocate each Pi,j to one of the m cores
within the allocated intervals and assign a start time si,j to it.
The referred phases are explained in detail in the following
sections.

A. Phase 1 - IMA Partitions Hierarchy Graph Construction

This phase takes input a set of parameters of each IMA
application αi, namely P . Based on these inputs, we create
the IMA Partitions Hierarchy Graph, Pgraph, which is a DAG
object with its properties and methods (functions), which
is built upon a set of defined rules. Pgraph is used in our
heuristic to determine the order in which we allocate the
partitions to schedule sub-intervals. Pgraph is formally defined
as Pgraph = (Vp, Ep), where each vertex vp ∈ VP is an object
representing an IMA partition instance Pi,j , with p ∈ [1..TP ],
where TP = |P|. Each vp also has properties and methods
associated to it. We store several important data in each vp
object, including the input parameters from P . We use the
"." operator to access the data stored in vp. For example,
to retrieve the deadline of the Pi,j stored in a vp object,
we perform the following operation: ri,j ← vp.deadline.
Note that given a Pi,j , it is possible to access the respec-
tive vp object from Pgraph through the following operation:
vp ← Pgraph[p]. The edges ep of Pgraph connect the vertices
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vp in a hierarchical way, according to a set of defined criteria
that will be explained in the following sections.

Figure 1a depicts an example schedule with the intuition
behind Pgraph construction process. In this scenario, we
consider a set of random partitions P1 to P6 with their
respective releases ri,j and deadlines di,j in absolute time
units. From this simple example, we can intuitively verify
that P1 is more constrained by P4, P5, and P6, and not
so much by P2 and P3. This principle leads to the idea
of creating a graph of the partitions hierarchy, where each
partition corresponds to a vertex of the graph, connected by
edges in such a way that a hierarchy of those partitions is
formed.

Equation 5 defines the condition to determine the hierarchi-
cal relationship between partitions. The equation establishes
that for a partition Pk,l to be considered a child of another
partition Pi,j , two conditions must be met. Firstly, Pi,j must
encompass Pk,l, i.e., it must have an earlier release time and a
later deadline than Pk,l. Secondly, there should not exist any
other distinct Ps,t that simultaneously encompasses Pk,l and
is encompassed by Pi,j .

∀Pk,l, (∃Pi,j , i ̸= k, | ri,j ≤ rk,l ∧ dk,l ≤ di,j) ∧
(̸∃ Ps,t, s ̸= k, s ̸= i, | (( ri,j ≤ rs,t ∧ ds,t ≤ di,j) ∧
( rs,t ≤ rk,l ∧ dk,l ≤ ds,t)))

(5)

Note that according to Equation 5, a parent partition Pi,j ,
can have only one child Pk,l in the interval [rk,l, dk,l], but one
child partition Pk,l is allowed to have several parents Pi,j . For
example, in Figure 1a, if the deadline of P2 were equal to
26, then P2 would also be considered as a parent of P6, thus
both P2 and P3 would be considered as parents of P6.

Next, we describe Phase 1 sub-phases to create Pgraph.
Sub-Phase 1.1 - Generation of a list of schedule events and
Initialization of partitions hierarchy graph. The purpose of
this sub-phase of our heuristic is twofold: the generation of
the schedule events data set E and the initialization of Pgraph

vertices vp. E is defined as E = {T1, .., Tq}, q ∈ Z+. Each
Tx ∈ E , x ∈ [1, q], is defined as Tx = {tx, {E1, .., El}},
l ∈ Z+, where 0 ≤ tx ≤ dlast, and where dlast is the latest
absolute deadline among all Pi,j with ri,j < OBW . Each
Ep ∈ T associated with a Pi,j with identifier p is represented
as Ep = {"release" ∨ "deadline", p}, with p ∈ [1..TP ]. For
the sake of simplicity, we designate each Ep as either Er

p or
Ed

p , to represent the release or deadline events of a Pi,j .
This sub-phase takes P as input, and performs the following

actions:
• initialize Pgraph vertex with identifier p
• iterate over all Pi,j ∈ P to:

– add the vertices objects vp representing each Pi,j to
Pgraph;

– add the Er
p or Ed

p of Pi,j to E ;
• sort E in ascending order of time stamps t to yield EO.
It is important to highlight that at this stage the vertices vp

are not connected by the respective edges.
Sub-Phase 1.2 - Construction of Pgraph. In this sub-
phase, we use function ConstructPartitionHierarchyGraph()
(Algorithm 1) to build Pgraph. This function iterates over all
T ∈ EO to determine the hierarchical parents of each Pk,l

that satisfy the condition given by Equation 5. The analysis
of each T ∈ EO is composed of three parts. In the first part
(lines 2 to 6), we iterate over all Ep ∈ Tx, and determine
the set Ax containing the identifiers b of the Pi,j that are
active at time tx ∈ Tx. A Pi,j is considered to be active when
ri,j ≤ tx ≤ di,j . Note that being active at tx is a pre-condition
for a Pi,j to be a parent of Pk,l, with i ̸= k. In the second
part of the analysis we determine the parent(s) of each Pk,l

Algorithm 1: Sub-phase 1.2: Pgraph construction
Output: Pgraph construction completed

1 Function ConstructPartitionHierarchyGraph(P , EO ,
Pgraph):

2 Ax ← { }
3 for T ∈ EO do
4 for E ∈ T do
5 if Event e ∈ E is a "release" then
6 Get Pi,j identifier b ∈ E and append to Ax

7 Q ← { }
8 for E ∈ T do
9 Get Pk,l identifier a ∈ E

10 if (Event e ∈ E is a "deadline") ∧ (|Ax| > 0) then
11 Ay ← { }
12 for b ∈ Ax do
13 if (a ̸= b) ∧ (b /∈ Q) ∧
14 (vb.r ≤ va.r ∧ va.d ≤ vb.d) then
15 if (vb.r = va.r ∧ va.d = vb.d) then
16 Pgraph.AddParent(vb, va)
17 Pgraph.AddChild(va, vb)
18 Ay ← { }
19 Append a to Q
20 break
21 else
22 Append b to Ay

23 Az ← Ay

24 p_found = FALSE
25 for b ∈ Ay do
26 if p_found = FALSE then
27 for c ∈ Ay do
28 if (c ̸= b) ∧
29 (vb.r ≤ vc.r ∧ vc.d ≤ vb.d) then
30 if |Az | = 1 then
31 p_found = TRUE
32 break
33 else
34 Remove c from Az

35 for b ∈ Az do
36 Pgraph.AddParent(vb, va)
37 Pgraph.AddChild(va, vb)

38 for E ∈ T do
39 if Event e ∈ E is a "deadline" then
40 Get Pi,j identifier b ∈ E
41 if b ∈ Ax then
42 Remove b from Ax

(lines 7 to 34). We iterate again over all E ∈ T (line 8) to
determine the Pi,j with identifier b, with b ∈ Ep, that can be
a parent of each Pk,l with identifier a. The auxiliary set Q
initialized in line 7 is simply used to prevent a child vertex
from being added as a parent of its parent. In line 9 we get
the identifier a of the Pk,l. If e ∈ E is a deadline event and
Ax is not empty (line 10), we initialize the set Ay (line 11)
that will store the candidate parents Pi,j of Pk,l. Then in line
12, we iterate over all active Pi,j with identifier b ∈ Ax. The
condition in lines 13 and 14 filters the Pi,j that are candidate
parents. In line 15 we test the special case where a Pk,l with
identifier a has exactly the same release and deadline as that of
the Pi,j with identifier k. The operations vb.r, va.r and vb.d,
va.d allow us to retrieve the releases and deadlines stored in
the objects vb and va, respectively. If that is the case, we can
add it straight away as parent of Pk,l (lines 16 and 17), reset
Ay (line 18), and add a to Q, to prevent Pk,l from being
added as parent of Pi,j . We then break the loop (line 20) and
proceed to the analysis of the next event Ep. Otherwise, if the
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(a) Intuition behind Pgraph construction.

(b) Intuition behind Igraph construction.

Fig. 1: Examples describing the intuition behind the construc-
tion process of Pgraph and Igraph.

condition in line 15 is not satisfied, we add b to Ay (line 22)
and proceed to the next stage (lines 23 to 34) to select the
parent(s) among the candidates in Ay . To achieve that goal,
we must test all combinations among the Pi,j stored in Ay

through the for loops in lines 25 and 27, to check if they are
a parent of one another, thus violating the condition given by
Equation 5 (lines 28 and 29). But before that, as preparation,
we make a copy Az of Ay (line 23) to avoid interfering with
the iteration control variable and initialize the flag to detect
when a parent has been found (line 24). If the condition in
lines 28 and 29 is true, we remove the Pi,j with identifier
c from Az (line 34). We proceed with this iteration until all
parents are found or until only one parent is left in Az (line
30). Once this analysis is finalized, we simply add the Pi,j

with identifier b ∈ Az as parent(s) of the Pk,l with identifier a
(lines 35 to 37). The final part of the analysis (lines 38 to 42),
consists simply of deactivating all Pi,j with deadline events
Ed

k at time t associated with event subset T . The approach is
the same as the one used in lines 3 to 6 but with a deadline
event instead of a release.

B. Phase 2 - IMA Partitions Interval Hierarchy Graph Con-
struction

Once Pgraph has been built, the next phase is the construc-
tion of the IMA partitions intervals hierarchy graph, which is
also a DAG object with its properties and methods (functions),
similar to Pgraph. We define this DAG as Igraph = (Vk, Ek).
Each vertex vk ∈ Vk is an object representing a IMA
schedule sub-interval Ik, defined as a tuple (tb, te), where
0 ≤ tb < te ∧ tb < te ≤ OBW . Given an Ik, it is possible
to retrieve the respective vi object from Igraph through the
following operation: vk ← Igraph[Ik]. The edges ek of Igraph
connect the vertices vk in a hierarchical way, according to a
set of defined criteria. The construction process of Igraph is
implemented by Algorithm 2.

Phase 2.1 Construction of LP and LI. The purpose of
this sub-phase is twofold: (i) the creation of the set LP , which

contains the list of identifiers p associated with the leaf vertex
vp ∈ Pgraph; (ii) the initialization of Igraph leaf vertices. A
vp ∈ Pgraph is defined as a leaf iff vp.getChild()= ∅, where
getChild() is a function of vp that returns the set of identifiers
of the children of vp. Similarly, a vk ∈ Igraph is defined as a
leaf iff vk.getChild()= ∅. We designate each interval of LP
as Lk, with k ∈ [0..|LI|− 1]. This sub-phase is implemented
by function constructLeafPartitionList() (line 4 of Algorithm
2), which performs the the following procedure steps:

• Iterate over each vp ∈ Pgraph:
– If vp.getChild= ∅:
∗ Add p to LP;
∗ Add the interval Ik =(vp.release, vp.deadline) to
LI;

∗ Create the vertex vk associated with Ik in Igraph;
• Sort LI in ascending order of interval start time t.

Algorithm 2: Phase 2.1: Igraph construction
Output: Igraph construction completed

1 Function
constructIntervalHierarchyGraph(P, Pgraph, EO , P ,
IB, LI):

2 SCHEDULE_START ← 0
3 SCHEDULE_END ← max(getEventsTime(EO))
4 constructLeafPartitionList (P , LP , LI)
5 constructIntervalGraphBaseList(LI, IB, SCHEDULE_START,

SCHEDULE_END)
6 Igraph ← createIntervalGraph()
7 graph_depth ← | IB |
8 constructRightDiagonalVertices(IB, Igraph, graph_depth)
9 constructLeftDiagonalVertices(IB, Igraph, graph_depth)

10 addLeafIntervals(LI, IB, Igraph)
11 return

Phase 2.2 Construction of IB. In this sub-phase we use
the set LI to build another set IB, which will contain the
intervals at the base of Igraph. This sub-phase is implemented
by function constructIntervalGraphBaseList() (line 5 of Algo-
rithm 2), which performs the following procedure steps:

• Build the first interval as
Ifirst = (SCHEDULE_START, I0[1]), where I0[1]
means the upper bound of the first interval I0 ∈ LI;

• append Ifirst to IB and add it to Igraph;
• Iterate over each Ik ∈ LI, with k ∈ [0..|LI| − 1]:

– Build the subsequent intervals, except for the
last interval, according to the following rule:
(Ik[0], Ik+1[1]);

– Append each Ik to IB and add it to Igraph;
• Build the last interval as Ilast =

(Ie[0], SCHEDULE_END), where e = |LI| − 1;
• Append each Ilast to IB and add it to Igraph;
Phase 2.3 Construction of Igraph right diagonal vertices.

In this sub-phase we create and connect the remaining vertices
of Igraph, taking the set as the starting point IB. This sub-
phase is implemented by the function constructRightDiago-
nalVertices() (line 8 of Algorithm 2). Our strategy consists in
building the graph diagonally. Formally, we iterate over all
intervals Jk ∈ IB, with k ∈ [0..|IB| − 1], compute the new
interval Ik as (Jk[0], Jk+1[1]), add Ik to Igraph and connect
Ik with Ik−1.

Phase 2.4 Construction of Igraph left diagonal vertices.
Since in the previous sub-phase we have created all vertices of
Igraph, to finalize the construction process of Igraph we just
need to connect the remaining vertices of Igraph. We follow
the same process from the previous sub-phase, but iterating
now from the last interval of IB to the first. This sub-phase is
implemented by the function constructLeftDiagonalVertices()
(line 9 of Algorithm 2).
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We now use Figures 1a and 1b to illustrate the intuition
behind the overall construction concept of Igraph. According
to sub-phase 2.1, we take all the leaves of the partitions
hierarchy graph Pgraph (i.e., P4, P5 and P6) to build LP .
From LP , we extract the releases and deadlines of P4, P5
and P6, and build LI, i.e., (3, 5), (10, 15), (20, 25) in Figure
1b. Then according to phase 2.2, we take the leaf intervals
LI, augment by instants t = 0 (i.e. SCHEDULE_START) and
t = OBW (i.e., SCHEDULE_END = 40), to build IB, which
is given by intervals (0, 5), (3, 15), (10, 25), (20, 40). To build
interval (0, 5), we take the beginning of the schedule (i.e.,
t = 0) as the start time of the interval, and the upper bound
of the first interval in LI, i.e. the upper bound of (3, 5). To
build the next interval (3, 15), we take the lower bound of the
first interval in LI, and the upper bound of the second interval
(10, 15). We continue with this process until the last interval
of LI, i.e., (20, 25). To build last interval (20, 40) of IB,
we take the lower bound of the last interval (20, 25) of LI
and augment it with SCHEDULE_END. Then we build the
Igraph right diagonal vertices based on IB as per the process
defined in sub-phase 2.2. To build the right diagonals of this
example graph, we start with interval (0, 5), then we create
interval (0, 15) and connect it with (0, 5). Then we proceed
with (0, 25) up to (0, 40). Then we follow the same process to
build the remaining right diagonals, restarting at (3, 15) up to
(3.40), and so on. To finalize the graph according to phase 2.4,
we construct the left diagonal using the same process, which
means connecting intervals (20, 40), (10, 40), (3, 40), (0, 40),
then (10, 25), (3, 25), (0, 25) and so on, until all vertices are
connected.

C. Phase 3 - Allocating Partitions to Schedule Sub-Intervals
Phase 3.1 Pgraph traversal. The goal of this this phase is

to decide which Pi,j will be assigned next to an interval Ik
in Igraph or not. Our strategy to traverse Pgraph consists of
a bottom-up approach described in Algorithm 3. To perform
the traversal, we use two FIFO queues, which we designate
as p_queue and p_wait_queue, and that we initialized in lines
2 and 3. We start the process by iterating over all leaf Pi,j

whose identifiers p are stored in LP (line 4), assigning them
to their parent interval in the base intervals IB with the
largest lower bound tb and enqueuing their parents (lines 5
to 8). The interval search process is implemented by function
intervalSearch() (line 15 and line 24), which is explained in
Phase 3.2. In case during the first attempt to find an interval
to assign each Pi,j we detect that we have two options to
choose from in the search path (lines 11 to 21), we opt not
to assign Pi,j to any of those two intervals yet, and function
intervalSearch() returns TRUE (line 15). We then append
p to p_wait_queue (line 17). This strategy allows us to reduce
the number of decisions that we need to take, by giving all
Pi,j a first chance to try to find an interval as low as possible
towards the base of Igraph. We proceed iterating over p_queue
(lines 10 to 21) and p_wait_queue (lines 22 to 27) in this
order, until both queues are empty, meaning that all Pi,j have
been assigned to an Ik. Note that the return value in line 24
will never be used, since we don’t give a third chance for
finding a suitable interval for q.

Phase 3.2 Igraph traversal. After selecting the Pi,j that
must be assigned to an interval in the previous phase, we now
initiate or resume the interval downward search (top-down)
process to allocate the Pi,j to an Ik in Igraph. This process
is implemented by Algorithm 4. This algorithm implements
a set of four criteria that allow us to decide which downward
path we will follow, i.e., whether a child interval Ik will be
allowed in the i_queue or not. Next, we define each criterion.

Criteria 1. Enqueue child Ik in i_queue iff: (msst = TRUE)
∧ ((Ik ∈ LI ∧ Ik /∈ IB) = FALSE). Rationale: we

enqueue the child Ik if it passes the msst and if it is not
a leaf interval. For example, in Figure 1b, the leaf intervals
are (3, 5), (10, 15) and (20, 25).

Criteria 2. Enqueue in i_queue the child Ik with the highest
value stored in the set Ax

list, given by max(Ax
list). The set

Ax
list is defined is section IV. Rationale: we enqueue the child

Ik with the highest available CPU processing time to increase
the likelihood of being able to run the Pi,j in that Ik. Note
that in the rest of this paper we use the terms CPU processing
time and CPU time interchangeably.

Algorithm 3: Phase 3.1: Pgraph traversal
Output: All Pi,j assigned to an interval in Igraph

1 Function reversePartitionGraphTraversal(Pgraph,
LP):

2 p_queue← {}
3 p_wait_queue← {}
4 for p ∈ LP do
5 p_int =

(Pgraph[p].getRelease(), Pgraph[p].getDeadline())
6 Assign p to the parent in IB with the largest tb
7 p_parents = Pgraph[p].getParent()
8 Add p_parents to p_queue

9 while |p_queue| > 0 ∧ |p_wait_queue| > 0 do
10 temp_p_queue← p_queue
11 for p ∈ temp_p_queue do
12 if Pgraph[p].allChildScheduled() = FALSE

then
13 Add p to the end of the p_queue
14 break
15 p_has_options = intervalSearch(p)
16 if p_has_options = TRUE then
17 Append p to p_wait_queue

18 else
19 p_parents = Pgraph[p].getParent()
20 Append p_parents to p_queue

21 Remove p from p_queue

22 temp_p_wait_queue← p_wait_queue
23 for q ∈ temp_p_wait_queue do
24 q_has_options = intervalSearch(q)
25 q_parents = Pgraph[q].getParent()
26 Append q_parents to p_queue
27 Remove q from p_wait_queue

28 return

Criteria 3. Enqueue in i_queue the child Ik with the
highest value of Ax

max. If we designate any pair of child
vertices as vl, vr, then Ax

max is computed as follows: Ax
max =

max(max(Al
list),max(A

r
list)). A

x
max is computed during the

construction of Igraph for all Ik and stored in each vk.
Rationale: The value of Amax

x is a metric that allows us to
choose a search path towards child intervals with potentially
larger values of available CPU time.

Criteria 4. Given two child intervals Il and Ir, such that
Il[0] < Ir[0], then enqueue Ir[0] in i_queue. Rationale: at
this point we must force a decision, so we select the child
interval with the latest largest lower bound.

Next, we described Algorithm 4 in detail. To perform the
interval search, we also use a FIFO queue, which we designate
as i_queue. This algorithm takes as inputs the Pi,j identifier
p and the flag p_from_queue. If this flag is TRUE, it
means the Pi,j comes from p_queue, otherwise, it comes from
p_wait_queue.

If it comes from p_queue (line 4), we need first to compute
the interval search starting point for Pi,j in Igraph, which we
designate as Itop = (Lbound, Ubound). To compute Itop lower
and upper bounds, we use function getTopInterval() (line
5). This function takes the Pi,j release ri,j and deadline di,j ,
and iterates over IB to search for the intervals Ik, Il ∈ IB,
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with k < l, whose lower and upper bounds satisfy respectively
the following rules:

Lbound = Ik[0] | Ik[0] ≤ ri,j < Ik+1[0] (6)
Ubound = Il[1] | Il−1[1] < di,j ≤ Il[1] (7)

For instance, in Figure 1, if we apply the above rule to
compute the Itop of P2 in Figure 1a, it would yield the
interval (0, 25) in Figure 1b.

Algorithm 4: Phase 3.2: Igraph traversal
Output: All Pi,j assigned to an interval in Igraph
Data: EO , Pgraph

1 Function intervalSearch(Igraph, p, p_from_queue):
2 p_bi = Igraph[p].getBudget()
3 i_queue← {}
4 if p_from_queue = TRUE then
5 p_top_int = getTopInterval(p)
6 p_top_msst_result, Atot, Ax

list =
performMSST (p, p_top_int, p_bi)

7 if p_top_msst_result = TRUE then
8 update_Ax_params(p_top_int, p, Atot, Ax

list)
9 Append p_top_int to i_queue

10 else
11 EXIT - application set not schedulable

12 else
13 p_restart_int = Pgraph[p].getIntervals
14 Append p_restart_int to i_queue

15 while |i_queue| > 0 do
16 next_i = pop(i_queue)
17 i_child = Igraph[next_i].getSortedChild()
18 candidate_ints← {}
19 if |i_child| > 0 then
20 for each_child ∈ i_child do
21 p_msst_result, Atot, Ax

list =
performMSST (next_p, c, p_bi)

22 if Criteria_1 = TRUE then
23 Append each_child to candidate_ints

24 if
(|candidate_ints| = 2)∧ (p_from_queue = TRUE)
then

25 assignPtoInt(p, next_i)
26 return TRUE

27 else if (|candidate_ints| = 2) ∧ (p_from_queue =
FALSE) then

28 if (Evaluation of Criteria 2 was successful) then
29 update_Ax_params(next_i, p, Atot, Ax

list)
30 Append selected candidate_ints to i_queue

31 else if (Evaluation of Criteria 3 was successful) then
32 update_Ax_params(next_i, p, Atot, Ax

list)
33 Append selected candidate_ints to i_queue

34 else
35 Apply Criteria 4
36 Append selected candidate_ints to i_queue

37 else if
(|candidate_ints| = 0)∧ (p_from_queue = TRUE)
then

38 assignPtoInt(p, next_i)
39 return FALSE

40 else if (|candidate_ints| = 0) ∧ (p_from_queue =
FALSE) then

41 if next_i ̸= p_restart_int then
42 assignPtoInt(p, next_i)

43 return FALSE

44 else
45 update_Ax_params(next_i, p, Atot, Ax

list)
46 Append selected candidate_ints to i_queue

Once we have determined the Itop of a Pi,j , before we can
assign the Pi,j to Itop, we must check if the interval Itop has
sufficient CPU time available to run the candidate Pi,j . To

perform this check, we have developed a novel schedulability
test for TT systems that we designate simply as msst. This
is implemented by function performMSST () (line 6 of
Algorithm 4). Due to msst complexity, and because it is one of
the key contributions of this paper, we opt to describe it in the
dedicated section IV. At this point, it suffices to say whether
an attempt to assign a Pi,j to an interval Ik was successful
or not, i.e., whether it has passed the msst or not. The msst
is a function that returns the result of the test (pass or fail)
and a set of parameters that are used to determine whether an
Ik has sufficient CPU time available in any of the cores to
run a certain Pi,j or not. Now, we designate these parameters
as Atot and Ax

list, which are stored in the Igraph vertices vk
associated with an Ik, and that help us track the available
CPU time in each Ik. These parameters will be explained in
detail in section IV. In line 7 we check the msst result. If it
is a pass, we use function update_Ax_params() to update the
Atot and Ax

list parameters of Ik and to store them in vk (line
8). We then append the p_top_int to i_queue to continue the
search process (line 9). For the case where the msst fails when
trying to assign a Pi,j to its Itop (line 10), we halt the process
and deem the system as unschedulable by our heuristic.

In case the condition in line 4 yields FALSE, it means
that the Pi,j that comes from the p_wait_queue, so we don’t
need to recompute its Itop, because we simply resume the
downward search from the interval where the Pi,j first search
attempt was halted, when more than one option was detected.
Hence, we just retrieve the interval where the search was
previously halted (line 13) and append it to i_queue (line
14). We are now ready to initiate the downward search for an
interval to assign Pi,j by iterating over i_queue (lines 15 to
46). In this part of the algorithm, we take each child interval
and apply the four defined Criteria, taking into consideration
the number of selected children, and whether Pi,j comes from
the p_queue queue or not.

D. Phase 4 - Scheduling of Partitions

The last phase of our heuristic is the scheduling of the
partitions assigned to each interval of Igraph, which means
that we assign a start time si,j to each partition Pi,j and a core
for it to execute. Algorithm 5 defines our scheduling strategy.
It consists in building the schedule backward, by traversing the
Igraph "diagonally" from right to left and from bottom to top.
For example, in the graph in Figure 1b, we would schedule
the Pi,j assigned to each interval in the following order of
intervals: (20,40), (10,40), (3,40), (0,40), then (10,25), (3,25),
(0,25), and so on.

Since we build the schedule backward, we start Algorithm
5 by storing the reversed IB in reversed_IB (line 2) and by
storing the end of the schedule in EOS, which corresponds
to the upper bound of the last interval of IB, given by
reversed_IB[0][1] (line 3). In line 4 we initialize all m
elements of the schedule tracker set S with the value EOS.
We define S as a set of size m, whose purpose is to keep track
of the start time si,j of the last Pi,j scheduled in the m cores.
Next we iterate over the reversed_IB to schedule the Pi,j in
each interval I ∈ Igraph (lines 5). But before we initiate the
scheduling of the Pi,j assigned to I , we need to check if any
of the schedule tracker values in S is larger than the upper
bound of I , given by I[1]. This is performed in the procedure
in lines 7 to 10. First, we check if it is not the last interval
in the schedule (line 6), and then we iterate over all elements
of S (line 7) and check if the schedule tracker values S[i]
are larger than the interval upper bound I[1] (line 8). If this
condition is true, we update the respective S[i] value with the
I[1] (line 9). Next, we initiate the iteration over all intervals
of the Igraph diagonal to schedule the Pi,j ∈ I , starting from
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the base intervals I ∈ reversed_IB (line 10) until I has no
parent interval (i.e., we reach the top of Igraph). In each I ,
we perform the iteration over all the Pi,j ∈ I , and schedule
each one of them (line 22) in the core that has the largest
available CPU time, given by function max(S) (line 27). If
the computed Pstart occurs before the release time Pr of the
Pi,j (check at line 31 fails), we deem the application set as
unschedulable as per our heuristic (line 32).
Algorithm 5: Phase 4: generateSchedule

Output: All Pi,j assigned a start time si,j and a core m
1 Function generateSchedule(Pgraph, Igraph, IB):
2 reversed_IB ← reverseBaseList(IB)
3 EOS ←reversed_IB[0][1]
4 Let a set S, |S| = m, ∀w ∈ S, w ← EOS
5 for I ∈ reversed_IB do
6 if I ̸= reversed_IB[0] then
7 for i ∈ [0..|S| − 1] do
8 if S[i] > I[1] then
9 S[i]← I[1]

10 while I has a parent interval do
11 J ← Igraph[I].getCandidates()
12 if J ≠ ∅ then
13 B ← {}
14 D ← {}
15 for J ∈ J do
16 Btemp ← {Pgraph[j].getBudget(), J}
17 Dtemp ← {Pgraph[j].getDeadline(), J}
18 Append Btemp to B
19 Append Dtemp to D
20 Sort B in descending order of Bi

21 Sort D in descending order of deadline
22 for d ∈ [0..|D| − 1] do
23 P ← D[d][1]
24 Pd ← D[d][0]
25 Pb ← Pgraph[P ].getBudget()
26 Pr ← Pgraph[P ].getRelease()
27 latest_core ← (index of the max(S))
28 if Pd < max(S) then
29 S[latest_core]← Pd

30 Pstart ← S[latest_core]− Pb

31 if Pstart < Pr then
32 EXIT - the system is not schedulable by

our heuristic

33 Pgraph[P ].scheduleP(Pstart , latest_core)
34 S[latest_core]← Pstart

35 I ← Iparent | I[1] = Iparent[1]
36 break
37 else
38 I ← Iparent | I[1] = Iparent[1]
39 break

40 return

IV. PROPOSED MULTI-CORE SCHEDULABILITY TEST
A. MSST Formalization

Our heuristic consists of traversing Igraph in the search for
a suitable Ik to assign a Pi,j with Bi. For each Ik ∈ Igraph
traversed during the search process, we run the msst to check
if Ik has sufficient CPU time available in the m cores to
execute the Pi,j . Instead of deciding upfront the allocation of
the tasks to Pi,j to the m cores, and tracking the available
processing time in each core, we propose an efficient ap-
proach by reducing this two-dimensional problem to a single-
dimensional one. We explore the temporal properties of the
system as a whole, instead of tracking the available CPU time
in each core individually. Through this approach, we compress
the information in such a way that it summarizes a lot of
possible solutions, i.e., each time we assign a Pi,j to an Ik,
we may have one or more possible cores to execute it.

Whenever we assign a Pi,j to an interval Ik, we consider
that Ik changes its state from s to s + 1, with s ∈ Z+.

Each state s of interval Ik is characterized by a set of
temporal parameters (attributes) stored in each vk. Whenever
a transition occurs from state s to s + 1, we use these
attributes to decide whether an interval Ik has sufficient CPU
time available to run a Pi,j or not. Next, we define those
attributes. Given an interval Ik = (tb, te) and m cores, the
key parameters Ax

s , ∀x, x ∈ [1,m], m ∈ Z+, are defined
as the maximum CPU time units that can be simultaneously
available in x cores in the interval [tb, tb + Ax

s ] in a defined
state s of Ik. The intuition behind Ax

s , for x = 3, is depicted
in Figure 2 for an Ik = (0, 100) and m = 6. The blue color
in each core means available CPU time. A3

s = 60 means a
maximum of 60 time units are available simultaneously in 3
cores. Ax

s is initialized as follows: ∀Ik,∀x,Ax
s = (te − tb)

time units. The next key parameter, Atot
s , is defined as the

total available CPU time available in all m cores within Ik
at a state s. In Figure 2, Atot

s corresponds to the sum of the
total CPU time available in blue color in all cores. Atot

s is
initialized as ∀Ik, Atot

s = m× (te − tb) time units.

Fig. 2: Intuition behind key msst parameters
We now define the parameters Lmax

s,x,y , Lmax
s,x,z . Given an Ik

at state s, Lmax
s,x,y is defined in Equation 8 as the maximum

available CPU time available in core y, ∀y < x, with x, y ∈
[1,m], in addition to Ax

s . Lmax
s,x,y for x = 3 can be visualized in

Figure 2, for cores y = 1 and y = 2. We also define Ls,x,y ,
which is an approximation towards Lmax

s,x,y , where Ls,x,y ≤
Lmax
s,x,y , and that is computed by means of a heuristic described

later in this section.
∀x ∈ [1,m],∀y < x, Lmax

s,x,y = Ay
s −Ax

s (8)

Similarly, given an Ik at state s, Lmax
s,x,z is defined as a

constraint given by Equation 9.
∀x ∈ [1,m],∀z > x, Lmax

s,x,z < Ax
s (9)

We also define Ls,x,z , which is an approximation towards
Lmax
s,x,z , where Ls,x,z ≤ Lmax

s,x,z , and that is also computed by
means of a heuristic described later. Hereinafter, we use the
term "L parameters" to generically refer to Ls,x,y and Ls,x,z .

Next, we define Aother
s,x , ∀x ∈ [1,m], which is the total

available CPU time in x cores in addition to Ax
s , at state s of

interval Ik, and that is computed according to Equation 10.
The intuition behind Aother

s,x , for x = 3, can be visualized in
Figure 2. In Equation 10, the term x × Ax

s yields the total
maximum CPU time available in all x cores within Ik, which
corresponds to the sum of the CPU time available in blue
color inside the red dashed lines. If we subtract this value
from the total available CPU time in all cores, given by Atot

s,x,
we obtain the value of Aother

s,x for a given x.

∀x ∈ [1, n], Aother
s,x = Atot

s − x×Ax
s (10)

We also define Equation 11 to aid in our computations. By
looking at Figure 2, we can intuitively see that this equation
holds true.

∀x ∈ [1,m],
∑

∀y<x

Lmax
s,x,y +

∑

∀z>x

Lmax
s,x,z = Aother

s,x (11)
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As previously referred, since Ls,x,y ≤ Lmax
s,x,y and Ls,x,z ≤

Lmax
s,x,z , Equations 12 or 13 also hold true.

∑

∀y<x

Ls,x,y +
∑

∀z>x

Ls,x,z = Aother
s,x (12)

∑

∀y<x

Ls,x,y +
∑

∀z>x

Ls,x,z < Aother
s,x (13)

For the previous definitions to hold, the constraint in
Equation 14 must be respected. In Figure 2 it can be easily
visualized that if this constraint is violated, the definition of
Ax

s becomes invalid.
∀x ∈ [1,m], 0 ≤ Ax+1

s ≤ Ax
s (14)

Algorithm 6: Multicore Schedulability Test Algorithm
Output: TRUE ∨ FALSE, Atot

s+1, Ax
list

Data: Atot
s , m, Ax

s , x ∈ [1,m]
1 Function performMSST(Bi, Ik):
2 partition_schedulable ← FALSE
3 if Atot

s > Bi then
4 x← 1
5 if Ax

s ≥ Bi then
6 partition_schedulable ← TRUE
7 while x ≤ m do
8 Compute Aother

s,x (Eq.10)
9 if Aother

s,x > 0 then
10 y ← 1
11 while y < x do
12 Compute Lmax

x,y (Eq.8)
13 y ← y + 1

14 z ← x+ 1
15 while z ≤ n do
16 Compute Lx,z (Eq.16)
17 z ← z + 1

18 y ← x− 1
19 Aother

stmp
← Aother

s,x

20 while y ≥ 1 do
21 Compute Lx,y (Eq.17)
22 Aother

stmp
← Aother

stmp
− Lx,y

23 y ← y − 1

24 if ((Eq. 12 = FALSE) ∧ (Eq. 13 =
FALSE)) ∨ ((Eq. 12 = TRUE) ∧
(x = 1)) then

25 Compute Ax
s+1 (Eq.15)

26 break
27 else if (Eq. 12

= TRUE) ∧ (x ̸= 1) ∧ (Ls,x,1 < Bi)
then

28 Compute Ax
s+1 (Eq.19)

29 else
30 Compute Ax

s+1 (Eq.18)

31 else
32 Compute Ax

s+1 (Eq.15)
33 break // exit the while loop

34 x← x+ 1

35 Ax
list ← SortDescending (Ax

s+1, ∀x)
36 Atot

s+1 ← Atot
s −Bi

37 return partition_schedulable, Atot
s+1, A

x
list

B. MSST Heuristic Intuition
Whenever we try to allocate a Pi,j to an Ik, our strategy

consists in preserving as much as possible the CPU time
reserved in the Ax

s parameters, giving priority to the cores with
lower values of x, by consuming first the CPU time available
in the L parameters, according to a defined strategy. By
maximizing Ax

s towards state s+1, we increase the likelihood
of being able to allocate the next candidate Pi,j to Ik. We can
visualize the effect of this strategy in Figure 2, where core
1 will always have the largest available amount of CPU time

and core 6 will always have the lowest. We show in this figure
an example of a possible allocation of the Pi,j among the 6
cores in red color. But it is important to emphasize that when
executing the msst, we are not concerned yet about where the
Pi,j will be executed. Through this approach, we compress the
information in such a way that it summarizes a lot of possible
solutions, i.e., each time we assign a Pi,j to an Ik, we may
have one or more possible cores to execute it. Therefore, by
keeping track of the values of the Ax

s and Atot
s parameters,

and by updating them accordingly every time we allocate a
Pi,j to an Ik, it is possible to establish an effective msst.

C. MSST Heuristic Implementation
Our solution is implemented by the function

performMSST in Algorithm 6, which receives as
input the execution time Bi of a candidate Pi,j and the target
interval Ik to be tested. The data parameters used by the
algorithm are Atot

s , the set of the Ax
s parameters, and the

number of cores m. This function returns a boolean variable
indicating whether it was possible to assign the candidate
Pi,j to Ik or not, as well as the updated values of Atot

s and
Ax

s ,∀x, for the next state s of Ik. The values of Ax
s ,∀x,

are stored in the set Ax
list. Next we explain the computation

steps performed by function performMSST .
Step 1. Check that Atot

s ≥ Bi (line 3) and then check that
A1

sI,i ≥ Bjob
sI,i (lines 4 and 5). If both conditions are satisfied,

that means we have at least one core with sufficient available
CPU time to execute the Pi,j , so we can set the boolean
variable partition_schedulable ← TRUE in line 6.

Step 2. Compute Aother
s,x and the L parameters by iterating

over all values of x (line 7). We further divide Step 2 into
four sub-steps.
Step 2.1. Compute Aother

s,x ,∀x, and check if Aother
s,x > 0 (line

8 and 9). If Aother
s,x = 0, it means no CPU time is available

in addition to Ax
s for core x. In this case, it is not worth

continuing with the computation of the L parameters for core
x, because they are equal to zero. So here we have no choice
but to consume the CPU time available in the Ax

s parameter,
which is updated according to Equation 15 (line 32).

Ax
s+1 ← Ax

s −Bi (15)

By updating the value of Ax
s , we know that at least one core

with sufficient processing time to execute the Pi,j (remember
Step 1) exists. Hence, we stop looping over the values of
x (line 33) and proceed to Step 6 described later. For the
cases when Aother

s,x > 0 (line 9), it implies that we can be
able to use the available CPU time in the L parameters, thus
maximizing Ax

s for the next state s + 1. To achieve this, we
proceed to Step 2.2, where we compute the parameter Lmax

s,x,y
,∀y < x, according to Equation 8 (lines 10 to 13). In Step
2.3, we compute the value of Ls,x,z,∀z > x (lines 14 to
17) according to Equation 16. Since we do not know how
the value of Aother

s,x is distributed among the L parameters,
we make an assumption that Ls,x,z,∀z > x, is just below
Bi, i.e, Bi − 1. Through this assumption, we prioritize the
consumption of the CPU time available in the cores with
smaller values of x, because their Ls,x,y will always contain
the largest CPU time reserves. This increases the possibility
of scheduling the Pi,j with larger Bi values. Later in the
heuristic, we evaluate if this assumption was accurate or not.
We divide Equation 16 in two parts, to improve the accuracy
of the computation, by subtracting in the second part the sum
of the previously computed values of Ls,x,z from Aother

s,x .

∀x, ∀z > x, Ls,x,z =





min(Bi − 1, Aother
s,x ), if z = x + 1

min(Bi − 1, A
other
s,x −

z−1∑

k=x+1

Ls,x,k), if z > x + 1

(16)
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By knowing the values of Aother
s,x and Ls,x,z , ∀z > x, we

proceed to Step 2.4, where we compute Ls,x,y , ∀y < x (lines
18 to 23). The computation method to try to maximize Ls,x,y

is defined by Equation 17 (line 21). Here our assumption
is that in a worst case, the values of Ls,x,y , ∀y < x, are
equally distributed among the y cores. After the computation
of Ls,x,y , for each y, we update the value of Aother

s,x (line 22)
by subtracting the computed value of Ls,x,y in each iteration
to improve the accuracy.

∀x,∀y, Ls,x,y = max
(
min

(Aother
s,x −∑

∀z>x
Ls,x,z

y
, Lmax

s,x,y

)
, 0
)

(17)
Step 3. Having computed the value of Aother

s,x and of the
L parameters, next we decide how the Ax

s parameters should
be updated, so that their value is maximized for s + 1. The
three methods to update the value of the Ax

s parameters are
defined by Equations 15, 18 and 19, and are implemented in
lines 24 to 30.

Ax
s+1 ← Ax

s (18)

Ax
s+1 ← max (Ax

s − (Bi − Ls,x,1); 0) (19)

The first part of the condition in line 24 checks if compu-
tation of the L parameters was optimistic, i.e., if Equations
12 and 13 are violated. In that case, we don’t have a safe
bound, so we take a conservative approach and update Ax

s+1
according to Equation 15. The second part of the condition in
line 24 checks the special case for x = 1, because Ls,x,1 = 0,
which implies that

∑
∀z>x Ls,x,z = Aother

x , thus violating
our assumption in Eq. 16 that Ls,x,z is always smaller than
Bi, ∀z > x . Hence we have no choice but to update A1

s+1
according to Equation 15. If the conditions in line 24 do
not hold, we test in line 27 Equation 12 for x > 1 and
Ls,x,1 < Bi. If this happens, it means that we have CPU
time available in the Ls,x,1 parameter, which will always
have the largest CPU time reserve among all Ls,x,y , but it is
not sufficient to completely execute the Pi,j . So we update
Ax

s+1 according to Equation 19, where we first consume
all the CPU time available in the Ls,x,1 parameter, and the
remaining we take it from Ax

s , but always ensuring that the
term Ax

s − (Bi −Ls,x,1) does not lead to a negative value of
Ax

s . Finally, if no in lines 24 and 27 hold true, it means that
we have sufficient CPU time available in at least one of the
Ls,x,y parameters, hence we can safely keep the values of Ax

s
for the next state s+ 1, according to Equation 18.

Step 5. After computing the Ax
s+1 parameters, ∀x at state s,

depending on the value of Bi, nothing prevents the case where
Ap

s+1 − Bi < Aq
s+1, ∀p, q ∈ [1,m], with p < q. If this case

would happen, this would imply that Ap
s+1 < Aq

s+1, which
would be a violation of the constraint defined by Equation 14.
Therefore, to prevent this situation from happening, we define
a reordering function that reorders the computed values of
Ax

s+1, ∀x, in descending order, named SortDescending() (line
35). This function takes as input all computed values of Ax

s+1
and outputs the reordered values to be used for state s + 1,
which are stored in the set Ax

list.
Step 6. In this final step we update the value of Atot

s for the
next state, according to Equation 20 (line 36). Once this final
update is performed, we return variable partition_schedulable
equal to TRUE or FALSE (line 37), and the computed
Ax

list.
Atot

s+1 ← Atot
s −Bi (20)

V. EXPERIMENTAL RESULTS
In this section, we discuss the experimental results to

evaluate the effectiveness of the proposed work. As explained
in [22], due to the NP-hardness of the general periodic
scheduling problems, it is a common approach to compare the

performance of heuristic solutions against formal approaches
that obtain optimal solutions (e.g., ILP, SMT, or CP). This
approach allows us to estimate the quality of the heuristic
solution compared to the optimal solution. To the best of our
knowledge, we are the first ones to compare with [24].
Experimental Setup: Our framework is implemented in a
simulation environment that runs on Ubuntu 16.04 running
on an Intel® CoreTM i7-6700K CPU 4.2 GHz with 64GB
RAM. For the default configuration, we generated synthetic
data sets with the following parameters: m = 16, 60 IMA
applications per application set α, with non-harmonic periods
Ti randomly chosen from [10; 20; 30; 50; 60; 90; 100] *
1000. The applications’ utilizations (ui) are randomly chosen
between 10% and 50% according to a uniform distribution
using the randfixedsum [27] algorithm. The Bi of each αi

was computed as Bi = Ti × ui. A random offset Oi was
assigned to each application in relation to the start of Ti
such that 0 ≤ Oi ≤ Ti. For each run, the same input data
sets were provided to the proposed heuristic framework and
the CP approach in [24], using CPLEX optimization studio.
We also defined a threshold timeout tout of 4 hours, i.e., the
maximum time allowed for both approaches to find a solution.
This is a common practice [24] as the solving time for the CP
approach can drastically increase with the search space, so,
the threshold limits the maximum time to find the solution.

We compare the proposed approach against the existing CP
approach [24] by evaluating the schedulability ratio, i.e., the
percentage of application sets deemed schedulable, average
solving time, i.e., the average time required to find a valid
schedule, and varying the number of cores. In all the exper-
iments, our approach is marked as "OUR" and the existing
approach of [24] is marked as "CP". In all the experiments,
the x-axis represents the total application set utilization utot.
1. Schedulability Ratio: In this experiment, we vary the total
application set utilization utot in the range [50%, 100%] with
a step size of 5% and evaluated the schedulability ratio using
the proposed framework and existing CP-based approach [24]
as plotted in Figure 3a. We can see in Figure 3a that the
schedulability ratio using both approaches reduces with the
increase in utot. This happens because the increase in utot
results in an increase of the ui of each αi, which increases
Bi as Bi = Ti × ui. Consequently, there is an increase in
the system workload, which degrades the schedulability ratio.
However, we can see in Figure 3a that the proposed approach
was able to schedule up to 46% more applications compared
to the CP approach [24]. This gain is mainly observed
because, for most of the runs, the CP solution could not find
a solution within tout = 4 hours for the default configuration,
i.e., m = 16 with 60 IMA applications, whereas the solving
time for the proposed approach was mostly within the tout
limit. We observed that the gain of the proposed approach over
the CP approach increases significantly for a higher number
of cores, e.g, m = 32, but we have not reported it in the paper
due to space constraints.
2. Average Solving Time: In this experiment, we evaluate the
average solving time in relation to the utot considering default
configuration. For this, we varied utot in the range [50%,
100%] with a step size of 5% and plotted the resulting average
solving time using the proposed approach and CP approach
in Figure 3b. For this experiment, to plot each point, we only
consider the cases in which both approaches were able to find
a valid schedule, e.g., if out of 100 runs, an approach can find
a valid for only 30 runs, we take the average solving time for
those 30 runs. This is the reason that the average solving
time for both approaches does not significantly increase with
the increase in the utot value as shown in Figure 3b, since
the number of successful runs diminishes as the workload
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(a) Schedulability Ratio (b) Average Solving Time for m = 16 (c) Average Solving Time for m = 4, 8

Fig. 3: Experimental Results

increases. Nonetheless, it presents a big picture of the average
time consumed by both approaches to find a valid schedule.
We can see in Figure 3b that for the successful cases, the
proposed approach was generally able to find a solution 10x
faster than the existing CP solution.
3. Number of Cores and IMA applications: In this exper-
iment, we redo experiment 2 by varying the value of m and
IMA partitions as m = 4 with 20 IMAs, tout = 10 minutes;
and m = 8 with 40 IMAs, tout = 10 minutes. The average
solving time for successful runs using both approaches is
plotted in Figure 3c. We can observe in Figure 3c that
the difference between the proposed approach and the CP
approach is marginal because the existing CP approach can
efficiently find a solution for a smaller search space.

VI. RELATED WORK

The multiprocessor scheduling can be broadly categorized
into event-driven scheduling, i.e., scheduling decisions are
made at run-time based on different parameters, and TT
scheduling, i.e., a system-level schedule is constructed at de-
sign time which is then enforced at run time, (see surveys [21],
[22]). The TT scheduling is proven to be more predictable,
as the schedule is constructed at design time so the precise
information of each event that will take place at run time is
known at the design time. As a consequence, TT scheduling
is preferred for designing safety-critical systems (e.g. avionics
control systems) due to higher predictability. It also simpli-
fies the process of design, verification, and (re-)certification.
Furthermore, designing such systems requires strict space and
time partitioning among applications of different criticalities
executing on the same platform, as mandated by the ARINC-
653 standard. Such partitioning ensures sufficient isolation
between applications of different criticalities (possibly run-
ning on different cores), in such a way that they can be
modified/upgraded independently, thus minimizing the system
re-certification costs. Considering this, a plethora of works
in the literature [6]–[8], [14], [17]–[19], [22], [24], [28],
[31] focus on building solutions to generate TT schedule for
tasks/IMA applications on multicore platform.

Xu et al. [31] presented a scheduling algorithm based
on a branch and bound heuristic to find a feasible non-
preemptive schedule on M identical processors. However, in
contrast to the proposed work, the work in [31] does not
comply with the specifications of ARINC-653, which requires
a static allocation of IMA partitions to cores. Deroche et
al. [7] proposed an exhaustive branch-and-bound heuristic
based approach to build a TT schedule for IMA applications
running on multicore platform. Even though their solution is
important, it suffers from the problem of scalability as their
approach does not scale well for systems with a large number
of avionics functions distributed in a limited number of pro-
cessors. To overcome this challenge, in their subsequent work,
Deroche et al. [8] propose an improvement by eliminating the
backtracking during the decision tree search process, using a
greedy heuristic. To achieve this goal they choose the most

promising valid MAF set in each node of the search tree,
based on a metric that takes into consideration the margin of
a communication chain, which is the difference between the
chain end-to-end delay constraint and the current delay of each
chain. The authors performed a comparison with the exhaus-
tive (optimal) approach from [7] and showed improvement in
terms of solving time. Although their approach is efficient,
it is limited to IMA partitions with synchronous harmonic
periods, which is a much less complex problem than the one
we are trying to solve (i.e., non-harmonic asynchronous case).
Furthermore, contrary to our approach, the solution from [8]
does not consider the migration of tasks among cores.

Other existing approaches use Constraint Programming
(CP) or Integer Linear Programming (ILP) to build a TT
schedule of IMA partitions [4], [10], [23]–[26]. Among all
these approaches, the solution in [24] is the closest to the
proposed work in terms of contribution and assumptions.
Puffitsch et al. [24] presents a CP approach for the gener-
ation of TT schedule of real-time dependent periodic non-
preemptive asynchronous task sets on multi/many-core plat-
forms for IMA systems. Their solution considers a) prece-
dence constraints between partitions of different IMA appli-
cations; b) spatial mapping of IMA application to cores; and
c), mapping of communication buffers in the message passing
area. Even though the existing CP-based approach [24] can
efficiently find a solution for a relatively smaller problem,
it does not scale well with the increase in the search space.
If a valid TT schedule is not found by an approach within a
reasonable time, it will directly impact the schedulability ratio
as the taskset will be deemed unschedulable if the schedule
cannot be found within a reasonable time. As reported in
Section V (see Figure 3a), even with 4 hours of threshold
limit, the proposed approach outperformed approach [24] by
improving the schedulability ratio up to 46%. Furthermore,
the work in [24] uses commercial constraint solver [3] which
is limited to internal undisclosed search algorithms. Our
tool on the other hand offers many possibilities for future
improvements, such as the adoption of different strategies to
traverse Pgraph, Igraph, and scheduling strategies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel heuristic framework for
configuring and generating IMA-compliant schedules which
is efficient in terms of finding a valid schedule, scalable to
a large number of IMA applications, and efficiently utilizes
the computing platform. The experimental results reveal that
our solution can outperform the state-of-the-art CP solution
by [24] in terms of solving time, memory usage and does not
perform significantly poorly compared to the CP-based opti-
mal solution. In the future, we plan to extend our framework
to a) include precedence relations between partitions; and b)
consider synchronization of access to system I/O resources by
mapping the I/O partitions to a dedicated I/O core.
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Abstract—The P4 language has been defined to simplify the
definition of the behavior of network devices. The idea is to
define their behavior with a P4 program instead of a specific
hardware, which is promising in terms of flexibility, simplicity,
cost reduction. In this article, we investigate on the use of P4 for
the specification of embedded network devices and study possible
advantages compared to natural language specifications, with a
focus on correctness assurance. In particular, we consider the
formal verification of properties for a P4 program. Due to the
absence of mature verification frameworks for P4 programs, we
experiment by generating C code and applying the Frama-C
verification framework over the generated code.

Index Terms—network device, formal verification, P4

I. MOTIVATION

Developing embedded network switches requires some ex-
changes between the equipment provider and its client, such
as an aircraft manufacturer. Currently, this is done through
requirements that are written in natural language (e.g., in
English). The provider then prototypes and manufactures the
hardware based on those requirements. In this paper, we
will investigate a way to formalize, at least part of, those
requirements. This would enable the client to perform some
kind of consistency checks on the requirements as well as
refinements from high level expectations to more precise
requirements. The formalization could also help the provider
to better satisfy its client needs. Finally, this could enable both
parties to better test the resulting product: indeed, the P4 code
can be used to generate test cases satisfying some coverage
criteria. Then, the client can use execute the tests on a P4
simulation framework. The results can be considered as the
expected outputs for the tests to be executed on the real switch
by the provider.

In the remainder of the article, we clarify the objectives
of using P4 in this context. We then present the P4 language
through a simple running example. We review existing works
on P4 formal validation and show a first feedback onp ratical
formal verification of P4. We also stretch the benefit of P4 in
terms of test generation.

II. OBJECTIVES

Our goal is to investigate the usability of the P4 language to
specify embedded network switches. More precisely, we hope
to be able to enjoy the following benefits from formalizing a
specification in the P4 language:

• Using the P4 compiler1 and network simulators, the P4
program makes it easy to experiment and play with the
specification, which could help making the requirements
more precise.

• Ideally some high level requirements could be statically
verified on the P4 program, further strengthening our
confidence in the specification.

• The program could be used to automatically generate test
cases [19] that ensure a good coverage of the P4 program.
These tests could then be used to assert the compliance
of the final product with the specification.

• The P4 program could constitute a reference implemen-
tation acting as interface with the equipment provider
which manufactures the switch. It can help this provider
when implementing the hardware.

III. THE P4 LANGUAGE

A. General presentation

The Programming Protocol-independent Packet Processors
(P4) language [18] is an open source, domain-specific pro-
gramming language for specifying how network devices pro-
cess packets. The language originated in the software-defined
network (SDN) world. The fundamental idea underlying the
language development was to replace specific hardware by
P4 programs describing the switch behavior that could be
compiled and executed on different possible hardware devices
(FPGA, programmable ASICs) . The hardware device is called
target is P4 terminology.

Figure 1 (from the P4 language specification [18]) shows a
typical workflow when programming a target using P4. The

1https://github.com/p4lang/p4c



Fig. 1. P4 workflow

P4 program is written for a specific architecture model which
relies on hardware capabilities of the target. The architec-
ture model and the P4 compiler are provided by the target
manufacturer (but it is expected that some architecture model
will be shared by different manufacturers [18, § 4.1]). The
result of the compilation implements the forwarding logic
described in the P4 program. The right-hand side of the
figure represents the P4-programmed device, called target.
Two crucial functionalities are represented : the control-plane,
which describes how the packets should be forwarded (the
creation of routing tables is part of control plane), and the data
plane, which is in charge of forwarding the packets (complying
with the routing tables). A P4 program describes the data plane
and its interface with the control plane. The latter can be
specified by hand or generated but is out of the scope of a
P4 program.

In practice, a P4 program is composed of two kinds of
blocks, which are executed in sequence for each incoming
packet:

• parser blocks describe a finite state machine reading
(headers of) the packet, filling some metadata fields at-
tached to the packet and eventually accepting or rejecting
the packet ;

• control blocks written in an imperative language akin
to C can perform various treatments based on the above
metadata and read some kind of routing table, to eventu-
ally decide how to route the packet.

The fact that the language is based on finite state machines
and imperative programming, both well studied in the formal
method field [16], [20], seems to make it an ideal target for
formal verification. The finite nature of the manipulated data
makes it even more appealing.

B. Illustration: basic forwarding

Let us illustrate the language with a very simple switch
consisting of two blocks. It is extracted from the specification
of a switch implementing basic forwarding (from the P4
official tutorial2).

Each block has parameters, which can basically represent
metadata associated with the packet. Their types can be either
user-defined or predefined in the architecture model or in a
P4 library. Besides, they can be tagged in (read-only), out
(uninitialized) or inout.

2https://github.com/p4lang/tutorials

The P4 file basic.p4 for our example starts with the
inclusion of a P4 library (core.p4) and the architecture
model file (ebpf_model.p4) and the definition of data
types. Here is an extract.
# i n c l u d e <c o r e . p4>
# i n c l u d e <ebpf model . p4>
h e a d e r e t h e r n e t t {

macAddr t d s tAddr ;
macAddr t s r cAddr ;
b i t <16> e t h e r T y p e ;

}
h e a d e r i p v 4 t {

. . .
}
s t r u c t h e a d e r s {

e t h e r n e t t e t h e r n e t ;
i p v 4 t ipv 4 ;

}

The first block is the parser and is described below. The
overall behavior is the following: ethernet headers are first
extracted, then if the just extracted etherType field of the packet
header is equal to TYPE IPV4, the ipv4 headers are extracted. In
both cases, the packet is eventually accepted. The P4 code is
as follows
parser MyParser ( p a c k e t i n packe t , out h e a d e r s hdr ) {

s t a t e s t a r t {
t r a n s i t i o n p a r s e e t h e r n e t ;

}
s t a t e p a r s e e t h e r n e t {

p a c k e t . e x t r a c t ( hdr . e t h e r n e t ) ;
t r a n s i t i o n s e l e c t ( hdr . e t h e r n e t . e t h e r T y p e ) {

TYPE IPV4 : p a r s e i p v 4 ;
d e f a u l t : a c c e p t ;

}
}
s t a t e p a r s e i p v 4 {

p a c k e t . e x t r a c t ( hdr . i pv4 ) ;
t r a n s i t i o n a c c e p t ;

}
}

The parser is defined as a finite state automaton with
five states: the implicit accept and reject and the user
given start (the initial state), parse_ethernet, and
parse_ipv4. In each state a sequence of basic statements
to compute can be specified. A basic statement is either the
manipulation of a variable or the call to a predefined method
(e.g., packet.extract(hdr.ethernet) in the state
parse_ethernet). Notice that the function extract,
which reads the header of the packet, is defined in a library
(core.p4). Then, with the keyword transition, the tran-
sition to the next state is specified. A switch/case-like construct
(keyword select) allows the programmer to chose the next
state depending on a boolean condition.

Let us now consider the second block: the ingress block.
c o n t r o l MyIngress ( i n o u t h e a d e r s hdr , out boo l p a s s ) {

a c t i o n drop ( ) {
p a s s = f a l s e ;

}
apply {

i f ( hdr . i p v4 . i s V a l i d ( ) ) {
p a s s = t r u e ;

}
e l s e drop ( ) ;

}
}

The block starts with the definition of the unique action in this
example (drop). Actions are a kind of function local to the



block. The behavior of the control blocks is defined by the
apply field. Here, if the ipv4 field of the packet header is
valid, then the pass output parameter is set to true.

The architecture model we are using (called ebpfFilter)
requires two blocks. We specify below that we are using the
above defined parser and ingress blocks as the two required
blocks from the architecture model.
e b p f F i l t e r (

MyParser ( ) ,
MyIngress ( )

) main ;

In order to illustrate the proposed approach, let us consider
a simple property that we want to ensure. This property states
that if the input packet is long enough, to include both an
ethernet (112 bits) and an IPv4 header (160 bits), then the
parsing succeeds.

Property. For any input packet p, if
p.length > 112+160 then p is forwarded.

The proof of this property will be demonstrated in section V.

IV. RELATED WORK

The authors were pleasantly surprised to discover that
verification of P4 programs is a pretty active and diverse
research subject.

It is worth noting that P4 is, as seen above, a pretty
specific language with no loop construct, be it while loops
or recursive functions. That is, P4 does not have the full
expressiveness of general purpose programming languages: in
other words, the language is not Turing complete. In fact,
with mild assumptions, the language has equivalent computing
power to finite automatas. This limited computing power
makes the language a very attractive candidate for formal
verification.

The main works to be found in the literature can be
organized in the following way:

Formal semantics and proof assistants
targets the formalization of the semantics of the
P4 language in proof assistants, such as Coq or
Isabelle/HOL, or logical frameworks, such as the
dreaded K. This enables reasoning on the language
and manually proving correctness of small programs.

Deductive verification
back propagates a property to verify through the P4
program under study (computation of weakest pre-
condition) leading to a first-order logic formula that
is then automatically checked using an SMT solver.

Typechecking
techniques can be used to statically guarantee the ab-
sence of some classes of runtime errors (for instance
dereferencing invalid pointers).

Runtime verification
consists in instrumenting the program with tests that
are run along it during its execution [10]. This is less
interesting than the other, static, verification methods
in a critical context, except maybe for offline testing.

Test generation
contrary to previous methods doesn’t target verifica-
tion of P4 programs seen as white box implementa-
tions, but takes P4 programs as specification to check
hardwares seen as black box implementations. Test
generation methods can be used to attempt generat-
ing sets of tests that would guarantee coverage of
each line of the considered P4 program.

A. Formal Semantics and use of Proof Assistants

The goal of Petr4 [3] is to define a formal semantics based
on the P4 official Language Specification [18] and independent
from the reference implementation. The first objective is
to uncover ambiguities and inconsistencies in the Language
Specification and bugs in the reference implementation. A
formal operational semantics is defined for a fragment of P4.
This fragment excludes parser blocks. However, the authors
argue that it is possible to encode parsers with unrolled loops
(to eliminate recursion), using a function for each state. An
effort is made to be parameterized by the architecture model
and target. Type soundness and termination are proved for
the operational semantics. Moreover, an interpreter has been
implemented in OCaml. It is not formally related to the
operational semantics and handles the full P4 language. The
interpreter is a functor that can be instantiated with different
architecture models. It has been validated against a set of
tests coming from the reference implementation. No formal
verification framework based on Petr4 has been proposed yet.

Nano-p4 [1] is a formalization of P4 using the proof
assistant Isabelle/HOL. It seems to be the first formalization of
P4 using a proof assistant (P4K has some anteriority but the K
framework it’s based on isn’t an actual generic proof assistant).
The authors provide a small step semantics of P4 actions as
well as a semantics of P4 parsers. They use this semantics
to prove properties like absence of access to uninitialized
variables or out of bound accesses in header stack, as well as
reachability in the parser automata. They also prove the cor-
rectness (i.e., semantics preservation) of an optimization rou-
tine for P4 actions, namely constant folding. The Isabelle/HOL
code is made of 4000 lines of code3, 200 lemmas and theorems
and is available at: https://github.com/Johanmyst/Nano-P4 .
Note however that the author states ”freely available” but there
seems to be no precise license. The code is apparently no
longer developed since the initial master thesis (that lasted six
months in 2020).

Leapfrog [4] is a tool to check equivalence of P4 parsers.
This allows for instance to check that a simple implementation
of a parser (considered as specification) behaves exactly (i.e.,
accepting and rejecting the exact same packets) like a more
complex, optimized, one (considered as the implementation).
The tool is developed within the proof assistant Coq offering
some strong guarantees with respect to its correctness. How-
ever, it calls external SMT solvers without rechecking their
results with Coq (i.e., it adds a Coq axiom for each solver

3Proof assistants being pretty verbose, this is relatively small.



call). Tools to check SMT solver results in Coq do exist [9]
but the authors were apparently not able to use them.

In P4K [13], an executable formal semantics of P4 is given
in the K framework. K is a programming language semantics
engineering framework based on term rewriting. The idea is
to take benefit from the existing language-independent tools
offered by K such as a parser, an interpreter and a symbolic
model checker. In the article, the authors provide an informal
explanation of the definition of the P4 semantics. Then they
present some examples of properties it is possible to check
with P4K. The framework offers a good expressiveness but
requires a good level of expertise in rewriting and in particular
in K. The following property, which is expressible in P4K,
illustrates the high expressiveness of the framework: for any
input stream of packets, after processing all the packets, no
packet is dropped and no new packet is added; all the packets
are either sent to port 0 or to port 1, and the difference between
the nb of packets sent to 0 and 1 is 0 or 1.

B. Deductive methods

The tool p4v [15] performs formal verification of P4 pro-
grams. More precisely, it verifies that a given P4 control block
satisfies a given property. If assumptions about the control
plane are needed to prove the desired property, then the user
must explicitly add these assumptions as annotations in the
P4 program. The property to check is added as an annotation
in the P4 program. Technically, the P4 program is translated
into a first-order logic formula. The fact a violation of the
property to be checked is accessible from an initial state is
also translated into a formula. Verification conditions based on
weakest pre-conditions are then generated and verified with
the Z3 SMT solver. A specific effort is made to illustrate
and classify some properties that can be verified. The authors
distinguish:

• basic safety properties, such as: headers are valid, header
stacks are accessed within statically declared bounds,
arithmetic operations do not overflow;

• architectural properties, such as: any packet not blocked
by a table is rewritten by another table;

• program-specific properties, such as: an internal server is
isolated from the rest of the network.

C. Typechecking

Typechecking can be seen as a simple form of abstract inter-
pretation. The use of types in programming languages started
to indicate to the compiler the memory size of the program
variables. For instance, in C a char should use 8 bits of
memory whereas a double usually spans 64 bits4. But since
the end of the 20th century, stronger type checking is used by
many programming languages to make their compiler statically
(i.e., at compile time) enforce much stronger guarantees on

4Although, strictly speaking, this second size is not defined in the language
specification, we are not aware of a C compiler making an alternative
implementation choice.

the programs they accept. For instance, an OCaml program is
guaranteed not to segfault by the compiler.5

Safe-P4 [7] is an extension of P4 with some additional
typechecking to ensure that only packet fields that are valid
are accessed. The property is basically guaranteed by the
fact that each field access is guarded by some check of its
validity (using some if ... then ... else construct).
It was tested on 15 codes in P414 (that were more common
on Github than current P416 programs, at the time the paper
was written) and found 58 bugs. The bugs were relatively easy
to fix and SafeP4 enabled to guarantee the correctness of the
fixes. The original prototype used int the paper doesn’t seem
to be available but an OCaml prototype for P416 is available
at https://github.com/cornell-netlab/p4check

Following the same line of work, Π4 is a language inspired
by P4 with dependent types to enable checking more complex
properties [6], [8]. Interestingly, thanks to the fact the language
is not Turing complete, typechecking of Π4 is decidable, a
rare property for dependently typed languages. This language
seems more prototypical than SafeP4 with limitations with
respect to P4 such as the absence of registers to store in-
formation throughout the processing of multiple packets. The
implementation doesn’t seem to be available.

D. Runtime Verification

The DBVal toolchain [14] aims at verifying at runtime that
some properties are verified, by the use of assertions (like
the assert builtin of most programming languages). This
assertion-based infrastructure uses network-specific construc-
tions, to ease the expression of assertions: a filtering capacity
(to check assertions only on some packets), capacity to reason
on the path of the packet through the architecture model.

The prototype source code is freely available but no license
is provided.

bf4 [5] is a tool performing some static analysis on P4
programs to infer rules on the tables guaranteeing the absence
of some classes of bugs (mostly runtime errors). The program
is then instrumented so as to detect at runtime the insertion of
table entries violating those predicates.

The tool was implemented as a backend for the p4c compiler
but its availability is not mentioned in the paper.

This approach allows to catch errors in the semantics of a
P4 program, but also to detect errors in the compilation chain
or in the execution platform that can not be detected only by
looking at P4 code and architecture and target specification.

The main goal of these tools (during verification at runtime)
seems not suitable for our aeronautical context, where the
objective is not to detect errors at runtime but to rather prevent
occurrences of errors at design time. Nevertheless, it may
be used for test purposes, during the development phase.
Moreover, the tool syntaxes have been designed to catch P4
oriented properties and may be an inspiration for other works.

5Except if the programmer voluntarily uses some trapdoor like ‘Obj.magic‘
to bypass the typechecker, but we all know that ”Obj.magic is not OCaml”.



E. Test Generation

To trust P4 program verification results, one need to trust
their execution target. Ideally, one would get formal proofs,
down to transistor level, that the target satisfy its expected
semantics. However, in practice, the hardware is often a black
box. Then, one can only rely on testing to check that it matches
its specification. Except in specific cases, exhaustive testing
is unachievable. However, given a P4 program, one can at
least try to ensure that the exercised test cases provide a good
coverage of the program. That is, that as many part of the
program as possibles are exercised in the test set. The number
of test cases that can be hand made being limited, there is
an interest in automatically generating test cases. There are a
few works in the area, most being specific to a given target.
P4TestGen [19] is a test generation tool that attempts to be
more generic, enabling the user to extend it with new target
specifications.

Indeed, generating tests requires a ”whole-program seman-
tics” of P4 programs, that is the combination of the P4 lan-
guage semantics and some target specific semantics mandating
the scheduling of P4 program blocks with ”interstitial target-
specific elements”. Given a target specific semantics and a P4
program, P4Testgen is then able to generate a set of test cases,
that is a sequence of pairs (input, expected output). These tests
can then be executed on the target platform to check that pro-
vided with each input, its actual output matches the expected
one. It is worth noting that the input here consists in both
packets received and table configurations.6 The tool attempts
to generate tests that offer a good coverage of the program.
There are multiple variations of the notion of coverage, among
which path coverage and statement coverage. Path coverage
ensures that every possible path in the program is exercised,
it can require an exponential number of tests in the program
size7. Statement coverage is a weaker definition, only ensuring
that each program line is exercised, thus only requiring a
number of tests linear in the program size. P4Testgen chose
to ensure statement coverage, as real-world P4 programs tend
to have a lot of paths.

Non determinism is a serious obstacle to test generation.
This nondeterminism can be handled by leaving don’t cares
in the generated test outputs. P4Testgen uses taint analysis
(a variation of typing) to keep track of such nondeterminism.
This nondeterminism can come from undefined behaviors in
P4 leading to target specific behavior (for instance rejecting
packets in the parser can lead to target dropping the packet,
or considering the headers uninitialized, or silently adding
padding to initialize the headers). Non determinism can also
come from reading unitialized variables, or random number
generators.

6However, in our case we are probably more interested in verifying a P4
program along with some given tables, so we would rather consider the tables
as part of the program, which could only ease the testing process, beyond the
expectable small adaptation to the P4TestGen tool to handle this particular
point.

7Just think of a sequence of n if-then-elses, this program has 2n paths.

P4Testgen implementation relies on SMT solvers: it selects
a path in the program, encodes it as an SMT problem8

and when the solver finds a model, it generates a test case.
Heuristics are used to try to maximize statement coverage with
few paths.

The author tested their tool on 4 targets: ”v1model architec-
ture of BMv2”, ”ebpf model for the Linux kernel”, ”tna and
tna2 architecture for the Tofino 1 and 2 chip respectively”.9

with their example programs. They found 16 bugs in the
toolchain for the Tofino compiler and 9 bugs in the toolchain
of BMv2.

The C++ implementation is available under an open source
Apache2 license in the reference P4 compiler repository.10

V. DEDUCTIVE PROOFS

We’d like to apply usual deductive verification techniques
on imperative languages, like provided by the Why3 [11] tool,
to the P4 language. To experiment deductive proofs on P4
code, we chose to go through an intermediary form in C. This
workflow presents many drawbacks. Indeed, C being a much
lower level language than P4, going through it means we have
to manage many details we are not really interested in, like
pointer arithmetic for instance. However, C has the advantage
of being already equipped with readily usable deductive proof
frameworks like Frama-C [2]. If we were to do some actual
deductive-proof work on P4 code, our best bet would probably
be to develop a P4 frontend to a tool like Why3 [11].

So we first need to translate the P4 program of our running
example, from Section III-B, into some piece of C code. We
first attempted to do that using tools from the litterature [12]
but they were working on some old intermediary form of
the P4 official compiler parser and were no longer working
on the current compiler.11 We eventually resorted to the
official-compiler backend for eBPF [17], which happens to
output C code. Thus, from our running example presented in
section III-B we obtain the following C code, after some slight
modifications to fit in the paper and be readable by Frama-C.

Two files are generated basic.h and basic.c. The
header file basic.h mostly contains the declaration of struc-
tures for the packet headers, which are the direct translation
of the ones in the P4 source code.
/* Automatically generated by p4c-ebpf from basic.p4 */
#ifndef _P4_GEN_HEADER_
#define _P4_GEN_HEADER_
#include "ebpf_kernel.h"

#define MAP_PATH "/sys/fs/bpf/tc/globals"
struct ethernet_t {

u64 dstAddr; /* macAddr_t */
u64 srcAddr; /* macAddr_t */
u16 etherType; /* bit<16> */
u8 ebpf_valid;

};

struct ipv4_t {
u8 version; /* bit<4> */
u8 ihl; /* bit<4> */
u8 diffserv; /* bit<8> */
u16 totalLen; /* bit<16> */
u16 identification; /* bit<16> */
u8 flags; /* bit<3> */
u16 fragOffset; /* bit<13> */

8Loops in the parser are unrolled, up to some bound.
9Which means they implemented each target semantics in the tool.
10https://github.com/p4lang/p4c/tree/main/backends/p4tools/modules/testgen
11https://github.com/p4lang/p4c



u8 ttl; /* bit<8> */
u8 protocol; /* bit<8> */
u16 hdrChecksum; /* bit<16> */
u32 srcAddr; /* ip4Addr_t */
u32 dstAddr; /* ip4Addr_t */
u8 ebpf_valid;

};

struct metadata {
};

struct headers {
struct ethernet_t ethernet; /* ethernet_t */
struct ipv4_t ipv4; /* ipv4_t */

};

#if CONTROL_PLANE
static void init_tables()
{

u32 ebpf_zero = 0;
}
#endif
#endif

The basic.c file then starts with the usual header include
/* Automatically generated by p4c-ebpf from basic.p4 */
#include "basic.h"

#include "ebpf_kernel.h"

then comes a sum type of result codes
enum ebpf_errorCodes {

NoError,
PacketTooShort,
NoMatch,
StackOutOfBounds,
HeaderTooShort,
ParserTimeout,
ParserInvalidArgument,

};

and a few macros to read or write a selected number of bits
#define EBPF_MASK(t, w) ((((t)(1)) << (w)) - (t)1)
#define BYTES(w) ((w) / 8)
#define write_partial(a, s, v) do {

u8 mask = EBPF_MASK(u8, s);

*((u8*)a) = ((*((u8*)a)) & ˜mask) | (((v) >> (8 - (s))) & mask);
} while (0)
#define write_byte(base, offset, v) do { *(u8*)((base) + (offset)) = (v); } while (0)

void* memcpy(void* dest, const void* src, size_t num);

#define bpf_trace_message(fmt, ...)

REGISTER_START()
REGISTER_END()

The main function then starts, it takes as input a buffer skb
with the content of the frame to parse
int ebpf_filter(SK_BUFF *skb){

The function first declares a variable hdr of the above
structure type and initializes its validity fields to 0 in order
to record that nothing has been read yet

struct headers hdr = {
.ethernet = {

.ebpf_valid = 0
},
.ipv4 = {

.ebpf_valid = 0
},

};

A few other local variables are declared, among which
two pointers ebpf_packetStart and ebpf_packetEnd
pointing to the start and end of the buffer to read and an
offset ebpf_packetOffsetInBits recording the number
of bits already read

unsigned ebpf_packetOffsetInBits = 0;unsigned ebpf_packetOffsetInBits_save = 0;
enum ebpf_errorCodes ebpf_errorCode = NoError;
void* ebpf_packetStart = ((void*)(long)skb->data);
void* ebpf_packetEnd = ((void*)(long)skb->data_end);
u8 pass = 0;
u32 ebpf_zero = 0;
unsigned char ebpf_byte;
u32 ebpf_pkt_len = ebpf_packetEnd - ebpf_packetStart;

The control flow first moves to start, a label to be defined
later. Each state of the P4 parser then gets translated to some
sequence of statements, following such a label. The control
flow in the P4 automaton will thus be implemented by gotos.

goto start;
goto start;

The first parser state to appear in the C code is parse_ipv4.
Note that this is not the same order as in the original P4 code
but order doesn’t matter, since there is no ordering between
states of a finite state automaton. This code first imple-
ments the P4 instruction packet.extract(hdr.ipv4)
by checking that there is enough data to read in the buffer.
When this test succeeds, each field of the hdr.ipv4 structure
is then filled with data from the buffer.

parse_ipv4: {
/* extract(hdr.ipv4) */

if (ebpf_packetEnd < ebpf_packetStart
+ BYTES(ebpf_packetOffsetInBits + 160 + 0)) {

ebpf_errorCode = PacketTooShort;
goto reject;

}

hdr.ipv4.version = (u8)((load_byte(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits)) >> 4) & EBPF_MASK(u8, 4));
ebpf_packetOffsetInBits += 4;

hdr.ipv4.ihl = (u8)((load_byte(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))) & EBPF_MASK(u8, 4));

ebpf_packetOffsetInBits += 4;

hdr.ipv4.diffserv = (u8)((load_byte(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 8;

hdr.ipv4.totalLen = (u16)((load_half(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 16;

hdr.ipv4.identification = (u16)((load_half(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 16;

hdr.ipv4.flags = (u8)((load_byte(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits)) >> 5) & EBPF_MASK(u8, 3));

ebpf_packetOffsetInBits += 3;

hdr.ipv4.fragOffset = (u16)((load_half(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))) & EBPF_MASK(u16, 13));

ebpf_packetOffsetInBits += 13;

hdr.ipv4.ttl = (u8)((load_byte(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 8;

hdr.ipv4.protocol = (u8)((load_byte(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 8;

hdr.ipv4.hdrChecksum = (u16)((load_half(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 16;

hdr.ipv4.srcAddr = (u32)((load_word(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 32;

hdr.ipv4.dstAddr = (u32)((load_word(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 32;

The hdr.ipv4 part is then marked as valid.
hdr.ipv4.ebpf_valid = 1;

;

And the P4 instruction transition accept is imple-
mented by a goto.

goto accept;
}

Then, the parse_ethernet state of the P4 parser is imple-
mented in a similar way.

start: {
/* extract(hdr.ethernet) */

if (ebpf_packetEnd < ebpf_packetStart
+ BYTES(ebpf_packetOffsetInBits + 112 + 0)) {

ebpf_errorCode = PacketTooShort;
goto reject;

}

hdr.ethernet.dstAddr = (u64)((load_dword(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits)) >> 16) & EBPF_MASK(u64, 48));

ebpf_packetOffsetInBits += 48;

hdr.ethernet.srcAddr = (u64)((load_dword(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits)) >> 16) & EBPF_MASK(u64, 48));

ebpf_packetOffsetInBits += 48;



hdr.ethernet.etherType = (u16)((load_half(ebpf_packetStart,
BYTES(ebpf_packetOffsetInBits))));

ebpf_packetOffsetInBits += 16;

hdr.ethernet.ebpf_valid = 1;

;

The transition select at the end of that state is a bit
more involved and gets compiled as if-then-elses.

u16 select_0;
select_0 = hdr.ethernet.etherType;
if (select_0 == 0x800)goto parse_ipv4;
if ((select_0 & 0x0) == (0x0 & 0x0))goto accept;
else goto reject;

}

Finally we get the accept and reject states, that are always
implicit in P4 parsers.

reject: {
return TC_ACT_SHOT;

}

accept:
{

u8 hit;
{

pass = true;
}

}
ebpf_end:
if (pass)

return TC_ACT_OK;
else

return TC_ACT_SHOT;
}

To this code, we add, just before the first line of the
function, a special comment, starting with @, that contains
annotations for Frama-C. The requires are pre-conditions
and the ensures are post-conditions. Frama-C will use SMT
(Satisfaction Modulo Theory) solvers to prove that whenever
the preconditions are satisfied and the function terminates, its
output satisfies the post-condition.
/*@ requires ((void*)(long)skb->data_end) >= ((void*)(long)skb->data) + BYTES(112+160);
@ // The following requires states that the two fields are comparable
@ requires \exists unsigned offset; ((void*)(long)skb->data_end)
@ == ((void*)(long)skb->data) + offset;
@ ensures \result == TC_ACT_OK ; */

Here, the contract means that whenever the function has at
least 112+160 bits in the skb input buffer, then the function
successfully returns TC_ACT_OK. The second requires
is more technical, it is here to tell Frama-C that the two
pointers skb->data and skb->data_end point to the
same memory region, meaning they are comparable, which
is required by the inequalities appearing in the guards in the
program. Without this precondition, the memory model of
Frama-C assumes different pointers point to different memory
regions and are incomparable. The property is then proved in
a matter of seconds by SMT solvers. However, this kind of
technical details makes the method very labor intensive.

To dramatically minimize the human effort, we think anal-
ysis should not happen at the level of C code, but directly on
the P4 programs. This would require designing a tool enabling
to direclty translate P4 code to, for instance, the Why3
deductive verification tool [11], rather than going through a
C intermediate representation. Finally, it is also unclear how
maintainable the proofs would be, across successive versions
of the analysis tool or SMT solvers.

VI. TEST GENERATION

The P4Testgen tool [19] takes as input a P4 program and
uses solvers to generate test cases while attempting to achieve

a good line coverage, that is having as many lines of the input
P4 program covered by at least one test case. The generated
test cases are pairs of (input, expected output), where the
inputs are carefully selected to maximize coverage of the P4
program, and the outputs are the one expected for each input,
according to the semantics of P4. Those tests case can then
be replayed on the hardware to test, checking that the output
on the hardware matches the expected output. Thus, one ca
test that a given hardware12 behaves the same than a given P4
program, at least on the test cases.

For instance, on the running example, from Section III-B,
we would expect two test cases, each exercising one branch
of the if (hdr.ipv4.isValid ()).

The technique is complementary to the previous verification
of functional properties of P4 programs. It doesn’t aim at
proving anything on programs but rather at checking that
an implementation of a program keeps the same semantics.
Contrary to the previous verification of functional properties,
the technique is very “cheap” as it doesn’t require writing any
specification. Indeed, the P4 program is the specification here.

VII. CONCLUSION

The P4 language is designed to program network switches.
We studied its use as a way to specify embedded network
switches, independently of the way they are designed and
manufactured. Implementing the expected behavior of a future
switch in a P4 program could then enable to both

• conduct verification activities on this P4 program, to
ensure some expected properties of the design ;

• check that the resulting hardware meets the P4 specifica-
tion.

Our goal was a preliminary assessment of the feasability of
the approach.

State of the art already features a wide range of works on
verification and validation of P4 programs. Unfortunately, no
standard specification language for P4 seem to have emerged
yet, meaning we don’t have anything comparable to the
Java Modelling Language (JML) for Java or the ANSI C
Specification Language (ACSL) for C. More precisely, the P4
language itself is equipped with a well defined semantics, but
we lack another consensual language to express the functional
properties we’d like to verify on P4 programs.

One of the most stringent limitation is the strong depen-
dency of the P4 semantics on the architecture target. For
instance, things like

• the signature of the blocks ;
• the scheduling of the blocks (can blocks treating different

packets be interleaved for instance) ;
• primitives like packet.emit

are all architecture dependent, hindering the verification of
many properties. Indeed, one can notice that the property
studied in section V did not involve any of those aspects.

12This hardware can either be an actual hardware or the simulation of some
VHDL implementation for instance.



Less crucially, configuration tables are usually considered
as a dynamic input of the P4 programs, whereas for critical
embedded applications, they should rather be considered as al-
most part of the P4 program and be included in the verification
activity.

Finally, there is no notion of time in P4. This makes it
impossible to express properties about rate limiting that are
critical in aircraft embedded networks like AFDX or TSN.
This would require either designing some extension of P4 to
handle time or writing directly the specification in some target
language of P4 like DPDK. For instance, to limit rate on input
ports in order to mitigate babbling idiot errors, it is common
to use token bucket policing elements. Those include a local
variable that is steadily incremented with time. Modeling such
a variable in P4 would then require some access to some clock
variable. Hardware switches being usually already equipped
with a clock, it seems to be mostly a matter of extending the
language, its semantics and the P4 compiler, at least for the
target of interest.

Our work let us hope that using P4 programs as an inter-
mediary specification language while designing an embedded
switch could be a good way to formally specify the behavior
of the future hardware, by :

1) verifying some expected properties on the P4 program,
before or while the hardware itself is designed ;

2) once the hardware is available, check that its behavior
matches the behavior prescribed by the P4 program.

The second activity seem to be a low cost, no regret, one.
Indeed, for critical systems, handwritten tests are already
performed anyway, so adding more, automatically generated,
tests should only incur a marginal cost overhead. The cost-
benefit ratio of the first activity is less clear. Formal verification
on the P4 program would enable to gain more confidence in
the design before any hardware is even built, which could
catch errors early in the design process, hence saving massive
amounts of wasted effort. Nevertheless, the activity also has
a non negligible cost as it requires to develop precise enough
specifications to formalize them into mathematical formulas.
Whether the benefits outweights the cost remains unknown
and could only be evaluated by actually attempting such
a verification activity on some use case. Unfortunately, we
currently have no precise plans to conduct that evaluation on
our industrial use case.
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Abstract—The introduction of Ethernet into critical embedded
applications opens new needs to master and secure network
development and deployment. While Ethernet is a well known
Information Technology (IT) brick and deployed in the indus-
try on a case-by-case basis, Time-Sensitive Networking (TSN)
complements have only recently emerged in the aerospace and
automotive industries as a promising solution to provide real-
time, reliability, and availability guaranties for safety-critical
systems. The complexity and diversity of TSN mechanisms
enforce the use of specialized tools to assist the network engineer
for the design, configuration and deployment of the network
parameters. On the other hand, IETF has proposed Yet Another
Next Generation (YANG) modeling language for interoperability
in configuration and monitoring of various network devices. In
this paper, we propose to revisit and complement the YANG
standardised model in order to enable tool interoperability, with
the aim of providing these complements as open source. The
benefit of the proposed YANG model will be demonstrated on a
TSN industrial use case with a set of tools ranging from network
design and configuration to deployment on a Proof of Concept
(PoC) platform.

Index Terms—Embedded Network, Tool Interoperability, Eth-
ernet TSN, YANG model

I. INTRODUCTION

Aerospace and automotive industries are moving to Soft-
ware Defined Systems (SDS) based on virtual resource al-
location: a control layer is deployed in the system in order
to configure virtual resources for the services offered by the
specific domain application. In this sense SDS breaks the
tight coupling between the software (SW) and the hardware
(HW) of classical information systems, where dedicated de-
vice performs the domain application service. Such systems
offer an easier management of HW and SW resources for
the application but require higher design constraints for a
flexible and generic execution platform. At the same time,
classical information systems lack of scalability, flexibility and
configurability. The new SDS-related architecture paradigms
can be applied to critical embedded systems and the associated
communication network where the increase of data exchange
in terms of bandwidth, the rising number of devices deployed

in the network and the need of standardization of the network
interfaces suggest to naturally move to switched Ethernet
network, with the advantage of reuse and cost reduction on
the overall infrastructure. The critical expected properties of
embedded applications with mixed criticality traffic imply
preconditions on the network, such as tight and predictable
communication traversal time, reliable and safe communica-
tion, strong availability of data/frame exchanged coupled to
network configuration complexity. In this context, the Ethernet
Time-Sensitive Networking (TSN) can satisfy the requirements
of safety-critical embedded applications. The IEEE802.1Q [1]
standard complemented with TSN standard extensions emerg-
ing in industrial/automotive domain proposes dedicated means
to guarantee real-time and safety on these mixed criticality
embedded systems. Nevertheless, the design, the provisioning
and the verification of the application requirements of a full
TSN Ethernet network in a mixed criticality embedded system
requires the usage of specialized tools to let the network
engineer be more effective, due to the complexity of the
TSN standard. Moreover, these tools are necessary to support
certification of the final system.

To simplify exchanges between these different tools, we
propose in this article to study the use of the YANG data
model for tool interoperability purposes. As YANG is designed
for network device configuration and monitoring, we proposed
augmentations to the standard models to enable their use in the
upstream design, study, test and validation phases of critical
embedded networks. These modifications are then tested to en-
sure automated, flexible and vertical interoperability between
a network design and analysis tool and a generic hardware
test bench configuration tool. This vertical interoperability has
enabled us to explore multiple TSN safety-critical embedded
industrial use cases (from design to deployement on a hard-
ware generic test bench) in short iterative loop.

This study has been elaborated in the context of an IRT
Saint-Exupery project called EDEN project. EDEN is a multi-
domain research project (automotive, aeronautics and space)
with the aim to demonstrate confidence in TSN deployment



in critical embedded system domain.
This article digs into the details of the study proposing

the following subjects: Section II introduces TSN and YANG.
Then, section III analyses the state of art of Ethernet network
tools for embedded system. Section IV defines the approach
and organization of YANG model applied to Ethernet TSN in
the context of EDEN project. Section V documents the use of
our YANG models on the industrial use case. Next, section
VI discusses the limits of our approach. Finally section VII
resumes the conclusion and proposes future work perspective.

II. TSN AND YANG OVERVIEW

TSN provides deterministic and reliable Ethernet commu-
nication for real-time traffic, which can coexist with non-real
time data traffic. The IEEE802.1Q [1] standard complemented
with TSN standard extension is emerging in industrial do-
main: several working groups for TSN standardisation propose
TSN profiles for specific industrial domains. For example,
the Aerospace Onboard Ethernet Communications P801.2DP
standard is a profile defined for the aerospace industry.

Several TSN’s intrinsic mechanisms permit to guarantee
QoS for the traffic. The Time-Aware Shaper (TAS), proposed
in IEE802.1Qbv [2], combined with network-wide synchro-
nization provided by gPTP protocol, descrided in [3], enable
time-triggered communication. Credit-Based Shaper (CBS)
enables traffic flow regulation controlled by credit as specified
in IEEE802.1Qav [4]. Frame Replication and Elimination for
Redundancy (FRER), proposed in IEEE802.1CB [5], allows
the frame redundancy. Per Stream Filtering and Policing
(PSFP), defined in IEEE802.1Qci [6], enable flow filtering and
policing.

Yet Another Next Generation (YANG) is a data modeling
language intended for network configuration and monitoring.
It was proposed by IETF in RFC6020 [7]. YANG language
is used to describe a data structure. Instances of this data
structure can be exported in XML or JSON format. These
instances travel through the network to configure or monitor
a device using YANG-based protocol like NETCONF [8]
or RESTCONF [9]. YANG can be seen as a successor of
Management Information Base (MIB) and YANG-based pro-
tocols as a successor of Simple Network Management Protocol
(SNMP).

YANG model files are called module. To illustrate this
paragraph, a very simple module modeling a scientific article
is given as an example in Listing 1. The container article
is a high level object that groups leaf, list and even
container. In this container, a list of section is
described. A list object is a collection of key/value pair that
can contain multiple objects (e.g. leaves). In this section
list, a section-id leaf is described. A leaf is an object
that can contain only one value. An instantiation of this
module for a two-section article is given in Listing 2. YANG
also proposes a mechanism called augmentation which
allows a module, without modifying in it, to be extended
by another module. In our example, it’s possible to propose
a module that augment the section object of the article

module, to add a list that would describe tables present
in the section in the same way as the list of images.
container article {

description "Article";
list section {

key "section-id";
leaf "section-id {

type uint32;
}
leaf content {

type string;
}
list image {

key "title"
leaf "title" {

type string;
}
leaf "path" {

type string;
}

}
}

}

Listing 1: Simplified example of a scientific article YANG
module

<article>
<section>

<section-id>0</section-id>
<content>This is the first section
</content>

</section>
<section>

<section-id>1</section-id>
<content>This is the second section
</content>
<image>

<title>My chart</title>
<path>/chart.png</path>

</image>
</section>

</article>

Listing 2: Simplified xml instantiation of the scientific article
YANG module

In practice YANG is mainly used in the IT world to manage
large infrastructures. In this context, IETF has proposed a
number of models such as model for network and interface,
or for protocols such as IP. These models are augmented
by vendors such as CISCO or HUAWEI to model proprietary
mechanisms. In the world of TSN, standardization working
group proposes a set of standard YANG module to describe
TSN mechanisms and enable their configuration and monitor-
ing.

III. RELATED WORK

As mentioned previously, Ethernet IT device providers have
developed complete tool suites adopting YANG programmable
interfaces using NETCONF or RESTCONF protocol for Ether-
net network configuration, supervision, and maintenance [10].
A typical example is the Cisco YANG suite [11] that provides
a set of tools and plugins to learn, test, and adopt YANG model
for the supervision of an Ethernet network.

For non-IT network, the standardized Centralized Network
Configuration (CNC) architecture, part of IEEE Std 802.1Qcc
[12], is a key element of TSN standard for configuration of
embedded critical network application.



A first implementation of such CNC architecture capable
to configure a TSN network of an industrial construction
equipment, using the NETCONF protocol and YANG models,
was demonstrated in [13]. This demonstration is limited to
dynamic TAS configuration for a SMART MPSoC bridge
representative of an embedded network application distributed
by SoCe company. Despite the use of Linux service for YANG
parsing and configuration, the device set-up is operated with
specific SoCe drivers, so not applicable to different devices.

In a recent review on TSN network configuration manage-
ment [14], the authors state that despite the central role of
YANG in promoting unified network management, the current
standard still needs to be improved to cover configuration
of a network composed with different device manufacturers.
Similarly in the automotive industry, [15] promotes the use
of model-based development, validation and configuration of
TSN embedded application. But the authors state that the
TSN network configuration and scheduling algorithms are not
integrated into the existing software development tools and
require further research to enable efficient configuration of
TSN network.

Indeed, before configuring the network hardware, it is nec-
essary to design and validate the network configuration using
multiple specialized tools (e.g. tools for design, configuration,
formal analysis, simulation, ...). In order to use such a variety
of tools safely and efficiently, tool interoperability is of major
interest. Here also the YANG model can play a central role.
To answer the design need, several model-based tools for
TSN network architecture design have been proposed on the
commercial market. We can mention Pegase from RealTime-
at-Work (RTaW) [16] mostly used in automotive industry,
Chronos from General Electric [17] targeting aerospace mar-
ket, TSN designer from RealTime IT [18] or IxNetwork from
Keysight [19] addressing the IoT and industrial market. Those
products enable to explore and analyze network architecture in
order to generate the configuration of TSN mechanisms. But
to our knowledge none of them implement a feature enabling
non-proprietary tool interoperability all the way down to the
hardware network device configuration tool.

RTaW has introduced a first YANG export feature in Pegase
tool, completed by a complete tool chain in TSN Studio [20].
TSN Studio enables to configure industrial devices running
Linux with standard NETCONF protocol. Despite the use of
YANG models, there are still some dependencies to the Pegase
data model, for example with regards to the traffic definition or
the fixed labeling of physical device. The NETCONF protocol
is the only way to configure the devices, which could mismatch
the embedded systems requirements. Indeed, NETCONF is
quite heavy in term of computing resources and software stack,
and it relies on TCP which may not be determinism-friendly.
In addition, manufacturers of devices dedicated to embedded
systems offer configuration through proprietary solution that
do not support YANG interface.

As critical embedded network, industrial IoT domain im-
poses stringent requirements on the dependability and perfor-
mance of communication networks. In this context, Chahed

et al. [21] explore TSN state of the art after identifying that
the large and continuously evolving set of standards poses
challenges for adopters seeking to understand it. They exhibit
that clear understanding of use-case, available device resources
and constraints are key points and raise that the performance of
the control plane design and management operation especially
for device configuration is an important aspect aimed to be
tackled in the future.

To overcome these limitations around configuration integra-
tion in development and validation tools as well as TSN net-
work exploration in the context of critical embedded systems,
our contribution proposes to complement standard YANG
model to enable full interoperability between TSN network
design tool chain and device configuration targeting network
exploration experiments.

IV. YANG DATA MODEL FOR TSN NETWORK

A. Preamble and initial objectives

To fully understand our approach, it is important to begin
by historically describing our issue:

• Initially, interoperability aimed to facilitate the exchange
of network models as well as TSN configurations among
various design tools (Pegase RTAW and Timaeus-Net
in the first step of our project). This initial step was
pivotal in shaping our approach to standard Yang models
and their limitations, and in subsequent decision-making
terms of design. We can refer to this as ”horizontal in-
teroperability”, as interoperability actors have similar or
closely related roles in the network development process.

• Subsequently, our objective shifted towards seeking in-
teroperability between network design tools and deploy-
ment tools on hardware platforms. Here, we can speak
of ”vertical interoperability”, as interoperability actors
have different roles. This second step introduced new
challenges.

The pursuit of vertical interoperability first faced tools lim-
itations, as tools did not often offer a means of importing
from a Yang structure and only supported a single meta-
model. Effective interoperability at that time in our project
context was thus unidirectional: RTaW-Pegase to Timaeus. The
underlying model at this time was already an augmented
model proposed by RTaW. However, this scenario was in-
teresting as it paved the way for a new potential need: the
ability of a tool to support a Yang model as an interoperability
”parameter”. When we aimed to further enhance this vertical
interoperability to ensure the sustainability of our solutions, it
became evident that adopting a cleaner approach was essential.
This involved creating a customized Yang model that we
could subsequently disseminate to the embedded network
community.

B. Requirements for a model

To create and setup the YANG model, we started with the
definition of requirements, driven by 3 principles: universality,
diversity, and reversibility.



a) Universality: Because our final aim is to ensure the
global interoperability of our network design and deployment
environment, the solution was not only to cover the network
configuration, but to have a full description of the network
shared by a large set of tools: design and configuration tools,
network simulators, deployment solutions. This first principle
of universality is crucial regarding both the structure and
content of the model. Particularly, to encompass the scope of
vertical interoperability, we need to incorporate into the model,
information that will be used in a very localized manner.
This principle also diverges from the aim of IETF and IEEE
models, which solely targeted network devices. For instance,
high level network development tools have to deal with pure
graphical information related the rendering of networks (e.g.
size and position of nodes inside a display). This kind of
information has not interest for the network deployment but
can be very important for the network designer. So a YANG
model shall support any information required along the full
network development process.

b) Diversity: At this stage, let’s introduce the concept
of perspective: for two tools playing the same role in a
network design chain, the high-level view of the network may
differ. For instance, a critical embedded network would be
highly interested in security information, whereas a standard
network may not necessarily be concerned with this issue.
Another example is openness to applications. For instance,
you can limit the traffic definition to the network or extend
this definition to the related applications. Indeed, applications
can greatly influence traffic behavior and configuration. For
example, if the application contains time-triggered temporal
constraints and if these constraints are implemented using
the time-triggered solution TAS, then the configuration of the
TAS shall match these application constraints. Therefore, we
need a solution to express these constraints inside the YANG
model. This principle of diversity will significantly increase
the size of the model; it will also lead to diversity in usage:
all elements of the model will not be used in the same way
in every network. Thus, there will be diversities in usage or
instantiations resulting from the diversity supported by the
model as well as the functional diversity of users. So a YANG
model shall support any perspective and point of view used
along the full network development process.

c) Reversibility: The YANG model shall be sufficient so
that when a tool exports a network description, it should be
able to recreate the same network description by importing
the previously exported model. Due to this principle, new
information shall be taken into account: implementation infor-
mation introduced by each tool. A highly interesting example
concerns the modeling of TAS schedulers. When this shaper
is used, the network design tool assists by calculating the
configuration tables of the TAS schedulers, which contain the
opening and closing times of gates on the output ports. This
configuration constitutes the implementation of TAS and is
specific to each TAS configuration algorithm; for example, in
Timaeus-Net, there are options that allow for adjusting the
porosity of TAS windows relative to the rest of the traffic.

The porosity of a TAS expresses the ability of time triggered
traffic to be interlaced with non time triggered traffic. If
the porosity is low, then the use of TAS will generate a
tunneling effect that will reduce the efficiency of the non
time triggered traffic. Changing this option thus leads to a
different TAS configuration and different performance for the
entire traffic. The modeling proposed by the IEEE standard
regarding TAS is very relevant regarding the configuration of
gate opening tables. Therefore, this initial information can be
reused; however, the IEEE model does not implement any
association between the gates configuration and the specific
traffic. Thus, if two flows of the same priority and profile (same
message size and periodicity) exist, it will not be possible to
infer the flows from gate management information. Respecting
reversibility can lead to an increase in information: we call
this kind of information tool-dedicated information. But other
solutions are also possible: in the case of TAS schedulers,
for example, we have chosen to address it at the level of the
import function itself. Indeed, it would have been too complex
and too specific to overload the model in order to trace
unequivocally the options of the scheduler creation algorithm.
In other words, interoperability stops at the implementation
specifics of the exchanging tools. So a YANG model shall
support any information which are mandatory to recover a
network after an export-import sequence.

d) Maintainability: To conclude this list of requirements,
adding one final principle that concerns not the creation of
the model but its utilization: the principle of maintainability.
Indeed, as soon as we recognize that standard models are
incomplete, not yet stabilized, or customizable, we must be
prepared in an interoperability scenario to encounter a YANG
model that is different from the one we are going to create.
Alternatively, for a given model, we must be prepared for
different interpretations of the same model. We will delve
into the implications of this scalability principle later in the
article. This last criteria does not directly concern the YANG
model, but rather the way the tools could be adapted to
work with such model. Our conclusion of this first activity
of requirements, was a set of mandatory information that
should be managed inside our model: topology information,
traffic information, configuration information, dependability
information, tool-dedicated information etc.

C. Elaboration of the YANG model

Implementing the model involves defining the classes and
relationships necessary to cover our network modeling needs.
At this stage, we are torn between two implementation ap-
proaches that need to be reconciled: a primary categorical
approach, which is to reuse existing classes and relationships
from IEEE and IETF modules whenever possible – this is
imperative, just because during the deployment phase, we will
need to leverage this information. A secondary contingent
approach is to address our principles of universality, diversity,
and reversibility. To cover the first approach, our starting point
was the set of concepts already implemented inside IETF and
IEEE standards; IETF standards contain concepts like net-



work, node, link, interface, etc.; IEEE standards contain TSN
concepts like bridge, bridge-port, TT scheduler, gPTP/PTP
instances, talkers and listeners, etc. We split these standard
concepts into 3 categories:

• concepts that can be reused as they are,
• concepts partially matching our requirements and which

have to be improved,
• concepts not mandatory for HW configuration, which are

not matching our requirements or which could not be
improved.

In the first category (concepts that can be reused as they
are), we only have concepts which are required for the
hardware configuration itself: for instance, to configure the
TAS mechanism, we need to define “gate parameter tables”
which are containing the TAS schedulers entries. The YANG
concepts defined in the ieee802-dot1q-sched module play
this role perfectly. The second category (concepts partially
matching our requirements) contains most other standard
concepts: improvement can here be done using the YANG
Augment feature. For this study, we organized the YANG
folders in order to separate what is standard, and what is
customized. Let’s note that even the most obvious concepts
must be completed to fit our needs; for instance, the IETF node
concept has been augmented to support the “manufacturer-
reference”, or the “bench-id” (host name of the node in the test
bench network, such as “PC 2”). These fields are useful when
deploying the network on a generic platform. The last category
contains concepts that are not mandatory for configuration,
and which are not generic nor detailed enough to implement
some of our needs: for instance, the talker-listener paradigm is
defined inside the ieee802-dot1q-tsn-types module and is not
relevant to implement all kind of traffics. In order to avoid
modifications or patches of the standard model, when a part
of the model was too far from our need and when it was not
possible to augment it, we preferred to create our own class
breakdown.

To address the second approach, we need to complement
our model with new classes or relationships. Here, we have
more freedom, but our approach aims to achieve a complete
and high-quality model: at this stage, we aim to ensure that
additions do not degrade the overall quality. Once again,
compromises will need to be made between the two initial
objectives (horizontal and vertical interoperability). To mea-
sure the quality of the whole, we use conventional design
criteria borrowed from the state of the art in model design:
class coherence (classes should implement only one clear and
unique concept); coupling (classes should be loosely coupled,
avoiding logical and implementation couplings); primitiveness
(each class attribute should implement information that can-
not be decomposed into elementary information or duplicate
already modeled information).

D. Model Overview

We will not expose the entirety of the model (see summary
in Table I) but will briefly present some specificities. Let’s

start with the ”additions,” which are a few modules we have
created to complement existing elements in the standards:

• Irt-tsn: This module contains information for TSN con-
figuration. The simplest example here is CBS. Although
very old and common, there is no standard for defining
the configuration of CBS parameters.

• Irt-topology, irt-interface, irt-ptp: In these three cases
associated with standard modules, we have added infor-
mative supplements such as buffer sizes, transmission
capacities, references to network nodes (for interfaces
as with ”bench-id” in the interface module presented
earlier), etc..

Now let’s talk about classes that we have created from
scratch. The simplest example is traffic modeling (Fig 1). The
irt-traffic module is intended to cover the generic needs for
defining traffic that we identified in our research project. Main
container is the ”Traffic” class: this singleton is supposed to
contain all the items used to describe a full traffic. It mainly
contains:

• A collection of flows: each flow itself contains a set of
cast ; a flow has properties (like its payload or its period)
and constraints (like a maximal latency)

• A collection of classes: a class is a high level concept to
describe QoS or standard shapers configuration.

• A collection of protocols: a protocol can be used by a
flow

• A collection of additional constraints: these constraints
are used to express applicative constraints: for instance,
for a cyclic traffic, the exchanged windows or for a
chained cyclic, the items of the chain.

E. YANG model instance life cycle in the tool chain

According to the interoperability context, several activities
are concerned: network model design, network model valida-
tion, devices configuration generation, deployment on the HW
platform, validation of the HW platform. These activities can
be organized around a workflow, creating a life cycle to enrich
the YANG instance of the network.

Parts of the YANG model have to be initialized in the
design activity, other will be created later. For instance,
the actual IP address is only assigned during the platform
deployment. This concept of life cycle can be compared to the
“config” standard YANG field used to distinguish parameters
that actually can be configured: in our case, model concepts
have to map to activities of the life cycle. Sometimes, the
same initial requirement projected onto two activities will be
implemented using two distinct YANG concepts: it is the case
of the Traffic Safety requirement. At network design level
this requirement consists in being able to define for critical
flows some redundant paths. To implement this first level of
requirement, due to the reversibility principle, we decided to
create the concept of flow cast: a cast is a set of segments;
each segment can be single or multiple; a single segment is
a path; a multiple segment is a set of paths, having same
extremities but distinct intermediate nodes to ensure safety in



Fig. 1: Class Diagram for Traffic

case of line break. Then at deployment level, the principle is to
use the FRER mechanism to implement the redundant paths.
A model complement is thus required, focusing on each node
ieee802-dot1cb-frer configuration.

F. YANG model implementation in the tools

Both interoperability objectives (horizontal and vertical in-
teroperability) suppose that each tool of the framework is
“understanding” the common YANG data model. However,
in each tool there is an element of interpretation in this
understanding of the model. For example, our YANG model
leaves some freedom for port naming (numeric, alphanumeric,
etc.); the nature of the tools will also play a role: a tool close to
hardware will rely on the hardware identification of the ports
while a high level network analysis tool can go so far as to
ignore this naming. The consequence is that each tool must be
able to adapt its own data model to the generic YANG model.
The tools must allow this adaptation to be configured, in order
to achieve maximum interoperability.

To ensure the scalability principle of interoperability, the
technique of meta-model mapping can be a solution. This
technique is based on the following principles:

• Each tool has its own meta-model, which generally
corresponds to the tool’s specific design, but also to the
underlying purpose of the tool.

• Each tool will use an external YANG meta-model, which
is different from its own meta-model. This external meta-
model will not be hard-coded in the tool but exchange-
able: the tool will therefore offer a principle to select the
external YANG meta-model.

• An additional mapping interface will be supported by the
tool, an interface that should allow aligning the elements
of the native meta-model with the elements of the external
meta-model

Fig. 2: Block diagram of the tool chain

V. THE EXPERIMENTAL SETUP

In this section, the experimental setup used to validate the
interoperability enabled by the model is presented. Starting
with a presentation of the tool chain, followed by a presenta-
tion of the industrial case study used for this setup, and finally
a feasibility study is described and discussed.

A. Tool chain

The tool chain developed as part of this work aims to
support the user from the design and configuration of a TSN
network right through to deployment on the hardware. It is
summarized in Fig. 2. It can be broken down into three distinct
tools, which are detailed below.

a) Design and validation of a TSN network: Timaeus-
Net [22] is a tool allowing the user to describe a network, its
message flows and their constraints. Using these informations,



Standard Standard changed Contribution
iana-type-if.yang ieee802-dot1q-psfp.yang irt-eden-usecases.yang

ieee1588-ptp.yang ieee802-dot1q-sched.yang irt-frer.yang
ieee802-dot1as-ptp.yang irt-interface.yang

ieee802-dot1cb-frer-types.yang irt-ptp.yang
ieee802-dot1cb-frer.yang irt-topology.yang

ieee802-dot1cb-stream-identification-types.yang irt-traffic.yang
ieee802-dot1cb-stream-identification.yang irt-tsn.yang

ieee802-dot1q-ats.yang irt-types.yang
ieee802-dot1q-bridge.yang

ieee802-dot1q-preemption.yang
ieee802-dot1q-stream-filters-gates.yang

ieee802-dot1q-tsn-types.yang
ieee802-dot1q-types.yang

ieee802-types.yang
ietf-inet-types.yang
ietf-interfaces.yang

ietf-ip.yang
ietf-network-topology.yang

ietf-network.yang
ietf-yang-types.yang

TABLE I: Lists of YANG models used

the tool proposes a configuration of the different TSN mecha-
nisms. Compliance with flows constraints such as latency/jitter
is then validated using Network Calculus Approach [23] [24]
to compute them in the worst case. When the user is satisfied
with their configuration, the tool can then export these different
parameters according to the YANG data model described
above.

b) Central YANG models storage: These YANG datas
are then imported and stored in a centralized database that
ensures compliance with the format described in the model.
The database used in our case is an open source project called
Sysrepo [25]. This database can be queried using NETCONF
and it enables interoperability between tools. In the future,
other tools (e.g a simulator or analysis tool) could also
query this database to perform computations on the network
described using Timaeus-Net or other design tools that can
export the data in the format described above.

c) Deployment on the targeted hardware network: To
deploy the network designed with Timaeus-Net on the hard-
ware, a tool called Scenario Player has been developed. This
tool begins by retrieving the configuration described in the
central database. It then allows users to describe test scenarios,
with fields such as ”duration” of the use case module, and
to completes the Timaeus-Net data by adding information
describing the test bench via a graphical user interface. To be
more precise, the user maps the objects (end stations, switches,
interfaces, ...) described in Timaeus-Net to the test bench
hardware using above-mentioned fields such as ”bench-id” and
”manufacturer-reference”. The tool then uses these fields to
complete the data with the MAC and IP addresses of each
device and generate forwarding and ARP tables. These com-
pleted datas are then sent back to the central YANG database
for storage and potential use by other tools. Next, Scenario
Player configures the various test bed devices (switches, end-
stations, traffic generators, measurement instruments) using the
completed datas describing the previously designed config-
uration. Finally, it executes the scenario described, enabling

experimental measurements to be carried out on complex use
cases.

Note that none of the devices used in the test bed sup-
ports a standardized configuration/monitoring protocol such as
NETCONF, RESTCONF or other configuration protocol more
suited for the critical embedded world. Therefore, Scenario
Player translates the configuration of each device according to
the proprietary configuration protocol. However, NETCONF
is used by our tools to exchange data with the SYSREPO
database (the four arrows in Fig. 2).

B. Spatial use case

The following industrial case study was used to investigate
the interoperability capabilities of the model described above.
This case study is based on the unification and replacement
of a satellite’s current networks (i.e. MIL-STD-1553 and
SpaceWire) using a single 1Gb/s TSN network with 4 switches
and 14 end stations. It is described in detail by Chaine et al.
in [26].

However, due to hardware limitations (e.g. number of ports
or FRER support on Network Interface Cards (NICs)), the
case study was reduced to the topology described in Fig. 3.
It consists of 5 switches and 10 end stations. The switches
SWOBC A and SWRIU A have been introduced to overcome
the limitation of FRER use on NICs for two end stations, i.e.
OBC A FhI and RIU A. From a traffic point of view, there
are 101 flows, which have been transposed from the flows
transiting on the MIL-STD-1553 and SpaceWire networks
currently in use. Theses heterogeneous flows carry a payload
between 2 and 1472 bytes with burst from 1 to 4788 packets.
They are grouped by similarity into 13 traffic classes. The
lowest latency and jitter constraints for each traffic class are
summarized in Table II. To meet these constraints, Timaeus-
Net has proposed and configured different TSN latency control
mechanisms (i.e. CBS and TAS) for the different traffic
classes. The use of the TAS imposes a network-wide common
clock. This is provided by the gPTP synchronization protocol.



Traffic class Id 1 2 3 4 5 6 7 8 9 10 11 12 13
Lowest latency constraint (ms) 33 100 125 N/A N/A 31.25 125 1 125 125 N/A N/A N/A
Lowest jitter constraint (ms) N/A 1 10 N/A 0.001 N/A 0.5 0.1 N/A N/A N/A N/A N/A

TABLE II: Lowest duration constraint for each traffic class

To meet availability requirements, three synchronization do-
mains are used. And finally, the flows between OBC A FhI
and RIU A are replicated using the FRER mechanism on the
first switch in the path and eliminated on the last.

Fig. 3: Unified TSN network satellite topology (view from
Timaeus-Net)

C. Feasibility study

To illustrate the interoperability of our augmented YANG
model, the case study described above is designed, configured,
validated and deployed using the tool chain.

The first step in this tool chain is to design and configure the
network. The topology and message flows (periodicity, size,
latency constraints, etc.) of the satelitte case study are first
described in Timaeus-Net. Then, after exploring several con-
figurations using formal analysis and optimization algorithms,
a configuration is selected and then exported as a set of xml
files following the data format described in the YANG model.
These files are then loaded into the database using NETCONF.

Scenario Player then queries the database using NETCONF
to retrieve the network described and configured above. It
then enriches this data with the information required for
deployment on the hardware. For example, each switch, end
station and network interface described in Timaeus-Net is
assigned to a switch, end station or interface available on the
test bench. These assignments also trigger the addition of data
such as the forwarding tables needed to configure flow paths,
or the information needed to configure traffic generators such
as source and destination mac addresses and VLAN numbers
for each flow. These new datas are then sent to the database,
once again using NETCONF, for future use by Scenario Player
or other tools.

All the data are then parsed, separated by device and used
to configure the corresponding devices. In this case study, two
types of switch from two different manufacturers, 3 desktop
computers running Ubuntu 20.04 totalling 8 NICs, and 2

FreeRTOS targets are automatically configured using the data
stored in the database.

Although imperfect, the following metrics illustrate well the
complexity of the case study deployment, due to the number of
parameters to be configured, and the importance of the effort
put into tool interoperability.

The first of these metrics is the number of leaves stored
in the database. When first imported, this number is 4138
leaves. After adding test bed specific datas, it increases
to 6462 leaves. The distributions are detailed in Table III.
We can note that 87.4% of the leaves in the first import
are additions proposed by our contribution. 93% of these
are linked to the description of traffic crossing the network.
After adding test bed specific datas, our contribution represents
only 58.7% of the leaves. This is mainly due to the
creation of forwarding tables stored in the ieee-bridge model
and the addition of ARP tables in the ietf-interface model.
Other industrial case studies designed and deployed with this
toolchain showed different distributions (e.g. 10301 leaves,
45% of which came from our contribution), explained by
differences such as fewer flows with more hops, different TSN
mechanisms and larger numbers of interfaces. The differences
caused by the choice of TSN mechanisms are illustrated in
Table IV, which shows three different configurations on the
same topology of an industrial automotive network use case.
Table V describes a metric that is more stable to changes of
use case. It details the distribution of leaf types used to meet
our interoperability needs. We can see that few data types
are needed (114 after enrichment) to describe and deploy a
network, but it’s the instantiation of these that greatly increases
the number of leaves. Take the example of the 41 leaves
needed to describe a flow, but the instantiation of this model
for 101 flows leads to the use of 3483 leaves on the
satellite use case. We also note that 66.7% of the leaf types
used in this use case originate from our contribution, which
highlights the shortcomings of standard models in terms of
tool interoperability.

The second metric is the number of commands made by
Scenario Player to configure the 15 devices that reach 2919.
This total is broken down into 2199 commands for switches
and 720 commands for end stations.

The next metric is the time required to deploy a case study
on the hardware. Using the data exported by Timaeus-Net,
an experienced user can perform model enrichment in less
than ten minutes, and automatic hardware configuration takes
less than two minutes. Without this tool interoperability, an
experienced user would need at least 8 hours and 45min to
reproduce the configuration described in Timaeus-Net. This
duration is deducted from the time needed to configure the
PL A switch by hand (35min multiplied by 15 devices). This



Original import Enriched import
Standard IRT Standard IRT

ietf-network 143 106 143 133
ietf-interface 352 112 646 156
irt-usecase 0 0 0 3
ieee-bridge 0 0 1841 0
irt-traffic 0 3382 0 3483
ieee1588-ptp 25 18 39 18
Total 520 (12.6%) 3618 (87.4%) 2669 (41.3%) 3793 (58.7%)

TABLE III: Distribution of the standard and IRT leaf instantiations for the two importations of the use case in the central
database

Configuration CBS FRER Std Irt Total
1 No No 990 (27%) 2729 (73%) 3719
2 Yes No 990 (23%) 3241 (77%) 4321
3 No Yes 990 (26%) 2799 (74%) 3789
4 Yes Yes 990 (23%) 3311 (77%) 4391

TABLE IV: Distribution of the standard and IRT leaf instan-
tiations after first importation of three network configurations
of an automotive use case

duration is probably very optimistic, as the PL A is the switch
with the simplest configuration (82 commands). Moreover, this
metric does not take into account the possibility of human
error.

And finally, on the other side of the tool chain, this interop-
erability allows us to change design tools without impacting
the rest of the chain.

VI. DISCUSSION AND LIMITS

We demonstrated the feasibility and benefits of tool interop-
erability using YANG models in the previous section, however
there are limitations which are discussed in this section.

First limitations are about the design of the model itself,
according to the criteria that we have defined. The universality
and diversity principles have conduct us to cover all points of
view and all needs for modeling a network and associated traf-
fic. This has led to add or amend missing elements being to the
standard models. However, these standard models will evolve
and will certainly be partially completed. As a consequence,
our add-on shall be updated.

The reversibility principle has highlighted that the cost of
implementing an import feature is much higher than that of
cost for the export features. Therefore, for a commercial tool
the benefits of importing is limited because it does not provide
any direct extra features in its own solution.

The last principle, namely maintainability, leads to establish
a specific implementation which consists in considering the
YANG meta-model as a parameter of the interoperability
features. This can be complex especially if the tool does
not implement a meta-model to manage its data and/or if it
contains limitations. Indeed, some tools of the tool chain are
more or less impacted than others by change in the associated
models. For example, Timaeus-Net has its own internal meta-
model. The data mapping with the YANG model is direct, so
a change in model can be handled easily by a few change
in the transformation mapping. Unlike Scenario Player that

implements a simple parser from YANG to the proprietary
configuration tools of the various devices, any change in the
YANG model may require more consequent code evolution.
This enforces the question of the stability of YANG models
and the interconnection between the model and the tools.

Other limitations are inherent to the standard YANG models.
One can cite the lack of completeness between the various
module creators, for example such as the IETF or IEEE, or the
restrictions imposed by certain models. For example, the fact
that the standard interface model proposed by the IETF only
enables the modeling of single device interfaces is a significant
limitation when using the YANG model to describe a network
that will inevitably contain multiple devices. This limitation
arises from the fact that it’s not possible to reference YANG
elements which are not explicitly defined as prototypes
from another element. Therefore, it’s not possible to create
for each node of the network, the collection of its interfaces.
In our case, we used workaround in such cases but standard
evolution may be needed. Note that, this limitation is not
encountered with the normal use of YANG, but only when
trying to describe a complete network, as in our work.

Finally, the last limitation is economic. Indeed, the market
of TSN network design and configuration tool for critical
embedded system is very fragmented and today established as
a niche market whereas tool interoperability is a competitive
criteria. The deployment of YANG models as core technol-
ogy for vertical and horizontal tool interoperability standard
for classical IT domain, even supported by vendor specific
extension (e.g. with proprietary YANG augments), needs to
be organized around an alive and open industrial ecosystem.
This would enable to increase the YANG models maturity and
enlarge the community for additional TSN tool market such as
network simulator, network verification and validation, etc. to
foster a non-competitive technology facilitating tool supplier
collaboration with positive return on invest. Through the work
presented in this article with the support of industrial partners
and IRT Saint Exupéry hosting TSN research activities, this
contribution aims to push forward a YANG ecosystem related
to embedded critical system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose to augment the standard YANG
models to ensure vertical interoperability of the tools needed to
develop and deploy complex TSN networks. We illustrate the
usefulness of this new model by using it to connect two tools



Original import Enriched import
Standard IRT Standard IRT

ietf-network 8 14 8 15
ietf-interface 16 4 19 5
irt-usecase 0 0 0 3
ieee-bridge 0 0 8 0
irt-traffic 0 41 0 42
ieee1588-ptp 7 3 11 3
Total 31 (33.3%) 62 (66.7%) 46 (40.4%) 68 (59.6%)

TABLE V: Distribution of the standard and IRT leaf type for the two importations of the use case in the central database

used to design and configure a satellite’s critical embedded
TSN network and deploy it on hardware targets. The proposed
models and augmentations are delivered in open source
[27] to initiate an ecosystem dedicated to TSN tool interop-
erability for embedded critical application. However, this first
version needs to be challenged by commercial products that
aim to offer interoperable solutions for TSN networks in order
to evolve.

Several future works are envisioned around this model in
a follow up project. First, we planned to extend the model
to support more feature like instrumentation devices. Other
tools, such as a network simulator, are also planned to be
connected to the central database to take advantage of this
unique interface and will most probably require new additions
to the model. Finally, this work will also be continued to
propose a YANG-based configuration and monitoring protocol
adapted to the world of critical embedded systems.
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Abstract—Current advances in Artificial
Intelligence (AI) technologies pave the way to
consider new services to assist aircrew, possibly in
embedded systems. Symbolic AI reasoning
provides both opportunities and challenges for
these services. On the one hand, symbolic AI
provides proven and explainable results. On the
other hand, recent studies showcase that those
reasoning methodologies suffer from long and
unpredictable execution times, and high memory
consumption. Such limitations currently refrain
the use of this approach in embedded systems. The
objective of this thesis work is to explore ways to
deploy such reasoning in embedded architectures
focusing on optimisations and benchmarking.
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I. INTRODUCTION

Whereas tremendous strides have been done in
hardware and software technologies in aeronautics,
new systems must provide the same level in safety as
the usual “Federated Architecture”, where there is an
absence of interferences [1]. According to [2], we are
in the 4th revolution in History: “smart” and
“connected” systems. One of the emergent
technologies in this 4th revolution is Artificial
Intelligence (AI). AI is mainly known for its wide
public applications such as image recognition or text
generation. These new services now penetrate the
aeronautical field to assist operators.

Therefore, one of the envisioned applications is the
assistance to the aircrew in order to circumvent human
workload limitations. For instance, when a warning
light appears in the cockpit, the pilot has to assess, as
quickly as possible, the seriousness of the alarm in
order to express the criticality of the situation.
Detaining a high level of real-time situation
monitoring is one of the most complex and critical
features in the aviation domain. If perception and
prediction steps can be performed by data-based
approaches, the comprehension step of this situation
must use aeronautic domain knowledge to give a
structured meaning of the alarm.

For such case, symbolic AI seems a pertinent candidate
to implement and manage a real-time situation
monitoring.

Symbolic AI is based on different concepts such as
first-order logic rules, ontologies, decisions trees,
reasoning... This technology detains notable features
such as its explainability, inter-operability between
applications/humans and reasoning on
conclusions [3].

A. Use Case: a Virtual Assistant

Thales is developing a virtual assistant exploiting
symbolic AI in order to assist the aircrew. This
assistant is the targeted application and would be
deployed in a tablet-type platform with time
response/memory constraints (see Fig. 1).

B. Ontologies and Reasoners

We are dealing with knowledge bases in ontology
format and these ontologies are formalised using the
Web Ontology Language (OWL) based on the
Description Logics (DL). A case in point, an airplane
ontology consists of two regular sets:

 A TBox (terminlogy box), which is the skeleton
of the domain of aircraft, describing it using
concepts and relations, e.g. an airplane has
two wings and wheels,

 An ABox (assertion box), which is the base of
individuals related to our domain, e.g. an
Airbus A380 or Boeing 738 aircraft.

Figure 1: Schema of a use case example
(icons from Flaticon.com)



A DL reasoner is used to deal with OWL ontologies
via deductive reasoning to operate tasks such as
satisfiability, consistency, and classification [4]. Its
role is similar to inference systems which deduce
logical conclusions from axioms [5].

Symbolic AI using ontologies and reasoners was not
initially thought for embedded devices. First, [6] and
[7] indicate that the world of embedded systems such
as mobiles or constrained devices imply a sheer
number of constraints regarding the deployment of a
reasoner , knowing that many state of the art reasoners
are too resource-intensive to be introduced on such
systems. Usually, embedded systems exhibit low
memory capacities, power, or strict time constraints.
Second, in this respect, several studies show up that
those reasoning technologies suffer from long and
unpredictable execution times, usually saturating
memory capacities of usual computers. A meaningful
case exists in [8] where non-deterministic execution
times are observed, and some reasoners are not
adapted to scan large ontologies (> 1, 000 axioms).

Accordingly, the objective of this work is to focus on:

 Optimisations for hardware architectures
regarding time/space envelope;

 Bounding reasoning runtime and memory
footprint, and providing guarantees on its
Worst-Case Execution Time.

C. Contributions
In this paper, we present some initial contributions of
this work. More precisely, thanks to a wide exploration
of the Description Logics (DL), Web Ontology
Language (OWL), reasoners and optimisations
thereof, we provide a categorisation of optimisation
families. Then, we describe and analyse preliminary
results from experimentations.

II. SCIENTIFIC POSITIONNING AND MAJOR
MILESTONES

The main objective is to explore optimisation methods
for execution of reasoners on ontologies to improve
reasoning time and memory space management. The
chosen approach consists of 5 stages:

1. Establish a state of the art mainly concerning
the optimised reasoning algorithms and their
implementation on hardware, and classify
the various optimisations;

2. Find solutions and implement on toy cases
such as LUBM benchmark [9];

3. Improve existing reasoner algorithms;

4. Develop efficient mapping on new
architectures such as Graphics Processing
Unit (GPU);

5. Implement the solution on the real case of
virtual assistant for validation.

We currently consider various ontologies from
multiple domains to benchmark implementations,
tackling the following questions:

1. Which reasoning tasks (e.g. classification)
are exploited?

2. Which level of expressiveness is needed?
3. What are the characteristics of the ontology?
4. What are the trade-off to be taken into

account between expressiveness and
complexity?

5. Which methodologies the reasoner is using?
6. Which approaches can be applied/tailored

for use in embedded systems?
7. How to accelerate reasoning? By

constraining the expressiveness, optimising
reasoning methodologies, or both?

III. PRELIMINARY RESULTS

The real start step is to get a deep understanding of the
language to deal with ontologies, OWL. OWL is
based on DL, a logic language that is decidable. More
precisely, there are two versions of OWL: OWL
(2004) and OWL 2 (2009). Our research is focused on
the second version, as it offers different sub-profiles
(see Fig.2) encompassing more different levels of
expressiveness (the level of details for an ontology to
be modelled using symbols) and complexity to work
with an ontology. [4] explicits the different profiles of
OWL 2: OWL 2 EL is used over large ontologies with
a lower complexity comparing to OWL 2 DL. OWL
2 QL targets SQL-based ontologies for performing
query answering tasks. It detains a lower complexity
too. And OWL 2 RL is the part that can be used to
express knowledge using rules. It is used with rule-
based systems such as expert systems.

Figure 2: Organisation of the different flavours of OWL 2 [10]



A. Existing reasoners and optimisations

A review of existing reasoners and speed up
techniques has been made with 2 distinct parts.
A preliminary work of gathering well-known
reasoners into a list has been established. A table has
been created which paper reports 85 reasoners, mainly
coming from [11], with their characteristics retrieved
from a notable study of their respective paper(s) too.
On top of that, 39 out of the 85 reasoners have been
considered because of their popularity but also of their
date of last update (at least 2012). Moreover, only
official reasoners have been considered because of
their recognition and community in literature, thus no
prototypes were selected. These reasoners cover a
large spectrum of methodologies as we show in Fig. 3.
As a result, we have categorised in Fig. 4 the different
optimisation families from studied existing reasoners
in a logical order from those concerning low-level to
software ones. This optimisation tilling enlightens
which techniques could be useful for our use case.

B. Test bench

A preliminary work was made to compare several
reasoner performances on a toy case ontology.
It consists of 9, 228 axioms, 1, 459 individuals
(instances), and has an expressiveness corresponding
to the the DL family ALCROIF(D) ([12] shows the
nomenclature of DL families). Fact++, HermiT, and
Pellet, very well-known reasoners (informations on
them in [11]), have been tested with this ontology and
the main reasoning task was classification which role
is to build the hierarchy order among classes (or
concepts).

Fig. 5 shows variable runtime for each reasoner. The
well-known user interface tool Protégé, mainly used
for ontology implementation, was used to perform the
tests. From [11], we can deduce that these reasoners
use different kind of reasoning approaches namely
algorithms. This could naturally explain why we have
different notable reasoning time from a reasoner to
another one for the same ontology. So then, this is
important to study this by investigating ontology
features impacting reasoner performances.

Figure 3: Timeline regarding reasoning approaches appearance with their
associated reasoners from 1999 to 2022

Figure 4: Categorisation of different optimisation families
of existing reasoners



The idea is to find the best fit between ontologies and
a given reasoner. This is the next step of this test bench
work.

In a second step, we are focusing on implementing
test benches to eschew the links between
expressiveness and complexity of different kind of
reasoners against ontologies. Moreover, found
optimisations will help to make improvements mainly
regarding time and space metrics. To asses the
performance of a reasoner and understand its
functioning, we are generating a set of ontologies
(barely 3, 000), ensuring that at least all of OWL 2
profiles are represented with different size. The goal
is to identify which ontology metrics impact the more
the reasoning process and importantly at which level.
An additional goal is to find bottlenecks by performing
a profiling process in order to identify code
obstructions and find ways of improvement towards
our problematic.

C. Current work

We are currently tackling the following tasks:

 Build test benches using a sheer number of
reasoners from different families of algorithm
and optimisations;

 Understand and explain why measurement of
the time/space envelope is different between
reasoners against ontologies.

IV. CONCLUSION AND FUTURE DIRECTIONS

Our literature review has shown that all reasoners
have their own features and restrictions. We presented
the first steps towards providing a clear evaluation
phase in an embedded system context.

Our future works include investigating how embedded
architectures and hardware acceleration techniques
can go in pair with optimisation of algorithms. Our
ultimate goal is to implement a solution in the real
case of a virtual assistant.
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Abstract—The software-dened vehicle (SDV) enables contin-
uously updated software defined features. This increasing de-
mand of new features requires a high-performance computing
platform (HPC) and a hierarchical system structure based on
a zonal-oriented architecture approach. The communication of
the different types of ECUs (sensor/actuators, zonals, HPCs) are
realized with various communication technologies like LIN, CAN
and Ethernet. The processing of the messages in these kinds of
heterogeneous networks is different: In the signal world, data is
commonly processed cyclically, the POSIX-based HPC world is
often event driven. The different message sizes and the processing
behavior led to the situation that even extremely powerful multi-
core ECUs are not capable to receive all data via Ethernet and
processes it in time. In this paper we discuss the backgrounds
and show measures to efficiently utilize POSIX based systems.
We start from currently used message size distributions and
send frequencies of real ECUs and optimize the system. We
also show general limitations of POSIX systems and especially
microkernels. For the measurements we use an Renesas R-Car H3
Board running QNX and the MICROSAR Adaptive middleware.
By systematically optimizing we reduced the CPU usage from
81.6% to 24.9% in total.

Index Terms—AUTOSAR, SOME/IP, POSIX, Performance

I. INTRODUCTION

The AUTomotive Open System ARchitecture (AUTOSAR)
consortium [1] is based on a long-standing and well estab-
lished alliance of car manufacturers, automotive software,
hardware and semiconductor suppliers and others. Main goal
of AUTOSAR is to define an open and standardized software
architecture for automotive electronic control units (ECUs)
including a common specification, methodology and config-
uration. The Classic AUTOSAR standard was first released in
2004 and focused on embedded RTOS systems and microcon-
trollers. The rising importance of microprocessor-based ECUs
with a POSIX-based systems was addressed by the Adaptive
AUTOSAR standard, first released in 2016. Adaptive AU-
TOSAR also focus on Ethernet-based in-vehicle communica-
tion. Today, different companies provide Classic and Adaptive
AUTOSAR implementations. MICROSAR Adaptive [2] is the
Adaptive AUTOSAR solution from Vector Informatik GmbH.

Ethernet has now been in use in vehicles for over 16
years: BMW first introduced Ethernet based on a 100BASE-
TX physical layer for flashing of ECUs in 2008 [11]. Later,
Broadcom development a new Ethernet physical layer – called
BroadR-Reach [9], later adopted as Open Alliance BroadR-
Reach (OABR) – that allows for 100Mbit/s bidirectional
communication over a single unshielded twisted pair cable.
In 2013, BMW piloted the Open Alliance BroadR-Reach
(OABR) in a new generation of surround view system, a
birds-view display of the vehicle. In 2015, OABR (and later
100BASE-T1) was first used for "generalized" in-vehicle
Ethernet-communication, i.e., not only for specialized au-
dio/video traffic, but also for the exchange of status and
control data between several Ethernet-ECUs [12]. Since 2015,
100BASE-T1 and new multi-gigabit Ethernet standards have
been adopted by other automotive OEMs [13].

Without the sake for completeness, the use of Ethernet for
in-vehicle communication can be divided into different use
cases and domains, starting with high-bandwidth applications
first and moving towards lower bandwidth requirements:

• diagnosis and flashing of ECUs
• transmission of raw audio, video or sensor data
• communication between in-vehicle ECUs and telematic

control unit (TCU)
• communication of processed sensor data for driver assis-

tance systems (e.g., fused object data around the vehicle)
• communication of control loop data between Ethernet

ECUs (e.g., using detected objects for head-up-displays)
• communication and tunneling of legacy data, i.e., commu-

nication between CAN and Ethernet ECUs via a gateway

Whilst high-bandwidth applications impose their own chal-
lenges, in this paper we focus on the last two use cases.
This communication is usually of small payload but can be
of high frequency. Formerly, this traffic was mostly handled
by specialized Embedded ECUs. However, with the increasing
trend to introduce POSIX-based computing and integration
platforms that aim at replacing smaller ECUs, fine-grained
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Fig. 1: Ingoing load of different RTOS and POSIX ECUs

Ethernet traffic gets increasingly relevant for POSIX-based
systems. Even though this high-frequency traffic poses no
problems regarding bandwidth of Ethernet-links, it can still
overload POSIX-based systems, depending on the strategy and
implementation of message and traffic shape handling, due
to the high packet count per second. The problem of high
frequency ingoing-frames is to some extent independent of
the underlying protocol and can be generalized: whether data
is sent directly, e.g., via UDP/IP, PDUs, SOME/IP, DDS, or
communication is handled via method calls–at some point, the
frequency of received frames may get too high to process it.
Of course, the transmission rate can and should be limited
by appropriate measures directly on the sender–limiting the
outgoing rate also reduces the ingoing load of all receiving
ECUs. This can be done, e.g., through debouncing by the
function that produces data on the sender, or by the used com-
munication protocol. However, because the required minimum
update rate of data is highly function dependent and might not
be increased, and partitioning of more and more functions in
POSIX computing platforms inherently leads to an increase of
communication relationships and, therefore, incoming traffic,
optimizing receive performance of ECUs is also crucial.

II. ANALYSIS OF ETHERNET COMMUNICATION

In this section, we look at real-world in-vehicle control loop
Ethernet communication, to evaluate the typical bandwidth
and packet count an ECU needs to handle. The analysis is
based on traces of Ethernet-connected ECUs of a current elec-
trical/electronic architecture. Due to its strongly application
dependent nature, control loop traffic is typically processed by
upper layer software. This means that frames and included data
first needs to be processed by the software networking stack
and are then passed to upper-layered software components. In
contrast, processing of video and audio traffic can often be
hardware accelerated or is at least handled by a specialized
implementation. The shown measurements do not include
raw video, audio or sensor data, nor traffic between zonal
ECUs (Ethernet backbone traffic), which are the main drivers
for new and upcoming multi-gigabit standards [14]. Fig. 1
shows ingoing traffic load of different RTOS and POSIX
ECUs. The measurements reflect a typical driving scenario.
We observe that the required bandwidth is far below the line

speed of a typical 100Mbit/s link. ECU E_POSIX1 has the
highest ingoing bandwidth of approx. 15Mbit/s and also the
highest ingoing frame count of approx. 6700 frames/s. The
payload size of captured traffic shows the prevalence of small
grained messages that are characteristic for "traditional" in-
vehicle communication: 60% of payload is ≤64 byte, only
8% is >1400 byte. Overhead, e.g., due to encapsulation in a
SOME/IP or UDP/IP frame, is not included. Other ECUs have
fewer communication relationships and hence in general less
ingoing bandwidth. However, the frame count is still high–
this motivates an optimized receive implementation that can
handle processing of >>1000 frames/s.

III. BENCHMARK SETUP

To run the performance tests we used an Renesas R-CAR
H3 board and a Linux workstation, connected by a 1Gbit/s
Ethernet link. On the R-CAR board we test three different
setups: Ubuntu 22.04.4 LTS with a 6.5.0-1016-azure kernel,
QNX 7.1 without any additional modification or tuning of the
drivers and, lastly, MICROSAR Adaptive version r9.24.4-1,
running under QNX. For QNX we used the official board
support package provided by Blackberry and run the io-pkt
network daemon. For all tests we used the Linux workstation
as sender and the Renesas R-CAR as receiving hardware.
Amongst other criteria, usage of QNX is relevant for safety-
critical use cases, because it is certified to meet standards such
as ISO 26262.

IV. RESULTS

In the first part the possible limits for different payload sizes
for UDP are determined using an open source benchmark
tool named iperf3. Based on the analysis in section II we
show in the second part how AUTOSAR and the MICROSAR
Adaptive middleware help to efficiently transfer messages
from a real world use-case.

A. Benchmark with iperf3

Besides the theoretical performance of 1Gbit/s we used
the iperf3 benchmark [3] to derive the maximal possible
throughput using UDP on the ECU described in section III.
Iperf3 is design on top of sendmsg() and recvmsg()
APIs [6], leading to a syscall for each message. In order to
improve the syscall overhead we extended the framework to
use sendmmsg() [5] and recvmmsg() [4] APIs provided
by QNX and Linux (Note the addition "m" in the function
names). Otherwise, QNX would not be able to reach more
than 50% of the possible payload throughput on the tested
hardware. This optimized APIs allow to handle multiple
messages with one syscall using a vector of messages.
The receive call was implemented to block until the entire
receive vector of messages (msgvec) is full before returning.
The measurements where executed 10 times by running:
./iperf3-patched -c <receiver_ip> -Z -l
<packet_size> -b 1G/<msgvec_size> -udp with
the packet size varying from 1 byte to 1400 byte and the
number of received messages per syscall (msgvec_size)



Fig. 2: Throughput of iperf3 on Linux and QNX depending
on the syscall

form 1, 10, 20 to 30. The results are plotted for Linux and
QNX in fig. 2 showing the average throughput over the
message size and the distribution with violins. As black
dashed line, the maximal throughput with respect to the
payload is shown. For small packages the throughput is
low and increases with the payload sizes. This behavior is
excepted as the header to payload overhead reduces with
larger messages. For one Byte message size the throughput
is between 3.9Mbit/s and 4.9Mbit/s for Linux and between
31.2 kbit/s and 305.1 kbit/s for QNX, depending on the
msgvec size. The throughput for Linux increases faster as for
QNX. This is partly driven by the overhead of the syscall,
which is larger under QNX due to the microkernel architecture
requiring a network daemon to handle the network traffic.
With increasing msgvec size, the syscall overhead reduces,
leading to a better throughput compared to smaller values.
However, for larger values the effect is less pronounced.
For only one received message per syscall the link can
not be fully utilized and reaches only 688.9Mbit/s for
Linux and 133.3Mbit/s for QNX, indicating that improved
syscalls are fundamentally necessary for automotive ECUs.
It should be noted that under Linux recvmsg is also able
to utilize the link as the overhead of this syscall is smaller
compared to recvmmsg with only a msgvec size of one.
All measurements show high CPU load, as one core is fully
utilized. This also leads to a high number of lost frames for
small msgvec and small message sizes.

B. Performance middleware

Building on the insights of the ipfer3 measurements and
the analysis in section II we created an artificial setup using
SOME/IP events with a total receive rate of 12.3Mbit/s which
we optimize towards a better CPU usage. The number, size
and periodicity of all events is depicted in table I and reflect
the distribution of real ECUs. For the measurements we used
a single receiving application which subscribed to all events.
No events are sent from the application. In the MICROSAR
Adaptive [2] middleware the SOME/IP daemon is sending
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Fig. 3: Effect of the different optimizations of the MICROSAR
Adaptive middleware on the CPU usage and latency.

and receiving the SOME/IP events and is dispatching it to
the subscribed applications using a reactor pattern. With this
design the same event needs not be transmitted multiple times
to different receiving applications in the same ECU. A single
port for all SOME/IP traffic is possible, which is often required
for the communication with microcontroller-based systems to
reduce the memory consumption. To forward the SOME/IP
events from the daemon to the application process a shared
memory-based ring buffer (SafeIPC) is used with an additional
notification channel to wake up the receiver. To transmit the
data over the network we used UDP. For events larger than
an UDP frame we use the SOME/IP-TP protocol [7], which
segments or combines the messages in the SOME/IP daemon.
Per default a reactor thread is running doing the asynchronous
reception of messages at the application. The application itself
runs in an own thread decoupled from the receiving part. This
design is chosen to being reactive in the application and to
minimize the configuration effort. As hardware we used the
setup described in section III.

In the following we show how the middleware can be op-
timized under QNX to efficiently handle the events described
in table I. As main goal, we optimize the CPU usage with
the additional constraint to not exceed a latency of >5ms.
In this case latency is defined from the moment the event is
received in the network driver till it reaches the application
code. All results are depicted in fig. 3 for selected message
sizes and the involved processes. We started from a Linux
setting using recvmsg and a socket buffer size of 3MB.
Using the default socket buffer size results in a high rate of
the package loss, leading to meaningless results. In the first
optimization (opt:1:recvmmsg) we switched the processing
mode of the SOME/IP daemon which is handling the sockets
to recvmmsg with a msgvec size of 30. With this change
the CPU usage decreased from 81.6% to 24.9% in total. This



change impacts both the CPU usage of the io-pkt network
daemon as well as the SOME/IP daemon. The application load
also decreases as the events can be forwarded in chunks of the
msgvec size. The latency decreases for all message size as the
processes are not delayed due to the syscall and context switch
overhead. In the second optimization (opt:2:SOME/IP-TP
pool) we activate a memory pool to use pre allocate memory
for SOME/IP-TP messages [7] instead of dynamic allocations.
This improved slightly the latency for larger events. As the
number of SOME/IP-TP messages in this scenario is low,
the impact in this case is small. The third optimization
(opt:3:accumulate) is an AUTOSAR feature to accumulate
smaller messages in a larger message on the sender [8]. This
reduces the CPU usage of the io-pkt as less packages are
arriving, however increased it a bit in the SOME/IP daemon as
the accumulated messages need to be unpacked and dispatched
to the respective applications. Overall the CPU usage reduced
by 3.7%. For the accumulation we used a timeout of 5ms on
the sender. This reduces the number of messages but increases
the overall latency as messages are not directly sent. This
feature is mainly beneficial for small events to reduce the
CPU load especially on the receiver side. This feature is the
only one which also effects the sender side and hence cannot
always easily be applied or requires a gateway ECU which
is connected to the legacy ECUs. Besides the CPU usage,
also the latency reduces for all sizes as the io-pkt is reacting
faster. In the fourth step (opt:4:buffersize) we increased the
ring buffer size from 128 kB to 1MB between the SOME/IP
daemon and the application process to reduce the additional
buffering, retry and segmentation overhead for larger messages
in the daemon. As we only have one receiver, the same
priorities and the overall load of the system is moderate,
processes are scheduled fast and hence the ring buffer is not
overflowing, hence we see no effect of this optimization in
this setup. As default, the middleware runs in a so-called event
driven mode building on top of a reactor pattern. For Linux we
use epoll in the reactor, under QNX an own more efficient
variant building on QNX primitives is used. To reduce the
scheduling overhead and wakeup of the processes for each
message, in the following steps we activated a polling behavior
to process the messages in junks, treading latency for CPU
usage. In opt:5:poll:daemon we activated the polling in the
SOME/IP daemon with a period of 2ms, reading all messages
from the socket. In opt:6:poll:appliction we removed the
receive handler from the application, meaning we are no longer
being notified about new messages via a callback function
running the ReceiveHandler thread. Instead of calling the
getNewSamples() API from this asynchronous callback
function, we poll all of them with a cycle time of 2ms. Finally,
in opt:7:poll:IPC we also turned off the async reactor thread
in the application processes and poll the IPC channels in a
2ms cycle, all in the context of the application thread, leading
to no more context switches within the application. With
all polling optimization, the CPU usage of the middleware
reduces from 37.3% down to 24.9%. As expected, with
turning on the polling optimizations, the latency increased

but remained below the 5ms constraint. Note, in this work
we have not tuned the operating system and the scheduler,
which could further improve the latency. Also, the processing
mode depends on the application design, if it’s a cyclically
running application, polling is more beneficial compared to an
application reacting on sporadic events, e.g. from the driver.
In general, the shown optimizations and their effect strongly
depend on the message size, the frequency, priority of the
processes and the overall system load and should always be
verified for the respective project. Besides the derived use-
case depicted in table I, we scaled the final optimized version
up to a factor of 5 until we reached the system limit. The
system is then no longer able to processes the events in the
application. With this scaled setup 63.2Mbit/s and more than
31 000 event/s are handled by the middleware. The total CPU
usage increases to 75% and the latency for 8Byte increased to
5ms. This scaling shows the upper limit for the given message
size distribution, operating system, and hardware.

V. CONCLUSION

Based on the open-source benchmark iperf3 we showed
the limits for receiving UDP data on a real ECU. Especially
small messages lead to a high overhead of the system, if
operated in event driven mode, resulting in high CPU usage,
low throughput, and high amount of message loss. Even
for a powerful ECU the usage of small messages results in
a low maximum throughput of 12.3Mbit/s of UDP data.
Building on analysis of real-world network traffic, we showed
how AUTOSAR Adaptive with SOME/IP as well as the
MICROSAR Adaptive middleware enable an efficient usage
with respect to CPU usage, still able to handle the traffic and
keeping the latency below 5ms. AUTOSAR and SOME/IP
features are used to accumulate small messages as well as
segment larger ones. By changing the event driven processing
of the reactor pattern to a periodic one by cyclically polling
the API, we could significantly reduce CPU usage. Also, the
change of the receive API to recvmmsg strongly reduced
the number of syscalls. Under QNX, due to its microkernel
architecture, this also means similarly less context switches
to the network daemon. The polling-based approach shows a
significant effect on CPU usage, whilst still meeting latency
requirements. All optimizations show that for small messages
the overhead of syscalls involving other daemons (i.e., io-pkt),
scheduling and context switches is quite high and should be as
low as possible. Further improvements are possible by tuning
the operating system, priorities and scheduler. We also scaled
the scenario up to a factor of 5 until we reached the system
limit.

In general building on asynchronous frameworks and other
middlewares like DDS or GRPC will result in comparable
issues for fine-grained, high-frequency traffic and need to be
tuned in a similar way. MICROSAR Adaptive, AUTOSAR and
SOME/IP provided means to tune the middleware to efficiently
utilize the ECU for the respective use-cases requierd for a
SDV.
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APPENDIX

TABLE I: SOME/IP events and send periods

event sizes # events period ms event/s Byte/s
1 3 10 300 300
4 3 10 300 1200
8 9 10 900 7200

32 27 20 1350 43200
64 39 20 1950 124800

100 18 40 450 45000
200 12 40 300 60000
400 6 40 150 60000
600 8 40 200 120000

1100 8 40 200 220000
2000 4 80 50 100000
4000 4 80 50 200000
5000 12 100 120 600000
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Abstract: Intensive developments in new electrified automotive applications lead more and more to high 
dimensional inputs/outputs and multi-criteria optimization challenges. These applications include new and 
complex components as Power Electronics, Bi-directional Chargers, Fuel Cells, etc., in the purpose of 
Energy Management, Battery Management, Thermal Management, etc., not forgetting constraints induced 
by the Life Cycle Analysis (LCA) or Life Energy Analysis (LEA) for better sustainable industrial design. 
State-of-the-art solutions in onboard computers of vehicles usually use classical control strategies like PID, 
digital compensators, or some optimal control strategies like ECMS (Equivalent Consumption 
Minimization Strategy), but not performant enough face to high multi-dimension systems. 
Some new and alternative Model-based Optimal Control technics are described in this paper, based on the 
Pontryagin Maximum Principle (PMP) applied on predictive scenarios, with innovative adaptations to 
consider physical non-linearities, multi-level constraints, saturations on outputs or states, frequency 
limitations, self-calibration of tuning parameters, self-adaptation of internal models, and real-time 
triggering of strategies according to disturbances. 
Several applications are presented, giving promising performances, around 5% to 10% of energy savings, 
using potentially real-time compliant algorithms, able to include some global long-term optimization of 
Life Cycle Engineering (LCE) criteria as potential prospects in such innovation projects developments. 

 
 

1. INTRODUCTION 

Targeting new challenges as energy savings, CO2 emissions 
reduction, and Life Cycle Engineering for contribution to limit 
global climate changes makes important to reconsider the way 
to design appropriate algorithms that must react in real-time 
conditions into individual or collective automobile 
transportation systems. Electrified vehicles have got additional 
degrees of freedom (hybridization with additional electrical 
motors, additional power sources like batteries, super caps or 
fuel cells, autonomous cars…) that must be manipulated in real 
driving conditions for mixed comfort, safety, and energy 
criteria to be optimized in more severe conditions (increase of 
voltage, new safety conditions, adaptation to traffic, etc.). 
  
New issues become to be an enlarged optimization problem of 
a complex dynamic system to lead from one initial state to 
another final state under severe constraints. 
 
From this definition, from actual knowledge in modelling 
physics of vehicle systems and sub-systems, and from 
mathematical definition of the criteria to optimize, advanced 
algorithms can be considered, based on specific methods to 
solve equations, and to minimize integral criteria on given 
scenarios like standard cycles and real driving records. 
 

Optimal control design can be split in different steps: 
- definition of a representative model, i.e. a set of equations 

describing the main physical behavior to be considered. 
- definition of the time scenario on which the expected 

criteria have to be optimized, with the boundary conditions 
(initial and final targeted states). 

- definition of the criteria to optimize (maximize and/or 
minimize), as a cumulated sum of calculated variables. 

- definition of the constraints to be respected (lower or 
upper limits, in values or gradients). 

- tuning of calibration parameters, to reach the boundaries 
conditions. 

This general scheme process can be summarized as below: 

 
Figure 1: Optimal Control general scheme 

 
The purpose of this paper is to describe and promote different 
improvements in the PMP algorithms to provide the optimal 
control strategy of a vehicle to minimize multi-criteria during 
different driving scenarios. Typical applications focus on 
electrified vehicles, in different use-cases, with description 



along following chapters of the main strategy adaptations 
enabling to solve or compensate different kind of complexities, 
like non-linearities, multi-level constraints, saturations in 
inputs or outputs, frequency limitations, self-adaptive 
parametrization, adaptive triggering under disturbances, or 
integer combinational optimization for high-dimensional 
systems based on Linear Programming strategies. 
 

2. PMP model-based algorithms 

2.1 Basic equations 

The Pontryagin Maximum Principle (PMP) is clearly 
described in literature as in [1], [2], [3], [4], [5] for theoretical 
presentations, and [6], [7], [8], [9] for some specific 
Automotive applications, showing the pertinence and 
efficiency of such mathematical approach to get the optimal 
solutions for complex systems to be controlled in an optimal 
way, even under rigorous constraints. 
 
Based on equations of dynamical behavior to predict, criteria 
to estimate, and constraints to check and satisfy, the PMP 
method provides among the best operating strategies by 
minimization of the Hamiltonian function calculated with 
respect to the admissible control input values. 
Manipulation of equations in basic PMP algorithm are 
summarized below (see [1], [3]): 
 
Considering the state-equation: �̇� = 𝑓(𝑥, 𝑢)                    (1) 
with 𝑥 = state vector, 𝑢 = input vector, 𝑓 = state equation 
and criteria to be minimized: 

𝐽 = 𝑔(𝑥, 𝑢) . 𝑑𝑡 + 𝜙 𝑥                        (2) 

with 𝑔(. ) = instantaneous criteria equation, 𝜙(. ) = final 
criteria penalty, all expressions being non-linear in general, 
 
If an optimal strategy 𝑢∗(𝑡) exists on the [𝑡 , 𝑡 ] time interval, 
then following optimality conditions must be respected: 
Co-states 𝜆 exist, as: 

𝐻 = 𝑔(𝑥, 𝑢) + 𝜆 . 𝑓(𝑥, 𝑢)                        (3) 

with   
( )

= −                                            (4) 

leading to the optimal control strategy 𝑢∗ solution as: 
𝑢∗(𝑡) = 𝐴𝑟𝑔  𝐻 𝑢(𝑡)                           (5) 

for given 𝑥(𝑡) and 𝜆(𝑡) at each instant. 
 
Additionally, co-states 𝜆 must converge to the given gradient 
expression of the final criteria penalty 𝜙: 

lim
→

𝜆(𝑡) = −
𝜕𝜙(𝑡)

𝜕𝑥
                                       (6) 

From this basis, different discussions may arise,  as developed 
below. 
 

2.2 Changing Software configuration 

We can then consider the PMP as an algorithm including and 
simulating inside the direct Model of the system to be 
optimized, i.e. calculating the outputs vs. the inputs by the 
means of the 𝑓(. ) and 𝑔(. ) equations. We can call this 
specificity as a “MIS”, i.e. having a “Model in the Software”, 

which is not the case at all in usual algorithms in automotive 
applications, that either calculate the reverse of the system 
model (calculating the inputs according to the required outputs 
from ‘inverted’ algebraic formula, which is not always 
accurate enough), or don’t use any dynamic model at all, only 
having parameters to be tuned according to the expected 
performances, like the PID approach. Only Model-based 
predictive controllers (MPC or MBPC) are also using direct 
models providing the predicted effects of control inputs 
considered in the optimization process. But optimization is 
only assumed from strategies like the PMP, as used in this 
purpose. 
 

2.3 Complexity to cope with 

PMP is a strong theory basis, and several concrete applications 
have proven its efficiency. But some issues may remain 
nevertheless, depending on the complexity of the global 
system and scenario on which to optimize it (see [2], [3]). 
 
A first difficulty may reside in the solving of the Hamiltonian 
minimization itself, in case of strong non-linearities of dis-
continuities in the model, or high dimension in states with 
internal mutual influences, or due to significant model errors, 
variations in time or ageing effects, or because of constraints 
and saturations on inputs and outputs that make solving 
processes much more complex, etc. 
 
Another difficulty may arise in the tuning of initial co-states 
values included in the Hamiltonian function, in the purpose to 
enforce the global boundary conditions expected on initial and 
final states of the system to be controlled. This tuning may 
become for instance too sensitive for too long scenarios like a 
complete standard automotive driving cycle as the “WLTC” or 
“WLTP” (Worldwide harmonized Light vehicles Test Cycle 
or -Test Procedure, 30 minutes long), or under unpredictable 
disturbances, etc. 
 
Different solutions are then proposed in following chapters. 
 

3. PMP Adaptations 

3.1 Model adaptation to real system behavior 

PMP strategy is a model-based strategy. It becomes then 
important to ensure the validity of the model and of the optimal 
strategies coming from it. In this purpose, an “observer” has 
been integrated in the real-time software, reacting from the 
comparison between real output measures and estimated 
values of the system variables. This solution is advantageously 
combined with the already present ‘direct’ model that the PMP 
is based on, as discussed previously. 
 
These adaptations can be applied to both the states gradient 
equations 𝑓(𝑥, 𝑢) and/or to the criteria definition 𝑔(𝑥, 𝑢), with 
simple additive or subtractive terms that allow these models to 
converge and give a better accuracy to the PMP optimization. 
 
It comes, in a simple version: 

�̇� = 𝑓(𝑥 , 𝑢∗) + 𝐾 . 𝜖                           (7)  
with  𝜖 = 𝑥 − 𝑥  



𝑥 =  actual measurement of state value 𝑥 
𝑥 = recurrent estimation of state value from gradient 
equation: 

𝑥 = 𝑥 + [𝑓(𝑥 , 𝑢∗) + 𝐾 . 𝜖 ]. 𝑑𝑡                       (8) 
 
A similar method is applied to adapt the criteria expression 
𝑔(𝑥, 𝑢), considering that in most cases the cumulated criteria 
can be measured (for instance, the total fuel or energy 
consumption). It comes: 

  𝐽 = 𝐽 + 𝑔(𝑥 , 𝑢∗). 𝑑𝑡                        (9) 
 
leading to:         𝑔 = 𝑔(𝑥 , 𝑢∗) + 𝐾 . 𝜖  
with:                                     𝜖 = 𝐽 − 𝐽                          (10) 
 
Gains 𝐾  and 𝐾  main be tuned in a standard way, according 
to the dynamics of the system and the desired convergence 
response time for the adaptation, avoiding any instable mutual 
influence. 
Therefore, the optimal strategy of input 𝑢∗ is pushed closer to 
the real optimal solution. 
 

3.2 Adaptive shooting method 

A final criteria penalty is usually depending on the final states 
at the end of the optimization scenario (portion of a cycle, or 
portion of a real driving sequence). A typical case is the battery 
state of charge, to be got close to a specific final target, for 
different reasons or purposes (for instance reaching a minimal 
level before recharging to avoid ageing effects on the battery, 
or reaching a sufficient state of charge on a hybrid vehicle 
before entering a city zone implying pure electrical mode). The 
PMP theory imposes then the co-states to converge to the 

partial derivation of this penalty vs. the final states, i.e. . 

But this dependency coefficient may usually depend on the 
past dynamic trajectory, and then must be adapted according 
to the criteria results for different tunings of co-states. 

The final states 𝑥  may be measured (or estimated), associated 
to the corresponding measured criteria 𝐽, and can be set from 
different tunings of the initial 𝜆 coefficients, giving an 
estimation of the gradient of the final penalty criteria: 

=                                                           (11)  

for a given variation of the initial co-state Δ𝜆 . 

It comes:  𝑛𝑒𝑤 𝜆 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝜆 + 𝐾 . 𝜆 +   (12) 

until the final 𝜆 𝑡  converges to the estimated gain ( ). 

This adaptation is tuned by the convergence gain 𝐾 , and may 
bring a quite good robustness to the PMP strategy, as shown in 
the following application of the energy consumption 
minimization on a serial-hybrid car NISSAN Serena on real 
driven tests (see Figure 2): 
 
The vehicle is connected to a predictive “e-Horizon” system 
providing the most probable path in a several minutes horizon. 
That leads to minimize the global energy consumption by 

recurrent retuning of the initial costate 𝜆  to target the penalty 

differential gain  assimilated to the estimated ratio  at 

the end of each prediction segment, as shown in Figure 2: 

 

 
Figure 2: Adaptive Shoots application to real driving cycles 

 
In complement, the effective final state target is set only on the 
last path horizon segment before reaching the final destination.  
 
Simulations on WLTC cycle of a parallel hybrid passenger car 
Honda “DHT” (“Dual Hybrid Transmission”) have proven 
that total energy amount got from this adaptation strategy is 
very close to the theoretical minimal value given by an off-line 
optimization like the Dynamic Programming (DP), also 
compared to “Cost Based” (ECMS type) and Reinforcement 
Learning (RL) strategies, as shown in following Figure 3: 

 
Figure 3 : CO2 emissions on WLTP on Honda DHT vehicle 

(ref. 134 g/km) 
 
Two functions were implemented : a single “Torque Split” 
strategy and a combined “Torque Split + Gear” strategy, to get 
an iso-battery State of Charge (SoC) at the end of the cycle, by 
the means of torque repartition between combustion engine 
and electrical motor, combined with an optimal gear selection. 



Several cycle portions have been used to control the co-states 
to successive targets as explained above. 
As seen, an improvement of nearly 15% vs. reference has been 
reached, with around 6% better than the ECMS solution. 
 
Considering that technics like RL need some long training 
phases, that are not necessary for the self-tuned PMP, that 
ECMS remain less robust to disturbances (see [9]), and that 
DP (based on Bellman principle – see [3]) are not real-time 
compliant, then we get significant advantages in robustness, 
efficiency and integrability with such on-board PMP solutions, 
as well on real driving cycles as on standard normative cycles. 
 

3.3 Constraints management 

The question of the constraints management in optimization 
processes is quite critical, in particular for limits (max or min) 
to be considered on states or outputs, leading to more complex 
algorithms able to consider a priori the possible effects to be 
observed a posteriori on the state outputs due to control inputs. 
 
General equations of constraints on states may be expressed 
as:   ℎ(𝑥) ≤ 0                                      (13) 
 
Since states or outputs are the effects (or consequences) of the 
inputs, the requested limitations on states or outputs signals 
need to manage indirect a posteriori checks, much more 
difficult as for direct a priori limitations on inputs signals. 
 
Long and complex theories have been developed in literature 
(see [1], [2]), quite difficult to implement in real-time sofware. 
 
A more “pragmatic” method is then proposed in this paper, 
based on a special adaptation of the Karush-Kuhn-&-Tücker 
(KKT) parameters associated to the equations of constraints, 
as according to the PMP theory, to keep the minimal value of 
the Hamiltonian function always inside the admissible domain 
of inputs fulfilling the requested constraints on outputs. 
The idea is to define an admissible domain Δ  of control 
inputs, using a prediction of the states (noted 𝑥) on a given 
tuned horizon Δℎ (for instance: on several seconds to consider 
a temperature behavior). The prediction 𝑥 is pre-calculated for 
all possible control inputs (for instance from nominal min to 
max values), and all non-admissible predicted outputs indicate 
non-admissible inputs, leading to the definition of a restricted 
admissible domain, respecting the constraints on predicted 
outputs: 

𝑥 = 𝑥 + 𝑓(𝑥, 𝑢). Δℎ                                 (14) 
Then the ‘predicted’ constraint equations become function 
also of 𝑢 input : 

ℎ(𝑥) = ℎ(𝑥 + 𝑓(𝑥, 𝑢). Δℎ) = ℎ(𝑥, 𝑢)               (15) 
Then we get: Δ = 𝑢   𝑎𝑠   ℎ(𝑥, 𝑢) ≤ 0  
 
In this new domain Δ , the PMP is applied without KKT 
coefficients, providing -according to the PMP theory- the 
optimal control solution minimizing the Hamiltonian function 
calculated inside the restricted admissible domain Δ . 
Then the KKT coefficients are introduced so that this optimal 
solution among the restricted admissible domain becomes the 
global optimal solution among the total possible domain, by a 

mathematical translation of the Hamiltonian function thanks to 
the appropriate KKT coefficients. 
In the case of inequality constraints on states, the KKT 
coefficients 𝜇 are introduced in the Hamiltonian function to get 
a complete Lagrangian function 𝐿 as follows: 
 

𝐿 = 𝑔(𝑥, 𝑢) + 𝜆 . 𝑓(𝑥, 𝑢) + 𝜇 . ℎ(𝑥, 𝑢)                   (16)   
with     ℎ(𝑥, 𝑢) = (𝑥 − 𝑥 )     for  𝑥 < 𝑥  
or         ℎ(𝑥, 𝑢) = (𝑥 − 𝑥)     for  𝑥 > 𝑥  
 
It becomes then possible to calculate the 𝜇 coefficients to push 
the optimal value 𝑢∗ given by equation (5) to become at this 

instant the solution of the optimality condition  = 0 , so that 

the global minimum of 𝐿 coincides then with the optimal point 
given previously from the 𝐻 function inside the restricted 
admissible domain. 
 
For linear models where functions 𝐻 and 𝐿 are of class C2, a 
linear solving system can usually be used to get the appropriate  
𝜇 coefficients, as detailed below: 
 
    since:  𝐿 = 𝐻 + 𝜇 . ℎ(𝑥, 𝑢) 

    then it comes:   = + 𝜇 . = 0                (17) 

 
For a single constraint, i.e. a scalar 𝜇 coefficient, it comes: 

𝜇∗ = −( )/( )      to be calculated for 𝑢 = 𝑢∗. 

 
This calculation can be extended to the case of multi-
dimensional systems, with 𝑛 inputs 𝑢 and 𝑚 constraints ℎ, that 
supposes to find 𝑚 KKT coefficients 𝜇, leading to a matrix 

equation resolution by a matrix pseudo-inversion, depending 
on if more inputs than constraints or vice-versa: 
 
Equation (17) can be written as : 𝐴. 𝜇 + 𝑏 = 0 

with  dimension of 𝐴 =  𝑛 × 𝑚 and dimension of 𝑏  =  𝑛 × 1 
Then it comes : 𝑛 > 𝑚 ⇒ 𝜇∗ = −(𝐴 . 𝐴) . 𝐴 . 𝑏 

  𝑛 < 𝑚 ⇒ 𝜇∗ = −𝐴 (𝐴. 𝐴 ) . 𝑏 

  𝑛 = 𝑚 ⇒ 𝜇∗ = −𝐴 . 𝑏 

The 𝜇∗ coefficients when ≠ 0 allow to saturate the 
corresponding constraints, equivalent to ‘counterforces’ 
preventing each constraint to be over-passed. 
 
This transformation ensures to keep all the necessary PMP 
optimality conditions still valid in all the restricted admissible 
input domains under such constraints, as typically the 
condition on the costates gradient, as follows: 

𝑑𝜆

𝑑𝑡
= −

𝜕𝐿

𝜕𝑥
= −

𝜕𝐻

𝜕𝑥
− 𝜇∗ .

𝜕ℎ

𝜕𝑥
                       (18) 

 
As an example, following Figure 4 shows some simulated 
results of a PMP control with KKT coefficient management, 
applied to control the coolant temperature inside given 
limitations in the parallel hybrid vehicle Honda DHT, whiles 
battery state of charge is recharged, and global energy 
consumption is minimized on a more stringent driving cycle 



with low speed and several stops, as here during a “Traffic for 
London” cycle: 
 

 
Figure 4: Optimal control of energy 

under temperature constraints in a parallel hybrid vehicle 
 

The temperature depends on both fuel engine running point 
and on an electrical heater (“PTC”) plug in the coolant circuit. 
Multiple criteria (fuel consumption and battery state of charge 
monitoring) are managed at the same time the temperature 
state is maintained above a certain minimal threshold (around 
60°C), by an automatic decision strategy of PTC activations 
and engine restarts, including co-generative phases (“CoGen”) 
where engine is just providing energy to the battery, when 
necessary, at vehicle stops. Total fuel consumption is 
nevertheless minimized to a low CO2 emissions value, around 
85g/km for this passenger car, thanks to the respect of all PMP 
optimality conditions. 
 
A scheme of the PMP adaptation for constraints management 
can be shown below in Figure 5, indicating the innovative parts 
(colored) added to the state-of-the-art algorithms (in grey): 
 

 
Figure 5: Constraints management in PMP strategy 

 

3.4 High dimension systems management 

In case of high dimensions in number of inputs (for instance N 
on/off actuators to be controlled together, as on a multiple-
modules battery or fuel cell, or on multiple branches in 
onboard chargers for EV), the  Hamiltonian function may 
become dis-continuous, and its minimization may lead to long 
numerical research of optimal values among a huge number of 
admissible values. 
 

In this case an adaptation of Linear Programming strategy can 
be associated to the PMP, to solve it with good accuracy within 
fast calculations.  
 
Considering many digital inputs (like on/off switches) {𝑢 =
±1} for 𝑘 = 1, … 𝑁, for 𝑁 > 20, the Hamiltonian cannot be 
calculated in all cases. A specific Mixed-Integer Linear 
Programming (MILP) algorithm is then associated to the PMP 
to find the minimal argument for H.  
 
It comes :  𝑢∗ = 𝐴𝑟𝑔 (𝐻) = solution of a MILP function to 
find the minimal value among 2  combinations. 
 
This process then can be applied with a numerical derivation 
of the Hamiltonian function around the optimal control value 
𝑢∗, to get the evolution of the co-states 𝜆 according to : 

𝑑𝜆

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥 ∕  ∗
 

 
Real applications applied on a “Switched Battery” system used 
in an Electrical Vehicle have shown the capabilities of this 
technics to find the optimal combination of N actuators to 
optimize a dynamic system. 
 
In this example, the PMP control is applied on a 36-modules 
battery, finding at each instant the optimal combination among 
the 236 maximum possible combinations, to minimize the 
energy criterion based for instance on total ohmic losses whiles 
maintaining the equilibrium of modules states of charge, 
during discharge or recharge phases.  
 
Following Figure 6 shows some simulation results where the 
different states of charge converge together after a dispersed 
initialization, with implicit permutations of successive 
activations, automatically performed by the PMP+MILP 
algorithms  to minimize the global criteria on losses and ageing 
effects. 
 

 
Figure 6: Control of a 36-modules Switched Battery 

 
 

4. CONCLUSIONS 

Coping with several non-linear phenomena in physical 
systems to be controlled and optimized in real-time, a set of 
adaptations of optimal control based on PMP have been 
proposed in this paper. 
 
Each method is described by its solving algorithm scheme, 
combined to the PMP equations, applied to different use-cases. 



Results are presented, for different purposes as energy 
minimization on predicted driving conditions, self-adaptation 
of internal models, under constraints to be respected, or for 
multi-dimensional systems, giving acceptable real-time 
compliant solutions in embedded controllers, open to any 
discussion for possible improvements. 
 
This brings definitively significant space for promotion of this 
mathematical optimization method and for its integration into 
on-board real-time operating strategies, able to cope with 
higher and higher level of complexity in real systems, under 
real constraints on inputs or outputs, under disturbances or 
ageing effects leading to deviations in models, or with possible 
high number of actuators to combine. Automotive applications 
motivated by the unavoidable trends in electrification of 
powertrain should get the best advantages of it. 
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Abstract

The EAST-ADL is an Architecture Description Language for automotive embedded systems. It
offers a comprehensive modelling solution for an integrated system, addressing diverse aspects
including but not limited to variability, timing, and safety. Nevertheless, the challenge lies in the
intricate nature of specifying these aspects. Both because the expressiveness adds complexity to
syntax and semantics and because they are intertwined with the foundational concepts within the
EAST-ADL. In this paper, we propose an approach to inject these aspects using a constraints-based
surface language. Such a language offers a compact and optional description layer for annotations
of the EAST-ADL.

Keywords: EAST-ADL, Embedded Systems, Automotive Systems, Feature Modelling, Variability

1 Introduction
The EAST-ADL is an established Architecture Description Language that addresses the complexi-
ties of embedded components in automotive systems [6]. With built-in feature modelling, it offers a
comprehensive solution also integrating concerns related to variability [1]. However, the challenge
arises in effectively specifying variability constraints within the EAST-ADL, particularly given its intri-
cate relationship with foundational concepts. Indeed, specifying variability using the core constructs is
complex and time-consuming which means that efficiency and correctness is at risk. We propose an
approach to inject variability concerns into EAST-ADL models using a constraints-based surface lan-
guage that operates as a loose, separate, and optional layer, offering an additional level of abstraction
for constraining EAST-ADL models. Such a language provides a more flexible and modular means
of incorporating variability into system architectures, providing a more compact and tractable syntax
for defining basic variability. The interpretation of this surface language is conducted in conjunction
with an underlying EAST-ADL core model. This integration ensures that the variability constraints
are seamlessly woven into the broader modelling framework, preserving the integrity and coherence
of the overall system specification. This contribution represents a first step towards offering various
compact surface languages for specific modelling aspects, such as, e.g., timing and safety.

The remainder of this paper is structured as follows. Section 2 presents a running example de-
scribing a Windscreen Wiper using a EAST-ADL model along with constraints. Section 3 gives an
overview of the related work. Section 4 provides our proof-of-concept solution based on a surface
language and an augmented EAST-ADL model. Finally, Section 5 presents the conclusion and future
work.

2 Running example

ModelYear: 2016
AND

Brand: X
AND

Class: Heavy Duty

EAST-ADL Core Model

ModelYear: 2016
AND

Brand: Y
AND

Class: Heavy Duty

ModelYear: 2022
AND

Class: Heavy Duty
OR

Brand: X

WiperCtrlStd
<DesignFunctionPrototype>

WiperCtrlAutomatic
<DesignFunctionPrototype>

WiperCtrlAutoReturn
<DesignFunctionPrototype>

Separate Constraints Layer

Figure 1: Windscreen wiper running example

Figure 1 depicts the windscreen wiper func-
tionality that we use as a running exam-
ple. It includes three windscreen wiper vari-
ants WiperCtrlStd , WiperCtrlAutoReturn and
WiperCtrlAutomatic based on a DesignFunc-
tionPrototype specified within a core EAST-ADL
model along with the constraints they must sat-
isfy during variability resolution. As a proof-of-
concept, we target three frequently used types
of variability constraints: ModelYear, Brand, and
Class. For instance, the WiperCtrlAutomatic
should only be included when ModelYear is
2016, Brand is X and Class is Heavy Duty.

Product variability is typically large and fol-
lows complex rules. Our goal is to provide a
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means to specify it in a clearly expressed and separate manner. Throughout this paper, we will
show how to specify these three variants and their constraints using a compact surface language,
and how they can be injected into an EAST-ADL core model.

3 Related work
Existing modelling languages for automotive systems, such as AUTOSAR and SysML, generally sup-
port the description of multiple aspects, such as variability, in addition to the core concepts. AUTOSAR
primarily addresses the standardization of software interfaces and communication between different
software components in automotive systems [2]. It has means to express variability, but it is for
the software-related elements, and it lacks a dedicated and compact syntax for capturing variabil-
ity. SysML is an extension of the UML that is tailored for system engineering [9]. Variability is ex-
pressed through constructs like Block Definition Diagrams and Parametric Diagrams. However, chal-
lenges include potential diagrammatic complexity in large-scale systems and a lack of standardized
approaches, leading to potential inconsistencies in model interpretation. Some studies addressed
the ability to explore various aspects of modelling languages. Zhang et al. [8] introduces a DSL,
named EATXT, for the specification of EAST-ADL models using textual format. The approach permits
to describe an entire EAST-ADL model but lacks a means to examine the model’s aspects using new
abstractions. Grönninger et al. [2] suggest using model views to address the inherent complexity
of representing SysML variability. These views are meant to focus on specific aspects of the entire
model. Other works use model-driven techniques to enhance the management of different aspects of
software product lines such as test script generation [3] and configuration files [7].

4 The proposed approach
The motivation for this paper comes from the observation that several concerns that can be addressed
in the EAST-ADL are disregarded because their modelling requires a large manual effort. Further, the
expressiveness and modularity of the language sometimes hide the meaning of the model. The gains
of our approach are separation of concerns by extending the EAST-ADL without altering the standard,
and the description of specific modelling aspects in a textual format. We achieve the latter by means
of a complementary surface language that offers a limited but compact notation for the EAST-ADL
extensions. The complete model still persists in the full-featured standard EAST-ADL model and is
generated out of the combined surface language and core model. The enabler for this approach
is the inherent separation between core constructs and extensions. The aim is to obtain an EAST-
ADL model encapsulating variability through a surface language. We present the architecture of our
proposed approach along with its two-step process in the following.

4.1 A two-step process
The proposed approach revolves around a two-step process consisting in 1) specifying a target aspect
in a compact surface language and 2) model generation using a model transformation procedure. In
the present work, we focus on the aspects of variability as a proof-of-concept. Figure 2 depicts an
overview of the process. The green boxes are concepts related to the proposed surface languages,
while the blue boxes represent elements strictly related to the EAST-ADL standard. The model trans-
formation procedure results in the integration of surface language aspects into the core EAST-ADL
model and leads to the generation of an augmented EAST-ADL model.

EAST-ADL Metamodel

Timing Aspects Variability Aspects

Variability
Surface

Language

TIming
Surface

Language

Model
Transformation
Procedure

EAST-ADL
Core Model

imports

input Augmented
EAST-ADL

Model

generates

Scope of this paper

Other Aspects

Other
Surface

Language
Other

Surface
Languages

Constraints 
Model

derived from

Figure 2: Process overview
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In that respect, we aim to effectively disentangle variability concerns from the EAST-ADL, thereby
promoting a more lucid approach to engineering such a concern. The initial phase of the proposed
process involves the precise delineation of constraints using the surface language while the subse-
quent stage entails interpreting these constraints bound to the underlying core EAST-ADL model.

4.2 Step 1: Description of modelling aspects
The description of modelling aspects in this case study relies on a constraints-based surface language
which works in conjunction with a core EAST-ADL model and a model encompassing the variability
features. We assume that these features are derived from the core model a priori by engineers.
To express the constraints for the present running example, our surface language depends on the
metamodel defined in Figure 3. This metamodel consists of the root class SurfaceModel which
is composed of Include instructions. These instructions permits to include an EAElement (e.g.,
WiperCtrlAutomatic– DesignFunctionPrototype is also an EAElement) in an augmented EAST-ADL
model under certain constraints. An Include references a EAElement from a core EAST-ADL model
and contains a ConstraintsGroup. A ConstraintsGroup consists of a one or many constraints
bound using the logical operators AND, OR or XOR. A Constraint references the Feature that the
augmented model must be constrain with.

<<enumeration>>
LogicalOperators

AND
OR
XOR

Constraint

ConstraintGroup

logicalOperators : LogicalOperators

Include SurfaceModel

[0..*] containsConstraints

[0..1] definesInclude

[0..1] containsConstraintsGroup

<<EAST-ADL>>
EAElement

[1..1] referencesTargetEAElement 

<<EAST-ADL>>
Feature

[1..1] referencesFeature 

Figure 3: Metamodel of the surface language

Practically, we can describe these modelling aspects using a Domain-Specific Language (DSL) of-
fering a straightforward and decoupled manner to express variability using constraints. In the present
example, it targets the specific cases where one wants to ensure that the final model meets certain
criteria in terms of variability. However, such a DSL is meant to be compact, which limits its ability
to address variability from a wider viewpoint. Thus, it is not intended to replace the built-in feature
modeling or product line concepts of EAST-ADL. Listing 1 presents a potential syntax of the DSL that
we applied to the running example.

INCLUDE WindscreenWipersPackage/WiperCtrlAutomatic IF VariabilityConstraints/ModelYear=”2016”
AND VariabilityConstraints/Brand=”X” AND VariabilityConstraints/Class=”Heavy Duty”

INCLUDE WindscreenWipersPackage/WiperCtrlAutoReturn IF VariabilityConstraints/ModelYear=”2016”
AND VariabilityConstraints/Brand=”Y” AND VariabilityConstraints/Class=”Heavy Duty”

INCLUDE WindscreenWipersPackage/WiperCtrlStd IF VariabilityConstraints/ModelYear=”2022”
AND VariabilityConstraints/Class=”Heavy Duty” OR VariabilityConstraints/Brand=”X”

Listing 1: Specification of the running example using the surface language

In this example, we create three INCLUDE instructions. The first applies to WiperCtrlAutomatic, the
second to WiperCtrlAutoReturn, and the third WiperCtrlStd. For instance, the first INCLUDE targets
the WiperCtrlAutomatic contained in the WindscreenWipersPackage from the core model. It has three
constraints which are all retrieved from the VariabilityConstraints model: ModelYear=”2016”, Brand=”X”
and Class=”Heavy Duty”.

4.3 Step 2: Augmented model generation
As this is a preliminary work, this second step is still under development. Nevertheless, we consider
that from a conceptual perspective our goal is to populate a detailed variability model according to the
content of the surface language. This implementation could be achieved using three methods. The
first method could use a model-to-model transformation, consisting of weaving the surface language
model with the core EAST-ADL model. The second method could rely on a model-to-text transforma-
tion by generating an EAST-ADL model incorporating the target aspects as an EAXML file based on
a template. The third method could leverage the idea behind Blended Modelling [5], where we would
synchronize the core EAST-ADL model in real time according to the specified aspects. The outcome
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yields an augmented EAST-ADL model originating from distinct abstractions. This augmentation is
achieved through the application of a surface language, allowing for the independent articulation of
aspects without necessitating an in-depth exploration of the inherent intricacies of the EAST-ADL.
Importantly, this process ensures the preservation of the original model’s integrity and adherence to
the standard EAST-ADL metamodel.

WiperCtrlStd
<DesignFunctionPrototype>

WiperCtrlAutomatic
<DesignFunctionPrototype>

WiperCtrlAutoReturn
<DesignFunctionPrototype>

ModelYear Brand Class

References

ModelYear
ModelYear
<EAElement> Brand

<EAElement>
Class
Class
Class

<EAElement>

Figure 4: Augmented EAST-ADL model overview; all lines
(solid, dashed, dotted) refer to references.

We aim to guarantee the correct-
ness of the transformation using a
bottom up approach via two stages.
The first stage consists of transform-
ing a set of specific cases and validate
them from an EAST-ADL expert. The
second stage consists of generalizing
such transformations to cover the crit-
ical EAST-ADL metamodel elements
such as e.g., by guaranteeing the cor-
rectness of transformations involving
a DesignFunctionPrototype based on
approaches such as CoqTL[4]. More-
over, we could also consider making

the mapping rules bi-directional and thus exploit them for validation of the transformed model. This
process will be iterative and aims at targeting most elements of the EAST-ADL metamodel. In the
case of our running example, these methods would lead to the model shown in Figure 4. We refer to
the relationship between the DesignFunctionPrototype in the core EAST-ADL model and the injected
variability aspects as a Reference. We use such broad terminology as we must investigate thoroughly
the kind of reference that would apply and under what conditions. Nevertheless, our preliminary in-
vestigation for variability aspects and the feedback of some expert engineers suggests that such a
Reference, conforming to the semantics of the surface language, would be generally feasible given
the inherent versatility of the EAST-ADL.

5 Conclusion
The presented approach introduces a variability surface language as a proof of concept for exploring
various aspects of the EAST-ADL using new abstractions. These abstractions, defined separately,
give engineers a tailored manner to express their concerns. Surface languages facilitate the identi-
fication of additional aspects within the EAST-ADL, thus separating concerns, improving its expres-
siveness, and broadening its adaptability to meet the diverse requirements of the automotive industry.
In future work, we plan to target other aspects such as safety and timing, explore more descriptions
constructs and implement a comprehensive transformation procedure for generating the augmented
EAST-ADL model.
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Abstract— The contribution proposes a new approach of a 
prototyping platform simulating realistic AUTOSAR security 
event traffic, based on real-world attack patterns. Furthermore, 
their transmission between Fleethead- and SIEM-cloud systems, 
and their analysis within backend security services and in real-
time is investigated. This advances the evaluation of technical 
realizations of automotive Intrusion Detection Systems, helps to 
gain new insights with the handling of realistic attack scenarios, 
and thus enables the gradual realization of the UNECE R155 
regulation. 
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Operation Center, Cyber Security Management System, Service-
oriented Platforms, Distributed Architectures 

I. MOTIVATION AND GOALS 

Due to the rise of cyber security incidents over the past 
years, the UNECE R155 regulation [1] requires vehicle 
manufacturers to demonstrate that cyber security risks are 
identified, evaluated, and mitigated starting from July 2024. 
Road vehicles need to be continuously monitored during their 
operational phase to detect attacks on single vehicles as well 
as the entire fleet, and appropriate countermeasures must be 
put into place.  

One approach is having an in-vehicle intrusion detection 
system (IDS) based on AUTOSAR IDS [2,3,4] which detects 
security events and reports them to a security information and 
event management system (SIEM) in the backend for further 
analysis. This allows to identify spy-outs, attack attempts, 
actual attacks, and eventually to derive appropriate mitigation 
measures.  

In this contribution based on the results of a cooperation 
between Vector Informatik GmbH and T-Systems 
International GmbH, we describe the design and the 
prototypical realization of a platform that allows to simulate 
AUTOSAR security events from a vehicle fleet, which 
represent realistic attack patterns seen in the field. This 
security event traffic is transferred between a Fleethead-VPC 
(where the simulated fleet and the OEM’s backend head is 
deployed) and a SIEM VPC (where the SIEM components are 
deployed) using an API Gateway. Finally, in the SIEM VPC, 
different strategies for streaming data analytics are employed 
to verify that realistic AUTOSAR security events can be used 
to identify and match known attack patterns.  

The goals of this specific approach (which is work in 
progress) are 

 to develop an understanding of real-world attack 
patterns,  

 to simulate realistic attack patterns with the help of 
AUTOSAR security event mappings representing 
those patterns intermixed with nominal background 
noise,  

 to demonstrate and understand the implications of 
data volumes, their noise/peak character, and 
timings, 

 to evaluate and verify solutions for the transmission 
of this type of security event data, and 

 to evaluate and verify real-time analysis and 
detection strategies for known attack-patterns within 
AUTOSAR security events. 

II. STATE OF THE ART 

AUTOSAR (Automotive Open System Architecture) is a 
standardized software framework and open E/E system 
architecture for mobility applications. Currently, there are 
three specifications released which focus on IDS-related 
topics. First, the general AUTOSAR requirements on 
Intrusion Detection Systems [2] which describes the 
components of a distributed onboard IDS. Second, the 
AUTOSAR specification of Intrusion Detection System 
Manager [3] which describes the functionality, API, and 
configuration of that basic software module. Third, the 
AUTOSAR Specification of Intrusion Detection System 
Protocol [4], which describes the format, message sequences, 
and semantics between the onboard AUTOSAR IDS com-
ponents.  

On the other hand, there are several datasets available, 
including known attack patterns simulated, or carried out on 
vehicles and captured for scientific usage such as of HCRL 
[6]. Further approaches for the simulation and analyzation of 
cyber attacks on vehicle fleets are as follows: Malik and Sun 
[7] use a threat model to analyze and identify the most 
significant cyber attacks on connected and autonomous 
vehicles. The focus of their CARLA-based simulations is to 
analyze the impact of common attack scenarios on the 
physical world (e.g. car accidents).   



 

 

Iqbal and Ball [8] use the Eclipse MOSAIC framework to 
model two typical road scenarios and the messaging between 
the vehicles and infrastructure. The model demonstrates the 
impact of two cyber security attacks (replay and bogus 
information) and generates datasets for machine learning. The 
approach focuses on vehicle ad-hoc networks. 

Katsikeas et. al. [9] use the Meta Attack Language to 
develop vehicleLang, a domain-specific language which is 
used to codify common attack logics for the domain of 
automotive systems and with respect to their IT infrastructure. 
They use common attack patterns to generate test cases if they 
can be modelled with the proposed language. The approach is 
limited on modeling and does not focus on the simulation 
aspect. 

To the best of our knowledge, there is currently a lack of 
prototyping platforms which are able to a) generate realistic 
AUTOSAR security event traffic based on forensic analysis 
of known attack patterns, b) evaluate and verify technical 
solutions for data transfer from the simulated vehicle fleet to 
the SIEM, and c) evaluate and verify analysis and detection 
strategies for known attack patterns within AUTOSAR 
security event traffic in real-time. 

III. NEW APPROACH OF A PROTOTYPING PLATFORM FOR THE 

SIMULATION, TRANSMISSION, AND ANALYSIS OF REALISTIC 

AUTOSAR SECURITY EVENT TRAFFIC 

A. Real-World Attack Vector and Simulation of Realistic 
Security Event Traffic 

An important aspect of the described approach is the 
simulation of realistic AUTOSAR security event traffic. To 
this end, an actual attack vector, which is seen in the field, is 
analyzed. The chosen example is a CAN injection attack 
enabling a keyless car theft with a small injection device. Our 
insights are based on the forensic analysis documented by 
CANIS Automotive Labs [3]. This attack vector is chosen 
because it is a well-documented example of a real-world 
cyberattack on the internal systems of a single vehicle.  

Prior to the actual attack, the car is physically manipulated 
in such a way, that it becomes possible to electrically attach 
an injection device to the vehicle’s chassis bus. The whole 
attack can be divided into four major phases, during each of 
which a set of digital traces are generated. Each of the digital 
traces occurring in these phases are exemplarily mapped to 
AUTOSAR security events and used to define a 
corresponding sequence of security events representing the 

attack pattern. Based on that, a Python script is written, which 
allows to generate this pattern including some variations and 
combine it with background noise of nominal security events 
as part of the fleet simulation (see Fig. 1). 

B. Transmission of High-Volume Security Event Traffic 
Between Fleethead- and SIEM VPC 

A basic assumption of the implemented platform is that 
the backend of an automotive IDS, as part of a Vehicle 
Security Operation Center (VSOC), can be divided into two 
functional domains: First, the domain which is related to the 
technical communication with the fleet, with optional 
security event transformation or refinement tasks. Second, 
the domain which is dedicated to classical tasks of a SIEM 
such as analysis, detection, and reporting. As one possible 
realization, the two VSOC domains are mapped on two 
VPCs: The Fleethead- and the SIEM-VPC. This allows a 
technical and organizational subdivision of the related tasks. 
To this end, a fully managed, reliable, and highly scalable 
reception infrastructure (e.g. AWS API Gateway) is set up 
which enables the transport of high volumes of security 
events from/to different and mutually decoupled 
producers/consumers. The reception system is also able to 
accept different types of messages. This is used to realize the 
security event transmission as well as the transport of master 
data, such as event- and ECU-details, from the Fleethead 
VPC to downstream systems in the SIEM VPC. Currently, 
the data flow to the vehicle is not investigated. Fehler! 
Verweisquelle konnte nicht gefunden werden. illustrates 
the overall prototyping platform. 

C. Real-Time Analytical Approaches to Identify Attack 
Patterns in Security Event Traffic 

To analyze the IDS events in real-time in the SIEM VPC, 
stream analytics services (e.g. AWS Kinesis) are evaluated. 
Having established that enough relevant security events can 
be transferred to the backend, rule based and  machine 
learning (ML) approaches for attack detection are tested with 
the aim of identifying the most universal signature or best 
algorithm for a given attack. Such signatures currently appear 
to be the most straightforward way to transfer insights gained 
from backend analyses back to the in-vehicle IDS systems for 
local attack detection. Additionally, assuming that 
appropriate mechanisms for software updates in the vehicles 
exist, realizations of vehicle-based attack detection 
algorithms could be evaluated as well.  

Figure 1: System architecture of the prototyping platform consisting of two domains: First, the Fleethead VPC, and second, the SIEM VPC. 



 

 

Furthermore, we plan to investigate which additional data 
sources can aid attack detection in the vehicles as well as in 
the backend. Additional backend data could turn out to be 
particularly relevant for analyzing fleet attacks and 
classifying the types of affected vehicles using e.g. tree-based 
classification algorithms.  

All results of the backend analyses are recorded, and 
alerts are generated if an attack has been detected. The 
findings are made accessible in a user-friendly application 
which also offers further analysis and reporting capabilities 
as required by UN R155. 

IV. CURRENT RESULTS AND FURTHER PLANS 

The contribution describes the development and ongoing 
evaluation of a prototyping platform for the simulation, 
transmission, and analysis of AUTOSAR security events. 
Starting from an architectural design, a working prototype of 
the evaluation platform has been realized. This includes the 
implementation and integration of all important parts: (1) 
Fleet simulation, (2) event transmission and (3) stream 
analysis.  

A first real-world attack simulation has been implemented 
on top of the platform. This comprises the execution of attack 
campaigns including approximately 5300 security events per 
vehicle consisting of actual attack events as well as 
background noise. Further, first rule based real-time analytical 
algorithms have been realized and have been proven to 
reliably detect the attacks within the stream of random noise 
events. To study the runtimes of the algorithm with the 
minimal signature, 50 runs of the analytical algorithm were 
executed. The average runtime on the attack campaign is  τ = 
1.941 s (median: τ =̃ 1.934 s, standard deviation: σ = 0.035 s). 
This translates to an average processing time of 368 μs per 
event and thus indicates the suitability of the algorithm for 
real-time analyses.  

Upper bounds for the execution time of the different stages 
in the Fleethead VPC are given in table 1. Fleet simulations 
(including simulated OTA transmission) are intentionally 
delayed simulating realistic system constraints. The number 
of events does not exactly scale with the number of vehicles 
due to some pseudo-random degrees of freedom in the noise- 
and attack-simulation. The throughput on fleet simulation side 
decreases with an increasing number of vehicles which are 
simulated on a given number of virtual machines. This is a 
bottleneck and most-likely caused by the limitations of the 
VM resources. This behavior can be improved by an 
optimized deployment strategy to allow higher numbers of 
fleet sizes simulated time-efficiently. 

The SIEM VPC can handle events at rates up to 1000 
events/s. This configuration parameter proved sufficient for 
the investigations performed so far. At this reception rate, 

analyzing and persisting a run with 100 vehicles takes on 
average τ = 7.4 s (min: τ  = 3.6 s, max: τ = 29.2 s, standard 
deviation: σ = 3.1 s) indicating that the bottleneck currently is 
in the Fleethead VPC. 

Further plans  are a) to accomplish further evaluations of 
the performance of the evaluation platform itself and b) to 
evaluate different analytical approaches for real-time attack 
detection in the SIEM VPC. In this way valuable clues for the 
design of next-generation in-vehicle and backend-based 
ID(P)S – including possible strategies for real-time attack 
prevention – can be derived. 
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Run 
ID 

Fleet 
Size 

#Events Total 
Data 
Volume 
(MB) 

Fleet Simulation (including simulated 
OTA-transmission) 

Transformation and 
Refinement 

Total 
Execution 
Time (s) 

AVG Noise 
Throughput  
per vehicle 
(Events/s) 

#Vehicles 
per VM 

Execution 
Time (s) 

AVG  
Noise 
Throughput 
(Events/s) 

22 1 2742 0.68 280 9.5 1 280 9.5 
23 10 30586 7.6 420 8.4 10 420 72 
24 100 303340 75.1 920 5.4 10 880 343 

Table 1: Measurement results of the execution times and event throughputs of the different stages 
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Abstract—By using execution timing behaviour to discover
anomalies, embedded systems can be monitored at various
architectural layers. Different methods for deducing sane system
execution behaviour based on available event or timing data
are proposed in the current literature about security-related
anomaly detection of embedded systems. With our work, we
evaluate several strategies and discuss problems with acces-
sible metrics and architectural components used for feature
development. An embedded system’s architecture layers serve
as the basis for a common classification scheme that makes
it possible to combine timing- and event-based metrics into
a single timing architecture layer model. Then, using metrics
and architecture components, our suggested model is applied to
several anomaly detection techniques and utilized to compare
existing methods. Our mapping leads us to the conclusion that
most detection models are restricted to single system layers (i. e.,
communication or application code) and use a small number
of accessible architecture levels. Our existing model allows us
to combine various time and event metrics, but we also want
to develop new features for embedded anomaly detection that
can be used across all system layers (code, scheduling and
communication).

Keywords—anomaly detection, time series data, embedded sys-
tems software, architecture layer model

I. INTRODUCTION

Due to ongoing regulatory developments, preventive mea-
sures against malware will be an integral part of the product
lifecycle within the European Union in the foreseeable future.
With the two directives 2023/1230 [1] and NIS 2 [2] issued
by the European Parliament, manufacturers and suppliers
will be obliged to implement appropriate security measures
for their products. One objective of these regulations is to
counteract tampering and to prevent or at least mitigate
malicious intrusion of safety-relevant control systems. Real-
time capable systems exhibit measurable side effects on the
remaining system when subjected to changes regarding tasks
or other critical code sections (see [3]). Analysing execution
timing offers a way to implement anomaly detection by
evaluating changes to known system behaviour based on a
selection of indicators at different architecture levels, and thus
to identify suspicious activity.

Available research on anomaly detection provides us with
various approaches for detecting changes in system be-
haviour. The problem with current solutions, however, is
that it is difficult to compare the different methods with
one another. Some approaches use event-based metrics from
the operating system or a communication stack, while other
models use timing measurements at the instruction level to
detect deviations from the specified behaviour. Because no
common model exists to date, one objective of this paper is
to derive a suitable classification to map available metrics
from the literature into a single scheme. Scheduling theory

for embedded real-time systems uses models and architec-
ture frameworks to characterize the execution behaviour. By
combining an architectural model and suitable notations for
different workloads from scheduling theory, we introduce a
model that can combine time- and event-based metrics from
different architecture levels in a common representation. We
want to use this representation to merge existing features
for anomaly detection in a hybrid approach that leverages
data based on a collection of metrics captured from different
architecture levels.

In summary, the focus of this work is to address the
following research question:
Q1. Can available timing and event metrics for embedded

systems anomaly detection be mapped into a common
classification scheme based on their system architecture?

The following Section II starts with a general introduction
of the literature on embedded systems anomaly detection
with security related context, where we focus on RTOS based
systems. We discuss the general problem of using time-series
data and give a brief overview of the current state of the art.
Section III then presents the timing architecture layer model
for developing a hybrid approach on multiple architecture
levels, and categorizes existing literature from Section II
based on the aforementioned model. The final Section IV
briefly summarizes the key findings and the next steps in our
research process.

II. RELATED WORK: ANOMALY DETECTION USING
SYSTEM TIMING AND EVENT METRICS

The current literature on embedded systems presents a chal-
lenge due to the variety of methods employed, architectural
levels involved, and underlying metrics applied in anomaly
detection for time-series data. To improve our understanding,
we want to focus on two important aspects based on anomaly
detection literature: The applied metrics (runtime-data and
events) and architectural components of currently available
approaches for embedded systems. First, how available met-
rics are used and what type of data those metrics are based
on. Secondly, which layers of the system architecture were
used and provided to be useful for the development of
new anomaly detection features. To narrow the available
literature on anomaly detection using time-series data, two
selection requirements were used: (i) The Data source for
anomaly detection is based on embedded system traces. (ii)
Selected publications should have a security context. Context
in this regard implies that the objective for anomaly detection
is security-relevant for the system, or that the verification
process of the created anomaly detection mechanism is
targeting tampering of the target system. The purpose of this



selection is to ensure that the range of relevant metrics for
the subsequent comparison have common ground.

In general, the available literature can be split into two
different categories based on the applied metrics: event-based
and time-based approaches. Events are observable changes
in system state and are generated during system execution.
The goal of recording events is to determine if a sequence
of events, the frequency of events or temporal dependencies
show measurable deviations from normal behavior. Depend-
ing on the architectural origin of an event (i. e application-
or instruction-level), it can be observed either from software
or hardware. Events can be described as a tuple of system
defined values (see [4]) denoted as e = ⟨v1, v2..vx⟩ holding
event-specific information, which in turn is highly dependent
upon where the specific event is generated (network-stack,
scheduler, application code, instruction-level). Optionally, a
timestamp can be incorporated to denote chronological de-
pendencies between single events for time-based approaches.
In this case, the timing information needs to be obtained and
processed either on the target system or measured by using
an external time base. Depending on system complexity and
hardware architecture, we can observe and record different
event streams at varying levels of granularity regarding
overhead and intrusiveness. Therefore, we can not always
observe a single event, but a subset of available data.

Embedded real-time systems implement deterministic
scheduling models to design and verify their intended func-
tionality, and thus exhibit recurrent behaviour and distinct
execution patterns. Three identified approaches [4]–[6] use
Inter Arrival Curves (IACs) or modified modelling techniques
with similar properties to infer system state based on a
selection of events. IACs characterize the activation pattern
of individual event streams, by limiting upper and lower
bounds of event occurrences for a given time window. A
combination of different activation functions based on arrival
curves allows modelling the dynamic behaviour of different
event-based systems. Ezeme et al. [5] and Torres [6] have
shown how recurrent timing and pattern detection can be
implemented for (online) system monitoring utilizing the
aforementioned event-based metrics. Salem et al. [4] use a
different approach by aggregating multiple event streams into
sequence-based arrival curves (IACs) which are then used to
derive suitable features for anomaly detection. Hoffmann et
al. [7] utilize a similar approach with multiple event streams,
but on a different architecture level. Their work focuses
on performance metrics that are captured at CPU execution
level using system performance counters. Lu and Lysecky
[3] implement different models (range-based, distance-based
and SVMs) utilizing only timing parameters at the lowest
architectural levels to detect changes in software behaviour
when subjected to different types of malware. In this case,
the hardware trace port is used to extract core registers and
measure timing with an external time base. By exposing
several signals from the hardware trace port, cache, and
pipeline effects can be observed and fed into the detection
algorithm. With their hardware-based approach, they can
measure execution time down to the instruction level and
capture specific timing parameters they are interested in.

Given our available literature, we can apply a preliminary
classification of the individual parameters. First, high-level
software events, which can be captured from the operating
system, a scheduler, or the communication stack of a target.

Due to the nature of these events, the streams, and traces con-
tain a high level of noise from other event sources. Second,
low-level events, which are based on performance counters or
hardware peripherals and allow detection of anomalies based
on core execution behaviour at the deeper system levels.
Third, execution time, which can be determined at different
architecture levels and with different methods, but usually
requires measurement. All of those metrics use different data
types and originate from different system architecture levels.
What is interesting to us is a) the variety of available metrics
and b) the limited use of the available system architecture
components, which we want to address in the following
Section III. For this purpose, we want to introduce our
timing architecture model to map parameters and architecture
components into a common classification scheme. We want
to apply our model to develop new features for anomaly
detection, allowing us to extend detection models to all
available system architecture layers. To the best of our
knowledge, there is no known study or paper that maps
available time- or event-based metrics into a common model
or scheme targeting embedded systems at the time of writing.

III. MAPPING TIME AND EVENT METRICS BASED ON
ARCHITECTURE LEVELS

System architecture layers can be used as a descriptive tool to
decompose and analyse metrics within a given system, which
is why we choose this approach as a tool to compare available
literature. We are interested in understanding how different
methodologies for embedded devices use the existing system
architecture to implement effective anomaly detection with
event streams and time series data. For this purpose, we
based our model on an existing layering model for timing
analysis of embedded real-time systems [8] and extended
their work by applying a workload-based decomposition from
the automotive domain [9]. This extension of the model
allows us to further differentiate existing approaches below
the application level, so we can map available anomaly
detection methods based on architecture and metric usage.

Based on our preliminary evaluation of available literature,
we found that event-based metrics are used more frequently
instead of runtime measurements. Therefore, we need to
consider both timing and event-based metrics during our
mapping procedure. For this purpose, our current model
provides two degrees of abstraction, called layers and levels,
to represent architecture and timing/event properties we are
interested in. The available model provides three high-level
architecture layers: a Communication Layer, a Scheduling
Layer and an Application Code Layer to represent the generic
structure of an embedded system. Layers are used to represent
specific key timing properties of an embedded system, such
as Core Execution Time (CET), Response Time (RT), and
Round Trip Time (RTT). Levels are used to assign a source
of events or timing parameters to a system component.
They allow further differentiation of where different timing
parameters, events, and other interesting metrics originate and
where their area of effect is located inside the architecture.
For a single layer, subcomponent timing is used to calculate
each key parameter based on the assigned levels. For further
reference, Table I shows an overview of all nine architecture
levels, abstraction layers and descriptions for relevant timing
and event metrics as well as the key parameter for each Layer.



TABLE I
SYSTEM ARCHITECTURE LAYER MODEL FOR DECOMPOSING TIMING AND EVENT METRICS BASED ON ARCHITECTURE ORIGIN

Name Level Layer Key
Parameter Description

Instruction 1

Code CET

Smallest measurable quantity for tracing (single instruction, pipeline events, caching, fetch)
Basic Block 2 Continuous sequence of code with a single entry and exit point (branch — jump)
(Sub) Function 3 Decomposed task job sequences (notification, locks, signals, resource access)
Top-Level Function 4 Runnables and task-jobs, workload management (job start, job stop, job dispatch)
Task, ISR 5 Task start/stop, task preemption, application specific ISR, background task jobs
CPU-Core 6 Scheduler RT Singlecore scheduling effects: synchronization, spinlocks, memory-management, scheduling ISRs
Processor 7 Multicore scheduling effects: synchronization, spinlocks, memory-management, scheduling ISRs
ECU 8 Comm. RTT Interprocessor level: bus interfaces between system internal devices (SPI, I2C . . . )
Network 9 External level: Networked Signals/Events, Network-Latency, Roundtrip Time

A. Timing Architecture Layer Model

While the original layering model for timing analysis does
not provide a formal notation, other works [9], [10] can
be used to enhance the mapping of available events and
timing parameters to the architecture layers. For our use
case, we remove the lowest available level (OP-Code/Micro-
instruction, L0) from the original model [8], since single
machine instructions are the smallest measurable quantity we
can effectively capture and process using available tracing
methods.

Considering the existing model, the key parameter to
the code layer is the Core Execution Time (CET) of the
associated task(s) or application. The CET reflects the actual
time a specific task, a function, or a sequence of instructions
executes without overhead through preemption or scheduling.
Any timing parameters and associated events necessary to
compute the raw execution time of application code are
accounted for within the first five layers of the architecture
model. For this purpose, we introduce a workload-based
decomposition that can be employed to partition application
code of an embedded system into three different levels of
granularity. Levels 3 to 5 can be illustrated as a set of tasks
implementing an event queue executing requested workloads,
as shown in Figure 1. Depending on the event queue, the
active application task handles specific system events, that
are scheduled to execute certain processing workloads (jobs).
At each event execution cycle, queue entries are released and
used to schedule a number of jobs for the active task. Events
and timing parameters related to level 5 of our architectural
model are captured in the scheduler and task loop of the
active task. This level is used to observe timing and behaviour
at task level granularity, i. e. when a single task is sched-
uled or pre-empted. Overhead through execution time for
maintenance, monitoring and tracing functions, application
specific ISRs and background jobs executing in the idle
task are included at this level. Similarly, events (i. e. logs or
syscalls) generated through monitoring, profiling and tracing
are associated to this level. Level 4 consists of timing and
events generated through executing scheduled workloads for
a single task. This level is used to trace how workloads
consisting of a single task job or a continuous sequence of
individual jobs behave.

Different authors define a job or a runnable as a collection
of code that performs higher level functionality (see [9], [10]
and [11]). Since runnables or task jobs implement higher-
order functions, we needed another level of abstraction to
break down application code below this level. This would
allow us to characterize functions, events, and portions of
code needed to perform complex operations. For this reason,

Fig. 1. Overview of a generic embedded application with architecture and
event/timing components: scheduling and active task correspond to level 5,
task jobs to level 4 and decomposed sections are assigned to level 3.

we introduce the definition of a task job section, which can
be understood as a section of code that contains a sequence of
instructions defined with an execution time model and signal
vectors (ϕI , ϕO, ϕR , ϕS), per definition of [9]. For our use
case, we want to extend this definition to be applied at the
granularity of single jobs instead of the entire task, hence the
naming task job section. Signals are input or output events
for any given task, including the executing task, which are
used to control or synchronize subsections of jobs and other
runnables (tasks). Signals can generally be distinguished into
two different categories: signals required for computation
and signals required for synchronization. First, the input
and output signal vectors (ϕI , ϕO) are computational signals
because they provide the data being used and transformed
during processing within a single task job activation. These
signals define the interface of a given task job section, since
they enforce the required input and output parameters needed
for a specific section of code. The second category can be
described as event signals, which are denoted as requested
signals (ϕR) and supported signals (ϕS). Requested signals
(ϕR) are required input signal vectors, that are consumed
at the start of each section. This type of signal is used to
provide events (i. e. notifications or data from other tasks)
to a sequence of code and can be used for synchronization
purposes. Supported signals (ϕS) are consumable events or
notifications generated by the executed section of code, which
are required by other tasks or subsequent task activations.

Timing based on task job sections at the granularity of
available signals makes up level 3 of our architecture model.



This level allows analysing execution runtime by tracing sin-
gle signals passed between tasks and the scheduler/operating
system, as well as timing based on the execution model of
each task job section. Generally, these signals are used to
exchange data between tasks or for resource management
implemented by the scheduler.

The second level (2) is used to assign metrics that can
be captured at basic block granularity. In this case, any
sequence of code between branch/jump instructions can be
instrumented or measured. On the first level (1), the timing or
activation of a single instruction is the primary feature. This
type of measurement allows for single cycle granularity when
capturing available metrics, either by runtime measurement
of a single instruction or by observing instructions through
a trace-port as an event stream. Since our mapping needs to
cover timing, event and counter-based metrics, that can be
observed through specialised hardware, we need to include
caches, retired instructions, memory access and pipeline
effects at this level.

The key parameter, within the scheduling layer, is the
Response Time (RT) for the scheduled task set. This layer
introduces execution time and latency from the scheduler,
to account for timing variations outside of application code.
Level 6 represents timing and events that are present at single-
core task scheduling level. This level is used to capture timing
effects introduced by scheduling and resource management
handled centrally throughout the system. Runtime caused
by locking mechanisms, timing overhead introduced by the
scheduler, or scheduling ISR are accounted to this level. Level
7 extends the definitions of level 6 to multicore scheduling
and overhead that is introduced by sharing cores, resources,
and workloads. The distinction between the two levels is used
to separate the impact caused by multicore processors, instead
of mixing metrics together.

The final communication layer is used to introduce timing
and events related to external communication and focuses
on the Round Trip Times (RTT) for available interfaces.
For illustrative purposes, we further differentiate between
interprocessor (level 8) and external communication (level
9). At the interprocessor level, system-bus timing and packet
handling events within system boundaries are handled. The
external level handles events and signals leaving the system
boundaries, e. g. network connections to other systems.

B. Application of the Timing Architecture Model

We introduced our timing architecture layer model to map
available metrics provided by related work. Our goal was
to create a common representation to compare several em-
bedded anomaly detection techniques, based on metrics and
architectural components. We saw that two publications [3],
[7] implement detection models utilizing timing and events
at levels 1 to 3. In addition to the lower level timing
aspects, timing variation and events due to cache and pipeline
behaviour are also considered in both approaches. All other
works [4]–[6] are focused on high-level metrics (5,8,9) and
implement their approaches without any additional input
from the underlying architectural layers. Table II shows a
quick outline of the different parameters used by current
approaches, as well as our applied mapping.
From the existing publications, we can infer that commu-
nication and code layer parameters are being preferred as
a source for different anomaly detection methods. Specific

TABLE II
APPLIED SYSTEM ARCHITECTURE LAYER MODEL

Source Used Parameter Architecture
Level

Architecture
Layer

[3] Execution Time, Cache 1,2,3 Code
[5] Inter Arrival Curves 5,8,9 Code, Comm.
[4] Inter Arrival Curves 5,8,9 Code, Comm.
[6] Inter Arrival Curves 5,8,9 Code, Comm.
[7] Slack, Interrupts and

Event-Counters
1 Code

timing parameters from timing theory (CET, RT) are found
in two of the available publications as part of input vectors
for heuristic models or machine learning-based detectors.
Event-based systems tend to use the sequence information
of observed event streams at the code and communication
layers to infer the state of the underlying system. Based on
the architectural model, we can determine that the scheduling
layer is not actively used in any available publication. While
tasks are monitored, instrumented and traced at the code
level, resource management, workload sharing and locking
features are underutilized. For communication-based systems,
the application should require heavy use of resource manage-
ment and locking features, making them good candidates as
features for anomaly detection in this context.

IV. CONCLUSION AND OUTLOOK

Our goal was to evaluate how anomaly detection for em-
bedded systems is performed and what architecture compo-
nents are used to implement novel detection algorithms. We
introduced a timing architecture layer model for mapping
publicly accessible timing and event metrics based on ar-
chitecture components into a common classification scheme.
The proposed model was introduced as a comparison tool,
since current research uses various metrics and architecture
layers to implement anomaly detection methods. We applied
our model to the available anomaly detection literature, which
was selected based on embedded security context, and show
how different timing and event related metrics are utilised.
We found that there is an under-utilization of parameters
present in the scheduling layer of our architecture model.
We also believe that a more in-depth comparison of time and
event metrics could be a valuable contribution.

Our work targets embedded devices with strict timing
requirements, like soft and hard real-time embedded systems
or RTOS based systems. Since their system operation has
specific requirements on execution timing and response, even
slight changes can have measurable impact on the timing
characteristics. For our future work, we want to evaluate
whether anomaly detection on all available system layers
(code, scheduler, and communication) is a feasible approach
based on data available from embedded systems or whether
single level approaches are sufficient. In terms of application
within the security domain, another area of interest is remote
attestation protocols. For our future work, we would like
to determine, if time-based anomaly detection could be ex-
tended to all available system layers for attestation protocols.
With our current work, we want to evaluate novel features,
so we can determine which architecture component provides
the best use for effective anomaly detection and parameter
selection.
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Abstract:  Developments in printed circuit technologies have 

evolved over the years, enabling increased circuit density and 

finer engravings. This progression has also led to higher data 

rates, increased clock speeds, reduced switching times, and 

lower power consumption, all within increasingly limited 

spaces. Signal integrity (SI) is a crucial aspect in the design of 

electronic boards, as multiple factors can impact signal quality, 

including signal attenuation, impedance matching, crosstalk, 

and jitter. Signal attenuation arises from dielectric and 

conductive losses, which must be carefully considered in the 

analysis of signal integrity. 

Therefore, a more precise approach is necessary to model 

these effects in simulation, taking into account the actual 

electrical properties of the dielectric and copper of the printed 

circuit board (PCB). Moreover, analyzing and optimizing every 

potential discontinuity has become an essential part of SI 

analysis, as it can result in reflection and insertion losses along 

the trace. The achievement of an automated process becomes 

crucial for every new aerospace design. Several boards are 

currently being developed for military and civil aerospace 

projects, incorporating high-speed links (Serdes with Ethernet) 

up to 25 Gbps and more and very high densities, while operating 

under severe environmental conditions (EMC, thermal, 

vibration…). 

Keywords—Signal integrity, High-speed links, SerDes, 

Models, Roughness, Glass weave skew, Optimization, 

Equalization 

I. INTRODUCTION 

The increasing demand for high-performance computing 
and faster connectivity in aeronautical domains, such as radar, 
electronic warfare, and data and image processing, requires a 
rigorous study of signal integrity. This is particularly crucial 
in modern high-speed communication, with higher data rates 
and faster rise times. This improves the reliability and 
accuracy of the transmitted data, making communications 
more reliable.  

Signal integrity analysis should no longer assume that the 
dielectric is homogeneous and the copper is a flat surface. It 
must take into account its actual structure within the Printed 
Circuit Board (PCB) and its anisotropic and frequency-
dependent properties. While rules of thumb and models have 
been developed to address these issues, special care needs to 
be taken regarding the impact of these factors on the signal, 
especially in light of the evolution of new technologies. 

Signal integrity is a crucial factor to consider when 
designing and routing electronic boards. The design must 
follow rules and specific routing methodologies to ensure the 
reliability of data transmission between components across 
the discontinuities of the PCB, such as FPGA BGA (Ball Grid 
Array), DC blocking capacitors, connectors and vias. These 
discontinuities can result in signal attenuation, crosstalk, jitter, 
and impedance mismatch. Careful optimization is needed to 
maximize the signal's transparency. As the optimization of the 
PCB has reached its physical limits, signal processing 
techniques have been implemented within the transceiver to 
account for potential signal degradation.  

Accurate modeling and simulation have become 
increasingly important in guaranteeing signal integrity. This 
ensures that a board operates properly from the initial tests and 
helps to minimize manufacturing costs and to avoid iterations. 
In order to enhance productivity, the optimization process of 
a new high-speed serial link must be more flexible and 
automated to accommodate potential design changes thanks to 
mathematical algorithms. 

II. PCB TECHNOLOGY 

As data rates and PCB complexity increased, considering 

the real structure of the conductive and insulating layers 

became necessary.  This involves taking into account the 

effects of roughness and the influence of materials like 

fiberglass on signal integrity. 

A. Copper roughness 

Conductive losses on a PCB are caused by factors such as 
surface roughness, etching factor, skin effect and metal 
losses. The manufacturing process of copper foil on a PCB 
can be performed through several methods. The base copper 
electroplated (ED) is the most commonly used. ED copper is 
created by electroplating copper ions from an electrolyte bath 
onto a rotating drum. The copper on the drum side is smooth, 
while the one on the solution side (mat) is rougher. The drum 
side is often bonded to the PCB core for high-speed links 
(Reverse Treated Foil). This roughness is classified from 
roughest to smoothest (III, VLP, S-HTE, VSP) [1]. Based on 
the class of the roughness profile, the copper surface can lead 
to higher frequency losses due to an increased skin effect.  
These losses tend to increase when the trace is long and 



 

 

narrow, which is often the case in High-Density Interconnect 
(HDI) designs. 

Up to 10 GHz, the impact of roughness on signal loss is 
negligible. However, as data rates increase, it has become 
necessary to consider its impact for a more precise 
characterization of circuit performance. The presence of 
roughness introduces inaccuracies in losses, dielectric 
constant, and phase delay values [2]. Depending on the 
manufacturer, the roughness profile may vary. The dielectric 
properties change when considering the surface roughness. 
The copper roughness decreases the spacing between two 
conductors, resulting in increased capacitance and the 
dielectric constant’s value (Dk). 

It is essential to incorporate roughness into simulations in 
order to obtain reliable results. Mathematical expressions have 
been developed to model roughness and can account for its 
impact by calculating a correction factor KSR in the insertion 
losses formula (IL) [3] as follows: 

 

𝐼𝐿𝑡𝑜𝑡𝑎𝑙(𝑓) = 𝐼𝐿𝑑𝑖𝑒𝑙(𝑓) + 𝐾𝑆𝑅 ∗ 𝐼𝐿𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 (𝑓) 

 

To approximate the actual electroplating process, the 
Cononball-Huray model provides an approach to the 
roughness model as a configuration of stacked spheres 
forming a hexagonal pyramid (Fig. 1). By identifying the 
number of spheres and their radius, it is possible to calculate 
its area and determine KSR, based on the data provided by the 
manufacturer. The introduction of a new material must be 
characterized by profilometry, for instance, to ensure the 
accuracy of the roughness data provided, especially after 
chemical treatments. The measurement of an HVLP copper 
revealed a roughness of approximately 1um for the Roughness 
Average (Ra), compared to a manufacturer-supplied value 
assumed to be less than 0.43um. 

 

 

 

Fig. 1. Correlation between surface roughness measured by profilometer 

and the Cononball-Huray model  

There are various alternative models available for 
calculating KSR. It became necessary to compare the benefits 
of these models with each other, as well as with the actual 
measurements, to determine which ones provide the most 
realistic and reliable results for high-speed designs up to 25 
Gbps and more. 

B. Dielectrics 

A printed circuit board (PCB) is made of insulating and 

conducting layers. Previously, insulating layers were 

commonly referred to as FR4. However, because the losses 

are mainly dominated by dielectrics at high frequencies, 

design margins and material properties have become more 

crucial. 

The selection of a dielectric is a key factor in ensuring 

product reliability, as it needs to meet specific constraints for 

robustness in the electromagnetic environment and extreme 

conditions in aeronautics. 

Thermal parameters, such as glass transition (Tg), time to 

delamination (Td), and coefficient of thermal expansion 

(CTE) in the x/y and z axes, play a significant role. Electrical 

parameters, including dielectric constant (Dk) and dissipation 

factor (Df), affect losses, propagation speed, and impedance. 

Additionally, mechanical parameters such as peel strength, 

water absorption, Young's modulus, or Poisson's ratio are 

essential considerations in designing a new stackup. Each new 

dielectric must be qualified to verify its properties and ensure 

reliance on the manufacturer's data [4]. 

 

The choice of stackup, and more specifically, the type of 

glass used, becomes crucial in ensuring the robustness and 

reliability of high-speed signals. The dielectric commonly 

used in printed circuits is made of woven glass fibers 

encapsulated in resin (Fig. 2). The electrical properties of Dk 

and Df depend on the ratio of these two materials. An increase 

in resin content results in a decrease in the Dk value and an 

increase in the Df value. 

 

The inhomogeneity of the material can lead to disparities 

in the propagation velocities within the differential pair. This 

effect, called "glass weave skew", can generate mode 

conversions, skew, resonances, and losses caused by 

impedance mismatches along the trace [5]. This will lead to 

potential bit errors, a more closed eye, and contribute to 

deterministic jitter generation. 

 

 
Fig. 2. Glass Type (Source: ISOLA) 

There are various choices available for dielectrics, and 

selecting the right one can be challenging due to variations in 

thermal, mechanical, and electrical properties. Therefore, 

understanding the capabilities and requirements of the 

system, including factors such as performance and 

operational conditions (EMC, temperature, humidity and 

vibrations), is crucial [6]. 

 

Finally, PCB stackup needs to be compliant with microvia 

technology, essential for HDI designs and high-speed signals. 

 

The MEGTRON6 dielectric facilitates the development 

of high-frequency stack-ups involving multiple laminations 

and varying levels of microvias. This material is available in 

both laminates and prepregs. However, the industry is driven 

to explore alternatives in different countries due to the 

demand for secondary source materials, performance 

considerations, and cost factors.  

A trade-off must be made in order to satisfy the need for 

performance while remaining competitive in the market by 

 

  



 

 

reducing the cost of the product. The specific choice of 

stackup could lead to higher costs and longer supply and 

manufacturing lead times. Alternatively, it might require 

placing an order for a minimum quantity of PCBs in order to 

justify launching manufacturing at the supplier. 

III. OPTIMIZATION APPROACH 

A. Discontinuities optimization 

Discontinuities such as vias, connectors, DC blocking 

capacitors, BGA fanouts … can significantly degrade the 

signal along the channel (Fig. 3). Poorly matched impedance 

can lead to unwanted signal reflections, energy losses, and 

electromagnetic interference. The analysis and optimization 

of 3D transitions are important steps in high-speed serial link 

analysis. Each of them must be carefully studied in order to 

minimize the overall impact of each transition. 

 
Fig. 3. Optimization of discontinuities for high-speed links under 

HFSS 

To route high-speed serial links, it is essential to follow 

basic rules, such as using stripline structures between ground 

layers, to ensure immunity to electromagnetic interference. 

The high density of the BGA often requires routing signals 

across multiple internal layers, which necessitates the use of 

microvias and via-in-pads to minimize trace length, which are 

recommended for high-frequency signals. 

A cutout of the reference planes under the capacitor or 

BGA in the path of the high-speed signal helps to reduce 

reflections. The dimensions and number of these cutouts must 

be meticulously studied. Every through-hole structure, such 

as vias or connectors, must use antipads with optimized 

antipads to avoid any electrical contact. This optimization 

work must take into account manufacturing constraints, costs, 

as well as the limitations of routing density that affect 

available space.  

All discontinuities are simulated under a HFSS 3D solver 

in order to obtain the return loss results for all links (Fig. 4) for 

the daughter board. They adhere to the threshold set by the 25 

Gbps IEEE 802.3 standard. 

 

 
Fig. 4. Tx (blue) and Rx(brown) return losses inverted for the whole 

channel (dashed line for BGA side and solid line for connector side) 

Cascaded link of S-parameter models enabled the 

evaluation of the impact of individual discontinuities on the 

channel's overall performance. It was observed that including 

an extra S-parameter caused an average increase of -3dB in 

reflection losses. 

B. Equalization 

To meet the growing demand for high-performance PCB 

design, integrated circuits are constantly pushing the limits of 

clock speed and data rates. As the optimization of the PCB 

has reached its physical limits, signal processing techniques 

have been implemented within the transceiver to compensate 

for potential losses, jitter, reflections caused by poor 

impedance matching, etc. 

 

Equalization balances and adjusts the signal by 

amplifying or attenuating it, based on the frequency. 

Depending on the objective, different types of equalization 

with specific treatments and application locations are used to 

compensate for channel effects, resulting in a more open eye 

diagram. Equalization becomes necessary as data rates 

increase in order to enhance the performance of the design. 

Below 5 Gbps, equalization on the transmitter side is usually 

sufficient. Beyond that, receiver-side equalization may be 

required [7, 8]. 

C. Process automation methodology 

The optimization process is divided into two parts: 

optimizing the physical link routing and adjusting internal 

equalization parameters. The first part aims to meet protocol 

standards in order to subsequently enhance equalization 

results. However, when designing a new high-speed link, 

numerous routing changes may arise, necessitating a 

reevaluation of the optimization process. Manual 

optimization for introducing a high-speed design should 

remain exceptional. To enhance productivity and reduce the 

time required for new designs, the optimization process needs 

to be automated. 

 

The primary goal is to provide a library of optimized PCB 

structure models according to the desired protocol and data 

rate. These 3D models should be flexible and not pose 

technological challenges for manufacturers. Using 

mathematical algorithms such as metamodels [9] or those 

based on natural behavior [10, 11], structure models will be 

automatically generated for a given stackup and routing class 

entered as constraints to be met. The algorithm's aim is to 

select the best candidate based on the specified objectives, 

such as limits for insertion loss, reflection, and crosstalk 

provided by standards. A dynamic link is created between the 

3D structures and the algorithms through solutions offered by 

the Ansys suite. These algorithms will also facilitate the 

extraction of material properties such as roughness, Dk, and 

loss tangent (Df) from measurements. 

 

The second part of automation will make it easier to select 

equalization parameters within the transceiver. High-speed 

serial link standards are long and complex to understand. 

Similarly, the IBIS AMI models are far from easy to use and 

time-consuming. Finding the optimal equalization settings in 

simulations can be a complex and time-consuming task. The 

goal will be to achieve the most open eye diagram possible 

while minimizing over/undershoots and meeting the required 

timing between signals. Each equalization technique must be 

properly configured to achieve the optimal combination of 



 

 

parameters without degrading the signal quality through 

excessive optimization.  

IV. TEST VEHICULE FOR VERIFICATION AND SIMULATION 

CORRELATION 

Simulation enables the identification and resolution of 

potential issues in advance, thereby minimizing costs and 

time in the early stages of the design. Various routing 

configurations can be tested and compared to validate initial 

assumptions. However, simulations do not fully represent 

reality, necessitating validation of the simulated results 

through measurement. Measurement serves as a reference, 

accounting for manufacturing capabilities and tolerances that 

may affect signal quality. Assumptions made in simulation 

parameters and setup configuration must be verified. 

 

Additionally, the test vehicle facilitates experimentation 

with new technologies, such as the use of three levels of 

stacked microvias, validating the introduction of new high-

speed dielectric materials under the severe constraints of 

aerospace applications. Measurement also requires de-

embedding techniques, involving the addition of connectors, 

traces, and microvias to access the desired structure. While 

additional elements are measured, their effects must be 

subtracted from the measurement to align with the 

simulation. Different de-embedding techniques are compared 

to move the reference plane further away from the cable ends, 

penetrating the PCB to characterize each structure. Despite 

the common use of Thru-Reflect-Line (TRL) calibration for 

de-embedding S-parameter data, its dependence on different 

structures raises the risk of calibration failure when fixtures 

are not identical. Alternative methods, less complex yet 

equally accurate, are available [12]. Various techniques exist 

to obtain real dielectric and copper properties after 

manufacturing. The Beatty structure [13] retrieves Dk and Df 

values, while a simple line and a mathematical algorithm 

incorporating the Huray model can determine copper 

roughness. 

 

The objective is to establish a correlation between 

simulations and measurements to provide a reference and 

build confidence in simulation results, ultimately aiming to 

rely solely on simulation rather than costly new test vehicles. 

This will validate stackup, routing design, and high-speed 

link configuration parameters depending on each protocol 

and data rate. 

V. CONCLUSION 

To ensure the performance and reliability of electronic 

components and circuits, it is necessary to accurately model 

their behavior and simulate their performance under extreme 

environmental avionics conditions. Accurate modeling and 

simulation can be a complex task, especially as electronic 

components become more complex and operate at higher 

frequencies. Meeting these challenges requires an innovative 

and robust analytical methodology, combining careful 

design, testing, and analysis, along with continuous research 

and development of advanced techniques. 

 

Several boards are currently being developed for military 

and civil aerospace projects, incorporating high-speed links 

up to 25 Gbps for very high densities, while operating under 

severe environmental conditions (EMC, thermal, 

vibration…). Our new approach will be tested to validate its 

effectiveness and to determine its suitability for future 

projects. This will involve benchmarking of EDA tools and 

comparing existing and new models, which will be validated 

by measurements while taking into account the global 

electronic development cost of ownership and the proposed 

approach performance trade-off. 

The final objective is to provide an automated and tools 

equipped methodology for the optimization of a new high-

speed serial link using mathematical algorithms and 

metamodels. 
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Abstract—IoT devices represent a prime target for security
threats. Unfortunately, effective security practices are not
widespread as they should be, in particular concerning the
health sector. This paper conducts a security analysis of a
connected blood pressure monitor, revealing six significant
vulnerabilities. We carry out four attack scenarios to high-
light the dangers they pose to its users.

Index Terms—Security, Health, Bluetooth Low Energy

1. Introduction

Wireless communications offer numerous benefits,
particularly in enhancing user interaction with IoT de-
vices. The seamless connectivity provided by technologies
like Bluetooth Low Energy (BLE) has become a key
selling point for manufacturers, facilitating a wide array
of applications. For instance, it enables the integration of
companion applications on smartphones, allowing for ad-
ditional features and functionalities. This integration also
enables manufacturers to optimize the device hardware to
offload demanding computing tasks to smartphones or re-
mote servers. This, in turn, improves the overall efficiency
of the device. Moreover, the wireless connection allows
manufacturers to introduce new features post-deployment
without the need to wait for every functionality to be fully
implemented before shipping the devices. This approach
significantly reduces the time-to-market, ensuring a re-
sponsive product development cycle.

Despite these advantages, the connection link and the
information it carries must be properly secured. Imple-
menting robust security measures is a non-trivial task,
as demonstrated by the multitude of attacks on wireless
protocols. The impact of such attacks can be devastating,
posing serious threats to user privacy and system integrity.

This underlines the necessity of external audits on the
final product to identify potential security vulnerabilities
that may have been overlooked during the development
phase. Various frameworks were developed with this goal
in mind [2]. Unfortunately, we still observe today poor se-
curity practices in implementing wireless communication
for IoT devices.

In this paper, we conduct a security analysis of a
connected blood pressure monitor. It is a health device for
people with medical conditions such as hypertension, hy-
potension, diabetes, and other cardiovascular conditions.
It can also be beneficial for people interested in prevention
or lifestyle monitoring, such as pregnant women, athletes,
fitness enthusiasts and seniors. Overall, such a device tar-
gets a large portion of the population and its compromise
may present a risk for the user’s health.

Through our study, we demonstrate the security impli-
cations resulting from an insecure implementation of the

Bluetooth Low Energy protocol. In particular, we show
that the lack of authentication and integrity checks leads
to device firmware tampering.

We summarize our contributions as follows:

• Reverse engineer a health device monitoring the
blood pressure and conduct a security analysis of
its components.

• Exploit the 6 vulnerabilities in its BLE implemen-
tation and firmware Over-The-Air update.

2. Background

Bluetooth Low Energy (BLE) is a lightweight variant
of Bluetooth, dedicated to devices needing low energy
consumption. Every BLE-based application using the con-
nected mode is built on top of the ATT (Attribute Profile)
and GATT (Generic Attribute Profile) layers [5]. Both
layers define a client / server model, providing a generic
solution to exchange data between devices. Specifically,
an ATT server is a database of attributes. Each attribute
is composed of an identifier, a type and a value. An ATT
client is able to interact with this database using some
requests. For example, a Read Request allows the client to
read a given attribute, while a Write Request allows mod-
ifying the value of an attribute. The GATT level provides
an additional layer of abstraction to define some services
including characteristics and creates generic profiles for
a given type of device.

3. Analysis

The blood pressure monitor performs three distinct
measures: the diastole, the systole and the pulse. It also
displays if irregularities were observed during the mea-
surements. The device works by inflating a cuff around
the wrist, measuring the pressure exerted by blood on
the artery walls as the cuff deflates. This type of device
is particularly useful for people with medical conditions
related to the heart or interest in monitoring their lifestyle
in a preventive way.

The device can be used alone, however the companion
app helps keeping track of the records. The synchroniza-
tion happens wirelessly when the application connects to
the device via BLE. The user also has the possibility to
enter the measurements manually in the companion app.

Our primary goal is to identify potential vulnerabili-
ties in the implementation of the wireless protocol. It is
essential to assess the device’s ability to secure the data
it handles, particularly when it is related to the health.
Next, analyzing the insight of the firmware allows a
better understanding in the vulnerabilities present on the
device. This involves recognizing the instruction set used,



recovering the program load address, and identifying the
memory layout including the I/O mapping. This can be
achieved through intercepting the firmware update image
for instance. Finally, the most impactful goal is to gain
arbitrary code execution on the device. This not only
serves to validate the identification and exploitation of
vulnerabilities, but also demonstrates their security im-
plications. Furthermore, it aids in comprehending and
mitigating the associated risks.

Considering the goals mentioned earlier, we divided
our analysis in four aspects. We started our analysis
with a network reconnaissance and the companion app
reverse. This allowed us to pinpoint the first flaws in
the device related to its BLE implementation. Then, we
looked at the hardware to get a better picture of the
device’s internals. With this knowledge, we focused on the
firmware to get closer to code execution. While we haven’t
fully achieved this goal, the presented results provide
encouraging prospects for future work.

Throughout the steps of our analysis and the discovery
of novel insights, we systematically searched online for
publicly available information.

3.1. Network

The device uses BLE to synchronize its records with
the companion app. Using an Android Smartphone and a
computer with the Mirage framework [2], we analyzed the
structure of the GATT server on the device, along with
its communications. The GATT server exposed several
services and characteristics such as the firmware version,
name and model. We identified three main manufacturer
specific services for records synchronization, control data
and firmware update.

We have examined the events that occur when the
application connects to the device. For this purpose, we set
up a Man-in-the-Middle (MitM) between the smartphone
and the device. We identify two events triggered on the
connection. First, the application sends the name of the
current user, to which the device acknowledges good
reception. The message has a total size of 20 bytes: two
bytes flag, the entered name and the padding with null
bytes. Second, the application queries the GATT server
for information about the device status. In particular, to
determine if an update is available for the device.

Then, if unsent records are stored, the device
sends them in the form of Handle Value
Notifications on a dedicated characteristic.
The record messages contain a flag, the measured values
(systole, diastole, pulse), a boolean indicating pulse
irregularity, and the date when it was taken.

The MitM was possible because neither authentication
nor encryption are employed during the communication.
The application requests first to pair the device. However,
we did not observe any standard pairing such as described
by the BLE specification [5]. Instead, the application
registers the device from its link-layer address. More-
over, it seems the device does not log any registration
information, allowing anyone to connect and access saved
records without restrictions. We found that the use of the
term “pairing” in the application is confusing, as it could
suggest this security mechanism is implemented in the
communications, while it is not.

3.2. Companion Application

The blood pressure monitor comes with a companion
app designed for recording measures and keep track of
user health over time. For the analysis we focus on the
latest version (2.2.2.5) dating from October 2023.

The APK contains two firmware images corresponding
to the BLE chip. Further details about these images are
provided in Section 3.4.

For GATT services and characteristics, we use the
UUID to identify code sections related to the device
communication. The majority of those sections are con-
tained in the BleService class. We identified the code
responsible for managing the firmware update, handling
the device records and executing various control actions
(e.g., modifying the username).

By manually inspecting the reversed code, we iden-
tified an out-of-bounds read during the parsing of health
record messages. The main cause is the control exerted by
the flags in the frame header over the size read, leading the
application to read beyond its actual size. It may expose
sensitive information or compromise the companion app’s
integrity.

3.3. Hardware

BLE
SoC

App
SoC serial bus

LCD
screen

Pump

BLE
radio link

OTA Spoofing
MitM

OTA Firmware Update
LED

Figure 1. System architecture overview

The hardware is composed of a main PCB board which
controls the LED, the LCD screen and the pump, and han-
dles the wireless communication. In this analysis, we are
more interested in the two main System on Chip (SoC).
The application SoC is SH79F6488P and manufactured
by Sino Wealth while the BLE SoC is a CC2541 F256
from Texas Instruments. Both SoC implements different
derived versions of the 8-bits 8051 microcontroller.

The board offers several test points. Using the
datasheet of the application SoC, we managed to trace
its JTAG pins. However, after analyzing its signals on an
oscilloscope, we hypothesize that it may be disabled.

Next to the BLE SoC, we identified the serial bus
used to communicate between both SoC. A simple custom
protocol is used, and we managed to partially reverse
it. Each packet is formed of a header, the payload and,
at the end, the checksum of all bytes except the first,
modulo 8 bits. The header is composed of a preamble
(indicating if it is a request or a response), an operation
code and the payload size. The operation may be initiated
by any of the two SoC. We managed to identify the codes
corresponding to initiating a wake-up call, responding
with device information (including firmware revision and
model number), sending the username, and transmitting
the measures (systole, diastole, pulse) along the time.



3.4. Firmware

Because we couldn’t get any access to the running pro-
gram on the hardware, we focused the firmware analysis
on the two binaries embedded in the Android companion
app. The binaries follow the format described in the Texas
Instruments BLE Over-the-Air Download (OAD) [4]. The
images start with 2 bytes CRC-16, the image header and
continue with the firmware content. The image header
follows a public format [4] composed of 2 bytes CRC-
shadow, 2 bytes user-defined image version number, the
image length on 4 bytes, and the 4 bytes user-defined
image identification. In summary, the OAD mechanism
is composed of three images: the boot image manager
(BIM) and two different images called ”A” and ”B”. The
BIM maps into the 8051 interrupt vectors to intercept all
resets and jump to a valid image, B or A. The image A
is cut in half where the upper segment maps to 0x800
and runs the proprietary OAD Target BLE Profile which
is in charge to handle the firmware update. The image B
maps to 0x4000 and implements the BLE stack.

We explored the firmware update procedure as a note-
worthy entry point for code execution. On each connec-
tion, the companion app checks whether the firmware
requires an update, according to the number of the running
version. The outline of the procedure is described by Texas
Instruments [4]. The companion app sends the image
header to the device, and upon acceptance, initiates the
transfer of the firmware image. On completion, the device
validates the image’s CRC-16 against the one sent at
the beginning and finally resets the connection. Despite
being explained in the documentation [4], no encryption
or signature are used for the OAD mechanism.

At the time of writing, we have not extracted or located
the firmware used by the application SoC.

The firmware analysis is an ongoing task. We aim
to focus on better understanding its internal work to be
able to patch it and get code execution on the BLE SoC
(Section 4).

3.5. Vulnerabilities

During the security analysis, we identify 6 vulnerabil-
ities in the different components of the device.

Communication Protocol: the BLE implementation
on the device suffers from vulnerabilities on the pairing,
authentication and communication protocols.

• The pairing mechanism is not implemented at all,
and therefore fails to establish trust between the
two devices. It is responsible for providing authen-
tication, enabling key distribution and negotiating
the shared secrets.

• No authentication is used: both the companion app
and the device do not authenticate to each other.
This enables spoofing attacks for both sides.

• The communication is not encrypted. Data ex-
changed during communication is in clear text and
can easily be obtained.

• The communication does not present any integrity
protection. Data exchanged during the communi-
cation can be manipulated.

Firmware Update

• No encryption is used during the OAD mechanism
despite being available.

• No signature is implemented for protecting the
firmware integrity.

4. Attack Scenario

We describe 4 over-the-air attacks to demonstrate the
severity of the vulnerabilities presented in Section 3.5.

The system model is similar to what was described in
Section 3. It is composed of the blood pressure monitor
and the companion app communicating over BLE. We do
not assume the victim has the monitor device around the
wrist during the attacks, because it records the measures
to download them later to the companion app.

The attacker only knows public information advertised
by the blood pressure monitor over BLE such as the BLE
address. For the OTA spoofing and MitM, we assume the
attacker does not have physical access to the target de-
vices, hence cannot tamper the devices’ operating system
and firmware. For the OTA firmware update, the attacker
needs a way to put the device in the update mode (long
press on/off button).

The attacker has the following four goals:

1) Spoofing the blood pressure monitor to the com-
panion app.

2) Spoofing the app to the blood pressure monitor.
3) Establishing a MitM between the blood pressure

monitor and the app
4) Pushing a custom firmware on the BLE SoC

4.1. Attacks

OTA Spoofing. These attacks are straightforward
as no security mechanism is implemented.

To impersonate the companion app, the attacker sim-
ply connects to the device using BLE. It is then possible
to read the different GATT services, and the records made
by the device.

In the same way, the attacker can advertise fake blood
pressure measures knowing the BLE address, and forge
fake records to poison the history in the companion app.

MitM. Since it is trivial to impersonate both the
device and the companion app, a MitM attack is no more
difficult. Multiple approaches can be considered, but the
easiest is BTLEJuice [1].

The idea consists of first connecting with the blood
pressure monitor to make it stop advertising, and then
using a second BLE device spoofing its address to wait
for a connection request from the companion app. Once
the MitM established, the attacker can easily modify the
transmitted data, such as the device records to tamper the
user’s health history.

OTA BLE Firmware Update. To update the
firmware, the attacker needs a way to put the device in the
firmware update mode. A solution for that is to long press
the on/off button on the device. From that, the attacker
can connect to the device and push the firmware update
with the desired modifications (e.g., backdoor). Neither
encryption nor signing is present in the firmware images.
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Figure 2. Firmware update image header structure

4.2. Attacks’ Impact

The severity of these attacks are high for several
reasons. First, these attacks are cheap and low efforts.
No security mechanisms are used to protect the link be-
tween the blood pressure monitor and the companion app.
Moreover, the firmware update attack potentially allows
full execution on the BLE SoC. To a greater extent, the
device interacts with humans and report their health status
for storing records. These records may later be used to
decide whether the users should take specific medical
treatment. Therefore, one could use these attacks to falsify
the records, or even change the device’s behavior with a
malicious update. This may lead to erroneous diagnosis
and dangerous medical decisions for the user. Finally, the
absence of cryptography can lead to breaches of the user’s
privacy, especially concerning their medical condition.

5. Experiments

The experiments were carried out using the Braun
wrist blood pressure monitor iCheck 7 BPW4500WE
running the firmware 1.0.15, an Android smartphone with
the companion app version 2.2.2.5, and a computer with
two Bluetooth interfaces.

The Mirage framework [2] includes modules to
launch standard wireless attacks such as MitM and de-
vice spoofing. In particular, we used the ble_master,
ble_slave, and ble_mitm modules.

Application Spoofing. Any device supporting
BLE can connect to the device and run commands, as
no authentication and encryption are implemented in the
device. For instance, we were able to connect and read the
records with a BLE-debugging application such as nRF
Connect For Mobile.

Device Spoofing. First, we cloned the GATT
server of the device to replicate all the services and char-
acteristics that the companion app may need or request.
Then, Mirage is used to generate a new instance of the
GATT server to which the companion app will connect.

MITM. We spoofed both roles to perform the
BTLEJuice [1] MitM attack. In addition, we implemented
a scenario to alter the packets containing health records,
thereby tampering with the companion app history.

Firmware Update. We extended the application
spoofing attack with a Mirage scenario for faking the
firmware version and uploading our modified variant fol-
lowing the OAD process. To confirm our success, we
modified strings in the firmware accessible via the GATT
server, particularly the device information such as the ver-
sion and model. We also had to adjust the leading CRC-16
to align with our changes before uploading the firmware.
Indeed, as represented on Figure 2, each firmware file
begins with a CRC, computed over the whole file [4].

6. Countermeasures

The presented attacks rely on the lack of basic security
mechanisms such as authentication, integrity and encryp-
tion. The main countermeasure against the spoofing and
MitM starts with the implementation of a secure pairing
procedure1. Additionally, other protections described by
the Bluetooth Core Specification [5] Volume 3 Part H and
Volume 6 Part E, should be applied. The firmware update
process should follow the BLE OAD guidelines [4] to use
firmware image encryption and signing.

7. Conclusion & Future Work

We performed a security analysis of a connected blood
pressure monitor and showed that unfortunately, it suf-
fers from several serious vulnerabilities. Some of them
arise from the fact the device does not implement the
security measures recommended by the BLE specifica-
tion [5]. Sadly, this is not an isolated case in the more
general world of IoT devices. Indeed, as shown in several
works [6], [7], a huge majority of recent devices do not
implement secure pairing, and by extension encryption,
or contain vulnerabilities. This issue, especially in health-
related devices, is a big concern for the users’ safety.
Moreover, it has been shown through the last years that
security has not been a priority for manufacturers, and
despite evolution in the standards, most devices remain
unsecure to this day. A way to solve this problem would be
to make it compulsory to implement appropriate security
mechanisms, for instance by the mean of a certification
that all connected objects should undergo.

To further our analysis on this device, we plan to con-
tinue the analysis of the BLE firmware to reach the third
goal on code execution. For instance, inserting a backdoor
or a function which modify the records before sending
them by BLE to the companion app. We also have to
recover and analyze the application firmware responsible
for displaying the measures on the LCD screen and com-
manding the pressure exercised on the wrist by the pump.
Another possibility is to look for deeper vulnerabilities in
the firmware by using dynamic analysis techniques. For
example, the serial bus could be fuzzed, or the firmware
could be rehosted [3] in an emulator allowing full control
over its state.

Responsible Disclosure. In adherence to respon-
sible disclosure practices, the vulnerabilities identified
during the course of this research were reported to the
respective vendor on two separate occasions, in January
and March 2024. Despite these efforts to engage in con-
structive dialogue towards mitigating potential security
risks, no acknowledgments were received from the vendor.
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Abstract—The rising threat of cyberattacks on industrial
control systems results in an increasing demand for cheaper
and more capable defense mechanisms. Our research group
is therefore concerned with the development of distributed
intrusion detection systems (IDS) for industrial control systems,
implementing a defense in depth approach. Developing machine
learning based IDS solutions is dependent on the availability of
training data as well as a test environment. A common solution
for these requirements are cybersecurity testbeds. This work-
in-progress paper concerns the construction of a cybersecurity
testbed also suited for the development of IDS with a holistic
approach to monitoring information technology (IT) and oper-
ational technology (OT) networks of critical infrastructure and
industries.
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I. INTRODUCTION

The critical infrastructure sector has become increasingly
dependent on the use of interconnected systems to control and
monitor the operations of their facilities. This development,
that has taken place over the last decades, has opened a
path for malicious actors to disrupt their operations and
compromise data integrity, thus putting public safety at risk.
These attacks have a wide range of objectives, ranging from
monetary gains over the accidental targeting of critical in-
frastructure by automated large scale attacks to the disruption
of vital services or industries, perpetrated by state-sponsored
entities. The list of potential victims is equally diverse as the
attacker’s potential objectives, from the electric energy grid
over the transportation of other energy carriers like oil and
gas to the water infrastructure. There are several prominent
instances of said attacks that have become public in the past
decade. This includes the alleged perennial organized attack
on two American nuclear facilities, for which two Russian
government officials have been charged by the United States
Department of Justice [1], [2]. Another notable and even
more consequential incidence was the ransomware attack
on the colonial pipeline that supplies the US east coast
with almost 50 % of its fuel demand. The attack forced
the operator to shut down the pipeline, causing an immense
impact on the US economy. The Colonial Pipeline company
had to cave in to the extortion attempt and paid more than 4
million US dollars in order to restore the pipeline’s operation
[3]. These attacks do not only affect large providers of
critical infrastructure but also small to medium-sized plants.
An example of such an institution becoming a victim of
cyberattacks is the Riviera Beach Water Utility incident that
occurred in 2019. The operational technology (OT) of the
city’s water works were indirectly infected as the city’s
information technology (IT) was targeted with a malicious
email. The computers controlling the plant’s pumps and water
quality testing were incapacitated as a result of the spread of
ransomware [4].

The rising threat stemming from cyberattacks, demon-
strated by the earlier described incidents and many more,
is prompting legislative bodies and government agencies to
regulate the cybersecurity of critical infrastructure providers.
The German government has therefore decided to strengthen
the Federal Office for Information Security (BSI) in questions
of cybersecurity by enacting the IT-Sicherheitsgesetz 2.0 (IT-
Security law 2.0) [5]. This law gives several new competences
to the BSI including but not limited to:

• the extension of the BSI’s jurisdiction to include compa-
nies of special interest to the public safety of the German
state

• obligations to report cybersecurity incidents to the BSI
• the obligation to implement an intrusion detection sys-

tem (IDS) in critical networks
The obligations described in the IT-Security law are only
applicable to critical infrastructure providers that offer their
services to more than 500,000 people. This figure, however,
is expected to be incrementally lowered in the coming years,
thus generating the demand for IDS suitable for deployment
in smaller facilities. The development of these systems re-
quires an environment for the generation of training data,
verification, and validation of IDS without jeopardizing the
safety of a real critical infrastructure facility. The develop-
ment of such a testbed, based on the IT and OT of a medium-
sized water supplier, is therefore the main concern of this
publication.

The testbed proposed in this work aims to improve the state
of the art of simulation based cybersecurity testbeds by:

• integrating superordinate Levels of a facility’s network
• implementing a wider variety of industrial network

protocols
• creating a water infrastructure testbed with increased

attention to detail regarding the simulated process
• providing a water infrastructure testbed with a more

complex network topology
This publication is structured as follows: Section II pro-

vides an overview of similar publications, which is used in
Section III to identify existing research gaps in the field of
cybersecurity testbeds focusing on industrial control infras-
tructure. Subsequently, our proposed approach to address the
previously identified research gaps is described in Section
IV, followed by a roundup of our intermediate results in
Section V. The paper is then concluded, in Section VI, by
describing future work and outlining potential applications of
our proposed security system.

II. RELATED WORK

Cybersecurity testbeds can generally be divided into two
groups: testbeds mirroring the target system using a down-
scaled physical system and virtual testbeds based on simula-
tions. These two approaches can be combined with hardware



in the loop (HIL) configurations to extend a virtual testbed.
Physical testbeds have some advantages like the usually more
realistic emulation of the targeted system, the possibility to
connect IO devices, and the possibility to simulate attacks in-
volving physical access to hardware or communication lines.
Our argument, however, is that a virtual testbed is more suited
for research purposes. The main criterion for this opinion is
the lower cost and higher portability of said systems, allowing
for fellow researchers to reproduce the testbed with ease.
Virtual testbeds can be expanded upon more easily, especially
if software like the Graphical Network Simulator 3 (GNS3)
[6] is used. GNS3 allows for simple creation and monitoring
of virtual networks, which facilitates the extension by adding
additional virtual devices. The software also allows for the
integration of real hardware if it can’t be simulated.

Another aspect that has to be considered when designing a
cybersecurity testbed are the sections of a facility that should
be reflected in the testbed. For this purpose, the ANSI/ISA-
95 model [7] is used to categorize an institution’s network
topology into Levels zero to four. Level 0 refers to field
devices like sensors or actuators. These devices are usually
connected to Programmable Logic Controllers (PLC) via I/O
ports and are therefore not part of virtual networks provided
by GNS3 or similar software. PLCs and other controllers are
part of Level 1. Level 2 refers to devices that have a supervi-
sory control function. In water supply providers, this usually
includes a supervisory control and data acquisition (SCADA)
system. The Level above supervisory controls, Level 3, is
the manufacturing operations management (MOM), which
is tasked with coordinating and optimizing processes within
a facility. The top Level deals with enterprise operations
like management, human resources and strategic decision-
making and planning. The remainder of this Section provides
a summary of similar testbeds described in literature. Key
features of the described testbeds are shown in Table I.

De Brito and De Sousa [8] propose a testbed based on
the SCADA and control systems of a nuclear power plant.
The system was designed with the principles of relying on
open-source and free software if possible and the aspiration
to model a complex system with an accurate simulation. The
network topology, however, is of limited scope and does not
contain devices above Level 2 of the ANSI/ISA-95 model.
The simulated nuclear power plant is controlled by a single
PLC, which is running the open-source software OpenPLC.
Besides the power plant simulation and the controller, there
is a SCADA system and an attacker connected to the same
switch. The SCADA system, the controller and the simulated
nuclear power plant communicate via the Modbus/TCP pro-
tocol over a virtual network constructed using GNS3.

Thornton [10] describes a virtualized SCADA laboratory
controlling a simulated gas pipeline via Modbus/TCP. The
testbed consists of a physics simulation, control logic and a
SCADA system, the latter two are implemented in Python.
The physical system is simulated with a high degree of
realism using the proprietary software Matlab/Simulink. The
testbed is designed with the teaching and research of cy-
bersecurity in mind. The authors provide a suite of tools
to simulate attacks (device scan, denial of service, set point
modification) on the network. The alteration in the network
traffic caused by the attacks can be monitored using the open-
source IDS tool SNORT [16]. De Brito and De Sousa [8] note
that the implementation of the control logic in Python might

reduce the otherwise high degree of realism.
Texeira et al. [11] propose a SCADA system testbed

intended to be used for research regarding machine learning
in cybersecurity. The authors simulate a water tank connected
to two pumps and a control valve. The system communicates
with a PLC, a data logger, and an HMI via the Modbus/TCP
protocol. The testbed has a simple network topology as well
as a simple physical system simulated with a low degree
of realism. Depending on the machine learning algorithms
used, this might be a limiting factor if used for developing
machine learning based IDS. The low attention to detail
of the simulation might be explained by their intention to
generate training data for the detection of reconnaissance
attacks, which are not affected by the complexity of the
physics simulation.

Figueroa-Lorenzo et al. [12] designed a testbed to test new
security functionalities for the Modbus/TCP protocol based
on a role-based access control mechanism. The network
topology of the system has some advanced features that are
omitted in other works, including virtual local area network
(VLAN) and routing. These are, however, used to implement
the aforementioned security features and do not reflect higher
Levels in the ANSI/ISA-95 model.

A comparison of key aspects of the aforementioned publi-
cations can be seen in Table I. This table is the basis for the
subsequent identification of aspects we aim to improve over
other cybersecurity testbeds.

III. IDENTIFICATION OF RESEARCH GAPS

One striking similarity of the previously described testbeds
is the omitting of the two top Levels in the ANSI/ISA-
95 model, namely the devices connected to MOM and the
enterprise level operations of a facility or company. These
two Levels, however, should not be neglected when dealing
with cybersecurity threats, as shown in the attack on the
Riviera Beach Water Utility [4] and the planned attack on
two nuclear power plants [1], [2]. This statement is especially
true if the development of a comprehensive security solution
with a security in depth approach is the primary objective.
Therefore, we aim to develop a cybersecurity testbed that
encompasses all relevant aspects of an industrial facilities
network infrastructure, from devices that directly control
physical processes to workstations used for higher level plan-
ning and business tasks. Constructing such a testbed should
facilitate the development of defense mechanisms capable of
detecting potential threats at all stages of a potential attack,
from the delivery of malicious software to actual actions on
physical processes.

Another aspect to be improved is the degree of realism that
is achieved by the simulation of the physical process, as well
as its processes’ complexity. Both of these criteria have been
covered in testbeds that emulate different kinds of physical
processes like nuclear power plants as shown in [8] and [13].
The testbeds that emulate processes related to water supplies,
however, are overall simpler and simulated with less detail.
Another contribution of our work will therefore be a water
supply related testbed that emulates a process that is more
complex with a higher simulation accuracy. A testbed with
these properties might facilitate the development of IDS that
are capable of detecting manipulations in the application data
communicated over the network.

Implementing the two former requirements, namely in-
creasing the realism of the simulated physical process and



TABLE I
COMPARATIVE ANALYSIS OF KEY FEATURES OF RELATED TESTBED APPROACHES

Publication System Protocols Complexity of
Network Topology

Realism
(Physical process)

Network
Level (ANSI-95)

[8] nuclear power plant ModbusTCP low-medium high L1, L2
[9] not specified ModbusTCP low - L1, L2
[10] gas pipeline ModbusTCP low-medium medium L1, L2
[11] water tank ModbusTCP low-medium low L1, L2
[12] generic ModbusTCP medium-high - L1, L2
[13] nuclear power plant not specified low high L1, L3
[14] water tank ModbusTCP, Modbus high real water tank L0, L1, L2
[15] motor control Profinet S7comm medium real motor L0, L1, L2

the integration of devices on higher ANSI-95 Levels, entails
improving on our last identified shortcoming, which is the
size and complexity of implemented network topologies. This
could be improved in all simulated testbeds listed before, to
better fulfill our needs.

Most previously described testbeds seem to focus on the
ModbusTCP protocol. The protocol is commonly chosen
because it can be implemented using open-source software.
Training functionalities like IDS on datasets that only contain
one protocol, however, might limit the transferability of
models trained on the dataset, especially in a field with
as much diversity in terms of protocols as the industrial
control sector. Integrating additional protocols is therefore a
worthwhile endeavor, at the very least, to determine whether
model architecture or training of machine learning based IDS
depends on the protocols present in the network. The final
research gap identified in this paper is therefore the limited
variety of protocols implemented in previously published
industrial cybersecurity testbeds.

IV. PROPOSED APPROACH

This section will outline key aspects of our approach
and illustrate the reasoning behind the following design
decisions. The core functionality of cybersecurity testbeds is
the generation of network traffic that resembles the traffic
that could be observed in a real system. It is therefore
natural that one of the first decisions to be considered is the
manner in which the network topology of a real system would
be replicated. This could be achieved by connecting real
hardware using physical switches and routers. Our approach,
however, is based on focusing on simulations to achieve the
key functionalities of the testbed, facilitating the replication
of our work by other researchers. The network simulation
platform chosen for this testbed is the open-source software
GNS3 [6]. It allows for the flexible creation and emulation
of complex network topologies, which can be extended by
integrating real hardware through the host device’s network
ports. Figure 2 shows how physical devices, like PLCs, could
be connected to the testbed.

To implement the control functionalities in the testbed,
the open source solution OpenPLC is chosen. The PLC
software can be deployed on a variety of hardware platforms
including the widely used Raspberry Pi as well as Arduino
microcontrollers for less compute heavy tasks. But more
importantly, it is also compatible with containerization tools
like Docker to enable a resource efficient integration in the
testbed. Combining these two traits makes OpenPLC well
suited for our approach of generating a virtualization centered
testbed that can be extended with real hardware if necessary.
OpenPLC also provides an IDE that allows the development
of PLC software in the programming languages described in

IEC 61131-3 [17]. The most notable limitations of OpenPLC
are the small in variety of supported protocols (Modbus/TCP
and DNP3) and its early development stage. According to
the developers, it is not yet ready to be used in production
environments.

Emulating higher Levels of the ANSI/ISA-95 model [7]
is achieved by integrating virtual machines running the op-
erating system Microsoft Windows, which is typically used
for tasks involving office software or other planning tasks.
These devices can be separated from devices representing
Level 2 and below using VLANs or subnets created by
virtualized routers. Devices operated by staff are often the
first ones to be affected by an attack, as techniques like social
engineering create access to vulnerabilities that could not be
exploited in other systems. They are also often connected to
the internet directly, exposing them to a variety of threats.
The main advantage of this approach is that it might allow
an IDS trained using the testbed to detect patterns connected
to malicious software spreading from a facility’s IT to its OT
network. These devices can be replaced with Linux virtual
machines running open-source office software if there is no
need to replicate Windows specific attacks.

As already described in Section II, most previously pub-
lished cybersecurity testbeds covering water infrastructure
rely on relatively simple simulations containing only a few
components with a low degree of accuracy. Pumps are usually
simulated by assigning fixed flow rates to them when they are
switched on. This results in linearly rising/falling fill level in
water if the pump is turned on/off. Sensor characteristics like
signal noise are omitted, and so is hardware-specific behavior
like the response of pumps to being switched on or off. Our
approach comprises adapting the behavior of pumps when
ramping up to conform with a PT2 system, as described
by Shankar et al. in [18]. The measured signals are also
superimposed with noise to match the values that can be
observed in real applications more closely.

The final proposed element of our testbed approach is
the implementation of further protocols to strengthen the
transferability of models trained on our testbed to real appli-
cations. The OpenPLC software chosen to implement control
functionalities in the testbed is, as previously stated, limited
to the Modbus/TCP and DNP3 protocols. The additional
protocols to be added in the first instance are OPCUA,
Profinet, and MQTT because they are commonly used. These
extensions are planned to be realized using the interceptor
pattern [19], allowing for a straightforward implementation
without the need to modify the source code of OpenPLC. This
approach improves modularity by preventing a tight coupling
to OpenPLC. We expect the last three design decisions to
yield a testbed that is more representative for a wider range
of real life systems. Thus aiding with the transfer of findings



to other testbeds as well as real life systems.
In summary, we propose the development of a cyberse-

curity testbed applicable to critical infrastructure with the
following design principles in mind:

• virtualization and simulation focused design
• usage of open-source software whenever possible
• representing Level 2 and upwards of the ANSI-95 model
• improved simulation accuracy and complexity of simu-

lated system
• expansion of the protocols that can be utilized in the

testbed

V. INTERMEDIATE RESULTS AND INTENDED USE

Because work on our testbed is still in progress, some
of the design features described in Section IV are not yet
implemented. This includes the incorporation of additional
protocols using the interceptor pattern, as well as the addition
of real hardware equipment and other simulated components.
The improvement of simulation detail is already imple-
mented. Figure 1 shows the simulated throughput of a pump
as depicted in the SCADA element of the testbed. The flow
rate is overlaid with a normally distributed error, with a
variance depending on the current flow rate as well as its
derivative. These adaptions are made to create a signal that
better matches recordings made in a facility of one of our
industry partners. The step response of the pump is modelled
using PT2 system [18] calculated using the Euler method.
The SCADA system also visualizes other system parameters

Fig. 1. Flow rate through simulated pump shown by SCADA system.

like fill levels. The provisional topology of the system in
GNS3 is shown in Figure 2.

Office
Workspace 2

Well-PLC

Pump-PLC

Tank-PLC

RouterSwitch Physics
Simulation

Office
Workspace 3

Switch
Office

Workspace 1

Layer 3&4 Layer 1Layer 2

SCADA

Host Server

Physical
Ethernet

Port

Physical
Device

Fig. 2. Network topology of the testbed.

The overarching objective of our research project is the
development of security functionalities for industrial control
infrastructure that are supposed to be deployed on dedi-
cated and cost-effective embedded devices. These devices
are to be positioned on strategic edges within a facility’s

network topology in order to form one distributed system.
The testbed described in this publication may contribute to
the development of said system in several ways. Our plan
is to utilize it as a tool to generate data suitable for the
training and validation of machine learning based algorithms
capable of detecting potential intrusions, manipulation at-
tempts, or other malicious actions within a facility’s network.
We plan on realizing this by performing cyberattacks using
an automated attack framework, concurrently developed as
part of our research project, and recording the resulting
traffic. The distributed nature of the proposed systems might
facilitate detecting malicious behavior on multiple stages of
a potential cyberattack. Examples for these stages would
be lateral movement within a facility’s IT network, VLAN
hopping to traverse security boundaries between OT and IT
networks, or the actual manipulation of control systems to
disrupt operations or harm the system. This defense in depth
approach should raise the odds of detecting cyberattacks,
especially if these attacks are complex multi-stage processes.

The primary subject of our research are critical infrastruc-
ture providers, and more specifically in this publication water
suppliers. The results of our project, however, might also
be applicable to other industrial networks. Systems designed
corresponding to the holistic approach to intrusion detection
and cybersecurity that this publication argues for, might find
application in all facilities implementing networks organized
in a layered structure resembling the ANSI/ISA-95 model.
This includes, besides the apprehensively mentioned critical
infrastructure providers, the majority of larger manufacturing
plants. Protecting these assets from cyberattacks has also
been a growing concern over the past decade, prompting
companies to invest in their cybersecurity infrastructure.
Investing in cybersecurity is voluntary for most companies,
although, as already mentioned in Section I, companies of
special interest to the state of Germany can be obliged to
follow the same regulation. The BSI can consider companies
to be of special interest due to their economic importance
or their role in defense industries. All large players in the
automotive, chemical, or aviation industry might thus be
affected by the same legislation as critical infrastructure
providers in the future.

VI. CONCLUSION

This publication describes the development of a cyberse-
curity testbed replicating the operations of a water supplier’s
IT and OT infrastructure. Our approach is based on the
following design considerations: our testbed is created as
a virtualization and simulation focused system in order to
facilitate the scalability of our work and its replication by
fellow researchers. We also utilize open-source software
whenever possible for the same reason. Our approach also
encompasses improving our testbeds capability in comparison
to other published water infrastructure testbeds by providing
a more complex and detailed physical simulation. Further-
more, we propose the inclusion of devices in the network
topology that can be attributed to the Levels three and four
of the ANSI/ISA-95 model. This allows us to replicate attack
scenarios like the lateral movement within a facilities IT or
attempts to overcome security mechanisms like VLANs or
subnets. Our final contribution to the current state of sim-
ulated cybersecurity testbeds is the incorporation of further
industrial protocols.
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Abstract— Memory management and availability of memory 

is critical for safe functioning of automotive or industrial 

systems. The advent of autonomous systems makes availability 

a critical element to achieve fail-operational state. Such complex 

and critical systems need to adhere to functional safety 

standards. Predictive maintenance and control are important 

aspects which helps to achieve it. This paper will discuss the 

current state-of-the-art of memory management and present 

two new architectures to ensure memory availability without 

any impact to the system operation.  

Keywords—memory management, bit error, predictive, 

maintenance, control  

I. INTRODUCTION 

    In modern complex embedded systems, reliability of 

memory has a significant impact on the long-term availability 

of systems. Memory faults are one of the most common faults 

in current embedded systems. Highly effective techniques 

used in the protection of memory against faults have the 

downside of being expensive due to complexity of systems 

and increase in memory sizes. Error Correction Code (ECC) 

is the most commonly used technique for runtime 

maintenance of memory, which can detect and correct errors 

in m-bit of data. But ECC alone cannot be the answer to all 

the relevant memory faults, as any occurrence of permanent 

fault in a particular memory region make its availability null 

and void. Memory is also deemed unavailable if a high 

number of correctable memory errors occur frequently in a 

given memory location. Such errors cause a significant 

impact on functional-safety-based systems, which are forced 

to move into a safe-state in the absence of memory 

availability.  

     For autonomous or high Safety Integrity Level (SIL) 

systems, when the memory location is deemed unavailable, 

the application would be degraded or put into a safe state, 

which is not desirable. This paper proposes two architectures, 

which improve memory availability in case of the presence 

of correctable and non-correctable memory errors and which 

are agnostic to the application during both development and 

operation. 

II. MEMORY AVAILABILITY 

     Memory is a key component in embedded systems and 
importance of availability is vital for the system to operate 
safely and securely. Memory can be volatile and non-volatile 
in nature. Memory serves to keep information in the form of 
code, configuration, runtime data for processing, storage, 
diagnostics, and efficient retrieval of access like cache. To 
improve memory availability, predictive maintenance and 
predictive control are essential components [1].  

III. PREDICTIVE MAINTENANCE 

Predictive maintenance is based on digital analysis of 
available data and subsequent prediction of future failure of 
systems, sub-systems, or components. Structure of the general 
predictive algorithm assumed in this article is shown in Fig 1. 
There are many types of predictive maintenance algorithms 
[1], [7]. This paper concentrates on the following classes 
related to memory availability: 

• Corrective or run-to-failure maintenance: The goal is 
to restore the functionality when a fault is detected. 
This type is well-established in the memory domain 
with the most common ECC technology used to detect 
and correct n number of erroneous bits of a memory. 

• Risk-based maintenance: These algorithms aim to 
address risk-sensitive systems and components to 
ensures efficient allocation or replacement of 
resources to ensure safe operation.  

• Preventive maintenance: Preventive algorithms focus 
on reducing the likelihood of failure or breakdown by 
preventing potential issues from arising. This 
involves monitoring of historical data and past 
failures to establish well-structured maintenance to 
avoid such failures to re-occur. 

 

Fig 1. Concept of predictive memory maintenance and control 

This paper will take advantage of preventive maintenance 
and risk-based maintenance principles for the memory 
availability to contribute to the corrective maintenance state-
of-the-art. For the corrective or run to failure maintenance,  
there are many algorithms and measures which predict mean 
time to failure of memories, e.g. using memory reliability 
models [2], [3], [4]. This paper will take advantage of existing 
error detection and reporting/monitoring measures of the 
memory management. In this paper, we will limit to the 
following monitoring measures for simplification of our 
proposal: 

• Aging factor: Number of read and write accesses to 
the memory.  



• Errors reported: Number of both correctable and 
uncorrectable single-bit and multi-bit errors.  

The first monitored set is the aging factor, which monitors 

number of accesses made to specific memory area. This set 

aids to determine the remaining lifetime of given memory 

location as it is limited by memory technology. The second 

monitored set is the reporting of correctable and 

uncorrectable errors associated to the memory. This set aids 

to determine of the remaining lifetime of the memory and 

likelihood of the memory being unavailable. For example, the 

DRAM memories which report correctable errors are 70-80% 

more likely to develop uncorrectable errors [5], [6]. Based on 

risk-based maintenance and preventive maintenance 

principles, the two monitored sets of data are the key inputs 

to predict the risk of failure and subsequently prevent the data 

present in the faulty memory from being unavailable to the 

system. In a simple case, the risk can be evaluated based on 

relation of monitored data with configured upper threshold of 

recorded events. If potential risk is beyond the acceptable 

limits, the predictive control algorithm is triggered to prevent 

upcoming failure and related unavailability. The predictive 

maintenance flowchart is shown in Fig 2.  

 

Fig 2. The predictive maintenance algorithm flowchart 

IV. PREDICTIVE CONTROL 

     In terms of memory management, the predictive control is 

an algorithm, which predicts the next available and viable 

memory to avoid recurrence of failure, which restricts 

availability. Such predictive control algorithm is triggered by 

predictive maintenance algorithm identifying that the failure 

could reoccur posing a critical risk for the availability of the 

function as shown in Fig 2. A number of similar algorithms 

or systems were proposed in the past. Such proposals usually 

monitor number of correctable memory error reported and 

remap memory upon reaching configured threshold of 

captured events to replace faulty memory. These types of 

algorithms are applicable for mass storage devices, non-

volatile memories, semiconductor device caches, etc. [10]. 

     This paper offers two algorithm proposals to achieve 

predictive control for memory management, reusing and 

extending on the existing technology. 

A. Proposal with memory controller 

     The first proposal concentrates on the Memory Controller 

(MC), which is assumed to be associated to a memory of 

distinct types, technologies (e.g., like NAND, DRAM, etc.), 

and volatility. The main purpose of the MC is to manage the 

data exchange between the controller (e.g., CPU, DMA, etc.) 

and the memory. The MC contains the necessary logic to 

perform read and write access, refresh the memory if 

applicable, synchronize clocks with controller or bus and so 

on. In this proposal, the MC maintains the above-described 

operational memory, but also the additional back-up memory 

which is used when memory region in the operational 

memory is predicted to fail. To check health of back-up 

memory itself, and viability of the proposed predictive 

control algorithm, the Memory Built in Self-Test (MBIST) or 

similar technique can be used at start-up or shutdown phase 

(unless the MBIST algorithm is implemented in non-

destructive manner, in which case such check can be done at 

runtime). 

     The proposed predictive control algorithm is depicted in 

Fig 3. It consists of the following steps: 

a) The MC shall ensure any new request for the memory 

location say M1 is cached. If not in cache, the MC will 

instruct the cache controller to keep a cache copy. 

This copy of data ensures back-up of the data in case 

an uncorrectable error or multi-bit error occurs in 

which the correction technology cannot correct it. 

b) The MC confirms the requested memory M1 has 

exceeded the threshold of the monitored error and 

aging factor data. If within the desired threshold, it 

will continue to perform the requested operation. Else 

it will move to the next step implementing the 

predictive control algorithm. 

c) The MC evaluates and identifies the back-up memory 

location say M2 from the free pool. The free pool can 

be part of the existing memory.  

d) Once the free location is identified, the MC will start 

the redirection process. During this process, access to 

this location will be done only on the cached copy and 

not to the actual memory location. The MC configures 

an address redirection of the affected memory 

location to the new memory location. In essence, the 

system will continue to address the faulty memory 

location, but MC will internally redirect to the back-

up memory. The system/application is agnostic to this 

redirection. 

e) Once the redirection process is completed, the MC 

instructs the cache controller to perform a cache 

writeback so that new memory location has the data 

refreshed up to date. 



 

Fig 3. Predictive control algorithm proposal with Memory 

Controller (MC) 

Compared to commonly used SoC architecture and existing 

prior arts, below are differences in terms of cost:  

• For Step a), MC capability to inform cache controller 

to cache the memory location. This would add certain 

circuitry logic as well as latency of caching the 

memory location. This can happen in parallel to 

remaining steps to nullify the latency. In terms of 

timing, worst case it would be similar to a cache miss, 

but future accesses by application would fetch from 

cache improving the performance. 

• For Step b), c) and d), no additional circuitry is needed 

as Backup memory is just another partition of the 

memory block which the MC can access.  

• For Step b) and c), certain number of cycles would be 

needed by MC logic to identify the free memory 

location. Worst case time can be determined for the 

search logic. For Step d), fixed number of cycles 

would be needed for the logic to check if redirection 

is present for the requested memory access to MC. If 

redirection is present, then the fixed number of cycles 

is required to translate the requested memory location 

to the new memory location. The timing can be made 

deterministic considering the worst time taken for the 

above steps.  

A general benefit of the algorithm is it would remain agnostic 

to the software application and its predictive nature, where 

memory remapping is permanent, thus, avoiding hard-fault 

situation. Existing prior art algorithms often deploy 

remapping techniques after the permanent faults are detected 

[8]. Similar prior art [9] proposes remapping techniques 

immediately as soon as memory detects a fault without 

predictive maintenance. In this paper, predictive maintenance 

scheme will deploy predictive control measures only if the 

risk is foreseen to happen. This provides more control and 

determinism which is critical from functional safety point of 

view. It will also avoid latency due to the control measures 

like remapping techniques applied immediately. 

B. Proposal with cache controller 

The second proposal shown in Fig 4 concentrates on the 

use of the Cache Controller (CC) with minimal involvement 

of MC associated to the faulty memory. Unlike in the case of 

the first proposal in Section III-A, the already-present cache 

memory itself (or its portion) will be used as potential back-

up memory. When backup of memory predicted for failure is 

needed, it is possible to use a dedicated section (sufficient 

number of lines) of cache configured for back-up or re-use the 

cache location currently associated to the marked memory 

location. The CC can extend existing cache attribute or have a 

new cache attribute to distinguish between normal cache and 

back-up storage. The size of cache configured for potential 

backup should be selected carefully to reduce performance 

degradation over time with an active relocation. Also, care 

should be taken to ensure memory coherency, which may 

depend upon the cache level used as back-up. Namely, the 

cache needs to be in path between relocated memory and 

masters using it. This needs to be assured by the system 

designer. The cache memory can be tested by MBIST or 

similar technique at start-up or shutdown phase to ensure its 

health.  

  

Fig 4. Predictive control algorithm proposal with Cache 

Controller (CC) 

The algorithm follows these steps: 

a) The MC confirms whether the requested memory say 
M1 monitored data has exceeded the fault threshold. 
If so, it will inform the CC that the identified memory 
location is susceptible to failure and needs to be 
replaced.  

b) The CC identifies the M2 back-up memory location 
from its cache memory upstream. It is assumed, that 
back-up memory location M2 was configured for such 
potential use, is available (i.e., not already used as 
memory backup for another faulty location by 
checking the attribute), and that cache is in path 
between M1 and all bus-masters using it. 

c) The CC moves the data to the now-dedicated cache 
section and marks the existing cache location’s 



attribute as permanent for backup data storage. The 
CC informs MC of this change. From this point on, 
the controllers will always access the data from this 
cache location for any request of M1 memory 
location. In other words, the cache line(s) M2 will 
become permanently valid to shadow memory 
accesses for M1. 

Compared to commonly used SoC architecture and existing 

prior arts, below are differences in terms of:  

• For Step a), MC capability to inform CC the details of 
memory location and cache the data. This would add 
certain circuitry logic as well as additional latency to 
perform this action. In terms of timing, worst case it 
would be similar to a cache miss, but future accesses 
by application would fetch from cache improving the 
performance. 

• For Step b) and c), no additional circuitry would be 
required as Backup memory is just another partition 
of the cache block which the CC can access. The 
cache attributes would be used to differentiate if 
actual cache is used or used as back-up memory. 

• For Step b), certain number of cycles would be needed 
by CC logic to identify the free memory location. 
Worst case time can be determined for the search 
logic. 

• For Step c), fixed number of cycles would be needed 
for the logic to check if redirection is present for the 
requested memory access to CC. If redirection is 
present, then the fixed number of cycles is required to 
translate the requested memory location to the new 
memory location. The timing can be made 
deterministic considering the worst time taken for the 
above steps. 

Unlike in some of the prior art, where caches may be used for 

dynamic memory remapping or only remap within faulty 

cache itself, the use of M2 cache memory as a replacement 

for M1 is intended to be permanent [10], [11], [12]. This 

reduces available cache memory to the system over time but 

improves overall system availability even through device 

reset cycle. Other advantages of this proposal are its 

predictive nature, and that its implementation does not 

require significant changes compared to memory architecture 

of existing SoCs available in the market and only the CC 

needs to fetch content of M1 to M2 and make sure that M2 

cache lines remain valid permanently (both extensions of 

common existing CC capabilities). Similar prior art [13] 

proposes predictive control measures but it performs 

remapping immediately when memory fault is detected, 

without predictive maintenance. In this paper, predictive 

maintenance scheme will deploy predictive control measures 

only if the risk is foreseen to happen. This provides more 

control which is critical from functional safety point of view.  

CONCLUSION 

 Going forwards, with advent of more complex 
Functional Safety compliant embedded systems, current 
technology cannot scale up to prevent the issue of memory 
unavailability. Our paper proposes two predictive 

maintenance and control architectures that tackle this issue 
and help to achieve availability of memory for critical safety 
systems and thus ensure fail-operationality.  

Both the methods take advantage of the existing state-of-
the-art and extend them to achieve the desired functionality. 
The first proposal describes using memory controller and a 
dedicated backup memory for a given memory region, when 
it becomes faulty. The second proposal describes using an 
existing cache controller and memory with minimal changes 
to achieve the same goal. The above methods execute agnostic 
of the running applications in the system. The two proposals 
which are compared against existing prior art has minimal 
circuitry changes and determined latency based on worst-case 
time calculations of the steps described.  
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Abstract—After several decades of automation (robotics, 

machine learning, AI) targeting to remove the “weaknesses” of 

the human, the re-integration of the human at the core of the 

creation process is seen as a key aspect to combine ingenuity and 

experience from the human together with the accuracy, speed 

and capability to manage large complex set of data from the 

robot / from the software. While solutions for human-machine 

interaction and for operator monitoring do exist, to the best of 

the author’s knowledge none of the solution is able to create a 

cognitive profile of the operator (capability of the operator to 

assess a complex situation and correctly react in a timely 

manner) and adapt its behavior accordingly. In this paper, we 

introduce the Ipsilon Cognitive Personality, enabling the 

computation of a cognitive profile of the operator assessing 

possible declining sensory perceptions, processing capabilities,  

cognitive dysfunctions  associated with dementia-causing 

comorbidities.  Further, we combine this approach with state-

of-the-art operator monitoring systems to shift from attention 

monitoring toward prediction of risky operation. Finally, we 

discuss how this combined approach can be used in automotive 

domain to improve cooperative, connected and automated 

mobility.       

Keywords—human system interactions, human monitoring 

and error evaluation, cognitive assessment, driver monitoring 

systems, autonomous driving 

I. INTRODUCTION  

The uptake of automation, embedded software and 
machine intelligence has been a game changer for the last 40 
years in all industries. This has enabled all kind of processes 
to become faster, more accurate and more repeatable, finally 
increasing industrial competitiveness (e.g., industry 3.0 with 
the uptake of IT systems and robotics, industry 4.0 with 
autonomous systems and machine learning), and disrupting 
traditional applications (e.g., consumer electronics, 
automotive with the advances in autonomous driving 
functions).  At the same time, the technology does not enable 
(yet) the integration of the human’s expertise and ingenuity in 
the machine-based automation to remove the human out of the 
loop – the human is still required at the core of the value 
creation [1]. A key challenge is the design and deployment of 
innovative and integrative human-system interactions, both in 
industrial processes and end-consumer products. Human-
machine cooperation, human-computer interaction or human-
robot collaboration are dedicated fields of research, see e.g., 
[2][3][4]. Beside this, the understanding of the operator 
awareness to apprehend the situation – and react appropriately  
– is a key aspect, already integrated in European regulation in 

the automotive domain [5] and allocated to a dedicated field 
of research [6].  

According to the literature main reasons for road accidents 
are distraction, fatigue and aggressive driving style [7], 
leading to the development of solutions to monitor different 
states categorized among 5 domains : drowsiness, mental 
workload, distraction, emotions, and under the influence of 
alcohol or drugs [8]. The target is to provide support along the 
three core activities during the driving process, which are 
situation awareness, timely decision-making and action 
delivery. The sensing technology is typically integrating one 
or a combination of the approaches listed below [7]: (a) 
Electroencephalogram (EEG) for brain activity and driver’s 
fatigue; (b) Electrocardiogram (ECG) to measure electrical 
activity of the heart and provide indication on driver’s stress 
or fatigue; (c) Electrooculography (EOG) to monitor eyes‘ 
movement and provide indication on attention and fatigue; (d) 
Electromyography (EMG) to monitor muscle activity to 
provide indication on fatigue; (e) Electro-Dermal Activity 
(EDA) or galvanic skin response (GSR), respectively (f) skin 
temperature (ST) to provide indication on fatigue and stress. 
While some of the approaches can be efficiently onboarded as 
embedded systems to fit the needs from industrial 
environment (e.g., EOG, GSR), for other approaches (e.g., 
EEG) no embedded solutions are available and alternative 
approaches are required.    

These approaches are typically focusing on the 
physiological indicators of the driver, and making the 
assumption of appropriate operator’s brain operation with 
respect to (a) reaction to stimuli, and (b) decision making. In 
other words, it is assumed that the operator is able to correctly 
apprehend any kind of situation, take the correct decision and 
react in a timely manner. While root causes such as operators’ 
fatigue and inattention are already well addressed, other 
aspects impacting the long-term cognitive abilities such as 
declining sensory perceptions, processing capability cognitive 
decline associated with dementia comorbidities, are yet taken 
into account. Regarding the automotive domain, different 
tools exist (e.g., [9]) to identify the point in time when the 
person is not able to drive anymore. While such tools are 
valuable from a road safety perspective, these approaches do 
not consider the fluctuation of cognitive responses depending 
on different aspects such as time, environment, mood of the 
driver. Further, this approach focuses mainly on the person, 
and does consider the support from the driving assistance 
systems to improve the overall reaction. 



In the following, we introduce a solution for individual 
cognitive profiling (Ipsilon Cognitive Personality) and discuss 
how innovative driver monitoring systems (camera-based in-
cabin monitoring solution from Emotion3D) can be enhanced 
by the pre-collected data of cognitive profiling. The target is 
to make estimation of the probability of appropriate and timely 
decision-making and attention level of the operator. This 
information can be then forwarded to the industrial process for 
dynamic adaptation.  The following of the paper is organized 
as follow: In Section 2, the approach for individual cognitive 
profiling and enhancement of operator monitoring solution is 
presented. In Section 3, possible applications in the context of 
connected and collaborative automated mobility are 
addressed. Finally, Section 4 present an outlook of possible 
next steps for this research stream.  

II. OPERATOR MONITORING AND COGNITIVE PROFILING  

A. Cognitive Personality 

Ipsilon Cognitive Personality has been developed based on 
its clinical version which is digital cognitive assessment.  It 
presents high user acceptance by using gamified data 
collection with simulated piano playing (see Fig. 1), which is 
highly associated with executive functions, quasi-
simultaneous decision-making from visuospatial task 
recognition. Music notes function as spatial-motor 
instructions,  and users are to encode them to physical 
locations on the simulated keyboard in the app. It collects 
time-stamped finger tapping responses and their accuracy on 
location as primary data points.  As a Cognitive Personality 
assessment, it uses the same data points as the clinical version 
but uses different analytic method to evaluate impulsivity and 
adaptation skills of the users besides the mentioned cognitive 
functionalities. 

 

Fig. 1. The Ipsilon system: data collection by game playing 

The target is to provide detailed feedback over attention, 
processing speed, impulsivity and learning capability of the 
operator to adapt the industrial process and the human-
machine interface for customized interactions, leading to 
improve safety and inclusiveness of the operation. Especially, 
11 profiles – categorized under 3 main pillars – can be 
identified: Pillar 1: Low learning, with the profile “LD” for 
learning dysfunction suspected, remedial and motivational 
training highly recommended; Pillar 2: Moderate, with the 
profiles “I1”: impulsive trait observed with consistent error 
rate; “E1”: error-dependent, repetitive learning type, slow 
improvement; “H”: consistent high error rate, potential lack of 
motivation and/or low learning capability; “S1”: slow learner, 
inconsistent response accuracy with longer response time 
logs; “S2”: slow learner, long learning curve expected, but 

will improve; Pillar 3: High performance, with the profiles 
“I2”: impulsive but high performer, some variability in 
response errors observed; “E2”: error-dependent with 
repetitive learning type, fast improvement, “F”: fast and 
consistent learner and performer; “A” fast consistent learner 
with random inattention logs; and “C” cautious learning 
behavior, may take time but with high accuracy / quality work 
expected. The pre-collected data of cognitive profiling 
(gathered through regular operation of this check) will support 
on one side the operator to increase his/her awareness in 
his/her own skills, and on the other side will support the real-
time driver monitoring system to better customize the vehicle 
reaction to the specific operator needs. Ongoing study is 
currently exploring the correlation between this approach and 
the widely accepted Trail Making Test [10], which provides 
information about visual search speed, scanning, speed of 
processing, mental flexibility, and executive functioning, and 
is sensitive for cognitive impairment.  

B. Camera-based in-cabin monitoring solution  

In-cabin monitoring solutions, as such provided by 
Emotion3D for the automotive domain, analyses human 
characteristics and action in real-time inside vehicles via 
cameras. This enables innovative safety, user experience and 
automation capabilities and addresses nowadays as well as 
future occupants’ needs. The core of Emotion3D's system is 
its ability to integrate data from multiple sensors, including 
EEG, ECG, EOG, EMG, EDA, and skin temperature, each 
chosen for their proven effectiveness in monitoring specific 
physiological indicators of a driver's state. For instance, EOG 
sensors are adept at tracking eye movement, offering precise 
data on a driver's level of attention or fatigue, while ECG and 
EDA sensors provide invaluable insights into stress levels and 
emotional state. Recognizing the challenges of deploying 
certain sensors, such as EEG, within the automotive 
environment, Emotion3D employs a strategic approach to data 
integration. The advanced AI algorithms synthesize data from 
more easily onboarded sensors like EOG and EDA and enable 
the creation a comprehensive picture of the driver's state 
without the need for invasive or impractical equipment. This 
integrated data approach allows Emotion3D to move beyond 
mere detection of physiological states and thus offer 
predictive insights and proactive safety interventions. By 
understanding the nuances of how various factors (to 
illustrate, time of day, environmental conditions, and the 
driver's emotional state) interact and affect driving behavior, 
the system can anticipate potential safety risks before they 
escalate into serious safety incidents. Furthermore, 
Emotion3D's technology enhances the synergy between driver 
and vehicle through its advanced analysis. By feeding real-
time data into the vehicle's assistance systems, Emotion3D 
enables a more adaptive and responsive driving experience. If 
the system detects a decline in the driver's alertness or an 
increase in stress levels, it can trigger adaptive responses from 
the vehicle, such as alerting the driver, adjusting driving 
assistance features, or in critical situations, taking preventive 
actions to safeguard the occupants. 

C. From mental workload indicator toward cognitive 

assessment  

Physiological indicators exist to address mental workload, 
and include EDA (galvanic skin response), EEG or EOG 
(pupil diameter) [8]. At the same time, they are difficult to 
implement as embedded systems in an industrial context (e.g., 
EEG), respectively provide immediate information without 

Simplified music notes function as spatial 
instructions.  
Red indicates your right hand and the 
corresponding field on the right, blue with left 
hand and corresponding field on the left.

Collecting time-stamped finger 
tapping response and its accuracy, 
generates several parameters to 
compile index scores and
assessment

Takes 5 minutes



clear baseline (e.g., pupil diameter relying on EOG) which 
represent a challenge in terms of assessing the immediate risk 
related to mental load. The opportunity by combining pre-
collected data of cognitive profiling with real-time driver 
monitoring systems is to refine the understanding of the driver 
status, finally providing more comprehensive assessment 
about the immediate risk associated to the current situation 
and the capability of the driver to appropriately react to the 
given situation. Hence, the outcomes of the cognitive profiling 
test add a degree of interpretation to the monitored data. The 
test can be administered up to about a month prior to the time 
when the real-time data is collected.  In our clinical studies, 
the profiling data has been very consistent and does not vary 
up to almost a year unless there is any cognitively altering 
event (e.g. stroke, diabetic onset, contusion to the head). The 
cognitive profile provides information about visuospatial 
processing skill, which is the de-facto testing criterion to 
assess elder driver's cognitive fitness.  Our value proposition 
is that the gold standard tests (“Trail Making Test” [10]) need 
to be administered by a qualified clinician (e.g. nurse, 
physician), but our solution functions as self-care digital 
cognitive assessments and does not require clinicians to be 
used as long as it is in the research setting at this time.  We are 
in the process to file for CE Mark and other regulatory 
certifications to be able to operate as clinically qualified tool.  
Further, the integration of interior/exterior sensor fusion will 
enable to develop robust and responsive human-robot 
collaboration (HRC) environments. This could improve the 
adaptability of the HRC systems to the real-time cognitive 
state of the worker and external environmental factors. To 
reach this target, data from the cognitive personality 
assessment will be fused with data collected from the cameras. 
We exploit latest advances in Machine Learning (ML) in an 
innovative and novel way, following the multi-layer concept 
of neural networks for dividing complex problems into 
simpler sub-problems but using highly simplified architecture 
and low-complexity classifier representations (e.g. random 
forests). This delivers ML learning algorithms at a fraction of 
computational resources (estimated 5-10%), memory (less 
than 20 MB compared to 300+ MB) and effort while still 
generating high-quality outcomes. This leads to outstanding 
high accuracy and robustness even under challenging sensing 
conditions and allows the execution of accurate operator 
awareness recognition solutions on low-resource embedded 
CPU platforms.   

An important enabler for industrialization of the solution 
will be the development of AI solutions in compliance to 
European regulation. Especially, the development of unbiased 
and ethical AI will be key to ensure that the cognitive 
personality trait analysis and operator monitoring systems are 
inclusive and ethically sound, finally ensuring optimal 
protection and support for every worker, regardless of their 
background. Ethics and user acceptance are key issues, too. 
Our studies have been done according to IRB ethics 
committees' approvals and under their strict protocols.  
Surveys conducted with the clinical studies suggested the high 
acceptability of our solution among users as non-stigmatizing, 
easy-to-access gamified solution for cognitive profiling/ 
assessment alternative. The proposed solution is a digital / 
computerized cognitive assessment aid per FDA guidelines 
(similar with EU-based guidelines) being prepared to file for 
their certification process. The limits with such medical 
diagnostic tool to be implemented in the driving fitness 
assessment can be the early cognitive impairment detection of 

elder drivers at large numbers, meaning that there may be a 
need for regulatory and systematic exploration on how to 
categorize those who are at borderline of mild cognitive 
impairment (precursor to dementia) and how to set the 
guidelines with them for their driving fitness and support.   

III. EXPLORATING THE POTENTIAL: ROAD TRANSPORT  

In 2021, road accidents were responsible for the 
unnecessary loss of 19,800 lives of EU citizens [11]. Analyses 
suggest that human error is an element in the causal chain of 
most road crashes [12], and a detailed study on accident 
causation factors on European streets [13] showed that 25% of 
the analysed accidents were caused by temporary person-
related functions (influence of alcohol, drugs or medication, 
distraction and physiological stress). The introduction of 
advanced driver assistance systems and autonomous driving 
functions is expected to reduce the number of required human 
interventions, and ultimately the number of collisions [14]. 
Considering the fact that connected and fully automated 
driving (SAE level 5) will not be completely deployed before 
2040 [14], complementary solutions are required to monitor 
and predict driver’s fitness, to trigger appropriate reactions 
and finally minimize the number of hazardous situations.  
Automated driving (AD) is the most promising but also the 
most challenging area for innovation in the automotive 
industry in the coming decades. This is confirmed by a number 
of roadmaps and action plans issued by policy makers and 
government agencies [15] [16]. In Table 1, different use cases 
identified by the 5GAA automotive association [17] related to 
cooperative, connected and automated mobility (CCAM) are 
revisited. The idea of CCAM is to use as many information as 
possible to drive safely, efficiently and with a high degree of 
comfort and user acceptance. The term “connected” implies 
that data is exchanged among vehicles, but also between a 
vehicle and the road infrastructure. Referring to the use case 
in Table 1, data from sensors mounted at an intersection is 
transmitted to the vehicle via so-called collective perception 
messages (CPM) [18]. The data elements are a source of 
information for decision making in the CCAM functions in the 
vehicle. By introducing the cognitive personality trait 
analysis, the decision-making process receives additional 
parameters in the CCAM functions, illustrated in the 
following by the potential of the proposed approach. 

The specificities of professional drivers (e.g., logistic 
operators) needs to be highlighted in this context. Hence, in 
contrary to normal drivers, the intensity of driving (8 hours a 
days) and thus the experience is significantly higher than 
standard drivers. At the same time, the regulations are more 
strict (e.g., maximum driving time without a break / per day) 
and comprehensive monitoring solutions are state of practice 
(and well accepted). The group of professional drivers is quite 
heterogenous. Looking at professional truck drivers, numbers 
show that 51% of all accidents on the road with HGV (heavy 
good vehicles) are caused by distraction. Additionally, 8% of 
all accidents result from fatigue and drowsiness. More than 
80% of all accidents are caused by human errors even for 
professional continuously trained truck drivers [19]. Today’s 
HGVs are equipped with a lot of assistance systems provided 
by OEMs and for route planning in logistics operation. In [20] 
a future solution called semi-automated platooning is 
discussed with the result that the traffic safety and energy 
efficiency can be increased substantially. To sum up, a long 
transition period can be expected until automated driving is 
widely rolled out. However, fewer truck drivers are available 



being under increasing pressure. Consequently, solutions that 
monitor the driving behaviour and consider the current 
cognitive profile of the driver are highly desirable. 

An additional societal aspect to consider ageing societies 
with the uptake of advanced driving assistance systems and 
autonomous driving technology, new set of problem may arise 
with the risk of  greater numbers of dementia onset due to the 
reduced, practice-able cognitive tasks, such as driving. The 
realistic impact of either lack of driving opportunities for the 
elders and/or the high level of cognitive assistance from the 
automated driving systems may impact the public health on 
cognitive wellness among older adults. The  impact on public 
health needs to be put into consideration while addressing 
safer and more inclusive road transport in a 360° perspective.   

IV. CONCLUSION AND OUTLOOK  

The usage of the cognitive personality is introducing a new 
layer on operator monitoring system by intertwining 
psychology and neurology. It enables to create a relationship 
between the current situation and the likelihood for correct and 
timely reaction of the operator, respectively to predict the 
cognitive responses/ tendencies associated with the operator’s 
personality. This information shall be used for dynamic 
adaptation of the process (a) to keep the operator somewhat 
relaxed (not stressed), but also attentive (not sleepy/ drowsy), 
respectively (b) to trigger appropriate, customized 
countermeasures in case the cognitive profile of the operator 
is likely to lead to hazardous situation for the given situation.  
We believe that a more human-centric approach is required by 
combining the expertise and ingenuity of the human with the 
accuracy and analytic capability of the machine. We expect 
that such approaches will increase safety (less hazardous 
situations), increase user acceptance for automated functions 
(higher usage rate), and increase inclusiveness (being able to 
include higher range of population, either as worker for an 
industrial process, or as user of a product).  
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TABLE I.  TABLE TYPE STYLES 

Road situation  Tailored driving function  Expected impact  

City driving – Vulnerable 

Road User (VRU) detection 

Automated identification of 

(VRUs) and warning 

Higher awareness on the VRUs to trigger warning function in case of 

collision course while taking into account driver’s expected reaction time 

Adaptive cruise control 

operation 

Distance between ego and 

lead vehicle  

Increase comfort and user acceptance by profiling vehicle behavior in a 

similar range as of the driver’s behavior 

Vehicle approaching a turn Pre-emptive braking control More conservative behavior depending on the assessed cognitive 

impairment level of the driver 

Emergency cornering 

scenario 

Next-generation stability 

control system  

More invasive interventions of the direct yaw moment controller to track 

the road curvature, depending on the driver’s condition 
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Abstract— AI-ML suffers from a reliability glass-ceiling 

phenomenon (e.g.  ~10-3 error/inference), making it 

incompatible with safety-criticality. Several orders of 

magnitude are missing. We explain why, we point to the 

characteristics of ML that conflict with the assurance objectives 

assigned to safety-critical developments. Could encapsulation of 

ML constituents into fault-tolerant architectures, ML 

development assurance, and software/hardware development 

assurance, altogether mitigate the gap? We argue that in spite 

of impressive progress of ML State-of-The-Art, the answer is 

negative.  Drawing from Topological Data Analysis (TDA) and 

set-based non-linear control, we propose to supplement ML 

point-based specification and verification with volume-based 

specification and verification to meet 10-5 err./ inf. levels, as a 

minimum. We outline the rationale of a new research field we 

name (Ultra) Reliable Machine Learning, at the confluence of 

TDA, statistics on manifolds, and ML safety assurance. Some 

cross-domain safety regulation principles guide the underlying 

rationale. We illustrate the methodology on image classification. 

Keywords— Machine Learning, ML reliability, Safety 

assurance, ML assurance, latent manifold, Topological Data 

Analysis, persistence homology, extensional coverage analysis. 

I. INTRODUCTION 

Data analysis and statistics have first developed to extract 
synthetic information from population data as insights on 
complex phenomena (descriptive statistics). Inferential 
statistics then focused on explanatory models of past 
observations, to get predictors on some limited aspects of 
complex phenomena. Never until recently, had statistical 
estimation to address safety-critical ‘control’. We use 
‘control’ in the broad sense of OODA loops (Observation, 
Orientation, Decision, Action), where control of physics is 
involved and life, goods or environment are at risk. 

Machine Learning, especially Deep Learning (DL), 
opened a new era: unprecedented performance in machine 
vision and problem solving in high dimension. However, 
chaotic behavior exemplified by adversarial examples plagued 
DL [39], and is still a matter of concern. Could DL-based 
components, developed with extreme rigor and encapsulated 
in fault-tolerant architectures, deliver services that meet the 
reliability requirements specific to safety-critical ‘control’? 
This type of requirements is new to Machine Learning and 
data science. 

                                                           
1 Development Assurance Level 

The co-authors of this paper are members of the 
Embedded France association’s working group dedicated to 
analysis of safety assurance standards in all safety-related 
industrial domains, to contribute their evolution [24]. We 
investigate the case of Machine Learning in this paper since 
ML-dependent safety-criticality is now on the agenda of 
aeronautics [2] and of automotive industry. Our focus is 
limited to ML reliability, ML verification, and to safety 
assurance of ML-dependent systems. 

To our knowledge, current best accuracy scores on the 
easiest of image classification benchmarks (MNIST) are about 
2.10-3 error/inference [40]. From system safety perspective, 
this reliability level is poor: one error every seven lines 
containing 80 digits each. To make the gap more explicit, let 
us assume a 50Hz input stream of digits processed by an AI-
ML-dependent safety-critical vision-based controller. It 
would make ~360 generalization errors per hour, when 
reliability target in the most critical case discussed in this 
paper would be one every billion of hours.  

To address this gap, [1] screened the techniques amenable 
to improve ML reliability. They questioned feasibility of 
reaching the reliability levels required by highest DAL1s and 
concluded negatively. After some scoping and terminological 
preliminaries, we summarize this survey of reliability 
augmentation methods. We propose a conjectural explanation 
why the reliability enhancement attempts uniformly failed 
(sections II, III, IV).  

Then, we discuss why software assurance will have no 
impact on this reliability gap (section V), and why fault-
tolerant architectures will solve only the easy cases (section 
VI). At this stage, we conclude that for true ML-dependent 
safety-criticality, there is no escape from improving ML 
reliability by several orders of magnitude.  

From a geometric and topological perspective on 
approximant adjustment, we convey intuition on how great the 
challenge is.  Thanks to recent advances in Topological Data 
Analysis (TDA), we propose a research path that would 
control ODD 2  modeling, data sampling, generalization 
domain definition, and approximant adjustment more tightly 
than standard data science does today. We review some recent 
papers that suggest relevance of such an attempt. We compare 
the rationale of safety-critical software verification, with our 
TDA-enabled (U)R-ML verification proposal (section VIII). 

2 Operation Design Domain, see Road vehicles — Safety of the Intended 

Functionality ISO 21448 standard. 



 

 

Finally, we discuss whether ML-dependent safety-critical 
‘control’ could reach the ultimate reliability level of 1, i.e. 
correctness. Software engineering and assurance managed to 
ensure extremely high levels of quality. We compare the two 
domains on specification and verification. 

Contribution: we propose a diagnosis on the ML-
reliability plateau. We propose orientations to overcome the 
reliability gap by supplementing current point-based approach 
of data science with a TDA-enabled volume-based approach. 

Disclaimer: The views expressed in this paper are those of 
the authors as members of the Embedded France Working 
Group on safety assurance standards. They may not reflect the 
opinion of their affiliations. 

II. SCOPING AI-ML-DEPENDENT SAFETY 

A. Systems perimeter 

We address ML-dependent safety-critical systems. Since 
our group is cross-domain, for the rest of the paper we use the 
following convention: DAL A is an abbreviation of all the 
corresponding assurance levels in the other industrial 
domains. DAL A stands for DAL A (aeronautic), ASIL D 
(automotive), SIL 4 (railway, process industry and many 
domains) and class 1 (nuclear).  

An ML-component would be classified as safety-critical, 
synonymous of DAL A in this paper, if, and only if, it were a 
“Single Point of Catastrophic Failure” (SPCF).  In other 
words, some error, in adverse foreseeable conditions, could 
lead to a catastrophic accident. DAL A assignment is 
architectural: no mitigation mechanism in the system 
architecture to prevent some failure causality chain originating 
from the ML-component to evolve into a catastrophic 
accidental scenario. We abbreviate “SPCF-ML” such 
situations. 

Our prototypical SPCF-ML example in automotive is 
pedestrian detection systems coupled to automatic-braking 
systems. See [29] for state of the art on DL-dependent 
pedestrian detection performance: robustness and accuracy 
are still a major concern. In aeronautics, inhabited 
autonomous urban air mobility vehicle is the example we have 
in mind. More generally, we consider ML-dependent vehicle 
control, safety-critical health-care devices, and all kinds of 
safety-critical operational technologies (OTs). 

B. ML perimeter 

We consider off-line supervised learning in high to very 
high input-space dimension (e.g. 104 to 106 and beyond). We 
exclude continuous learning and recent ML developments like 
transformers and LLMs. Regarding the ML-safety survey [5], 
we address Robustness and Monitoring. Ethics and Alignment 
are out of scope of this paper. 

C. Machine-vision perimeter 

Open world semantic scene segmentation is the natural 
ML/DL computer vision long-term goal. However, we do not 
claim supplementing such complex ML developments with 
TDA at first. In this paper, we limit ourselves to development 
and assurance rationale of a proof of concept based on 
MNIST3. 10-5 err./inf. is our first milestone to fill the reliability 

                                                           
3  MNIST is a prominent entry point benchmark in image classification 
community. It consists of 70000 handwritten digits elaborated by NIST in 

the USA. 

gap. We present it as an illustrative example of a generic 
methodology expected to be progressively scaled up to ML-
processes as complex as 3D scene segmentation. After 
MNIST [35], the planned next step is LARD (Landing 
Approach Runwaw Detection) [25]. Only then, could one 
conclude on (U)R-ML practical viability. MNIST and LARD 
have in common existence of strong priors on the data 
generation process that enable structured data interpretation. 

III. TERMINOLOGICAL PRELIMINARIES 

We need to avoid misinterpretation on terms like 
‘dimension’, ‘dimension reduction’, ‘latent’ and a few more. 

A. Machine learning 

 Approximant, any function ℝn → ℝp, estimator of an 
underlying function specified by textual requirements 
and labeled datasets. We use ‘ML-model’, after 
adjustment, as synonymous of fitted approximant. 

 Inference, and generalization, are used as 
synonymous: approximant activation on some input 
vector not seen during the training, calibration, and 
testing phases. 

 Ambient space, also named embedding space: space 
where spread the vectors (or points) of the datasets. 
Depending on the context, we use “ambient space” for 

input only (nD), output only (pD), or input-output 

((n+p)D) space. For greyscale image classifiers, n is the 
number of pixels and p that of classes (e.g. MNIST: 
n=28x28=784, p=10). 

 Latent space or latent manifold, the regions of the 
ambient space where the dataset points concentrate, i.e. 
cluster. Latent space has its own dimension named 
latent dimension, or intrinsic dimension. 

 Dimension reduction. Classical interpretation is 
identification of the input space features that 
prominently condition form of the output latent 
manifold (projection on a lower dimensional space 
keeping most of information like PCA4). We never use 
this meaning. We consider ambient to latent 
dimensionality collapse by shifting from external to 
internal view of the point cloud. When continuous 
natural processes generate data, dimensionality 
collapse occurs. Physical, operational, and control 
laws constrain input, state and output data to 
concentrate in low-dimensional regions that unfold, 
split, curl, merge etc. in ambient space. (Manifold 
Hypothesis (MH) on point clouds [11]). 

B. Logics 

 Extensional, qualifies extension as defined in 
“Extension Theory” [6], i.e. vector encoding of 
magnitudes for geometric and algebraic calculation. 
In the sequel, we regard geometric and topological 
analysis of point clouds in vector spaces as 
synonymous with “extensional approach”  

 Intensional, qualifies definition of sets or objects by 
symbol sequences (logical formulas, analytical 

4 Principal Component Analysis 



 

 

expressions, characteristic predicates etc.). First-
principle models are intensional characterizations of 
process behaviors. Structural coverage in software 
testing is intensional. It is hooked to programs’ source 
or binary code symbols. Ontologies of ODDs and 
analytic formulation of data-augmentation processes 
are on the intensional side as well.  

IV. ML-RELIABILITY GLASS CEILING 

A. Reliability augmentation techniques 

In [1], a group of researchers investigated the means to 
improve ML reliability. Though ML made major progress on 
accuracy over the last two decades (1 to 2 orders of 
magnitude), 10-3/inf. is still too poor from a safety engineering 
viewpoint. [1] reviews quantitative reliability results obtained 
by model diversification, by monitoring (ODD, robustness, 
I/O consistency), by robustness enhancement techniques 
(model stability and training stability), by selective 
classification, by conformal prediction, and by temporal 
redundancy on sequences.  

Their main conclusion is the following: all the methods 
that tried to increase reliability by redundancy of independent 
models, i.e. models resorting to independent approximant 
spaces, independent datasets and independent optimization 
processes, succeeded only marginally. Reliability stayed stuck 
in the range of 10-2 / inference instead of the expected 10-4 = 
10-2 * 10-2 or even 10-6 = 10-2 * 10-2 * 10-2. Moreover, these 
techniques improved reliability at expense of significant 
availability losses. 

B. Common Cause Analysis 

Strong correlation of inference errors between 
independently developed ML-models, i.e. pseudo-
independence between redundancies, is an experimental fact 
evidenced by [1]. It is consistent with [39] where evidence is 
given that an adversarial example designed for model1 trained 
and tested on dataset1 still fools model2 specifically 
developed to be independent of model1 (datasets, 
approximant space, and optimization process). Similarly, [38] 
demonstrated a limited 13% reliability progress. It is 
negligible from safety engineering perspective given the 
reliability targets mentioned previously.  

Since in this paper we are going to compare ML and 
software engineering in the safety-critical case, we recall that 
[37] evidenced independence failures with N-version 
programming in the 1980s.  

What could be an explanation? Our working hypothesis 
that motivates our interest for TDA-augmented ML is that 
complexity of the latent manifold’s shape could be the 
common mode that correlates error occurrences between the 
so-called “independent” redundancies5. 

                                                           
5 In section X, another potential cause is considered on MNIST: labeling 

errors [41]. 

Fig. 1. Model adjustment to a point cloud (green shape adjusted to the red spots). The 

dashed ellipses delineate topologically complex regions hard to fit correctly.  

State space complexity of non-linear dynamical systems 
(attractors, curvature, holes, cavities, etc.), compelled control 
engineers to start by splitting it into covering subspaces where 
dynamics regime has some homogeneity and regularity 
amenable to a local linear approach. Then, they aggregate 
these local controllers into a unique global controller by mode 
switching and scheduling logics, up to complete cover of the 
topologically complex reachable input/state/output space. ML 
we consider in this paper addresses the same type of 
continuous data manifolds. Standard data science addresses 
training datasets all at once, straight away at global scale. 

Possibly, the ML model redundancies used in [1] failed to 
adjust reliably on the same topologically complex regions. 
Hard-to-fit regions of input space are problem dependent. In 
other words, they are ML-model independent, so they can 
correlate any pair of redundancies. Shape of training dataset is 
a potential common cause in ensemble learning. 

C. Plateauing performance 

When the approximant space is defined by the solutions to 
(n – 1) polynomial equations over n variables, the ambient 
space is nD and the latent space is 1D algebraic curves. Given 
k points in nD Euclidian space, finding a polynomial curve 
that links the k points is still an open mathematical problem 
[9]. By 2022, a proof of existence was published on the Web. 
It is under peer-review. In case of confirmation, more than a 
century will have been necessary to solve the (n-ambient, 1-
latent,) case for an intensively investigated class of functions. 

Fig. 2. 1D latent manifolds in 3D ambient space. Limiting generalization errors to 

very small number of occurrences requires controlling adjustment with extreme 

precision. Impact of “fitting” variability on the 3 projected curves (picture is courtesy 

of [8]) when “adjustment” varies slightly (difference between the dashed and non-

dashed curves). 

Admittedly, equation solving (i.e. ‘exact adjustment’) is of 
different nature than ML-model fitting. It is harder because of 
exactness of equation solving. However, precision-controlled 
fitting in high dimension is a very difficult problem as well, 
even if a “flexible” one6. We advocate that high reliability of 
generalization will necessitate sophisticated mathematical 
tools to control where and why generalization errors occur. 
Ability to explain why a generalization error occurred in order 
to fix it will be mandatory for DAL A ML. Any known error 
that potentially could be a single cause of catastrophic failure, 
should be eliminated to comply with ethics and regulation. 

D. Zero-measure verification 

Behavioral information given in point-cloud specifications 
is extremely poor with respect to: 

- immensity of high dimensional ambient spaces, 

6 Because the inverse problem is ill-posed.  



 

 

- shape complexity of input and input-output latent 
manifolds. 

 Meeting inference failure rates as low as 10-k err./inf. k ≥ 
5 is highly demanding. Sample-oriented by nature, statistical 
functional estimation naturally relies on point-based 
verification. Extensional verification coverage by end of 
testing, i.e. the covered volume of behavior, by means of some 
N-point testing dataset is N*0=0. Null cover. At the opposite, 
the nD volume of the latent input manifold over which the 
estimated function should generalize reliably is gigantic and 
nearly devoid of specification information. We illustrate the 
specification miss on the MNIST classification problem, and 
how TDA could help (section X). Worse, the generalization 
domain over which one should estimate probabilities of 
misclassification events is undefined. No integration, i.e. error 
counting, without specified integration domain, i.e. defined 
inference domain, and without error-oracle covering it 
exhaustively. Such error-oracle is named actionable 
specification in [30].  

From safety engineering and assurance points of view, 
there is discrepancy between on one hand the absence of 
explicit input-domain definition, the gigantic space where 
specification misses, the limited control of adjustment, and on 
the other hand the extremely demanding reliability levels 
required to get certification approval on ML-dependent 
safety-critical systems. 

V. FILLING THE GAP WITH SOFTWARE ASSURANCE 

Could the reliability plateauing problem (~10-3 err./inf.) be 
mitigated by implementation of ML-models with extreme 
rigor, i.e. with DAL A assurance level? The reason would be, 
following some misconceptions about development 
assurance, that DAL A developments deliver high integrity 
software, and accordingly that high integrity software would 
ensure 10-k failure/h reliability levels, for values of k ranging 
from 5 to 9, depending on industrial domains. 

The goal of software assurance is to ensure fidelity of the 
transformation process that converts system functional 
specifications like ML-models (e.g. TensorFlow 
mathematical equations) into binary code instructions. 
Fidelity, also named implementation correctness, or 
compliance or semantic invariance, means ensuring 
extensional behavioral equivalence between some ML-model 
and its executable object code counterpart. On the intensional 
side, the transformation of symbol sequences is complex. 
Preservation of the defined behavior is at risk. Regarding 
reliability of inference, DAL A ensures high trust on 
reliability invariance from model to executable object code, 
i.e. “garbage in, garbage out”. It does not ensure reliability 
augmentation (e.g. up to 10-9 err./inf.) during the 
transformation process. 

Explaining why there is no reliability augmentation 
provided by assured software is not discrediting the value of 
software assurance. Software assurance prevents introduction 
of flaws in the behavior-preserving symbolic transformation. 
One may found more information on the link between 
qualitative and quantitative aspects of development assurance 
in [10]. In particular, the domain-dependent relationships 
between reliability levels k and assurance levels (A, B, C, D) 
are conventions that associate qualitative leveling of rigor with 
expected reliability in case of residual faults. Assurance splits 
trustworthiness construction in two policy regimes (cf. section 

VII). It needs some correspondence between the two for 
global consistency. This correspondence is not a convertibility 
rule between fault-prevention rigor levels, i.e. DALs, and 
reliability levels. However, return of experience over ~50 
years demonstrated validity of these conventions. 

VI. FILLING THE  GAP WITH SYSTEM                 

FAULT-TOLERANT ARCHITECTURES 

We consider the case of catastrophic failure dependent on 
the performance premium uniquely delivered by Deep 
Learning. For pedestrian collision avoidance systems or 
autonomous air taxis, Deep Learning has by far outperformed 
the classical and certifiable algorithms of computer vision. If 
some classical underperforming algorithm is sufficient as 
safety monitor to keep controllability in fault detection-
isolation-recovery phases, then the DL-dependent channel 
provides only performance bonus. Form safety architecture 
point of view there is no true criticality assigned to AI-ML. 

We extensively discussed in the group whether software 
engineering and assurance managed over time to prove 
sufficient effectiveness so that SPCF software was introduced 
in safety-critical architectures. Answer was yes, for 
aeronautics, space, automotive and railway. Nuclear is the 
exception (DAL B at most). We have no representative of 
medical device industry in the group.  

In aeronautics for instance, in flight control systems in 
particular, there are architectures, functions, and limited 
regions of the flight domain where a specification flaw or an 
implementation error may constitute a single point of 
catastrophic failure. DL-dependent vision-based control for 
air taxis or pedestrian collision avoidance will lead to true 
SPCF-ML constituents as surely as it was the case for 
software. In the “no-backup” situations that define DAL A, 
extreme reliability is required and even perfect reliability 
named correctness. This is the motivation of our research 
program proposal on TDA-enabled (U)R-ML.    

VII. ELEMENTS OF ASSURANCE PRINCIPLES 

We review the foundational aspects of development 
assurance that interact with ML characteristics in the safety-
critical case. We start with the rationale that splits assurance 
in two policies: correctness and rareness. In the sequel, we use 
‘quantitative’ objectives exclusively for probabilistic 
quantification of event occurrences. As an example, 100% DC 
coverage, though 100% is a quantity, is not a quantitative 
assurance objective, in our sense at least. It is a software 
testing termination criterion dependent on a numerical value 
that conditions intensional cover. 

A. Correctness .vs. rareness policies  

Historical perspective helps understanding the split 
between fault prevention/elimination on one side, and 
probabilistic quantification of feared failure events on the 
other side. The former is applied to software and hardware 
development. The latter is applied to physical failure modes 
and their cascading effects. We quote the following text from 
aeronautical regulation to prove that probabilistic quantitative 
arguments were not primal in trustworthiness demonstrations. 
Logical, argument-based demonstrations of safety, even when 
software was absent (i.e. electromechanical systems), 
preceded probability-based evidences. 

Design and implementation correctness of fail-safe 
mechanisms in charge of passivating the single points of 



 

 

catastrophic failures was the first and primary safety assurance 
objective in aeronautics. It was the origin of the fault 
prevention process-based assurance methods. 

Probabilistic assurance goals were introduced for the 

reasons explained in the verbatim, but the first accepted means 

of compliance were qualitative. Arguments of assurance cases 

were similar to that of qualitative physics applied to 

conservative approximations of failure propagation through 

system architectures. Orders of magnitudes were enough, and 

(causal) independence hypothesis between component and 

function redundancies were the primary concerns. Then, came 

computer-intensive probabilistic calculations and their 

acceptance as means of compliance (e.g. fault-tree analysis 

and Markov chain models).  

Over a few decades, some  unconscious cognitive bias 
spread in the safety engineering community. It consisted in 
reducing safety assurance goals to probabilistic ones, and 
probabilistic arguments to quantitative ones.  

As software or hardware items, ML implemented models 
are deterministic artefacts. Nonetheless, as result of an 
engineering process they are realization of a random variable, 
valued by a mathematical function. The seeds of randomness 
are data sampling and stochastic features in adjustment 
algorithms. By extension, one could add as seeds of 
randomness, the model instability sources related to ill-
posedness of the inverse problem, and addressed by the 
stability assurance objectives. 

Fig. 3. Contrasting the two assurance policies. ML is amenable of both (overlay of 

green and amber). Preliminary to fig. 4 on status of SPCF generalisation errors.  

Quantified sufficient rareness of ML-component failure 
modes would be the natural choice as assurance objective. We 
discuss this option in F. We tried to map the contrastive 
characteristics of the two assurance policies and their intricate 
relations with ML assurance in the following figure. 

B. Actionable specifications 

We support the analysis in [30] that singles out point-
based specification as the prominent difficulty for ML safety 
engineering. We reuse the term “actionable”. We interpret it 

as “amenable to computational evaluation” and consider it as 
equivalent to the ‘perfect oracle’ notion of [32]. Software 
(resp. hardware) testing of the implemented ML model, 
formal verification, and probabilistic quantification of error 
events, all need a computable oracle to decide whether 
model’s response on input vector deviates from the intended, 
as specified.  

 

The specified may diverge from the intended if needs 
capture is not correct and complete. The specified is pivotal 
for the following assurance objectives: 

1. derivation of implementation from specification, 

2. correctness of implementation w.r.t. specification, 

3. quantification of failure modes. 

Computer-decidability (test oracles, failure-mode oracles) 
of the specified is necessary for both assurance regimes. There 
are ambiguity cases in image classification where even 
human-decidability is not ensured. Another source of oracle 
miss is lack of ground-truth, quite common in ML application 
to perception systems. Safety engineering and assurance are 
severely hampered by miss of deviation oracles. ML 
assurance should exclude SPCF-ML in such development 
conditions. 

C. Implementation derived from specification  

Mitigation of complexity-induced risks by decomposition 
of the specified, by piecewise refinement, and by progressive 
and traceable derivation of implementation constructs from 
specification traits, constitutes a cornerstone of assurance. It is 
a “divide & conquer” error-prevention strategy to cope with 
error-friendly complexity.  

A second cornerstone of assurance is assessment of the 
small derivation steps by independent verifiers, possibly with 
variability and redundancy in verification methods. 
Traceability is the practical means to manage complexity 
along hierarchical decomposition paths. A by-product is 
diagnosability. In case of behavior deviation w.r.t. the 
specified, traceability-enabled  backward dependence analysis 
enables precise localization of faults and errors. In turn, it 
enables fault elimination. Elimination of the known faults is 
characteristic of the correctness assurance regime. There 
would be no alternative to 100% accuracy in DAL A ML. 
Embedded known SPCF errors are ethically unacceptable. 

ML violates the derivability and diagnosability assurance 
objectives of correctness policy. Approximant structure and 
parameter adjustment cannot be stepwise derived from 
training datasets. Consequently, when 100% accuracy is not 
reached, the root cause of fail-cases cannot be localized to 
enforce the error elimination policy. Correctness regime is 
intractable for ML, as of writing this paper. 

D. No single point of failure 

Regulation considers as unacceptable severe damage 
originating from a single specification, design, 
implementation, or operation error. Fault tolerant 
architectures are required. Since fault tolerance starts with 
fault detectors, on-line deviation oracles, in other words 
actionable specifications, are required. For ML, such 
actionable specifications are inaccessible on high-dimensional 
unstructured data like text, audio, and video signals. 



 

 

E. Correctness policy 

Software was regarded as a logical artefact that, in theory, 
could be developed without faults. By nature, it cannot 
spontaneously lose capabilities contrary to physical 
equipment. For these two reasons, standard committees 
applied fault prevention policy, i.e. correctness assurance to 
software. Safety standard committees regarded quantification 
of software reliability as ethically unacceptable for any safety-
related development. In addition, it was deemed technically 
intractable in valid manner. 

Like software, and contrary to physical equipment, ML 
model cannot spontaneously lose some capability as cause of 
a failure mode. They are deterministic, designed, time-
invariant logical artefacts that make errors. Correctness 
regime should apply. However, miss of diagnosability 
prevents application of the “no-known-fault-left” policy.  

F. Rareness policy 

As seen previously, it could be an option for ML, 
considering the randomness sources in its elaboration process. 
However, it would be a paradigm shift to assimilate 
generalization errors to classical safety failure modes (i.e. 
random capacity losses). One would declare activation of 
preexisting flaws that are consequence of deliberate 
engineering choices, as equivalent to random physics-caused 
failures. 

G. Perspectives on SPCF-ML assurance 

The intent of the preceding review is to argue that there is 
no compelling choice of assurance policy for safety-critical 
machine learning. In addition, the application spectrum of ML 
is so large that a unique “one-size-fits-all” policy choice 
would be vain. Therefore, we reached consensus in our group 
on the following most flexible but principled rationale. 

Fig. 4. Both options are sensible to some extent and missing means of compliance.  

Since there is no compelling default option, our pragmatic 
stance is to leave the choice to the applicant, property-wise. 
For a given ML component, some failure modes could be 
assured by correctness means while others could be assured 
by probabilistic calculations. In our discussions, we even 
envisioned the case where a property could be partly 
demonstrated in correctness regime, and partly in rareness 
regime. Complexity of provably correct or ultra-reliable 
approximation in high dimension needs availability of any 
kind of well-founded verification technique.  

                                                           
7 Kilo-lines of code. 
8 As Low As Reasonable in Practice (risk) 

VIII. COMPARING SW/1980S TO ML/2020S 

Nearly half a century ago, software soared in embedded 
systems, while appearing brittle and raising concern about 
safety of software-intensive aircraft. In the early 80s, 
software-induced complexity ballooned as fast as grew the 
number of bugs per Kloc7. The foreseen “software crisis” for 
civil aviation lead to convention of assurance standard 
committees. First release of ED-12A/DO-178A was by 1982. 
About 40 years later, return on experience demonstrated that 
applying these assurance standards was effective. 

ML and especially DL are following a similar trajectory: 
fast massive adoption by industry in spite of instable behavior 
(e.g. adversarial examples). Like for software, there are 
concerns about safety of ML-dependent aircraft or car. 
Automotive has been the leading industrial sector in the late 
2010s. DL opened industrial viability of open- world 
computer vision. It made self-driving cars appear as a mid-
term market opportunity. Consequently, development of ML-
assurance standards started early, following ideas similar to 
that of proven-in-use software assurance standards. To what 
extent are these two histories comparable? Should we expect 
for ML assurance the success of software assurance? 

A. Similarities 

Foundations: a few decades before their respective booming 

industrial acceptance, both software and ML benefited from 

mathematical background: on computability and correctness 

for software (e.g. Turing, Floyd, Hoare); on statistical 

estimation, information and learnability for ML (e.g. Fisher, 

Shannon, Vapnik). 

 

Engineering: in both cases these theoretical foundations had 

no immediate impact on tooling and industrial best practices.  

  

High-dimensionality: software and machine learning share 

this characteristic. Curse of dimensionality to verify 

behavioral spaces is a common difficulty to meet the 

assurance requirements of the safety-critical. Safety-related 

embedded software has nowadays D10k input (resp. state, 

output) space dimensionality, with k possibly ranging from 2 

to 7, and even beyond (e.g ATM/ATC ground segment 

software). It is the same dimensionality order of magnitude 

as that of DL-based HD video streaming processes. 

 

Extensional verification cover: it was a deep problem for 

software assurance. One needed a sufficiency criterion to stop 

IVVQ activities with DAL-dependent appropriate 

confidence. Structural coverage, amenable to DAL 

modulation, was the solution. Committees were aware that 

even with MC/DC coverage, extensionally speaking, 

behavioral space cover was near zero. It was the best 

ALARP8 cost/benefice trade-off at state of the art. Why then 

did software assurance succeed? Has near-zero extensional 

verification coverage the same significance for software as 

for machine learning?  

B. Disimilarities 

Point-based specification in high dimension and 
diagnostic inability seem to us the differentiating factors of 



 

 

ML w.r.t. software. Textual software specification are often 
example-based, i.e. scenario-based or use-case based. 
However, contrary to ML, all the examples are intended to be 
generalization seeds for human. Software developers 
generalize the examples when they formalize specifications 
and algorithms. Doing so, they implicitly create behavioral 
cells in their minds, named equivalence classes at testing 
stage. On the extensional side, these equivalence classes 
create volume-units of validity in the neighborhood of the 0-
measure test cases. There is implicit augmentation of 
extensional coverage by principled code derivation and 
associated testing practice (i.e. requirement-based testing). Is 
there extensional coverage augmentation for ML, be it explicit 
or implicit? 

IX. TDA-ENABLED (U)R-ML 

We have justified why ML reliability must drastically 
improve to meet DAL A assurance objectives in the SPCF 
case. We have underlined a major difference between ML and 
software regarding verification cover: implicit volume-based 
cover for software, without any equivalent for ML. 
Foreseeable efficacy of ML assurance for the safety-related is 
likely to be far under the levels reached in the case of software. 

We propose research orientations based on Computational 
Geometry (CG) and Topological Data Analysis (TDA) in 
higher dimensions [11], [28] to overcome these problems. It 
consists in supplementing classical statistical data science 
with awareness of topological complexity of datasets to 
support ML engineering activities like sampling, definition of 
In-Distribution oracles, diagnostic of inference errors, 
volume-based verification coverage analysis, empirical 
probability computation, etc. 

In this section, we focus on sampling and explicit 
definition of the generalization domain (ID oracle). In the next 
and last section dedicated to the MNIST proof of concept, we 
adopt a broader view on use of topology. 

A. Semantics of emptiness 

High dimensional void is the ambient space around 
training and test point clouds. Emptiness around points may 
result either from principled choices, or from loopholes. 
Emptiness may be full of missing information that prevents 
from meeting correctness and/or reliability targets. We 
distinguish four types of voids: 

1) Causal impossibility 

Physics, scene or environment evolution laws, operational 
concepts or ODD constraints may prevent the generation of 
samples in definite regions of the input space. It leads to valid 
distant clusters or samples. 

2) Sampling incompleteness 

The sampling plan, compliant with the ODD and with the 
ML-model’s textual specification, may overlook some input 
space regions. Depending on local regularity and approximant 
characteristics, these sampling lacunas may or may not 
constitute potential risk of inference errors. 

3) Designed parcimony 

When variability of data is under control, sampling may 
be appropriately parsimonious. Energy saving, or footprint 
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constraints on embedded targets may also lead to local 
decimation of samples. In these cases, some extensive void 
regions are not risky. 

For sampling coverage analysis, TDA should enable 
exploration of dataset shape to identify existence of 
unintended void regions (see fig. 5 and 10). It would consist 
in detection of non-interpreted large holes or cavities as 
potential sources of adjustment complexity and potential 
common modes for ensemble learning. This activity would be 
ML-model independent since it would only consider input 
spaces and ODDs as guide for data shape interpretation. 

TDA offers a portfolio of algorithms to analyze point 
clouds in 2D, 3D, and in higher dimensions. We focus on 
persistence homology (PH) which plays a central role in TDA. 
It is used in ML for clustering, denoising, feature engineering 
(e.g. [12], [15]), and neural networks weight space or 
activation space analysis. We propose a new family of PH 
applications to machine learning whose overall goal is to 
overcome the reliability gap. 

Roughly, PH computes a growing sequence of balls 
centered on each point of the dataset. For each ball radius of 
the sequential process named filtration, it computes the ball 
intersections and creates edges between the vertices that are 
centers of intersecting balls (see the four filtration steps of fig. 
5). These edges constitute a nested mesh (simplicial 
complexes) that enables rigorous geometric and topological 
reasoning in higher dimension. They performs multi-scale 
modeling of point clouds. PH detects birth and death of kD-
cycles, cavities and holes, as ball radius grows by discrete 
steps. It ends when the radius is so large that all balls intersect. 
Figure 5 illustrates some steps of 2D point cloud filtration. 

Fig. 5. Designing the inference domain, the “meaning” of the input part of training 

datasets. Four steps of persitence homology filtration are represented. In the upper part 

of the figure are examples of typical questions to interpret the filtration steps. At bottom 

we wrote examples of interpration decisions that could lead to selection of a given 

filtration parameter. 

We propose to use PH filtration as (U)HR-ML data 
engineering practice to design some ODD-compliant 
interpretation of the training and testing datasets. Output of 
this task would be the ID-OoD9 oracle of the approximant. For 
computational tractability, latent dimension must be far lower 
than ambient dimension. 

B. Formal definition of inference domains 

To our opinion, high reliability of approximants will 
require formal and executable definition of their domain (i.e. 
of their precondition from a formal method perspective). PH 
should offer means to define ID-OoD oracles in a way that 
does not depend on distributional assumptions or ML 
techniques [22]. 



 

 

C. Extensional verification coverage analysis 

We envision PH-based construction of a latent space 
simplicial complex as a means to guide scrutiny of 
generalization reliability. Triangulated training input spaces 
could support tight verification coverage criteria, simplex 
after simplex, used as generalization cells and as candidate 
counterpart of equivalence classes in software engineering. 
We name extensional coverage analysis this volume-based 
verification activity. It would be the extensional counterpart 
of structural coverage analysis in software. Such latent-space 
oriented verification coverage ideas are being explored for 
instance in [23]. 

D. Contribution to ML safety assurance 

We first review four applications that are independent of 
any ML technique. This is a distinctive advantage since 
assurance values independence methods in verification. 

1) Model-independent applications 

1. Explicit generalization domains: using data 

augmentation, tuned filtration parameters, and PH 

simplices, design of a simplicial complex of operationally 

explainable generalization cells. The aim is an ID-oracle.  

2. Designed separability: using persistence diagrams, 

homology groups, and homotopy classes as topological 

alerts of potential hard to fit regions for classifiers (cf. 

illustration on MNIST). 

3. Extensional verification coverage analysis: using PH- 

complexes as covers of generalization domains, with 

multi-scale resolution. 

Fig. 6 Filling the ML reliability gap by enhanced verification coverage techniques. 

Extensional verification would ensure non-zero measure coverage, explicitly 

contrary to software where extension of equivalence classes remains  implicit. 

 

4. Novelty detection: non-stationarity tests in ML-Ops 

processes. TDA and Information Geometry could be used 

jointly to monitor datasets’ shape trajectories and 

thoroughly diagnose risks of adjustment obsolescence. 

 

2) Model-dependent 

Research on how PH enables shape analysis of neural 

network activation spaces is undergoing. It has interesting 

potential for safety assurance as it could become in (U)R-

ML engineering the extensional counterpart of structural 

coverage analysis and dead code elimination in safety 

critical software engineering. As we are close to the end 

                                                           
10 With confidence region of the ID triangulated manifold model 

of this paper we don’t elaborate any further but potential 

for assurance is great.  

X.  PROOF OF CONCEPT ON MNIST 

Last section is an outline of a proof of concept we are 
developing to support our discussions. It is also intended to 
support future (U)R-ML data-science challenges. The figures 
in this section do not result from TDA computation results, 
yet. They aim at presenting some (U)R-ML goals and 
activities, and at conveying intuition on a method whose 
engineering is still to develop. Preliminary results on digits {6, 
0, 9} are documented in [33], to be made public after 
completion on the ten digits. 

A. Related work and discussion 

[31] is a systematic literature review devoted to 
certification of Machine Learning. Comparison with software 
is developed. There is no mention of the N-model non-
independence problem. Topological data analysis is not 
mentioned either. [30] is another review of the main 
certification challenges for safety-critical ML. TDA is 
addressed and advocated as a promising approach. [28] is a 
survey of TDA applications to AI-ML, with focus on bio-
molecular engineering. In image classification, all uses of PH 
reported in this survey are at image level, for dimensionality 
reduction, denoising, feature extraction, etc. In this PoC, we 
use PH at dataset level, to analyze the shape of the training and 
testing image databases.  

In [26], PH applied to MNIST is reported. It enabled 
reducing 784D to 28D at iso-accuracy (96.3%). On our side, 
we want to augment accuracy (drastically), not to save 
computation time and energy without accuracy penalty. In 
[27], a table reviewing the performance scores of top10 
MNIST classifiers is given. It provides evidence that 
reliability is plateauing at (1 - 3.10-3) on MNIST. We 
identified significant labelling errors in MNIST (~10-3 as 
well). It is a serious issue for (U)R-ML [41]. An ultra-reliable 
e-MNIST 107-sample dataset is needed (see fig. 8 for 
ambiguity cases of digits with letters). 

In [34], persistence homology filtration of the testing 
dataset, and abstract interpretation of the neural network are 
combined. Goal is verification coverage analysis and global 
robustness verification. They adjust the filtration parameter to 
the ball radius used by the abstract interpreter. This work is 
the closest to ours in these last two sections. They use 
simplices for robustness cover only. We propose to use them 
also for explicit inference domains definition, and for 
functional property verification. 

B. Rationale of the Proof of Concept 

Our group is qualified to discuss safety assurance 
rationales. In the MNIST PoC, we adopt a safety assessment 
standpoint. As SPCF-ML is our focus, we consider the 
assurance objectives and activities of a team whose methods 
and tools should be independent of that in action by system 
and AI-ML development teams. TDA on raw datasets ensures 
independence w.r.t. statistical estimation. No data 
transformation to qualify, no statistical estimation to provide 
confidence levels on statistical estimation. TDA-enabled 
(U)R-ML is a sample-dependent method 10 . In this PoC, 
beyond independence w.r.t. statistical estimation, we also 



 

 

have independence w.r.t to ML-models. We concentrate on 
complexity of the problem to solve. 

Topological Data Analysis on MNIST is applied to 
functional hazard analysis. Verifying stability of approximant 
behavior w.r.t dataset variability and optimization variability 
are non-functional risks. These assurance objectives address 
the engineering risks inherent to ill-posed inverse problems 
AI-ML is part of. They are of fundamental importance for ML 
life-cycle (e.g. MLOps), but they do not address correctness 
or rareness on functional failure modes. 

Our PoC explores TDA support for verification of 
verification 11 : sampling coverage analysis and cross-
validation coverage analysis.  

C. Functional Hazard Analysis 

Fig. 7. Didactic eveocation of {6,0,9} homotopy equivalence, and of {rotation, 

translation, homotety} symetries. They create input-space hazardous regions (amber) 

subject to unreliable class separation by any ML-model. See fig. 10 for MNIST images 

belonging to hazardous regions (amber anulus). 

 

LARD [25] is our planned next step in case of success on 
MNIST. We motivate our assurance activities by some 
fictitious aircraft landing narrative: we assume that some 
digits are painted on runways, and that their accurate 
recognition conditions safety-critical12 operations. 

1) Ambiguity 

Fig 8.The ambiguity cases (and their cardinality) in MNIST\{6,0,9} 

ODD of SPCF-ML MNIST classifiers should specify the 
image domain boundaries where even humans cannot decide. 
It should also identify where context-sensitive image 
interpretation occurs. For interpretation of distorted digits, 
presence of alphabetic characters matters. (see ‘a’,’le’,’co’, 
etc. in fig. 8). 

We follow and extend the perturbation taxonomy of [6]. 
We assume ‘0’ has a distinctive operational role, and false 

                                                           
11 The assurance activities that verify that AI-ML verification activities are 
properly done. 
12 Admittedly, likelihood of runway hand-painted digits is extremely 

remote. 

positives on ‘0’ are classified catastrophic by safety 
assessment, in the “no back-up” case. We assume false 
positives on ‘6’ and ‘9’ are hazardous. Detected false 
negatives on the three digits have no safety effect. Undetected 
false negatives are classified minor for safety, major for 
airport performance. 

2) Perturbations 

Light green background of the digits means that a single 
distortion (order 1) is regarded as common. Ultra-high 
reliability inference domains of {6, 0, 9}-classifiers  should 
contain order 1 perturbed digits.  

Fig. 9 Seven examples of “pure” perturbations (unitary, order 1), grouped by causal 

sources that are partially independent. Most of them combine freely up to high orders 

(e.g. a clipped+noisy+thickened+slanted digit is regarded as perturbed at order 4). 

D. Safety objectives 

We must ensure impossibility or extreme remoteness of 
False Positives on ‘0’ (‘0’-FPs). Choice of the assurance 
policy proposed to Authority is a critical issue. In both cases, 
0-FP failure mode is an excluded event since we are in the 
SPCF case. If rareness assurance policy is chosen, probability 
of this failure mode should be demonstrated at one or two 
orders of magnitude below 10-9/h. TDA in this PoC will be 
explored to support both policies. 

E. Correctness policy 

Current intermediary goal is a provably correct {6, 0, 9}-
classifier on a restricted part of the inference domain (fig 
11.left). Stratified persistence homology will be used to 
develop simplicial complex modeling of the inference domain 
over digits ‘0’, ‘6’ and ‘9’ distorted by unitary perturbations. 
Unitary perturbations are the counterpart of component failure 
modes in classical safety (e.g. fault tree analysis). Their 
independence is an issue under rareness assurance policy. 

A progressive data-integration process, counter-part of 
progressive code-integration process in software assurance, is 
enforced. PH is applied after every data integration step, to 
interpret growth of topological complexity, to locally augment 
data and to tune a subset of filtration parameters as multi-scale 
inference domain design decisions. Intuition of the data 
augmentation process is conveyed in figure 10. Separability 
on the ambiguity regions will be designed by simplicial 
engineering. Order 1 involves 3x7 local boundary designs (cf. 
fig 9), and 16 separability designs13. The resulting simplicial 
complex’ actionable boundary will play the role of model-
independent safety net.  

13 “Separation” is somehow a misnomer. Most of the light green sub-clusters 
of fig. 11 share intersections. See the tessellation of sub-clusters as evocative 

of designed separation, or designed entanglement (e.g. fig1 like).  



 

 

If not geometrically and combinatorically too complex, 
Order 2 will also be addressed under correctness policy (i.e. 
geometric models of decision boundaries and proofs by 
simplicial set inclusions or null intersections). Order 3 and 
beyond will be addressed only under rareness policy. 

PH is necessary, but not sufficient for the envisioned 
(U)R-ML engineering. Implicit augmentation of the complex 
to address local and global symmetries is one of the needed 
additional ingredients. 

Fig. 10 Conceptual didactic figure derived from fig. 5. Left: a group of ambiguous 

distorted images. Right: for the selected radius of balls (filtration parameter – scale unit 

measure), PH seems to indicate the 12  images could be on a risky cycle like that of 

fig.7. Data augmentation (sampling or generation) is needed along the four newly 

created 1D simplices to confirm their relevance as new extensions of the inference 

domain.. 

Fig. 11 Notional didactic figure sugesting the data-integration process. PH is a applied 

after every sub-cluster data increment, to assess the incrment of  topological complexity. 

F. Rareness policy 

As order of perturbation increases, latent dimensionality 
and entanglement of shapes grow. Complexity of the 
ambiguity regions computed by PH become intractable for 
correctness policy. Conservative over- approximation of 
amber regions and probabilistic integration over triangulated 
manifolds will be the explored path. Its potentential 
acceptance by certification bodies will be discussed in the 
group. Fault Tree Analysis should not be accepted as means 
of compliance to quantify failure modes in this context. 

G. Current status and future work 

MNIST restricted to {0, 6, 9} was sub-labeled to isolate 
54 unitary perturbations (see 21/54 in fig. 9) and 16 ambiguity 
cases (fig. 8), as part of independent safety assessment in 
(U)R-ML (Functional Hazard Analysis activity). PH was 
computed within 1 hour (~16500 images), and within 5 hours 
on whole MNIST (60000 images) on standard computing 
platform 14 . Interpretation of the persistence diagrams and 
design of the green and light-green ID15-boundary oracles are 
in progress. 

                                                           
14 No use of accelerators at this stage. 
15 ID: In Distribution and Inference Domain. 

XI. CONCLUSION 

Starting from a reliability issue related to error correlation 
between AI-ML-model redundancies, we proposed a 
geometrical and topological explanation, not confirmed yet. 
We discussed the role of software development assurance and 
that of fault tolerant architectures to circumvent the problem. 
We argued that for ML components to be accepted as single 
points of catastrophic failure, like safety-critical software 
engineering and assurance managed to do, additional efforts 
and drastic progress on reliability are required.  

We discussed the assurance regimes applicable to 
generalization errors in the most radical case. We promoted a 
flexible approach and gave its underlying rationale. We 
proposed TDA as a candidate means of compliance to 
supplement statistical estimation theoretical guarantees. We 
limited ourselves to a safety assessment and ML-model 
independent perspective. We illustrated the envisioned 
methodology on a fictitious airborne SPCF MNIST classifier. 

ML state of the art is progressing impressively fast. 
However, fundamental problems remain unsolved. We made 
explicit our top3 showstoppers: actionable specification, 
diagnostic inability, 0-measure specification and verification 
cover. We are confident that mathematics, algorithms and 
tooling maturation will fill the gap, as it was the case for 
software. We gave a first glimpse on TDA as a promising asset 
to substantiate this optimism. It will take time, as it was the 
case for software. New engineering has to emerge and mature, 
leaving many opportunities for applicants and Authorities to 
resist race to market expediencies.    

REFERENCES 

[1] Lucian Alecu, Hugues Bonnin,Thomas Fel, Laurent Gardes, Sébastien 
Gerchinovitz, Ludovic Ponsolle, Franck Mamalet, Éric Jenn,Vincent 
Mussot, Cyril Cappi, & al. “Can we reconcile safety objectives with 
machine learning performances?“. ERTS2022, Jun2022, Toulouse, 
France. 

[2] “EASA Concept Paper : First usable guidance for level 1 & 2 machine 
learning applications” March 2024. Issue 02. 

[3] Morayo Adedjouma, Christophe Alix, Loic Cantat, Eric Jenn, Juliette 
Mattioli, et al.. “Engineering Dependable AI Systems”. 17th Annual 
System of Systems Engineering Conference (SOSE), IEEE, Jun 2022, 
Rochester, United States. 

[4] Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovic. 
“Geometric Deep Learning Grids, Groups, Graphs, Geodesics and 
Gauges. arXiv:2104.13478v2 [cs.LG] May 2021. 

[5] Dan Hendriecks, Nicholas Carlini, John Schulman, Jacob Steinhardt. 
“Unsolved Problems in ML Safety“. arXiv:2109.13916v5 [cs.LG] 16 
Jun 2022. 

[6] Hermann Grassmann, “Extension Theory” 1862. History of 
mathematics Vol. 19. American Mathematical Society 2000. 

[7] Jian Liang, Frederick Park, and Hongkai Zhao. “Robust and Efficient 
Implicit Surface Reconstruction for Point Clouds Based on 
Convexified Image Segmentation”. University of California, Irvine 
March 21st, 2011. 

[8] Carlotta Giannelli, Lorenzo Sacco, Alessandra Sestini. “A local C2 
Hermite interpolation scheme with PH quintic splines for 3D data 
streams”. arXiv:2108.12948v1 [math.NA] 30 Aug 2021. 

[9] Clémentine Laurens, “Un vieux problème de courbes enfin bouclé”. 
Pour la Science N° 545, Mars 2023. 

[10] Jean-Paul Blanquart, Philippe Baufreton, Jean-Louis Boulanger, Jean-
Louis Camus, Cyrille Comar, Hervé Delseny, Jean Gassino, Emmanuel 
Ledinot, Philippe Quéré, Bertrand Ricque. “Software safety 
assessment and probabilities“. DSN 2016 Toulouse June 28th-July 1st. 



 

 

[11] Jean-Daniel Boissonnat, Frédéric Chazal, Mariette Yvinec “Geometric 
and Topological Inference“ Cambridge Texts in Applied Mathematics 
2018. 

[12] Aditi S. Krishnapriyan1, Joseph Montoya, Maciej Haranczyk, Jens 
Hummelshøj, Dmitriy Morozov “Machine learning with persistent 
homology and chemical word embeddings improves prediction 
accuracy and interpretability in metal‑organic frameworks” Nature 
Scientific Reports 11:8888 2021. 

[13] Frédéric Barbaresco, Frank Nielsen Editors, “Geometric Structures of 
Statistical Physics, Information Geometry, and Learning. SPIGL’20, 
Les Houches, France, July 27-31. 

[14] Marc Mézard “Désordre et frustration … et au-delà“ in Systèmes 
complexes, autour de Giorgio Parisi. Institut de France 11 octobre 2022 
(unpublished communication). 

[15] Mark Lexter D. De Lara, “Persistent homology classification 
algorithm“ PeerJ Computer Science January 10, 2023. 

[16] Simon Martin, Pierre Yves Lagrave, “On the benefits of SO(3)-
Equivariant Neural Networks for Spherical Image Processing. 2022. 
Hal-03763121. 

[17] Herbert A. Simon “The Architecture of Complexity: Hierarchical 
Systems” in The Sciences of the Artificial, MIT Press 1969. 

[18] Martin J. Wainwright ’High dimensional statistics – A Non-
Asymptotic Viewpoint”. Cambridge Series in Statistical and 
Probabilistic Mathematics 2019. 

[19] Kanti V. Mardia, Peter E. Jupp “Directional Statistics“ Wiley Series in 
Probability and Statistics 1999. 

[20] Karim Benmeziane, Patrick Fabiani, Stephane Herbin, Jérôme 
Lacaille, Emmanuel Ledinot “Trusting Machine Learning Applications 
in Aeronautics” IEEE Aerospace Conference, Yellowstone, March 4-
11 2023. 

[21] Stephane Mallat, “Cours 3 : Malédiction de la grande dimension,” in 
L’apprentissage face à la malédiction de la grande dimension, Collège 
de France, 2018. 

[22] Mohammadreza Salehi, Hossein Mizaei, Dan Hendrycs, Yixuan Li, 
Mohammad Hossein Rohban, Mohammad Sabokrou “A Unified 
Survey on Anomaly, Novelty, Open-Set and Out-of-Distribution 
Detection: Solutions and Future Challenges“ arXiv:2110.14051v1 26 
oct. 2021. 

[23] Taejoon Byun, Sanjai Rayadurgam “Manifolf for Machine Learning 
Assurance“ arXiv:2002.03147v1 8 Feb. 2020. 

[24] Embedded France Groupe de travail - NSL Normes pour la Sûreté de 
fonctionnement Logiciel et système - Embedded France (embedded-
france.org)  

[25] LARD - Landing Approach Runway Detection – Dataset for Vision 
Based Landing - Mélanie Ducoffe, Maxime Carrere, Léo Féliers, 
Adrien Gauffriau, Vincent Mussot, Claire Pagetti, Thierry Sammour. 
HAL Id: hal-04056760 

[26] Adélie Garin, Guillaume Tauzin “A Topological ‘Reading’ Lesson : 
Classification of MNIST using TDA”. aXiv 1910.08345v2 Oct 2019. 

[27] Amarnath R, Vinay Kumar V, “Pruning Distorted Images in MNIST 
Handwritten Digits”. arXiv:2307.14343 May 2023. 

[28] Chi Seng Pun, Kelin Xia, Si Xian Lee. “Persistent-Homology-based 
Machine Learning and its Applications: A Survey”. 
arXiv:1811.00252v1. Nov. 2018. 

[29] Mary L. Cummings, Ben Bauchwitz.  “Unreliable Pedestrian Detection 
and Driver Alerting in Intelligent Vehicles” IEEE Transactions on 
Intelligent Vehicles · January 2024. 

[30] Alwyn Goodloe. “Assuring Safety-Critical Machine Learning-Enabled 
Systems: Challenges and Promise. Computer September 2023. 

[31] Tambon, F., Laberge, G., An, L. et al. « How to certify machine 
learning based safety-critical systems? A systematic literature review”. 
Autom Softw Eng 29, 38 (2022). https://doi.org/10.1007/s10515-022-
00337-x 

[32] Bev Littlewood, “The use of Bernoulli and Poisson Processes for the 
evaluation of the reliability of critical software-based systems” Annex 
to IEC 61508 rev. 10, 2016. 

[33] Andrey Bychkov, Emmanuel Ledinot. “(U)R-ML experiments on 
MNIST”. Technical Report, Thales Research & Technology, 2024. 

[34] Faouzi Adjed, Mallek Mziou-Sallami, Frédéric Pelliccia, Mehdi 
Rezzoug, Lucas Schott, Christophe Bohn, Yesmina Jaafra. “Coupling 
algebraic topology theory, formal methods and safety requirements 
toward a new coverage metric for artificial intelligence models”. 
Neural Computing and Applications, 2022, 34 (19), pp.17129-17144. 

[35] Patrick Grother, Kayee Hanaoka, “NIST Special Database 19 
Handprinted Forms and Characters 2nd Edition”. August 2016. 

[36] Daniel C. Castro, Jeremy Tan, Bernahrd Kainz, Ender Konukoglu, Ben 
Glocker “ Morpho-MNIST: Quantitative Assessment and Diagnostics 
for Representation Learning” Journal of Machine Learning Research 
20 (2019) 1-29. 

[37] JC Knight, NG Leveson, “An experimental evaluation of the 
assumption of independence in multiversion programming” IEEE 
Transactions on software engineering, 96-109. 

[38] Júlio Mendonça1, Fumio Machida, Marcus Völp, “Enhancing the 
Reliability of Perception Systems using N-version Programming and 
Rejuvenation”, 53rd Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks Workshops (DSN-W), 2023. 

[39] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, 
Dumitru Erhan, Ian Goodfellow, Rob Fergus, “Intriguing properties of 
neural networks”.  arXiv:1312.6199v4 2014. 

[40] Jabde, M., Patil, C., Mali, S., Vibhute, A. “Comparative Study of 
Machine Learning and Deep Learning Classifiers on Handwritten 
Numeral Recognition”, In: Thampi, S.M., Mukhopadhyay, J., 
Paprzycki, M., Li, KC. (eds) International Symposium on Intelligent 
Informatics. ISI 2022. Smart Innovation, Systems and Technologies, 
vol 333. Springer, Singapore. 

[41] Curtis G. Northcutt, Lu Jiang, Isaac L. Chuang. “Confident Learning: 
Estimating Uncertainty in Dataset Labels” arXiv:1911.00068v6 
[stat.ML] 22 Aug 2022. 

 

 

 





A study of an ACAS-Xu exact implementation
using ED-324/ARP6983

Christophe Gabreau∗, Marie-Charlotte Teulières†, Eric Jenn ‡, Augustin Lemesle ¶, Dumitru Potop Butucaru ∥,
Floris Thiant §, Lucas Fischer ∗∗, Mariem Turki ‡
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Abstract: This paper studies the exact implementation of
the ACAS-Xu ML models (designed using Machine Learning
technique) on several hardware platforms while ensuring
some properties: ML model full semantics description,
memory footprint optimisation, integer representation, formal
verifiability. Certification aspects are also addressed using
the EUROCAE/SAE joint group WG-114/G-34 current draft
of the future standard ED-324/ARP6983 for embedding ML
technology in aeronautical systems.
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I. INTRODUCTION

A. Context

In the airborne context, a safety-critical system cannot be
certified as long as it is not demonstrated that this system
safely performs its intended function under all foreseeable
operating and environmental conditions. This demonstration
only holds when the intent, along with the safety objectives,
are satisfied in the target environment. When it comes to em-
bed systems based on Machine Learning (ML) technology, the
use of formal methods at design level seems very promising
to support this demonstration and therefore, alleviate massive
and costly testing activities on the selected HW platform. In
addition, formal verification covers some of the learning assur-
ance objectives from the novel ML standard ED-324/ARP6983
(ongoing work from the joint EUROCAE/SAE working groups
WG-114/G-34).

This paper extends the previous works already performed
on the ACAS-Xu case study in [3],[7] and [8]. While [3] and
[7] were elaborating the design aspect of the development,
[8] was focusing on the implementation part by proposing a
method to implement a certifiable system with respect to ED-
324/ARP6983 objectives. This paper proposes to study the
capability to apply this method on several target platforms
and to support the exact replication of formally proven ML

models. This work has been performed in the frame of the
Confiance.ai project1 and the DeepGreen project2.

B. Contributions

The contributions are the methods to implement a certifiable
ACAS-Xu system using surrogate ML models. These methods
are supported by the following activities:

• Design the models, i.e. quantify, formally verify the
quantified models and provide a specification of the
quantified models’ semantics

• Implement the quantified models, i.e. study the capability
of an exact replication by respecting the specification of
the designed models on several targets

• Contribute to certification, i.e. provide elements of a
certification argumentation to demonstrate the conformity
with the current recommendations of the WG-114/G-34
joint working group.

The abstract is structured as follows: section II describes
the related work in the field of implementation of embedded
ML; section III gives a brief description of the use case
used to illustrate the approach and introduces the overall
implementation strategy; Sections IV, V, and VI respectively
address the design, implementation and certification aspects of
the development.

II. RELATED WORK

There is an important survey [16] that structures and ana-
lyzes challenges, techniques, and methods for developing AI-
based safety-critical systems. In particular, it addresses the
development and the integration of a ML-based function as
part of a safety critical system hosted on hardware platforms.
References to development are mainly based on Autonomous
Driving (AD) software frameworks using existing automotive
standard guidance. To our knowledge, there is no such work
in the airborne context, about the implementation of a ML
model on hardware targets following the guidance of the
future aeronautical standard ED-324/ARP6983. In an airborne
context, there are some previous works dealing with the
implementation of a DNN model on a recent CPU proces-
sor [1], studies about the prevention of the propagation of
hardware errors that can lead to catastrophic failures in DNN

1Web site: confiance.ai
2Web site: deepgreen.ai



accelerator systems [14], or some guaranties of robustness
against hardware soft errors corrupting the target memory
during implementation [9]. There are also work on other
domains, for instance robotics, where implementation is also a
challenge when it comes to embed DNN model for computer
vision and system control purposes in different target hardware
such as CPUs, GPUs or Intel’s neuromorphic chip [4].

III. CASE STUDY AND IMPLEMENTATION STRATEGY

A. The ACAS-XU case study

The ACAS-XU case study is described in details in [3].
Basically, the ACAS-XU system contains a specific function
which computes the correct maneuver in order to prevent
collision between UAVs for a set of input data (geometrical
configuration of the ownship and the intruder UAVs). The im-
plementation of the function is based on standardized lookup
tables which provide the best advisory maneuver according to
the geometry of the system given in Figure 1. The parameters
are:

• ρ (ft), the distance from ownship to intruder
• θ (rad), the angle to intruder relative to ownship heading
• ψ (rad), the heading angle of intruder relative to ownship

heading direction
• vown (ft/s), the speed of ownship
• vint (ft/s), the speed of intruder
• τ (s), the time until loss of vertical separation.

Fig. 1. ACAS Xu geometry [11]

The ACAS-XU function is implemented using ML. The
ML part of the system, or ML Constituent (MLC) as per
WG-114/G-34, is composed of ML model(s) and associated
pre/post data processing that can be deployed on one or several
items. The use of the term ”item” complies with the definition
given in the existing airborne system development guidance
ED-79B/ARP4754B [19].

B. Implementation strategy

We decided to reuse the safe hybrid architecture that was
used to develop the ACAS-Xu ML-based function[3], which is

composed of the NN-based controller (basically the MLC con-
tains the models and the pre/post processing code), the safety
net and a check module which, in real time, conditions the
execution path to provide the correct advisory (cf. Figure 2).

Fig. 2. Hybrid Architecture Overview [3]

We applied the method proposed in [8] to define an imple-
mentation strategy with the following main phases:

• Specification: We specified some requirements at MLC
level (performance, functional, safety, operational), and
we reused the similarity property defined in [3] (“de-
cisions of the model are identical to the ones obtained
from the tables”). In addition, we defined some specific
requirements to cover the pre/post processing of the data.
This phase is not developed further.

• MLC Design/Quantization: The full MLC logical archi-
tecture is decomposed into 45 models (and 45 Operational
Design Domains-ODDs) as per the original study [3].
We simplified the problem by only considering avoidance
maneuvers in the horizontal plan τ=1. The 5 considered
models (with their own ODD) are quantified in order
to meet the implementation constraints, indeed integer
representation is preferred for memory footprint and
inference latency reduction purposes. Once quantified, the
models are exported using the ONNX format. These mod-
els become the reference for both the formal verification
and the implementation.

• Model Design/ODD partitioning: Each of the 5 ODDs is
partitioned into two domains: one domain in which each
quantified model is proved to hold the similarity property
and one domain in which it does not. In the latter case,
a safety net is used instead (cf Figure 2). These proofs
are realized by using formal verification methods. At the
end of the formal verification activity, we know for sure
where the quantified models correctly perform.

• Model Design/Description: As per ED-324/ARP6983,
the outcomes of the design phase is the ML Model De-
scription (MLMD). This MLMD should express the full
semantics of the quantified model to enable the capability
of exact replication during implementation. This paper
describes the semantics of the quantified models and
stresses the gap between the current existing format and
what is really needed in the avionic field.



• Implementation: This phase starts with the architecture
of the ML Model, i.e. its decomposition into multiple ML
Model Item Descriptions (MLMIDs), each MLMID cor-
responding to one item of the physical architecture. Then
MLMIDs are transformed into implementation models
for the different targets. In this paper, we consider the
exact replication of the ML models, i.e. the inference ML
model correctly and completely implements the specifica-
tion of the ML model semantics expressed in the MLMD.
Specific techniques (MLIR/iree tools suite) are used to
control the transformations from MLMID to executable
code in order to demonstrate the full preservation of
the quantified model semantics and support the exact
replication.

• Exact replication study: According to the obtained
replication level (related to the used target), the perfor-
mance of the implemented models are verified against the
performance of the designed models.

• Certification argumentation: We built an argumentation
which demonstrates the objectives defined in the EURO-
CAE/SAE WG-114/G-34 ongoing standardization work
(ED-324/ARP6983). This argumentation contributes to
guarantee that the implementation preserves the model
properties and do not introduce any unacceptable unin-
tended behaviours. The argumentation is developed using
the GSN assurance case notation.

IV. DESIGN

A. Quantization

Quantization plays a pivotal role in the optimization of
machine learning models, with a specific focus on the Data-
free method [15], [6]. This method aims to preserve the
mathematical function of Deep Neural Networks (DNNs),
making it particularly relevant in the context of the ACAS-
Xu case study. Here, we consider a subset of five models
at τ=1. The notion of data free quantization involved no
use of the data to compute a metric to optimize. In [6],
Residual error has been introduced, and represents the error
between the original weights, and the quantized weights. Let
W −Q−1(W q), with R1 =W q be the residual error, and Rk

be the Kth residual expansion term such that :

R(K) = Q

(
W −

(K−1)∑

k=1

Q−1(R(k))

)
(1)

The maximal error between the original weight and the
quantized weight decreases exponentially with the expansion
order. The quantization process ensures a high preservation of
the accuracy.

Table I summarises the results obatined by the quantization
process, compared to the original models (with τ = 1). An
overall prediction accuracy of under 2% compared to the full
precision model has been attained. The accuracy on next state
prediction remained consistently higher than 95%, highlighting
the effectiveness of the applied quantization techniques.

The quantization process achieves precise activation using
diverse calibration methods. Surprisingly, despite numerous
attempts, the introduced bias correction by [15] did not con-
tribute significantly to this task.

Previous advisory R2 Score Argmin truth accuracy
Original Quantized Original Quantized

model CoC 99,82 99,1 96,05 95,35
model WL 99,48 97,9 96,5 95,25
model SL 99,52 98,02 96,03 95,19
model WR 99,51 97,57 96,88 95,04
model SR 99,57 97,98 96,15 95,15

TABLE I
COMPARISON OF METRICS BETWEEN ORIGINAL MODEL, AND QUANTIZED

MODELS, WITH τ=1 AND DEPENDING ON THE PREVIOUS ADVISORY.

B. ODD partitioning

The partitioning of the ODD is realized by verifying where
the similarity property holds. This leads to the partitioning of
the ODD into 2 classes of input space: where the NN-based
controller performs correctly and where it does not (in this
case the safety net is used as per Figure 2). The property is
then verified using formal methods.

Following the same approach as [3], we decompose the
input space of the neural network in p-dimensional boxes. As
we selected a subset of the models with τ = 1, we consider
in this section only five models for the formal verification,
each depending on the previous advisory and taking inputs
in a five dimensional space with (ρ, ω, ψ, vown, vint). The
decomposition of the input space is thus a set of 7 356 800
5-dimensional boxes for each model, for a total of 36 784 000
boxes.

For each of these boxes, we aim to determine that the
decision of the neural network are included in the decisions
of the look up table (LUT) as formalised in [3]:

∀l ⊆ R5, decisions NN(l) ⊆ decisions LUT(l)

For the formal verification, PyRAT [12] is used. PyRAT
is based on abstract interpretation [2] and relies on abstract
domains such as Zonotopes [10] to soundly overapproximate
all possible outputs of a neural network. PyRAT computa-
tion and domains are sound w.r.t. floating point arithmetics,
correctly rounding the different variables towards minus and
plus infinity. Due to the number of verifications to perform
and the constraints of the quantification, we chose to use
only the Zonotope domain for the verification in a correct
but incomplete way. Indeed, as the ReLU activation functions
of the network have been replaced by quantisation operations,
classical branch and bounds approaches by case disjunction
on ReLU cannot be performed or would need to be adapted.

The formal verification is done by PyRAT on an imple-
mentation of the operators of the neural network reproducing
exactly the ONNX reference implementation. On the ACAS-
Xu case study, while the models are partially quantified (all the
weights and bias of the models are converted to 8-bits unsigned
integer), some rescaling operations with floating points are



still occurring in the QGemm operators that constitute the
network. Additionally, a first conversion from float32 to uint8
is applied by a QuantizeLinear operator as the input of the
network are float32 numbers. Following this, the inputs of a
QGemm operator are first cast to 32-bits integer on which the
the classical Gemm is applied (with weights and biases also
in int32). The results of which is cast to float32 and rescaled
before being cast back into 8-bits unsigned integer. Thus, while
the integer operations preclude any floating point inaccuracy
and rounding considerations, the rescaling operations (multi-
plication by scalar and addition with a bias in float32) may
lead to floating point errors.

As we aim to have a verification correct w.r.t. the floating
point implementation, i.e., taking into account all possible
floating point errors, the errors introduced by the rescaling
in float32 (and more specifically in the addition) have been
integrated in PyRAT in the Zonotope abstract domain. In
addition to this, a specific abstract transformer has been
defined for the cast function from float32 to uint8. Indeed,
this function is not linear and must thus be overapproximated
by a linear function to be used with an abstract domain like the
Zonotopes. For an input x, we define the abstract transformer
of the cast function as:

cast#(x) = x+ 0.5 ∗ ϵnoise
with ϵnoise ∈ [−1, 1] the approximation introduced by the
operation. This is illustrated in Figure 3.

Fig. 3. Abstraction of the cast function from float32 to uint8 for the Zonotope
abstract domain in PyRAT over an input interval [l, u]. In blue the function
itself and in black its abstraction.

Table II summarises the results of the verification in function
of the previous advisory. The total analysis time on the 36
millions of boxes with PyRAT was of approximately 40
hours. Safe boxes means the similarity property holds, for
unsafe boxes a counter example to the similarity property
was found and unknown means we cannot conclude. As it is
usually difficult to find counter examples with simple abstract
interpretation based approaches, we rely on counter examples
search using adversarial attacks inspired functions. We see that
a large proportion of unknown results still remains as we used
a fast but incomplete method. Using more precise domains
or a complete approach may improve these results. However,
considering the running time of complete methods and the
number of points to verify (even if only 30% of the points are
remaining) the computational cost of a complete verification
remains prohibitive.

Previous advisory Safe boxes Unsafe boxes Unknown
CoC 73% 0% 27%
WL 56% 0% 44%
SL 73% 3% 23%
WR 66% 4% 30%
SR 74% 4% 22%

TABLE II
PERCENTAGE OF SAFE, UNSAFE AND UNKNOWN BOXES IN THE ODD

PARTITION AS VERIFIED BY PYRAT.

In order to further improve these results, the p-box parti-
tioning might be delegated directly to PyRAT, instead of hard-
coding it. This could allow a more dynamic p-box splitting,
leveraging the fact that the similarity property might have
been proven on already larger parts the input space than our
current p-box. Thus allowing a finer partitioning only when
needed with heuristics already existing in PyRAT [5]. On the
other hand, for this verification the Zonotope domain was only
adapted to the integer values with overapproximation. It might
benefits from more in-depth changes, allowing to handle the
cast operations with more precision.

C. Expression of the ML Model Description (MLMD)

As per ED-324/ARP6983 guidance, the MLMD is the input
of both the model verification and the MLC implementation
process. It is key for the exact replication approach because
it provides the capability to describe the complete semantics
of the designed ML model, and enables to demonstrate that
the implementation process does not alter this semantics and
therefore, that the ML model properties which have been
verified at design level, still hold.

In the context of ACAS-Xu case study, the MLMD is based
on the existing ONNX format. This format is not sufficient to
meet the ”complete semantic description” requirement of the
MLMD. Several elements are missing and are currently being
addressed in a working group (connected to the ONNX SIG
Operator). These elements are:

a) Operators full specification: The objective is to pro-
pose a complete specification of operators, unambiguous, no
subject to interpretation or approximation. The specification
should use a set of well-defined operators/primitives. The
ACAS-XU model is a model composed of 9 fully connected
layers represented by QGEMM as the model has been quan-
tized. A complete specification of the QGEMM operator would
be as follows:

• Definition of the operator : QGEMM is the quantized
form of the GEMM (GEneral Matrix Multiply) operator

• Description of inputs and attributes : it includes
roles description, data type, default value, constraints,
description of the impact on the semantic of the operator.
Example on Qa input :
Description : QA is the first input tensor involved in the
multiplication.
Data Type : tensor (integer)
Default : No default, input required
Constraints : If transQA ̸= 0, QA should be transposed.



Transposition should be performed before computation of
the operation. If transQA = 0, the shape of QA should
be (M,K). If transQA ̸= 0, the shape of QA should be
(K, M).

• Specification
Textual :

Yq[i, k] =
SA × SB

SY

( N∑

j=1

QA[i, j]×QB [j, k]

−ZB ×
N∑

j=1

QA[i, j]− ZA ×
N∑

j=1

QB [j, k]+

N × ZA × ZB +QC [i, k]

)
+ ZY

(2)

QA, QB , and QC are the quantized input tensors of
QGEMM, and QY is quantized output. ZA, ZB , and ZY

(resp. SA, SB , and SY ), the zero points (resp. scaling
factors) of the quantization3.

• Reference implementation Based on the C++ implemen-
tation proposed by ONNX Runtime.
To establish a correspondence between the equation and
the QGEMM documentation in ONNX Runtime, we can
equate QA, QB , and QC to matrices A, B, and C, re-
spectively. Correspondingly, ZA, ZB , and ZY can be as-
sociated with the parameters a zero point, b zero point,
and y zero point, while Sa, Sb, and Sy align with the
scales a scale, b scale, and y scale, respectively.
b) Control flow: The control flow introduces the schedul-

ing, the decomposition of the MLMD into several items with
its interactions. Items could be hardware or software. In the
case of the ACAS XU, three items are considered as shown in
figure 4 on the implementation on TDA4VM Jacinto SoC: one
hardware item, the Jacinto SoC, and two software items CPU
and DSP (or GPU in the case of NVIDIA Xavier TX2). Several
tools are being investigated within the MLMD community to
support the expression of the control flow.

c) Syntax: The syntax should be textual and human
readable in order to be open to manual code, and auditable.
ONNX is based on protocol buffers, natively binary. The
ONNX format is not human readable, this point is also
adressed in the MLMD community

V. IMPLEMENTATION

A. Physical design

As per ED-324/ARP6983 guidance, this phase aims at
defining the appropriate architecture of the MLC supporting
the deployment of the ML Models on possibly one or several
resources of the selected target. This implementation activity
deals with the both components of the design outcome:

• MLMD part (ML model): The appropriate architecture is
designed with respect to the resources available on the

3All attributes,inputs, outputs are supposed to be well-defined as described
with QA

selected hardware platform. This activity will identify all
the items which are necessary for the deployment of the
model(s) onto the target. The MLMD is decomposed into
ML Model Item Descriptions (MLMIDs). There is one
MLMID per item.

• Non-MLMD part: the specific software parts needed for
the pre/post data processing and the selection of the
proper model execution (Check Module in Figure 2)
according to operational inputs.

The ACAS-Xu model has been deployed on several targets:
• a TDA4VM Jacinto SoC fitted with 2 Cortex A72, 4

Cortex R5F, 1 C7X DSP and 2 C66X DSPs
• a NVIDIA Xavier TX2 fitted with 8 NVIDIA Carmel

cores and a Volta GPU with 512 CUDA cores and 64
Tensor cores,

• a Xilinx Kria KV260 fitted with a K26 SoM embedding
a ZYNQ UltraScale+ with 4 Cortex-A53 cores, 2 Cortex
R5F cores, and a 256K logic cells FPGA fabric.

In all three cases, the ML model is implemented partially on
CPU cores and an accelerator (respectively: a C7X DSP, a
GPU, a DPU IP). The ML model (MLMD) is decomposed
into 2 SW items (MLMIDs) hosted on one HW item (the
SOC target):

• SW item 1: deployed on the CPUs (pre/post processing
code wrt Figure 2)

• SW item 2: deployed on the accelerator (models)
For instance and with reference to Figure 4, in the Jacinto

(HW item) implementation, each model is implemented using
two kernels, one doing the quantization and the other doing
the QGEMM operation. Kernels deployed on the C7X DSP
accelerator using TI’s TIOVX workflow that implements the
OpenVX standard.

Fig. 4. Physical architecture on Jacinto target

B. Items development
In this phase, each item is implemented (coding, compiling,

linking, loading and integrating) for the platform resource to
which it is deployed. For instance the Jacinto implementation
is described in Figure 5.

C. Exact replication study
a) Verification strategy.: Two verification methods can

be applied:
1) Option 1: demonstrate that the series of transformations

performed by the tool chains actually preserve the model
semantics



Fig. 5. SW items implementation on Jacinto target

2) Option 2: verify formally or by testing that the series of
transformations preserves the model semantics.

When using complex COTS implementation tool chains, the
first option is generally not an option, because the series of
transformations is too complex to be analyzed and demon-
strated to be correct (see paragraph about the VITIS AI and
TIDL implementations later in this section), or simply because
the details of the implementation are not available. This is to
some extent similar to the case of the compilation of source
code: except in some very specific cases (e.g, CompCert[13]),
the complex series of transformation performed by a compiler
cannot be demonstrated to preserve the semantics of the
input code. In that case, the solution consists to verify the
implementation by testing. For testing to be applicable, a
correctness criterion must be defined and an oracle providing
the expected value is needed. A correctness criterion can
be (i) the identity of the final output of the network (the
advisory to be applied), (ii) the identity of the last layer of
the network (costs provided by the LUT), or (iii) the identity
of all activations of the network. If testing is exhaustive, then
all criterion are equal so the simplest (i.e., (i)) is sufficient:
indeed, if the outputs of the implementation under test and
the output of the reference implementation are identical for
any input, there is no need to check what is going on in the
intermediate layers. However, if testing cannot be exhaustive,
which is generally the case, more confidence can be achieved
by ensuring that intermediate results, e.g., activations, are
actually identical.

This means that those activation values must be computed,
which also means that the execution infrastructure (software
and hardware) is also part of the oracle.

b) Application to the ACAS-Xu use case: As shown on
Figure 6, the ACAS-xu model is a 9-layer fully connected
network using essentially QGEMM operators, a quantified
version of the classical GEMM (Generalized Matrix Multi-
plication) operator.

Fig. 6. ACAS-xu neural network (represented using Netron)

The ONNX runtime provides several optimized implemen-
tations of the QGEMM operator for different hardware targets.
In our context, we implemented the QGEMM operator in the
most straightforward way with respect to the mathematical
expression of the operation shown on Eq. 2.

It is worth noting that the QGEMM documentation provided
by ONNX gives a minimalist description of the semantics
of the operator: “Quantized Gemm”. In particular, no part of
the specification mentions anything about the accuracy of the
operator. In our context, the ONNX-runtime implementation
was considered as the reference implementation, i.e., the one
defining the actual and exact semantics of the operator.

Our first implementations on the TDA4VM Jacinto SoC
through TIOVX and the NVIDIA Xavier GPU using cutlass
and CUDA were based on a direct implementation of Eq. 2.

Excerpts of the cutlass4 and Cuda implementations of Eq.
2 are given hereafter.� �

void qgemm(...) {
[...]
if (num_layer == 0) {
sz_in = SIZE_MODEL_IN;
quantize(r1, s1, z1, q1, size_layer_in); }
else if (num_layer == NB_LAYER-1) {
sz_out = SIZE_MODEL_OUT; }
// q1 = q1 x q2 + q3
result = cutlass_gemm(1, sz_out, sz_in, 1,

q1, q2, 1, q3, q1);
[...]
if (result != cudaSuccess) {...}
// q1 = q1 - z1 x ones * q2
result = cutlass_gemm(1, sz_out, sz_in, -z1,

ones, q2, 1, q1, q1);
[...]
// s2 = s1 x s2 / s3
scaleOp(s1, s2, s3, s2, sz_out);
// r1 = q1 x s2
elementwise_matmul(q1, s2, r1, sz_out);
if (num_layer != NB_LAYER-1) {
relu(r1, q1, sz_out); }

4



}� �
cutlass provides highly optimized versions of gemm opera-
tors. Even though this “library” is open source, traceability be-
tween the operators and their implementation is not straightfor-
ward (for the very reason that it is optimized and optimization
usually increases complexity and lowers traceability), we also
considered a lower-level and naive CUDA implementation:� �

/* Non-optimized GEMM CUDA kernel */
__global__ void kernel_cuda_naive_gemm(...) {
int i = blockIdx.x;
int j = threadIdx.x;
if (i < M && j < N) {
float accumulator = 0;
for (int k = 0; k < K; ++k) {

accumulator += A[i*K + k]*B[k*N +j] ; }
D[i*N + j] = alpha * accumulator +
beta * C[i*N + j]; }

}
/* Non-optimized GEMM implementation */
void cuda_naive_gemm(...) {
dim3 grid(M, 1, 1);
dim3 block(N, 1, 1);
kernel_cuda_naive_gemm<<< grid, block >>>
(M, N, K, alpha, A, B, beta, C, D);

}
/* QGEMM implementation */
void qgemm(...) {
[...]
if (num_layer == 0) {
sz_in = SIZE_MODEL_IN;
quantize(r1, s1, z1, q1, size_in); }
else if (num_layer == NB_LAYER-1) {
sz_out = SIZE_MODEL_OUT; }
// q1 = q1 x q2 + q3
cuda_naive_gemm(1, sz_out, sz_in,
1, q1, q2, 1, q3, q1);
// q1 = q1 - z1 x ones x q2
cuda_naive_gemm(1, sz_out, sz_in,
-z1, ones, q2, 1, q1, q1);
// s2 = s1 x s2 / s3
scale(s1, s2, s3, s2, sz_out);
// r1 = q1 x s2
elementwise_matmul(q1, s2, r1, sz_out);
if (num_layer != NB_LAYER-1) {
relu(r1, q1, sz__out); }

}� �
Those implementation intially showed differences with the

ONNX runtime implementation, from the very first layer of
the network whereas the CPU and GPU variants of the ONNX-
runtime gave identical results. Investigation where carried out
both by analysing and instrumenting the ONNX source code
in order to track the origins of the differences. In order to get
the details about its actual behaviour, it was necessary to look
to the source code5

In particular, the scale ratio and accumulator products were
observed for they were the only place involving floating point
computations. And, indeed, differences were observed that
were tracked down to the different ways to perform rounding
between our implementation (rounding to the nearest integer
value) and ONNX’ (rounding to the nearest even integer).

Note that finding the origin of these discrepancies required
a thorough analysis and time consuming analysis of the

5The source code is available at .

ONNX implementation that was hopefully available. After
those investigations, our two implementations (CPU with
DSP and GPU) provided the very same results for all test
cases (around 100000) as the ONNX runtime implementation.
Indeed, the results for each layer are stored in a binary file and
subsequently compared to the output binary file generated by
the reference implementation. This process ensures identical
implementations and consistent inference results.

Nevertheless, since there is not formal specification of the
expected result, there is obviously no guarantee that our imple-
mentation will provide the same result as ONNX’ implemen-
tation for another target, even for this simple operator. Other
discrepancies may show up depending on the actual execution
order of mathematical operations, from one implementation to
another or, even worse, from one execution to another for the
same implementation. This is clearly not acceptable for a test
oracle.

A third implementation of the same model was done on
a Xilinx’ Krya KV260 board fitted with an UltraScale+
MPSoC chip. In that case, we were not able to ensure the
strict equivalence of the deployed model with respect to the
reference ONNX model. Indeed, the VITIAS-AI toolchain
used to deploy the model does not accept the ONNX quantized
model. Indeed, it provides its own optimisation tool (Vitis AI
Optimizer) that implements specific quantization techniques.
Therefore, we reimplemented the ACAS-Xu non quantified
model using Keras, and used Vitis AI quantizer to generate the
quantized model. Formal verification could possibly be per-
formed on this quantized model, but the lack of documentation
about the generated model prevented us to do so. Nevertheless,
given the open-source nature of Vitis AI Quantizer, an in-
depth reverse engineering of the format generated could be
considered.

The same conclusion applies to a fourth implementa-
tion done using Texas instruments’ TIDL toolchain for the
TDA4VM: the toolchain provides its own quantization tool,
and the binary files generated by the tool would have to be
reversed engineered to get the weight and perform formal
verification.

D. Specification and implementation using MLIR and iree

While the first exact replication study of Section V-C
has relied on significant manual implementation phases, we
have conducted a second study aiming at automating the
implementation process. This study uses the MLIR compiler
infrastructure and IR6 for ML and HPC, and the MLIR-based
iree runtime and compiler for mobile and edge applications.

MLIR’s key originality is to use a general SSA-based
syntax [18] to allow mixing aspects of a system (data types,
operators) belonging to multiple representation levels. The
types and operators are grouped into domain-specific dialects
allowing the high-level representation of an ML algorithm
(using dialects such as tosa or hlo) and then the progressive
and seamless lowering of the abstraction level all the way to

6Intermediate Representation used during compilation.



� �
1 func.func @qgemm(
2 %a:tensor<?x?xui8>,%a_scale:tensor<f32>,
3 %a_zp:tensor<ui8>, %b:tensor<?x?xi8>,
4 %b_scale:tensor<f32>,%y_scale:tensor<f32>,
5 %y_zp:tensor<ui8>)->(tensor<?x?xf32>) {
6 %b1 = mhlo.convert %b
7 : (tensor<?x?xi8>) -> tensor<?x?xi32>
8 %1 = mhlo.convert %a
9 : (tensor<?x?xui8>) -> tensor<?x?xi32>

10 %q1q2 = mhlo.dot %1, %b1 : (tensor<?x?xi32>,
11 tensor<?x?xi32>) -> tensor<?x?xi32>
12 %2 = shape.shape_of %a :...
13 %3 = arith.constant 0 : index
14 %4 = arith.constant 1 : index
15 %5 = tensor.extract %2[%3] : tensor<2xindex>
16 %6 = tensor.extract %2[%4] : tensor<2xindex>
17 %7 = mhlo.convert %a_zp
18 : (tensor<ui8>) -> tensor<i32>
19 %o1 = tensor.splat %7[%5,%6]:tensor<?x?xi32>
20 %zp1 = mhlo.dot %o1, %b1 :...
21 %8 = arith.subi %q1q2, %zp1 :...
22 %acc = mhlo.convert %8
23 : tensor<?x?xi32> -> tensor<?x?xf32>
24 %9 = arith.mulf %a_scale,%b_scale :...
25 %M = arith.divf %9,%y_scale : tensor<f32>
26 %10 = func.call @scalar_tensor(%M,%acc):...
27 func.return %10 : tensor<?x?xf32>
28 }� �

Fig. 7. High-level MLIR representation of the qgemm function

optimized GPU, CPU, TPU or even FPGA-based implemen-
tations. This process typically passes through general linear
algebra representations (dialect linalg), affine loop nests
(dialect affine), or vectorized code (dialect vector) where
domain-specific optimizations are applied before reaching low-
level dialects such as llvmir or amdgpu. When necessary,
the compilation process will partition the code between mul-
tiple devices (e.g. GPU kernels vs. host CPU control code).

MLIR allows the representation of MLMD specifications, of
the MLMID-level information, and ultimately the implementa-
tion code. The format is textual, allowing inspection after each
lowering or optimization phase, making it possible to trace the
transformation of high-level operators such as Conv2D into,
for instance, loop nests that have been fused with other loops,
tiled, vectorized and parallelized on a multi-core.

We provide in Fig. 7 an MLIR encoding of the qgemm
function.7 Functionally equivalent Python code is provided
for reference in Fig. 8. To facilitate understanding, the MLIR
code closely follows the Python reference, all Python variables
having counterparts in the MLIR code. For conciseness, we
assumed that scalar-tensor product is implemented under the
form of external function @scalar_tensor, called from
function @qgemm. The MLIR implementation is naturally
more verbose, as the language is designed as a compiler IR. In
particular, the type of each variable and operation is explicitly
defined (in gray in Fig. 7).

Each MLIR operation (in blue in Fig. 7) belongs to a
domain-specific dialect, represented as a prefix to the operation
name. In addition to function @qgemm (and the scalar-tensor

7Under simplifying assumptions considered previously in the paper: ini-
tialization with zeroes, zero point for the second argument equal to 0, float
output...

� �
import numpy as np
def qgemm(a,a_scale,a_zp,b,b_scale,

y_scale,y_zp):
b1 = b.astype(np.int32)
q1q2=a.astype(np.int32)@b1
o1 = np.full(a.shape,a_zp,dtype=int32)
zp1 = o1@b1
acc = (q1q2-zp1).astype(np.float32)
M = a_scale*b_scale/y_scale
return M*acc� �

Fig. 8. Python functional reference for the MLIR code in Fig. 7

product functions it calls), the high-level MLIR specification
of the ACAS-Xu neural network (of Fig. 6) also includes a
@relu function, and the top-level model function that calls
@qgemm and @relu multiple times.

Note that the semantics of all operations is fully defined,
which requires the specification of all data types. In function
@qgemm this requires the specification of all data conversions,
e.g. that of 8-bit unsigned integers to 32-bit signed integers (in
lines 8-9). Notice how @qgemm allows mixing high-level data
processing operations of the mhlo dialect, simple arithmetic
operations applied pointwise on tensors of the same size (of
dialect arith), general tensor manipulations of the dialects
tensor and shape, and classical function constructs of the
func dialect (function definition, call, return).

Importing into MLIR is possible from a multitude of formats
including Jax, Tensorflow, or Pytorch, or ONNX. However,
qgemm involves complex type conversions produced by the
automatic quantization process described in Sec. IV-A, meant
to reduce execution time and parameter size without penal-
izing ML performance. Thus, the implementation of a single
Dense layer involves int8, uint8, int32, and float32 tensors. To
make sure these conversions are preserved, we have manually
produced the code of Fig. 7.

The output of the quantization process has the important
property that floating point operations (which are not as-
sociative) are not used for the performance-critical matrix
multiplications, thus allowing their optimization using the
full power of parallelization algorithms (e.g. tiling), without
affecting the output. Thus, exact replication can be attained
without restricting optimization.

The dialect mechanism is designed for extensibility. For
instance, in previous work [17] we have extended MLIR
with a dialect providing the dataflow control primitives of
Simulink and Lustre/SCADE, thus allowing the specification
of stateful cyclic controllers (allowing the representation of
stateful neural networks or reinforcement learning algorithms)
and then their direct compilation into high-performance cyclic
controllers.

But for the context of this paper, the extensibility of MLIR
is best demonstrated by the experimentation platform we used,
which is iree—an ML run-time and compiler producing code
tailored for the run-time, to run on various targets : CPU
(single- or multi-core), GPUs, and other accelerators. The iree
compiler extends ”vanilla” MLIR with new dialects allowing
the description of a hardware abstraction, of execution man-



agement, of partitioning, allocation and scheduling. It also
streamlines compilation for the run-time. On the resulting
implementations, we apply fine-grain performance tracing
using the Tracy profiling tool, to gain insight into performance
bottlenecks.

Note that, unlike other ML compilation infrastructures,
MLIR allows adopting a white-box approach to the design of
the compilation pipeline, which can be completely customized.
Along with the ability to trace source code transformation be-
tween compilation passes, this allows exposing critical trans-
formations such as XLA-level linear algebra optimizations,
tiling, buffer allocation, identification of computational kernels
(to be executed on GPUs), parallelization, etc., which in turn
allows (1) making performance trade-offs by activating/pa-
rameterizing compilation passes depending on the application
and target architecture and (2) incrementally establishing the
equivalence between the source code and the implementation.

VI. CERTIFICATION

Regarding the certification aspects, we used the concept of
assurance case developed in [7] and followed the method and
the notation developed in [8] to elaborate the argumentation.
Indeed, we built an assurance case based on the development
assurance principles of the last draft version of the future ML
standard ED-324/ARP6983 available at the time we wrote the
paper. Doing so, we anticipate that the airborne authorities
(e.g. EASA) will recognize this standard as an acceptable
means of compliance to the regulation requirements.

The standard ED-324/ARP6983 is an end-to-end standard
that provides guidance to develop and certify an airborne
system whose at least one function is ML-based. The figure 9
proposes the first level of the assurance case encompass-
ing all the processes that have been standardized. The ED-
324/ARP6983 contains all the usual processes included in a
development assurance standard (cf CONFIDENCE module):
planning, development, validation, verification, configuration
management, process assurance and certification liaison. How-
ever the assurance case only focuses on the development,
validation and verification processes. The whole assurance
case has been developed but there is no enough space in
the paper to display all the flow diagrams, therefore we will
detail only some aspects textually. The underneath subsections
textually develop the assurance case from the the goals defined
in figure 9.

A. ED-324/ARP6983 - [GOAL] The MLC requirements are a
satisfactory refinement of the allocated system requirements

[SOLUTION]: The ACAS-Xu function is fully specified by
the standardized lookup tables developed in the EUROCAE
WG 75.1/RTCA SC-147 MOPS for ACAS-Xu. Therefore,
there is no need for any other MLC requirements except some
operational requirements (timing, similarity property, target
definition). It includes the partitioning of the input space into
5 ODDs to accommodate the 5 previous advisories and the
definition of the similarity property.

Fig. 9. Upper-level assurance case

B. ED-324/ARP6983 - [GOAL] The ML Models and the data
processing requirements are a satisfactory refinement of the
MLC requirements

[STRATEGY]: Argument over the datasets and the design
models satisfy the ED-324/ARP6983 objectives. For any ref-
erence to initial development, refer to [3].

1) [SUBGOAL] The ML datasets comply and are traceable
to the MLC requirements - [SOLUTION]: The 5 datasets
are extracted from the standardized lookup tables devel-
oped in the EUROCAE WG 75.1/RTCA SC-147 MOPS
for ACAS-Xu.

2) [SUBGOAL] The 5 ML models comply with the MLC
requirements, generalize out-of-sample, are stable and
robust within their ODD - [SOLUTION]: The models
are quantized from the existing float models due to im-
plementation constraints (targets platforms are integer-
based). The compliance to MLC requirements is met
by formally verifying that the similarity property holds.
Wherever the quantized models (defined through their
MLMD) do not hold the similarity property, the related
part of the ODD is captured as a derived requirement
and passed up to the system engineering level for safety
net mitigation.

3) [SUBGOAL] The ML data processing complies with the
MLC requirements and ML Model architecture, and is
traceable from the ML data processing description -
[SOLUTION]: The ML data processing code is devel-
oped from the MLC logical architecture (5 ML models
in parallel) and the MLC requirements.

4) [SUBGOAL] The 5 MLMDs are traceable to the 5
quantized ML models - [SOLUTION]: Each MLMD is
defined using the future ONNX extended format that
expresses the full semantics of the model.

C. ED-324/ARP6983 - [GOAL] The 5 ML models and the
data processing requirements are satisfactorily implemented
into items

[STRATEGY]: Argument over the MLC is deployed onto
traditional SW/HW item(s)

1) [SUBGOAL] The MLC architecture into MLMIDs is
developed wrt the ED 324/ARP6983 objectives - [SO-



LUTION]: Each of the 5 models is deployed onto 2
SW items (CPU+Accelerator). U(MLMIDs) = MLMD is
easily demonstrated using the description of data/control
flow between items.

2) [SUBGOAL] The implementation of MLMIDs, the ML
Constituent architecture requirements and the refined
ML Constituent implementation requirements complies
with applicable item level standard - [SOLUTION]: The
5 models are manually coded from the specification of
their semantics (extended ONNX format) using target
platform libraries. The ED-12C/DO-178C guidance is
used to demonstrate that the items development does not
introduce any unacceptable error for DAL C software.

D. ED-324/ARP6983 - [GOAL] The integrated MLC is a
satisfactory implementation of the MLC requirements for a
DAL C

[STRATEGY]: Argument over the MLC integration and
verification activities satisfy the ED-324/ARP6983 guidance

1) [SUBGOAL] ML and Traditional Item Implementations
are produced and loaded onto the target platform for ML
Constituent integration and verification - [SOLUTION]:
The 5 ML models and pre/post processing code are
integrated on the selected platforms (TI Jacinto, nVIDIA
Xavier).

2) [SUBGOAL] ML Training and Target Environment dif-
ferences are identified and assessed for their impact
on stability and generalization - [SOLUTION]: The
exact replication is supported by the verification that the
predictions are binary identical (checked on the whole
input space).

3) [SUBGOAL] ML Constituent performance is verified -
[SOLUTION]: Verification credit can be sought for for-
mal verification activity performed during design phase.

4) [SUBGOAL] Integrated ML Constituent complies and
is robust with MLC reqs - [SOLUTION]: Operational
requirements verification is in progress.

VII. CONCLUSIONS

In this paper, we managed to optimize pre-designed ML
models in float format (from [3]) into models that we can
embed in integer-based targets. The ONNX format of these
models have been formally verified and exactly implemented
onto 2 target platforms (TI-Jacinto and nVDIA Xavier). At
last we have demonstrated the compliance with the main
development assurance objectives of ML future avionic ML
standard ED-324/ARP693, making the ACAS-Xu system im-
plementation certifiable.

It shall be noted that the exact replication is possible only
when the ML model semantics and dynamics are completely
and unambiguously specifiable. This makes the achievement
of such a MLMD format an enabler of such technique.

If manual development is possible for this kind of non-
complex model development, there is a need to automate
the demonstration of the exact replication of the reference
implementation in order to scale up the method to complex

models. The MLIR/iree tools suite sounds a very promising
technique for this purpose.

As a generalization of the ACAS-Xu case study, the cer-
tification of such ML surrogate modelling technique seems
doable using the ED-324/ARP6983 guidance. Indeed, the
use of such technique to approximate a function that can
be specified with physical equations (or any other Oracle
like ACAS-Xu lookup tables), makes the demonstration of
conformity to ED-324/ARP6983 objectives very attainable.

Going further in the context of the use of surrogate mod-
elling technique, the effort to comply with ARP6983/ED-324
objectives is significantly reduced for a DAL C development.
With the same level of effort, it may be contemplated to
comply with upper DALs.
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Abstract— Despite the significant success of using Machine 

Learning (ML) in numerous industrial applications, how to 

integrate these technologies in safety-critical contexts poses many 

challenging questions. Several industrial and academic research 

groups, as well as various standardization committees are actively 

working to provide (partial) answers to these questions. In this 

document, we focus on one such initiative led by the EASA, which 

proposes a series of guidelines and requirements to develop ML-

based systems for critical applications in the aviation domain. In 

this paper we investigate whether these requirements can be 

satisfied when using ML to solve a relatively simple regression 

task, that of building a neural network surrogate of the 

International Geomagnetic Reference Field (IGRF) model. 

Though we acknowledge all the structuring efforts towards the 

ambitious certification goal, our analysis pinpoints several 

important issues with some of these guidelines, such as ambiguous 

definitions, prohibitive computational costs, or currently very 

limited theoretical guarantees. Our analysis compels us to remain 

cautious about the various general recommendations proposed for 

designing trustworthy ML components for safety-critical systems. 

These conclusions call for the academic and industrial 

communities concerned by "Trustworthy AI" to strengthen their 

collaboration and pursue the research efforts necessary to address 

the existing challenges and establish sound methodologies for 

building safe ML-based applications.  

Keywords— machine learning, safety, guidelines, certification, 

trustworthiness. 

I. CONTEXT 

In recent years, we have witnessed a multitude of ongoing 

initiatives to establish recommendations, guidelines and norms 

on how to develop and certify trustworthy Machine Learning 

(ML) solutions for safety-critical systems in the context of 

several application domains. One such initiative in the aviation 

domain is led by the European Union Aviation Safety Agency 

(EASA). In early 2023 the EASA released an open version of 

the "EASA concept paper: first usable guidance for level 1&2 

machine learning applications", updated in March 2024 [1]. The 

document proposes a series of guidelines aimed at increasing 

the trustworthiness of ML components intended for aviation-

related safety-critical applications. The authors formulate 

several objectives which, in their view, must be met to certify 

such technologies. 

 

II. CONCEPT PAPER OVERVIEW 

Ensuring that a data-driven software component is trustworthy 

raises numerous challenges. The EASA concept paper attempts 

to provide a holistic design methodology for ML-based systems 

in the aviation domain. In this section we briefly describe the 

structure of the concept paper and point out the requirements we 

choose to analyze. 

 

The EASA concept paper is structured around four main blocks: 

AI Trustworthiness analysis, AI assurance, Human factors for 

AI and AI safety risk mitigation. The safety assessment lies at 

the heart of the first block. It is within this phase that a system 

is assigned its main objectives in terms of safety, in particular, 

the assessment of the impact of a system failure on its 

environment (and notably on human lives), i.e. the 

dangerousness of the failures. The other blocks complete this 

assessment from different angles. AI assurance reinforces the 

level of trust in the AI system itself: on the one hand via 

"learning assurances" that "cover the paradigm shift from 

programming to learning", on the other hand via "development 

explainability", which seeks to open the "black box" that is 

machine learning. The remaining two blocks participate in 

safety "from the outside" of the system: the Human factors for 

AI cover the aspects of the relationship of the system with its 

user/operator, while the AI safety risk mitigation covers the 

residual risks identified by the AI Trustworthiness analysis. 

We focus on AI/ML component safety only, because our field 

of research focuses on the ML models themselves. We seek to 

evaluate both the intrinsic risks of ML components, as well as 

the means of mitigation of these risks, which are also directly 

associated to the models. In this context, our analysis will focus 

on the objectives of the blocks AI Trustworthiness analysis (SA) 

and AI assurance (LM) only.  

LM objectives can be divided into two categories: the objectives 

pertaining to the transparency and consistency of the 

engineering process, and the objectives related to the 

exploitation of quantitative and mathematical elements of the 

AI/ML models. 

We do not address the objectives related to the engineering 

process, because they are classical and relatively indisputable. 

These objectives mainly request that each of the engineering 

activities must be clearly defined, traced and verified. In this set 

of objectives, the causal relationship between the measures 

taken and the safety risk is obvious, since it ensures that there is 

no discrepancy (or that it is as minimal as possible) between the 

discourse and the reality of engineering. Indeed, a lack of 

transparency and consistency in the engineering process 

undermines the whole safety demonstration.  

 

The LM objectives related to the quantitative and mathematical 

elements of the ML model (the ones we focus on in this paper) 

are the following: 

· LM-04: Quantifiable generalisation bounds 
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· LM-07: Bias-variance trade-off 

· LM-08: Bias-variance requirement 

· LM-09: Performance result 

· LM-11: Stability analysis of the learning algorithm 

· LM-12: Stability of the trained model 

· LM-13: Model robustness 

· LM-14: Verification of the anticipated generalisation bounds 

 

Let us highlight that the EASA concept paper establishes a 

strong link between some objectives of the SA and of the LM. 

This link is implemented in the objectives relating to 

performance (LM 09), generalization (LM 04) and safety 

assessments (SA 01). Indeed, the anticipated Mean of 

Compliance of SA 01 objective indicates that "as part of the 

safety assessment process, AI/ML item failure modes are 

expected to be identified. Performance metrics should provide a 

conservative estimation of the probability of occurrence of the 

AI/ML item failures modes". The LM 09 and IMP 09 objectives 

are then referenced in the same paragraph as participating in this 

estimation, in connection with the LM04 generalization 

objective, which allows pronouncing on the failure rate in 

operation. Therefore, even if we do not analyze SA objectives 

directly, we discuss in Section V the link between LM 

objectives and safety. 

 

The goal of the present paper is to evaluate the feasibility of the 

above LM objectives. However, doing so for a new operational 

use case is notably hard, mainly due to the cost of data 

acquisition. Therefore, we choose to focus on the magnetic 

declination estimation use case, a surrogate modelling problem 

(cf. the technical details in the next section). We have chosen 

this particular use-case for three main reasons:  

 it is suitable for integration into an airborne system, 

 a ML-based approach appear promising as compared 

to more traditional approaches, 

 both data and algorithms are readily available. 

For most common ML tasks, the ground truth values are either 

unknown, or observed via a noisy measurement process. The 

case of surrogate modelling is simpler, since it aims at 

approximating existing complex functions with ML models, 

and the ground truth values are therefore known. As such, the 

LM objectives are easier to evaluate for our surrogate modelling 

use case than for other ML tasks. We thus anticipate that the 

challenges identified in this work about the application of the 

LM objectives will also hold for other (more complex) use 

cases. 

 

For the magnetic declination estimation use case, we can derive 

system/ML requirements using the requirements on magnetic 

heading provided in [2], which are performance oriented. 

Ensuring these requirements is considered as sufficient to 

demonstrate trustworthiness. Consequently, while the proposed 

use case may not strictly fall under the EASA guidelines for 

critical airborne systems, it still presents a realistic, well-

defined, and thoroughly documented system. Moreover, the 

study performed on this use case is mostly generalizable to other 

surrogate software items used in critical embedded systems. In 

the upcoming sections, along with the analysis of our surrogate 

modelling use case, we also discuss the generalization of our 

findings to other types of ML tasks. 

 

III. USE CASE AND APPROACH 

In this section, we describe the magnetic declination estimation 

use case in detail, as well as our analysis approach, including 

the experiment setup. 

 

Use case. We consider the following use case: build a neural 

network surrogate model of the International Geomagnetic 

Reference Field (IGRF) produced by IAGA. The IGRF 

describes the Earth’s main magnetic field, by modelling the 

geomagnetic potential as a finite series of spherical harmonics. 

The latest generation, IGRF-13 [3], involves Schmidt semi-

normalized associated Legendre functions of degree up to n=13, 

and provides the values of all spherical harmonics Gauss 

coefficients (which vary over time) at various 5-year-spaced 

epochs. IGRF-13 enables users to compute the magnetic field 

components in three dimensions, the magnetic inclination and 

the magnetic declination at each location on and above the 

Earth’s surface, from 1900 to the present.  

 

 
Figure 1: Declination map at the WGS84 ellipsoid surface for epoch 

2020 (source: Alken et al. [1], Fig 1). 

In the sequel we focus on the magnetic declination (also known 

as magnetic variation), which is the angle between the true 

North and the magnetic North. The magnetic declination 

depends on the latitude, longitude, altitude, and time; see Figure 

1 for an illustration. The magnetic declination model is currently 

embedded in large commercial aircrafts to compute the 

aircraft´s magnetic heading in real time. The magnetic heading 

data is crucial during the landing process, as airport diagrams 

still describe runways by their magnetic heading. However, for 

some aeronautics systems, embedding limitations prevent the 

use of the complete IGRF model and call for using a 

computationally more tractable model. To that end, and for 

illustrative purposes, we approximate the magnetic declination 

computation done by the IGRF-13 with a shallow neural 

network surrogate (see the experiment setup details below). 

 

We stress that our goal is not to produce the most efficient or 

accurate surrogate model, but rather to propose a simple real-

world use case on which the LM objectives can be instantiated. 

However, to keep things realistic, we consider the performance 

requirements on magnetic heading provided in [2].  

 

Latitude range Acceptable accuracy (95%) 

50°S - 50°N 2° 

50°N - 73°N 3° 

60°S - 50°S 3° 

73°N - 79°N 5° 

79°N - 82°N 8° 
Table 1: Acceptable accuracy values for magnetic heading [2] 
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Approach. We analyse the LM objectives of the EASA concept 

paper listed in Section II. For each of the objectives, we study 

the following (related) aspects: 

 Clarity: is the objective clearly formulated or might it 

be prone to ambiguous interpretations? 

 Applicability: does the objective apply to the 

considered use case? 

 Feasibility: can the objective be achieved within 

reasonable costs and in a timely manner? Can it be 

formally and/or empirically assessed?  

 

For each of the objectives, we start our analysis by instantiating 

generic definitions and principles to our use case. Then, we seek 

and apply well-established methods and results in the scientific 

literature to fulfill these requirements. Our experiment setup is 

described in the paragraph below. We also identify the 

hypotheses that must be met to ensure the validity of these 

approaches. Finally, we assess their practical feasibility and 

computational complexity. 

 

Experiment setup. We use the python tool PyIGRF as the 

ground truth reference [4]. We restrict our study to the latitude 

range 60°S-82°N for which performance requirements are 

available (see Table 1). We consider all locations within that 

range, at an altitude of 100 meters and for the year 2005 for 

simplicity. This defines the Operational Design Domain (ODD). 

 

We build three independent datasets that will prove useful in the 

next sections. The letters 𝜃  and 𝜙  denote the latitude and 

longitude.  

1. Training set: it consists of 750K points 𝑥𝑖 = (𝜃𝑖, 𝜙𝑖) 

drawn independently at random, uniformly within the 

latitude range 60°S-82°N and longitude range 180°W-

180°E. This dataset is used for model training, that is, to 

build the neural network surrogate. 

2. Calibration set: it consists of 10K points (𝜃𝑖 , 𝜙𝑖) 

drawn independently at random, uniformly within the 

latitude range 60°S-82°N and longitude range 180°W-

180°E. This dataset is used in order to obtain estimates about 

the trained model, for the objectives pertaining to 

generalisation (see Section IV.F). 

3. Test set: it consists of 250K points (𝜃𝑖 , 𝜙𝑖)  drawn 

independently at random, uniformly within the latitude 

range 60°S-82°N and longitude range 180°W-180°E. This 

dataset is used only for test purposes. 

 

Our surrogate model is a neural network having the following 

architecture: a fully connected ReLU neural network with 3 

hidden layers, and 20 neurons per layer. We provide four 

scalar inputs to the neural network: 

cos(𝜃) , sin(𝜃) , cos(𝜙) , sin(𝜙). The network has one scalar 

output modelling the magnetic declination. The outputs are 

normalized to [0,1]. We train the network to fit the magnetic 

declination (obtained with PyIGRF) on the training set, using 

the square loss with the SGD optimizer, a learning rate of 

0.005, batches of size 32 and 15 epochs. We thus obtain a 

trained model. 

 

Notation. We denote by 𝑓 the true IGRF-13 model. We denote 

by 𝑆 the training set and by 𝑓𝑆 the trained surrogate model built 

as explained in the paragraph above and trained used the 

training set 𝑆.  

IV. RESULTS 

In this section, we instantiate all the aforementioned LM 

objectives to this specific use case, and we evaluate them in 

terms of clarity, applicability, and feasibility. 

A. Analysis of objective LM-09: Performance on test set 

The first objective is about the performance of the trained 

model. 

 

Objective LM-09: The applicant should perform an 

evaluation of the performance of the trained model 

based on the test data set and document the result of 

the model verification. 

 

To achieve this objective we evaluate appropriate metrics over 

a “representative” test set. There is no particular issue 

concerning the clarity, applicability and feasibility of this 

verification step. For the IGRF surrogate model, 

representativity is simple since we can build the test data set as 

desired. Moreover, the performance metric is defined as the 

95% quantile of all absolute errors on the test set, where an 

absolute error (also termed accuracy thereafter) is the absolute 

difference between the true and predicted magnetic declination 

values. Results are displayed in Table 2. 

 

Latitude range 95% accuracy on test set 

50°S - 50°N 1.51° 

50°N - 73°N 1.97° 

60°S - 50°S 3.14° 

73°N - 79°N 3.47° 

79°N - 82°N 5.00° 
Table 2: Accuracy of the trained model when evaluated on the test set. 

We report the 95% empirical quantiles of the absolute errors 

(accuracies) on each latitude range. 

Note that the trained model seems accurate enough in that the 

95% accuracies on the test set almost meet the performance 

requirements of Table 1.  

Even if the LM-09 objective is feasible for this surrogate use 

case, the choice of the adequate performance metrics may be a 

complex activity for the applicant. Notably more so if the 

applicant is dealing with computer vision or natural language 

processing models, where common metrics have a less clear-cut 

interpretation. 

 

B. Analysis of objectives LM-07 and LM-08: Bias-Variance 

The next objectives are about the Bias-Variance trade-off.  
 

Objective LM-07-SL: The applicant should account for 

the bias-variance trade-off in the model family 

selection and should provide evidence of the 

reproducibility of the model training process. 

 

Objective LM-08: The applicant should ensure that the 

estimated bias and variance of the selected model meet 

the associated learning process management 

requirements. 

 

These two objectives seem, at first glance, both justifiable and 

achievable. Informally speaking, achieving a low bias and low 

variance corresponds to learning a sufficiently expressive model 

that does not depend too much on the training set. For many ML 

models, achieving low bias and low variance simultaneously 

should constitute a good indication of a well-performing 

predictive model. Despite these first intuitions, our analysis 
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shows that, even for the surrogate model case, the satisfaction 

of these objectives is not straightforward. 

From a theoretical point of view, we can often consider, at least 

intuitively for regression tasks, the mean least square error 

decomposition into bias and variance. For a given example x, 

this decomposition expresses the expected squared error as the 

sum of a bias term (squared), a variance term, and a noise term: 

𝔼𝑆,𝑦 [(𝑓�̂�(𝑥) − 𝑦)
2

] 

     = (𝔼𝑆[𝑓�̂�(𝑥)] − 𝑓(𝑥))
2

+ 𝔼𝑆 [(𝑓�̂�(𝑥) − 𝔼𝑆[𝑓�̂�(𝑥)])
2

] 

                                                  + 𝔼𝑦[(𝑦 − 𝑓(𝑥))²]  

In the above equation, 𝔼𝑆,𝑦  means that we consider averages 

over all training sets 𝑆 of a given size and all possible labels 𝑦 

for a fixed input 𝑥 . The notation 𝔼𝑆  and 𝔼𝑦  are understood 

similarly. We can identify: 

 the bias: 𝐵(𝑥) = 𝔼𝑆[𝑓�̂�(𝑥)] − 𝑓(𝑥) 

 the variance: 𝑉(𝑥) = 𝔼𝑆 [(𝑓�̂�(𝑥) − 𝔼𝑆[𝑓�̂�(𝑥)])
2

] 

 the variance of the noise: 𝜎2(𝑥) =  𝔼𝑦 [(𝑦 − 𝑓(𝑥))
2

] 

In our surrogate use case, the variance of the noise equals zero. 

We perform a rough estimation of the bias and variance terms 

with a bootstrap method [5]. It consists in performing 𝑀 

experiments where a new data set S(𝑖) is drawn by sampling 

with replacement inside S. For the bias term, we estimate 

𝔼𝑆[𝑓(𝑥)]  with 
1

𝑀
∑ 𝑓𝑆(𝑖)(𝑥)  for each x, substract the known 

value of 𝑓(𝑥), and average the squared result over all values of 

𝑥 in the test set. We proceed similarly for the variance. Results 

are shown in Figure 2, for a reduced training dataset of n=25K 

points and M=200 bootstrap experiments.  These estimates are 

repeated for several values of model complexity corresponding 

to the number of neurons per layer. 

 

 
Figure 2: Rough estimation of MSE decomposition terms, for a 

variable number of neurons per layer. 

Note that both the bias and variance terms are (roughly) 

decreasing for layer widths larger than 5. These rough 

observations are reminiscent of the double descent phenomenon 

in deep learning. This could lead the applicant to choose the 

largest network among those evaluated, while smaller networks 

(with about 40 neurons per layer in our case) might already be 

sufficiently accurate. This might raise embedding challenges. 

We thus argue that the bias-variance estimation may not always 

be the best tool to select an ML model architecture. 

                                                           
1 Indeed, for an overparametrized neural network that can easily 

overfit the training data, the in-sample error can be zero, while 

the bias and the variance can be positive. 

 

These considerations and experiments allow us to provide the 

following answers with respect to the criteria enumerated 

above: 

- clarity: bias and variance are mathematical notions that are 

easily misinterpreted. Since the suggested informal 

definitions in the concept paper (see Anticipated MOC LM-

08) are ambiguous and possibly different from the 

traditional notions1, we used instead the formal definitions 

above, which are in line with those of the CoDANN report 

[6]. 

- applicability: these definitions should be specialized to the 

learning task at hand and the performance metrics used. 

Applying them to the absolute error metric (which would 

be more consistent with our use case) instead of the squared 

error metric is not straightforward. Applications to 

classification use cases would raise similar difficulties. A 

unified framework for bias-variance decomposition is 

proposed in [7, 8], but this decomposition is complex (the 

performances may not decompose as a sum of bias and 

variance terms) and not feasible in general. 

- feasibility: While estimating the bias is possible in this 

surrogate model context, this is not the case for general ML 

problems, where the true value 𝑓(𝑥) is typically unknown. 

Furthermore, even in our setting, estimating the bias-

variance tradeoff is computationally prohibitive as it 

requires training an important number of models (number 

of settings of complexity parameter, times number of 

bootstrap experiments). 

 

Our analysis shows that attempting to satisfy this seemingly 

intuitive criterion for the trustworthiness of ML models can 

raise significant technical and methodological challenges. This 

calls for further academic research efforts. It would also be 

useful to investigate the quantitative link between an optimal 

bias-variance tradeoff and the resulting ML performances for 

several task-specific metrics. 

 

C. Analysis of objective LM-11: Learning algorithm stability 

The next selected objective is about stability of the learning 

algorithm. 

 

Objective LM-11: The applicant should provide an 

analysis on the stability of the learning algorithms. 

 

This objective aims at assessing the reproducibility of the 

learning process. As no anticipated means of compliance is 

provided in the concept paper, we choose to rely on the 

definition provided in [9]: Assume 𝐴 is a symmetric learning 

algorithm2 , which given a training set 𝑆 = {𝑧𝑖 = (𝑥𝑖,𝑦𝑖), 𝑖 =

1, … , 𝑛}, outputs a function 𝑓𝑆 (a model) mapping 𝑥 to 𝑦. 

For any 𝑖  and any new sample 𝑧′ = (𝑥’, 𝑦’) , consider the 

modified training set  𝑆𝑖 = (𝑆\ {𝑧𝑖}) ∪ {𝑧′}  obtained by 

replacing 𝑧𝑖 with 𝑧′ in 𝑆. The algorithm 𝐴 is called 𝛽-stable if, 

for any training set 𝑆, any 𝑖, and any new sample 𝑧′, the losses 

of the models 𝑓𝑆 and 𝑓𝑆𝑖
 on any sample 𝑧 = (𝑥, 𝑦) differ by at 

most 𝛽. More formally, the algorithm 𝐴 is called 𝛽-stable if  

∀𝑆, ∀𝑖, ∀𝑧′, ∀𝑧,   |𝑙𝑜𝑠𝑠(𝑓𝑆, 𝑧) − 𝑙𝑜𝑠𝑠(𝑓𝑆𝑖
, 𝑧)| ≤ 𝛽. 

2 To be rigorous, this symmetry assumption does not hold in our 

case (we use batch stochastic gradient descent). Though this 

assumption is useful for the theoretical guarantees proved in [9], 

the rest of the definition still makes sense without it. 
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This definition helps to define a process to assess learning 

stability: 

- create new training datasets 𝑆𝑖 by modifying one sample of 

the training dataset 𝑆 and train a replacement model 𝑓𝑆𝑖
; 

- compute, for any sample 𝑧 of the test dataset, the absolute 

value of the loss difference between the trained model 

𝑓𝑆 and the replacement model 𝑓𝑆𝑖
; 

- find the maximal absolute difference, which should be 

lower than a given threshold 𝛽. 

 

In our surrogate use case, we follow this process to empirically 

estimate a lower bound of β through Monte Carlo experiments 

on 𝑀  modified datasets and their corresponding trained ML 

models. Due to the extensive computational cost, we only use a 

reduced initial training dataset n=25K, and M=200 modified 

training sets. For each experiment, we evaluate the maximum 

absolute difference over the test set. We also experiment with 

two different design choices to evaluate their influence on the 

estimated lower bounds: the first one uses the same weights 

initialization for all trainings, the second one uses independent 

random weights initialization for each experiment.3 

Figure 3 presents the results obtained for each training iteration. 

We observe that the estimated β parameter is very high in the 

random weight initialization case. Even with a fixed weight 

initialization, the variation of the loss can be high which is 

difficult to interpret (optimization problem, parameters choice,  

complexity of the ground truth function to approximate,…). 

 

 
Figure 3 Maximum loss variation across the M training sets – (left) 

with random weights initialization – (right) with fixed weight 

initialization. Maximum value represents a lower bound on the β 

threshold of learning algorithm stability. 

These considerations and experiments allow us to provide the 

following answers with respect to the criteria enumerated 

above: 

- clarity: even if the formal definition given above seems 

understandable, it raises the challenge of the specification 

of the appropriate β parameter. The interpretation of this 

parameter represents the worst case over all training 

datasets 𝑆, all their modifications 𝑆𝑖 , and all ODD points 𝑧. 

- applicability: despite this favorable use case (surrogate 

modeling), we cannot find a sound choice of  the threshold 

𝛽. We must notice that usual ML learning processes rely on 

randomness (e.g., dataset shuffling, random ML model 

weights initialization) and on the choice of an optimizer. 

These elements all constitute a source of variability that can 

lead to the un-stability of performances in several points in 

the input space. Consequently, the design choices and the 

knowledge of the training framework highly affect the 

applicability of the learning process stability assessment. 

- feasibility, considering that few or no formal methods are 

found in the literature even for our use case, we rely on a 

                                                           
3 This again goes slightly outside of the scope of [9], which only 

considers deterministic algorithms. This experiment can 

however be useful to assess learning stability in a wide sense. 

Monte Carlo estimation of the parameter 𝛽 . Such an 

evaluation is computationally expensive (for instance we 

had to work with a limited training set in our case), and 

would be even more challenging for large models and 

datasets. Moreover, performing this objective requires the 

evaluation of each source of variability in the learning 

process, which may be not be feasible with a black-box 

training framework. Furthermore, for general ML 

problems, a major difficulty may also come from the 

impossibility of generating new dataset samples. 

 

To conclude, even for this surrogate use case, the interpretation 

of the evaluated 𝛽 parameter is not clear, since the variation of 

the loss can depend on sources other than the dataset, such as 

the optimization process. Thus, we argue that the choice of the 

𝛽  parameter during model design is almost impossible, as it 

must bound all possible loss differences across the choice of the 

changed example. 

 

D. Analysis of objective LM-12: Trained model stability 

The next objectives are about the stability of the trained 

model 𝑓�̂�.  
 

Objective LM-12: The applicant should perform and 

document the verification of the stability of the trained 

model, covering the whole AI/ML constituent ODD. 

 

The Anticipated MOC LM-12-1 gives only an informal 

definition as the evaluation of “perturbations in the operational 

phase due to fluctuations in the data input (e.g. noise on sensors) 

and having a possible effect on the trained model output”. We 

can rely on the formal definition given in [6]: given two 

thresholds 𝛿 and 𝜖, stability is assessed by evaluating if : 

 

∀𝑥, 𝑥′  ∊ 𝑂𝐷𝐷, ‖𝑥 − 𝑥′‖ ≤ 𝛿 ⇒  |𝑓�̂�(𝑥) − 𝑓�̂�(𝑥′)| ≤ 𝜖. 
 

The values 𝛿  and 𝜖  are supposed to be given in the ML 

component requirements, but the choice of 𝛿  and 𝜖  raises 

several challenges, as we point out both below and in 

Section V.B. 

 

Clarity: At a first glance, this definition seems understandable 

and easy to achieve. However, even for a surrogate task it may 

not be adequate: if the ground truth function presents high local 

variations (large Lipschitz constant) in some parts of the ODD, 

a good surrogate ML model 𝑓�̂�  will also vary greatly. In 

particular, the surrogate model will only be able to fulfill the 

above condition for either very high values of 𝜖, or for very 

small values of 𝛿. Of course, such a choice of 𝛿 and 𝜖 is too 

conservative in regions of the ODD where the Lipschitz 

constant of the ground truth function is small, and does not at 

all guarantee that the surrogate model will be stable in such 

regions. 

 

Applicability: For the IGRF use case, performance objectives 

are given in Table 1; we can therefore specify an acceptable ε 

threshold based on these performance requirements. For the 𝛿 

threshold describing position errors we suggest to use the 

maximal lateral position error of 20 Nm (Nautic mile) given in 

[10]. In order to evaluate the stability condition above, we 

compute a two dimensional perturbation within this maximal 
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radius. Note that, for more complex use cases involving data in 

the form of text or image, the notion of “perturbation” is not so 

well-defined as in our use-case, and choosing the right notion of 

“perturbation” is already a challenge necessitating knowledge 

on the operational noise level and the Lipschitz constant of the 

targeted function (i.e., the local variation of 𝑓 ). A recent 

example of an expert definition of the maximal safe perturbation 

in subranges of the ODD can be found in [11]. 

 

Feasibility: On the IGRF use case, both the input space and the 

neural network have a small size. Therefore it is possible to 

employ complete formal methods (such as the SMT-based 

method described in [12]), to verify the stability property over 

all the input space4. For more complex problems, an estimation 

of 𝜖 can be empirically evaluated; either by sampling in the 

neighborhood 5  of the test set samples, by using adversarial 

attack methods [13, 14] (aiming to maximize the error in the 

neighborhood), or by incomplete formal methods (such as 

abstract interpretation [15]). None of these methods provides 

guarantees for all 𝑥 and 𝑥′, much less so when the ODD is high 

dimensional. For such more complex problems, the following 

probabilistic formulation of the property would be more 

convenient: 

 

𝑃𝑋(∀𝑥′ ∈ 𝐵(𝑋, 𝛿),  |𝑓�̂�(𝑋) − 𝑓�̂�(𝑥′)| ≤ 𝜖) ≥ 1 − 𝛼 , 

 

where 𝑋  is a random point in the ODD (drawn from some 

distribution), and the ball 𝐵(𝑋, 𝛿) is the set of all 𝑥′ ∈ 𝑂𝐷𝐷 

such that ‖𝑥′ − 𝑋‖ ≤ 𝛿 . The above probabilistic property 

would mean that for most points 𝑥 in the ODD (representing a 

fraction at least  1 − 𝛼  of the ODD), the surrogate model would 

not vary too much in a close neighborhood of 𝑥. 

 

For the IGRF use case, we have experimented Monte-Carlo 

sampling estimation. We also perform an incomplete formal 

method (with Alpha-Crown [15]) on one thousand samples of 

the test set. This method is designed to compute upper up and 

lower lp bounds containing model outputs (e.g. 𝑙𝑝 ≤ 𝑓�̂�(𝑥′) ≤

up) , when the input is contained inside an 𝑙𝑝-ball around 𝑥: 

𝐵𝑝 = {𝑥′ | ||𝑥′ − 𝑥||
𝑝

≤ 𝛿}6. We perform the computation with 

𝑝 = 2 for 10K samples and plot the absolute difference between 

these bounds and 𝑓�̂�(𝑥). 

 

Results are shown in Figure 4. Interestingly, on this use case, 

both methods (Monte-Carlo and Alpha-Crown) present 

coherent results and show that: 

- the ML model is not stable close the north pole, 

- the estimated model stability is consistent with the 

performance requirements. 

 

                                                           
4  This was not done in this study due to lack of time and 

resources. 
5 A particular attention should be paid to the condition "inside 

the ODD". 

 
Figure 4 Trained model stability estimation:  (left) Estimated local 

variations by Monte-Carlo sampling (right) Alpha-Crown upper and 

lower bound estimation for a 20Nm position perturbation [Note that 

only a subsample of test was processed with this method]. 

In conclusion, stability estimation is a pertinent tool to evaluate 

model vulnerabilities, when the variations of the ground truth 

function are known. 

 

These results prove the feasibility of the objective in the low 

dimensional ML model that we study. However, the clarity and 

the applicability of the objective, such as the definition of the 

appropriate perturbation (e.g., δ) and model impact (e.g., loss 

function and ε), greatly depend on the use case and require both 

ML and operational expertise. Furthermore, since currently 

formal methods do not scale to large deep learning models, 

stability is mainly estimated by Monte Carlo or Adversarial 

methods, providing only a statistical lower bound estimation. 

Consequently, we cannot assume that this objective is feasible 

for such tasks. 

 

E. Analysis of objective LM-13: Model robustness 

The next objective is defined by:  

Objective LM-13: The applicant should perform and 

document the verification of the robustness of the trained 

model in adverse conditions. 

The concept paper suggests evaluating the model’s robustness 

against three types of examples:  

-  Edge or corner cases that can arise when considering data 

within the ODD but with one (resp. at least two) input 

variable(s) that is(are) close to the extremal values of the 

ODD;  

- Out of distribution (OoD) examples that correspond to 

input data that are not covered by the training set 

distribution; 

- Adversarial examples that may affect the AI/ML 

constituent expected behavior.   

 

Edge, Corner and OoD. Concerning clarity, the definition of 

the edge, corner, and OoD examples is quite clear for our use 

case, but this definition is challenging for high-dimensional 

data. 

As for applicability and feasibility: In the context of the 

surrogate use case, as we master data generation, it is quite easy 

to generate such test samples. For example, OoD samples will 

coincide with out of ODD samples (since the training dataset is 

drawn uniformly within the ODD). We can generate samples in 

the latitude range [82°N, 83°N] and evaluate the ML model 

6 For the sake of simplicity, the study was done on an ℓ2 –ball 

of the neural network input space. Since our neural network is 

in fact only provided with vectors of the form 

( cos(𝜃) , sin(𝜃) , cos(𝜙) , sin(𝜙) ) as inputs, this over-

approximation leads to conservative stability estimates. 
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performances. Table 3 presents some results for 1000 samples, 

revealing, as expected, a performance degradation outside the 

ODD. 
 

Latitude range 95% accuracy on OoD set  

82°N - 83°N 11.60° 

61°S - 60°S 8.81° 
Table 3 OoD performances evaluation 

We must highlight that for real-world use-cases, collecting 

corner, edge, and OoD points may be a challenge in itself. 

Detection of OoD samples is also a challenge for safety in order 

to monitor the usage of the ML model, but this is part of other 

objectives. Feasibility may not be reachable for some real-world 

cases, since OoD, edge and corner cases are not easily defined 

for high-dimensional data.  

 

Adversarial robustness. Adversarial robustness is generally 

defined for classification tasks, with few works in the literature 

addressing regression. For regression tasks, a definition is 

provided in [16], which refers to the "worst perturbation" �̂�  

defined, for a given sample (𝑥, 𝑦), as: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢:||𝑢||≤𝛿|𝑓(𝑥 + 𝑢) − 𝑦| 

Estimating the worst perturbation �̂� seems applicable and 

feasible for our surrogate use case. However it must be noted 

that the “worst perturbation” for a given sample (𝑥, 𝑦)  will 

depend on the operational noise level and the Lipschitz constant 

of the targeted function (i.e., the local variation of 𝑓). Besides, 

the proposed definition prevents us from using many of the 

existing formals methods, such as [15].  

 

To enhance feasibility, we propose to use the following tractable 

definition: Given a tolerated variation  𝜖 , find the largest 

perturbation norm δ (also called robustness radius) on 𝑥: 

 

 max{𝛿 ≥ 0: ∀||𝑢|| ≤ 𝛿, |𝑓(𝑥 + 𝑢) − 𝑓(𝑥)| ≤ ϵ }. 

 

With this definition, the previous results on trained model 

stability obtained with [15] or by Monte-Carlo sampling 

(Section IV.D) are applicable. This local largest perturbation 

should be compared to the knowledge of the target function to 

provide interesting features on ML model robustness. 

 

F. Analysis of objectives LM-04 and LM-14: Generalisation 

bounds 

Two LM objectives focus on the generalisation bounds of the 

trained model 𝑓𝑆: 

 

Objective LM-04: The applicant should provide 

quantifiable generalisation bounds. 

Objective LM-14: The applicant should verify the 

anticipated generalisation bounds using the test data set. 

 

Informally speaking, the generalisation ability of a trained 

model is about how well it performs on unseen operational data. 

This is formalized in the statistics and ML theory literatures 

(see, e.g., in [17] or [18]) through the statistical notion of risk. 

 

The risk of a trained model 𝑓𝑆 , denoted by 𝑅(𝑓�̂�) , is the 

(theoretical) average error over all possible operational points, 

weighted by an appropriate distribution. In our case, since the 

ground truth is given by the output 𝑓(𝑥) of the IGRF-13 model, 

and since we consider uniformly distributed latitude 𝜃  and 

longitude 𝜙  within the ranges 60°S-82°N and 180°W-180°E, 

the risk reads: 

𝑅(𝑓𝑆) =  ∫ ∫ |𝑓𝑠(𝑥𝜃,𝜙) − 𝑓(𝑥𝜃,𝜙)|
180

−180

 
𝑑𝜃

142

𝑑𝜙

360

82

−60

  , 

where 𝑥𝜃,𝜙  denotes the Earth location at latitude 𝜃  and 

longitude 𝜙 (at an altitude of 100 meters). Importantly, the risk 

𝑅(𝑓�̂�) depends on the training set 𝑆; it is a random variable. 

A generalisation bound is a probabilistic bound on the risk 

𝑅(𝑓�̂�), typically expressed as a sum of an observed average error 

(called the empirical risk) and some statistical margin. 

Depending on whether the empirical risk is measured on the 

training set 𝑆 or on some new calibration dataset 𝑆’, different 

mathematical tools are used. To the best of our knowledge, there 

are at least three families of methods to obtain generalisation 

guarantees. 

 

A first family of bounds, which we could call training-based 

generalisation bounds, use the training set 𝑆  to estimate the 

risk 𝑅(𝑓�̂�) with the empirical risk given in our case by 

𝑅𝑆(𝑓𝑆) =  
1

𝑛𝑆

∑ |𝑓𝑠(𝑥) − 𝑓(𝑥)|
𝑥∈𝑆

, 

where 𝑛𝑆 is the number of training examples. A rigorous 

statistical margin is then computed, i.e. a guaranteed upper 

bound on the generalisation gap 𝐺 = 𝑅(𝑓�̂�) − 𝑅𝑆(𝑓�̂�) that 

holds with high probability over the draw of the training set 𝑆. 

Various such bounds exist. They typically depend on the 

number 𝑛𝑆 of training examples, on some (light) properties of 

the data distribution, and (to account for possible overfitting) on 

the model family complexity (e.g., the number of layers or 

parameters of the neural network, the type of activation 

function, etc). Unfortunately, such bounds are typically too 

large to be practical. A historical example in regression is given 

by the pseudo-dimension bounds (a generalization of VC-

bounds to regression problems; see Theorem 11.8 in [18]). It is 

well known that these bounds are conservative (and thus 

typically pessimistic), as noted in the concept paper. Indeed 

these bounds control the generalisation gap 𝑅(g) − 𝑅𝑆(g) of all 

models 𝑔  under consideration (e.g., when varying all 

parameters of a given architecture) instead of the trained model 

𝑓𝑆 only, and hold for virtually any data distribution. 

 

Next we focus on post-processing methods that seem more 

promising in the near future. Such methods require a calibration 

set 𝑆′, which is a new dataset drawn independently from the 

training set 𝑆 , and on which the trained model 𝑓�̂�  is either 

evaluated or modified (see below). Post-processing approaches 

typically yield better bounds than training-based methods, as 

they offer guarantees on the trained model only, instead of the 

whole model family. 

 

Post-processing evaluation of 𝐟𝑺 . In this post-processing 

setting, the empirical risk is computed on the calibration set 𝑆’: 

𝑅𝑆′(𝑓𝑆) =  
1

𝑛𝑆′
∑ |𝑓𝑠(𝑥) − 𝑓(𝑥)|

𝑥∈𝑆′
 

where 𝑛𝑆′  is the size of 𝑆’ . Then, the risk 𝑅(𝑓�̂�)  is upper 

bounded by 𝑅𝑆′(𝑓�̂�)  plus some guaranteed statistical margin. 

Various such generalisation bounds exist [17, 18] (using so-

called concentration inequalities [19]). For example, when both 

outputs 𝑓𝑠(𝑥)  and 𝑓(𝑥) are bounded in [0,1] , Hoeffding’s 

inequality yields 𝑃𝑆′ (𝑅(𝑓�̂�) ≤ 𝑅𝑆′(𝑓�̂�) + √
ln(1/𝛿)

2 𝑛𝑆′
 ) ≥ 1 − 𝛿, 

which means that the generalization bound 
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𝑅(𝑓�̂�) ≤ 𝑅𝑆′(𝑓�̂�) + √
ln(1/𝛿)

2 𝑛𝑆′
  

is valid for at least a fraction 1 − 𝛿 of all possible calibration 

sets 𝑆’ (while only one of them is observed in practice). Note 

that the bound is valid for any training set 𝑆. 

Another example is given by Bernstein’s inequality. The 

following version also holds when 𝑓𝑠(𝑥) , 𝑓(𝑥) ∈ [0,1], for a 

fraction at least 1 − 𝛿 of all possible calibration sets 𝑆’: 

𝑅(𝑓�̂�) ≤ 𝑅𝑆′(𝑓�̂�) + √
2 𝑅𝑆′(𝑓�̂�) ln (

1
𝛿

)

𝑛𝑆′
+

2 ln (
1
𝛿

)

𝑛𝑆′
 

 

 
Figure 5: Hoeffding and Bernstein generalisation bounds in the IGRF 

use case. 

In Figure 5 we plot the above two generalisation bounds in our 

IGRF use case (to that end, 𝑓𝑠(𝑥) and 𝑓(𝑥) are first normalised 

to [0,1], but the bounds are then converted back into degrees). 

On the left, we display the two guaranteed statistical margins 

√ln (
1

𝛿
) /(2 𝑛𝑆′) and √2 𝑅𝑆′(𝑓�̂�) ln (

1

𝛿
) /𝑛𝑆′ + 2 ln (

1

𝛿
) /𝑛𝑆′  as 

functions of 𝑛𝑆′ . On the right plot, we display the resulting 

generalisation bounds, given by the sum of the empirical risk 

𝑅𝑆′(𝑓�̂�)  and these guaranteed statistical margins. They are 

statistically guaranteed upper bounds on the average magnetic 

declination error, for a latitude 𝜃  and longitude 𝜙  that are 

uniformly distributed within the ranges 60°S-82°N and 180°W-

180°E. A classical observation (from statistics theory) is that 

Bernstein’s inequality entails a better bound, at least for 

sufficiently many calibration examples. 

 

Post-processing modification of 𝐟𝑺 : risk-controlling 

prediction sets. An alternative family of post-processing 

methods consists in adding a predictive uncertainty 

quantification feature on top of the trained model. After 

modification, the predictor outputs a set of values (called a 

prediction set, typically an interval) instead of a single value, 

but with the guarantee of containing the ground truth with high 

probability. Conformal prediction methods [20] have gained 

renewed attention due to their simplicity and genericity. Next 

we focus on one algorithmic variant known as risk controlling 

prediction sets (RCPS) [21]. Just as before, this approach is only 

applicable once the model 𝑓�̂� has been trained and requires an 

additional independent calibration dataset 𝑆’. 
 

Several RCPS instances exist. For pedagogical purposes we 

describe a simple version below, which consists in replacing 

predictions 𝑓𝑆(𝑥)  with a prediction set 𝐶𝜆(𝑥) =  [𝑓𝑆(𝑥) −

𝜆; 𝑓𝑆(𝑥) + 𝜆]. To that end, the user first defines a risk level 𝛼, 

and then computes a margin value �̂�  by solving some 

optimization problem specified in [21]; roughly speaking, �̂� is 

chosen so that the empirical risk on the calibration set 𝑆′ plus 

some statistical margin (given by, e.g., Hoeffding’s or 

Bernstein’s inequalities) falls below 𝛼. 

This process comes with a probabilistic guarantee, which in our 

surrogate use case reads: 

𝑃𝑆′( 𝑃𝑋[𝑓(𝑋) ∈ 𝐶�̂�(𝑋) ] ≥ 1 − 𝛼 ) ≥ 1 − 𝛿 

This means that for a fraction 1 − 𝛿 of all possible calibration 

sets 𝑆’ , the prediction sets 𝐶�̂�(𝑥) = [𝑓𝑆(𝑥) − �̂�  ;  𝑓𝑆(𝑥) + �̂� ] 

contain the ground truth 𝑓(𝑥)  for most inputs 𝑥  (at least a 

fraction 1 − 𝛼 of all inputs). 

We apply RCPS to the IGRF use case, with 𝛼 = 𝛿 = 0.05 and 

a calibration dataset of 10K samples for each latitude range. 

Results are shown in Table 4. The computed margin �̂�  (3rd 

column) is consistent with the performance requirements (2nd 

column). Note that the 4th column somehow corresponds to the 

objective LM-14, but that our conclusions (3rd column) are 

slightly more conservative, as statistical wisdom suggests. 

Latitude 

range 

Performance 

requirements 

(95%) (°) 

Lambda 

(°) 

Observed 95% 

quantile (°) 

-50°,50° 2 1.7 1.51 

50°, 73° 3 2.1 1.966 

-60°, -50° 3 3.5 3.140 

73°, 79° 5 3.9 3.472 

79°, 82° 8 5.9 5.004 
Table 4: Application of the RCPS method to the IGRF use case 

In conclusion, back to our three criteria: 

 clarity: we found that the LM-04 and LM-14 objectives 

are clear enough, though several interpretations are 

possible (cf., e.g., our two post-processing approaches). 

 applicability: these objectives are applicable. Note that we 

had to assume some distribution on the latitude 𝜃  and 

longitude 𝜙. For another distribution, the results in Table 

4 would likely be different. 

 feasibility: the objectives can be reached with post-

processing methods, within reasonable computational 

costs, and with theoretical guarantees. The latter however 

crucially rely on the fact that the examples in the 

calibration set are independent and drawn from the right 

distribution (the uniform distribution in our case). 

 

We stress that instances where the above guarantees are 

breached may be concentrated within specific segments of the 

ODD, which could significantly impact the integration of such 

metrics in safety assessments. 

 

G. Overview of LM objectives analysis 

The detailed analyses of the previous sections led to several 

conclusions regarding the clarity, applicability, and feasibility 

of the LM objectives under study. Table 5 below provides a 

synthetic overview of our results, with a focus on feasibility. 

The conclusions drawn pertain to the magnetic declination 

estimation use case. Though not showed in the paper, we also 

analyzed the LM objectives on other toy use cases, for 

regression (a univariate nonparametric regression problem with 

Gaussian noise) and for classification (the classical two moons 

dataset). We obtained similar conclusions, though these (non-

surrogate) ML tasks raise additional challenges.  
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Table 5. Overview of the analyzed objectives.  

Objective DAL Feasibility? 

Performance on 

test set (LM-09) 

D, C Empirically: Yes 

Bias-Variance 
analysis (LM-07, 

LM-08) 

C Empirically: only rough estimation of 
bias and variance. Computationally 

prohibitive. Bias estimation is mostly 

specific to the surrogate setting (known 

𝑓(𝑥)). 
Formally: No 

Learning 

algorithm stability 

(LM-11) 

C Empirically: Only rough 

approximation 

Formally: No, very limited existing 
            Theory 

Trained model 

stability (LM-12) 

D, C Empirically: Yes with average metrics 

Formally: Yes, formal methods for 
specific model architectures (not 

scalable to higher dimensional problems). 

Model robustness 

(LM-13) 

D, C Empirically: Yes but clearer 

definitions and metrics needed 

Generalization 

bounds (LM-04, 

LM-14) 

C Formally: No for training-based 

bounds: computable but not 

actionable. Yes for post-processing 
bounds. 

Warning: these bounds require statistical 

properties on the datasets. 

 

V. DISCUSSION 

In Section IV, we only address the technical challenges raised 

by the LM objectives, namely: the clarity of the objectives in 

terms of their mathematical definitions, the applicability to the 

IGRF use case, and the feasibility (computational cost, choice 

of some parameter values, theoretical guarantees, assumptions 

on the data, etc). However, we do not address the link between 

system safety and the LM objectives. This connection is 

established within the concept paper for LM-04 and LM-09 (as 

recalled in Section II), but in the future it would be useful to re-

assess and refine this link. The contributions of the other LM 

objectives to system safety also need to be thoroughly 

investigated. 

 

In Section V.A, we recall  the paradigm shift from programming 

to learning, since it has key consequences on safety assurances. 

In Section V.B, we raise several questions concerning the 

contribution of safety assurance to system safety. 

A. The paradigm shift 

The concept paper proposes to address "the paradigm shift from 

programming to learning" with "learning assurances". We 

remind that the goal of the assurances is to obtain as many 

guarantees as possible that the contribution to safety of residual 

errors during operation will be acceptable. We highlight below 

how the two main engineering approaches described here 

(human programming-based and machine learning-based) 

address this goal radically differently. We conclude that they are 

significantly different information processing (i.e., 

transformation) approaches. In this perspective, we depict here 

the following fundamental differences of this "shift": 

1. Actor of the transformation. To minimize the errors 

made by humans, engineers rely on well-established 

principles and practices, supported by strong evidence 

gathered throughout extensive experience. On the other 

hand, to minimize the errors done by the machine, the 

applicant can only rely on a deep understanding of the 

learning process. 

                                                           
7  Even in the case of surrogate models, for which detailed 

specifications of the function may be available, the compression 

task performed by the model cannot be fully specified. Note that 

2. Complexity of the problems to be solved. We make the 

rather obvious assumption that ML techniques are to be 

used whenever no efficient alternative solution exists (i.e., 

one which can be completely specified and coded by 

humans) 7 . Consequently, no individual (or group of 

individuals) can analyze and verify exhaustively whether 

the computations of the ML-based software are correct or 

not. In most cases (in particular, when formal methods do 

not apply), engineers can only perform an empirical 

analysis of the ML model on some finite set of test 

examples, as if it were a black box. The human-written 

code based on complete software specifications can, on the 

other hand, be fully verified by other humans. 

3. Intrinsic nature of the transformation process. In the 

case of human programming, software requirements are 

transformed into code via a succession of abstractions and 

decompositions, from the highest and widest level, to the 

lowest and thinnest one. This transformation allows 

several intermediate verifications, by either tests or 

analysis, and is end-to-end understandable and traceable. 

In the case of ML software, the transformation (i.e. the 

learning phase) is mostly done by an optimization 

algorithm, which computes the parameters of the ML 

model, by minimizing a loss function to automatically 

capture statistical patterns in the training data. These are 

two fundamentally different ways of processing the 

information. 

4. Coverage of the input data. ML is mostly used to solve 

highly dimensional problems, which are impossible to 

describe / specify completely. Therefore, ensuring an 

exhaustive coverage of the input data space through 

massive testing is prohibitive for ML software (in absence 

of strong hypotheses regarding the data or the model). On 

the other hand, extensive coverage tests of human-written 

software are far more feasible essentially with the help of 

“equivalence classes” methods. The concept of 

“equivalence classes” frequently used in classical software 

test practices does not apply to ML software, due to the 

incomplete nature of the specifications of the problem 

being solved. 

 

B. Safety-related challenges 

We now briefly discuss important safety-related challenges that 

arise from the aforementioned paradigm shift. In safety, the 

main goal is to identify foreseeable failures and to obtain as 

many guarantees as possible that the impact and likelihood of 

failures will be acceptable in operation. It is thus important to 

question the link between the satisfaction of the LM objectives 

and this safety principle. Though these objectives appear to be 

very intuitive at first sight, we anticipate that seemingly small 

technical details in their instantiation might influence safety 

conclusions in a non-negligible way. Let us mention several 

examples, which appear at different levels. 

1. When interpreting an LM objective in terms of a 

mathematical definition. For example, for the IGRF use 

case, in Section IV.F we provide two generalisation 

guarantees, but only one of them seems directly related to 

safety or, more precisely, to the performance requirements 

is a reason to forbid compression options in the compilers in the 

safety critical software. 
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given in [2] 8. Indeed a small risk 𝑅(𝑓�̂�) only means that 

the average absolute error over the Earth’s surface (for a 

specific distribution) is small, which does not directly 

translate into whether the 95% performance requirements 

of Table 1 are met9. On the other hand, the RCPS method 

yields results that can be directly compared to these 

requirements; see Table 4. 

2. When applying a mathematical definition that depends 

on parameters, metrics, assumptions, etc. Since the link 

between the LM objectives satisfaction and system safety 

is not clarified, the applicant can have trouble in 

motivating the choice of some parameter values (such as 

the 𝛽 , 𝛿  or 𝜖  parameters in Sections IV.C and IV.D), 

performance metrics (the loss function involved in the risk 

definition), acceptable performance values, and data 

assumptions. 

For the IGRF use case the absolute error seems to be the 

most natural metric choice, but this is use-case specific. 

The choice of parameter values, and how they contribute 

to system safety, also seems very delicate. For example, as 

discussed in Section IV.D, a very stable trained model 

might feature a poor accuracy. Therefore, while a too small 

𝛿  for a given value of 𝜖  could be detrimental to safety 

(since the ML model could be sensitive to adversarial 

attacks), a too large 𝛿 may lead to inaccurate predictions 

and could be detrimental to safety too. 

Note from the previous paragraph that maximizing both 

robustness and accuracy is virtually impossible. This 

phenomenon contrasts with traditional assurance rules on 

software development. Indeed, traditional assurance rules 

can be cumulated to reduce the residual risk i.e., the effects 

of a given rule will not cancel out the effects of another 

rule. The experiments conducted in this paper reveal that, 

when interpreted with our mathematical definitions with 

some parameter values, some LM objectives could be 

competitive. The classical cumulative property no longer 

holds for this specific phase of the ML development 

process. In other words, the Rearson metaphor of Swiss 

cheese slices does not apply anymore. In practice, whether 

all objectives can be satisfied simultaneously or not will 

depend on parameter values as well as other choices (e.g., 

performance metrics), which should thus be properly 

linked to system safety. 

  

Overall, important efforts are needed to establish the links 

between the LM objectives satisfaction and system safety. This 

will enable to refine such objectives (in terms of mathematical 

definitions, parameter values, performance metrics, acceptable 

performance values, data assumptions, etc), or possibly to 

define new LM objectives. 

 

VI. CONCLUSIONS 

In this paper, we analyze several of the objectives proposed in 

[1]. We would first like to acknowledge all the structuring 

efforts towards the challenging goal of certifying safety-critical 

systems with AI components. However, our study shows that, 

even on a seemingly simple use-case, these objectives raise a 

                                                           
8 As noted in Section II, though the IGRF use case may not 

strictly fall under the EASA guidelines for critical airborne 

systems, it presents a realistic, well-defined, and thoroughly 

documented system. We use it as an illustrative example here.  
9 If the risk 𝑅(𝑓�̂�)  were redefined for each latitude range of 

Table 1 (instead of a global average), Markov’s inequality 

series of technical and methodological challenges; see Section 

IV.G for a synthetic overview. While intuitive and arguably 

helpful to gain confidence in ML-based systems, some of these 

objectives turn out to be ambiguous or unfeasible from a 

practical standpoint in the analyzed context. Satisfying these 

objectives for non-surrogate ML tasks, or quantifying their 

eventual (degree of) satisfaction to the reduction of safety-

related risks may posit additional hard challenges. 

 

In light of these findings, we consider that: 

 Further academic research must be conducted to develop 

methods that guarantee trustworthiness of an ML 

constituent. The scientific literature contains few 

appropriate methods that allow for the straightforward and 

efficient verification of the above objectives. 

 Despite the relevance of the guidelines towards the 

certification goal, the scope and formulation of several 

requirements should be refined and clarified. This 

clarification is key to address complex use-cases. 

 

VII. REFERENCES 

 

[1]  EASA, "EASA concept paper: first usable guidance for 

level 1&2 machine learning applications," 2024. 

[2]  EASA, "Easy Access Rules for Large Aeroplanes (CS-

25)," revision January 2023. 

[3]  P. Alken, E. Thébault, C. D. Beggan and al, "International 

Geomagnetic Reference Field: the thirteenth generation," 

Earth Planets Space, vol. 73, no. 49, 2021.  

[4]  "pyIGRF: IGRF-13 Model by Python," [Online]. 

Available: https://pypi.org/project/pyIGRF/. 

[5]  B. Efron, " Bootstrap Methods: Another Look at the 

Jackknife," Annals of Statistics, vol. 7, pp. p. 1-26, 1979.  

[6]  EASA and D. AG, "Concepts of Design Assurance for 

Neural Networks (CoDANN)," 2020. 

[7]  P. Domingos, "A unified bias-variance decomposition 

and its applications," in Proceedings of the Seventeenth 

International Conference on Machine Learning (ICML), 

Stanford, CA, USA, 2000.  

[8]  G. Valentini and T. G. Dietterich, "Bias-Variance 

Analysis of Support Vector Machines for the 

Development of SVM-Based Ensemble Methods," 

Journal of Machine Learning Research, vol. 5, pp. 725-

775, 2004.  

[9]  O. Bousquet and A. Elisseeff, "Algorithmic Stability and 

Generalization Performance," in Advances in Neural 

Information Processing Systems, 2000.  

[10]  ICAO, Performance Based Navigation, 3rd edition, 2008.  

[11]  M. Ducoffe, G. Povéda, A. Galametz, R. Boumazouza, ,. 

M.-C. Martin, J. Baris, D. Daverschot and E. O’Higgins, 

Surrogate Neural Networks Local Stability for Aircraft 

Predictive Maintenance, 2024.  

would imply high probability results similar in spirit to Table 4, 

but this implication would be crude. The RCPS method 

addresses probabilistic bounds directly, in a mathematically 

tighter way. 



11 
 

[12]  G. Katz, C. W. Barrett, D. L. Dill, K. Julian and M. J. 

Kochenderfer, "Reluplex: An Efficient SMT Solver for 

Verifying Deep Neural Networks," CAV, 2017.  

[13]  J. Goodfellow, J. Shlens and C. Szegedy, "Explaining and 

harnessing adversarial examples," 2015.  

[14]  N. Carlini and D. Wagner, "Towards evaluating the 

robustness of neural networks," ieee symposium on 

security and privacy (sp), 2017.  

[15]  K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin and 

C.-J. Hsieh, "Fast and Complete: Enabling Complete 

Neural Network Verification with Rapid and Massively 

Parallel Incomplete Verifiers," in ICLR, 2021.  

[16]  K. Gupta, B. Pesquet-Popescu, F. Kaakai, J.-C. Pesquet 

and F. D. Malliaros, "An Adversarial Attacker for Neural 

Networks in Regression Problems," IJCAI Workshop on 

Artificial Intelligence Safety (AI Safety), 2021.  

[17]  S. Shalev-Shwartz and S. Ben-David, Understanding 

Machine Learning: From Theory to Algorithms, 

Cambridge University Press, 2014.  

[18]  M. Mohri, A. Rostamizadeh and A. Talwalkar, 

Foundations of Machine Learning, 2nd ed., MIT Press, 

2018.  

[19]  S. Boucheron, G. Lugosi and P. Massart, Concentration 

inequalities: a nonasymptotic theory of independence, 

Oxford University Press, 2013.  

[20]  V. Vovk, A. Gammerman and G. Shafer, Algorithmic 

Learning in a Random World, 2nd ed., Springer-Verlag, 

2022.  

[21]  S. Bates, A. Angelopoulos, L. Lei, J. Malik and M. 

Jordan, "Distribution-Free, Risk-Controlling Prediction 

Sets," Journal of the ACM, vol. 68, no. 6, 2021.  

[22]  M. Ducoffe, S. Gerchinovitz and J. Sen Gupta, "A high-

probability safety guarantee for shifted neural network 

surrogates," in SafeAI 2020, 2020.  

 

 

 

 

 

 

 





Session Tu.3.B

Realtime System 2

Tuesday 11th June

15:00
–

Lauragais Room

171



172



Performance and confidence in feasibility analysis
of real-time multi-core distributed systems

Etienne Hamelin∗, Alexandre Berne∗, Myrhal Boudiaf∗, Paul Dubrulle†
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Abstract—With the trend towards software-defined vehicles,
the scale and complexity of automotive software application
is increasing rapidly, so that classical timing analysis methods
become hardly practical. This paper proposes a new method,
where a system model, formalized in an abstract multi-rate
dataflow model of computation, is refined into a precedence-
constrained scheduling problem. We characterize, and extend
where needed, several schedulability analysis techniques to tackle
this problem, and we demonstrate its use in the exploration of
partitioning choices.

Index Terms—real-time, multicore, distributed, response time
analysis, schedulability, dataflow

I. INTRODUCTION

The automotive industry is facing many challenges in its
transformation towards the Software Defined Vehicle (SDV).
The number of software components or services is vigor-
ously expanding, as is the complexity of their interaction,
and the associated integration issues, especially the real-time
aspects. SDV applications represent a new step in complexity,
involving thousands of mixed-criticality, both hard and soft
real-time tasks, deployed on heterogeneous computing archi-
tectures made of microcontrollers and multicore processors,
distributed across multiplexed networks, where configurations
are moreover subject to over-the-air (OTA) updates during
vehicle road life. Due to this whole new range of complexity,
classical approaches of software timing analysis face signifi-
cant challenge.

For these applications, many system-level properties, includ-
ing timing feasibility (schedulability, reaction latency) cannot
be left to be verified in the late integration testing phase.
To avoid costly redesign cycles, we advocate a model-based
approach to manage software timing properties, from service
design to implementation and integration, enabling early in
the process to predict application performance and timing
feasibility.

In this paper, we present an approach, and a model-based
analysis toolkit, based on the real-time multi-rate dataflow
language PolyGraph, that allows to determine the feasibility
of real-time constraints early in the design cycle.

First, in Section II we position our research with respect to
previous work, then we present the context of modern SDV
applications and a simple illustrative use-case in Section III. In

This research was partially supported by project DeepSEA, Grant agreement
ID: 955606

Section IV-A we present the timing annotations added on the
PolyGraph language. Our main contribution is a model of exe-
cution that relates the abstract behavior of the dataflow with a
real-time, precedence-constrained, task scheduling model. This
scheduling model is then analyzed via both simulation and
response-time analysis in Section IV-E and IV-G. Finally, in
Section IV-H we compare the outcomes of this schedulability
study with an actual execution on an embedded platform.

II. RELATED WORKS

In particular, the scientific community has developed a large
knowledge base on models of computation, on the deployment
of corresponding applications onto embedded computing plat-
forms, and various approaches which enable formal reasoning
about safety-related properties.

The embedded and cyberphysical systems community is
progressively adopting technologies from the Internet world.
For instance, the adoption of embedded Service-Oriented
Architecture (SOA) frameworks like the Robot Operating
System (ROS) allows engineers to easily develop, deploy and
maintain complex processing chains made of many software
services, by abstracting behavior from the actual details of
the distributed execution platform, in particular the complex
effects of dynamic scheduling. However, ROS builds a layer
of cooperative scheduling of callbacks within each executor,
on top of a typical priority-driven scheduling of processes.
This complex scheme makes timing analysis extremely com-
plex [1]. In comparison, some other SOA frameworks (e.g.
ZMQ) provide message-oriented abstractions independent of
any task or scheduling model.

Since the seminal works by Lee & Messerschmitt [3] on
Synchronous Dataflow graphs (SDFG), many variants of the
dataflow graph paradigm have been proposed. They explore
various trade-offs between expressiveness of the model on one
hand (related to the ability to accurately model a diversity
of practical industrial systems), and the potential for formal
analysis of useful properties based on a system model on the
other hand [4]. Properties can be formally analyzed such as
causal determinism, consistency, liveness, static schedulabil-
ity, memory-boundedness, which are of particular interest in
safety-relevant applications.

The SDFG paradigm does not explicitly model passing of
physical time, therefore does not lend itself to timing anal-
ysis. Similarly, the synchronous language paradigm focuses
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on logical instants [5], and requires all reactions to happen
between consecutive instants – which limits the potential
integration of longer-running tasks. In contrast, in the Time-
Triggered (TT) paradigm [6] and Logical-Execution-Time
(LET) [7], time is the principal means chosen to ensure
deterministic communication among software nodes. In these
models, specifying a physical time instant for all task release
(TT) or communication events (LET) leads to deterministic
communications, but at the price of adding new tasks or new
constraints to the online scheduler [8].

As a consequence, the models of computation listed above
do not scale well to support modern, multi-rate, SOA-
distributed SDV applications. In our study, we select the
PolyGraph language introduced in [9], [17]. It inherits the
determinism and causal actor semantics of dataflow networks,
but adds a formal model of time, similar to TT however it
constraints only a specific subset of tasks. This model lends
itself particularly well to data-driven applications where multi-
rate behavior is dictated by the diversity of sensors or actuators
typically used in modern automotive, such as Advanced Driver
Assistance Systems (ADAS). However the mapping of those
applications onto schedulable task sets is yet to be defined.

Several implementations derived from dataflow graphs use
static scheduling strategies [3] or static time-triggered imple-
mentations [15], as often used in aeronautic environments
that require strong time- and space-partitioning, it seems
comparatively few approaches have been proposed to deploy
dataflow networks using fixed priority [16].

Many real-time software systems rely on a fixed-priority
preemptive scheduling policy. While often dominated by other
policies (e.g. deadline-driven), it has the advantage of being
simpler to implement reliably, to understand and therefore
to analyze. Since the formalization of the Response-Time
Analysis (RTA) algorithm by [10], [11], many have extended
this approach to support multicore parallelism and prece-
dence constraints among tasks [12]. A Directed-Acyclic Graph
(DAG) is typically used to represent precedence constraints
among sub-tasks that run at the same rate. In particular, [13]
extends the traditional RTA with a probabilistic model to
estimate response time bounds of a DAG task model. This
DAG-based approach however is not sufficient to model all
the constraints that emerge from a multi-rate timed dataflow.

In the classical RTA algorithm [11] as well as the prob-
abilistic multicore extension [13], the authors only consider
the response time of tasks, i.e. the span from release to
completion, wheras the PolyGraph-derived precedence scheme
imposes to also model the variability of jobs release times. The
Compositional Performance Analysis approach (CPA) [14]
uses a set of event curves to model the inter-arrival times.

In this paper, we define an extension to the PolyGraph
language to generate the scheduling constraints for large SoA-
oriented systems with timing constraints, accounting for their
high variability; from these constraints we define an execution
model respecting the precedence and real-time constraints,
and characterize different analysis methods to determine the
schedulability of the resulting system. Our results show that

classical approaches have limitations, and we introduce an
extension to the RTA analysis framework to overcome them.

III. CONTEXT

In this paper, we first explore the challenges to overcome
during the development of real-time systems using Service-
Oriented Architecture (SOA), powerful centralized computing,
distributed sensors/actuators, all concepts required for the
advent of a Software-Defined Vehicle (SDV). In this section
we present the new challenges that emerge in the SDV domain,
we recall the main aspects of the PolyGraph dataflow lan-
guage, then we present some notations useful to the following
analyses.

A. The Software Defined Vehicle challenge

The future generation of vehicles or other domains will
implement more and more software components distributed
over multiple multi-core Electronic Control Units (ECUs)
interacting in real time. From the increasing amount of dis-
tributed data, the growing number of software components
(SWCs) running on a single target and to keep the safety
in the complete system, methods of design and validation
need to adapt. By combining model-based engineering and
timing analysis, we propose a feasibility assessment method
based on the PolyGraph formal model to tackle those evolving
challenges.

In a modern vehicle, multiple sensors such as cameras,
lidars, radars, produce data at different rates; these signals
are fed through various software components, some of which
support lightweight state machines, and some support very
computationally-heavy image-processing or trajectory predic-
tion. Moreover, both computing and network resources are typ-
ically shared among both critical and quality-managed loads.
PolyGraph allows to formally model all these constraints,
defining rigorously the expected behavior (timing wise), and
assess latencies, schedulability and deployment possibilities.
Through those analysis, we can refine the previous model to
have a better accuracy of the final system.

We illustrate our work on the use-case proposed in [18].
Fig. 1 presents the multirate dataflow structure, and Fig. 2
illustrates the vision processing stages. This system represents
the perception stage of an ADAS, where images from a front-
facing camera are fed by actor ImgSrc at 15Hz into two
parallel processing chains. The lane-detection subchain detects
road lane markings using classical computer-vision algorithms.
First, a perspective transform creates a bird-eye-view, a color
filter outlines the white and yellow markings. A boxed-search
filter identifies lane keypoints, a 2nd order polynomial is fitted
through the identified keypoints, so that the extrapolated lane
can be drawn on the bird-eye view. This bird-eye view of
the lane is perspective-transformed back into a front view
for display. Its output is used for lateral control, typically in
lane keeping assistance. The object-detection subchain detects
and classifies obstacles like vehicles and pedestrians using
a neural network ; its output typically drives an automated
emergency braking (AEB) system or other longitudinal control
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functions. Due to its heavier computation load, the object-
detection subchain runs at a lower frequency, processing only
every 5th frame. Both subchains are subject to a strict end-
to-end latency constraint, imposed here through the Display
sink actor. Although not representative of the scale of modern
automotive SOA applications, this didactic use-case already
showcases both some limits of existing approaches and the
practical usability of our method in this context.

B. PolyGraph summary

PolyGraph is a formal dataflow modeling language, pro-
posed in [17]. We recall here only the main notions. It defines
the expected real-time behavior of actors (which model the
software components), communicating through read-blocking
FIFO channels (which model message-based communication).
Actors fire atomically to consume and produce a fixed number
of tokens on the incident channels.

The real-time constraints are modeled by defining the ex-
pected firing frequency of the actors modeling sensors and
actuators in the multi-rate system. Maximal end-to-end latency
on channel paths can be defined by adding phase offsets for the
first expected firing. The other actors without explicit timing
constraints represent reactive software components triggered
by their inputs.

The formal model allows to infer inherited timing con-
straints for the reactive actors. Model-checking can then be
applied to verify consistency and liveness properties (hence,
memory-boundedness and absence of starvation, including
missing inputs at expected real-time start date).

These abstract properties are verified with the minimum set
of parameters derived from system engineering constraints.
While this abstraction is an advantage in functional modeling
to determine the feasibility and coherence of the timing
requirements, it lacks precision when taking into account the
possible variations in the software implementation. To account
for variability in a concrete execution in software, we introduce
in Section IV additional notions to capture execution time
and jitter, without impacting the verdict on consistency and
liveness.

C. Notations

Following [17], a polygraph is a tuple containing a set
V = {V1, ..., VN} of actors and a set E = {E1, ..., EM} of
channels. We denote by V n

j the nth firing of actor Vj in an
execution of the polygraph.

A subset T ⊆ V of actors are strictly-timed. To each actor
Vj ∈ T is associated a frequency ωj (equivalently a cycle time
Πj) and phase offset ϕj . For any actor Vj ∈ T and any of its
firings V n

j , its cycle time and phase offset determine an exact
firing date τnj = Πj × n+ ϕj .

From Propositions 1 and 2 in [19], we denote ρi(n) the
(non-decreasing) count of tokens produced on channel Ei by
the first n firings of its producer actor i.e. V 1

j to V n
j , and σi(p)

the (non-decreasing) to count of tokens consumed by firings
V 1
k to V p

k .

Depending on the order of the firings in a polygraph’s
execution, it may be non-blocking, i.e. for any channel Ei =
〈Vj , Vk〉, the firings of Vj and Vk are ordered so that any
firing V n

k has sufficient input data tokens to prevent a blocking
read. We denote H = 〈J,≺〉 the directed acyclic graph
(DAG) encoding the partial order of the actor firings in the
polygraph’s non-blocking executions (with an edge if V n

j must
occur before V p

k to preserve the non-blocking property, i.e.
V n
j ≺ V p

k ). Fig. 3 represents the structure of the precedence
graph for the first jobs of our ADAS use-case.

IV. CONTRIBUTIONS

A. Variations and execution times in PolyGraph

As explained in the previous section, the PolyGraph lan-
guage reasons on firing instants for the verification of consis-
tency and liveness. In an actual software execution, this re-
striction is not realistic and maintaining the abstraction comes
with advantages and drawbacks (see Section II). To enable
reasoning on firing time frames instead of firing instants, we
add two modeling parameters: completion jitter and timing
budgets.

Completion jitter allows to define the maximal acceptable
deviation from explicit periodicity constraints. For example, an
actor Vj with a strict cycle time of Πj = 100ms with a jitter
of 10ms models a requirement to refresh its output data every
100ms, plus or minus 10ms. We denote zj the completion
jitter of a strictly timed actor Vj , and require that zj 6 Πj .

Timing budgets are associated to actor firings, to define
the maximal acceptable execution time to process input data
for the production of output data. It can for example be
defined as an estimate of the maximal execution time, resulting
from a static or dynamic worst-case execution time (WCET)
analysis, or coarsely estimated through benchmarking statistics
(depending on stringency of the actor’s constraints). We denote
bnj the budget of firing V n

j .
The addition of timing budgets and jitter maintains the

decidability for the consistency and liveness properties. For
the consistency property, only the topology matrix of the
polygraph and the frequencies are relevant, and they are not
modified by the addition of budgets and completion jitters. The
purpose of the liveness property is to determine the existence
of at least one valid execution. Budgets and completion jitters
can thus be ignored in the liveness property definition. Budgets
indicate a maximal execution time delaying the occurrence of
a firing, but the minimum remains 0. The completion jitters
indicate a variation of the firing date of strictly timed actors,
which can be ignored by choosing the fixed date τnj for
any firing V n

j (equivalently, all jitters being set to 0). The
Algorithm 1 in [17] thus remains applicable by choosing these
values for the additional parameters. A positive verdict on
liveness is a required starting point to further analyze the
polygraph with other values for budget and jitter.

Given the precedence graph H for a polygraph, the com-
pletion jitters and budgets allow to generate expected exe-
cution windows, or time frames, in so-called optimistic and
pessimistic scenarios. In the optimistic scenario, the execution
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Fig. 1. ADAS use-ecase dataflow

Fig. 2. ADAS vision processing stages: front view (ImgSrc output), bird-eye view (PerspWarp output), lane detection (2 stages), inverse perspective
(PerspUnwarp output), and object detection.

Fig. 3. Jobs precedence graph

times are ignored to define the bounds, and in that case the
time frames are maximal. In the pessimistic scenario, the
size of the time frames are minimal, considering execution
times such that all actors consume the entirety of their timing
budgets.

For each firing V n
j , we define the following time frames:

• allowed execution: defines in the optimistic scenario
when the actor has all the required data on its input
queues at the earliest, and when the data is required at
the latest on all its output queues. That frame is thus the
maximum time frame during which input data is available
for computation and output data is relevant to successors
in the precedence graph. We denote alnj the lower bound
of this frame and aunj its upper bound.

• pessimistic execution: defines the same instants in the
pessimistic scenario, when all firings consume their
whole timing budget. That frame is thus the minimum
equivalent of the allowed time frame. We denote plnj the
lower bound of this frame and punj its upper bound

• realization: defines the instants when the firing (atomic

consumption and production) may occur. We denote rlnj
the lower bound of this frame and runj its upper bound.

We detail in the following how to determine these time
frames. Before going into more details, Fig. 4 illustrates
their definition for a polygraph with 3 actors and 2 channels
modeling a simple functional chain Sensor→ Compute→ Ac-
tuator. Sensor and Actuator are strictly timed, with frequencies
respectively 10Hz and 5Hz. Actuator has an offset of 50ms.
Compute is a reactive actor with inherited frequency of 5Hz.
The jitters of Sensor and Actuator are set respectively to 10ms
and 20ms. If we assume that Sensor produces every two firings
the number of tokens consumed by Compute, the polygraph is
consistent and live. The precedence graph is then quite simple,
Sensor(1) → Sensor(2) → Compute(1) → Actuator(1). The
timing budgets are 10ms for the firings of Sensor, 30ms for
the firing of Compute, and 20ms for the firing of Actuator.

In Fig. 4, note first the position of the realization time frame
of firing Sensor(2) and the allowed time frame of Compute(1).
The firing Sensor(2) is constrained to be realized between 190
and 200ms by the timing parameters of the Sensor actor. In
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any valid execution, the data is thus produced within this
frame. Since it is required by Compute(1) as an input, its
allowed time frame cannot start before 190ms. Then note that
in the pessimistic scenario, Compute(1) ends at the soonest
at 220ms, which constrains the pessimistic lower bound for
Actuator(1).

Fig. 4. Firing time frames. The time budget is figured in dark red, the
pessimistic frame in pale red, the allowed frame in blue, realization frame
in green.

To determine these time frames, the model parameters are
used as follows. The allowed time frame for V n

j is initially
defined by interval [τnj , τ

n
j + Πj ] if Vj is strictly timed. The

realization time frame is defined by [τnj + Πj − zj , τnj + Πj ].
For reactive actors, these frames are initially equal, and defined
by [0,+∞[. All pessimistic frames are initially equal to the
allowed time frame.

In addition to these initial definitions, every precedence
constraint in H of the form V n

j ≺ V p
k requires that the data

produced by V n
j be available on time for execution of V p

k in
all scenarios, that is:

∀(V n
j , V

p
k ) ∈ J , V n

j ≺ V p
k ⇒ rlnj 6 alpk
⇒ max(rlnj , pl

n
j + bnj ) 6 plpk

⇒ runj = aunj 6 aupk
⇒ punj 6 pupk − b

p
k

(1)

Then, a propagation of these constraints through the graph
H starting with the initial values (for example using a variant
of the Bellman-Ford algorithm) refines the initial time frame
definitions to ensure causality of communication and real-time
constraints are enforced. If a reactive actor’s firing has no
successor in H, the upper bounds for its time frames can be
chosen (as long as it is less than or equal to the hyperperiod
of the polygraph, to preserve the consistency property).

For a consistent and live polygraph, the initial allowed and
realization time frames can always be refined while respecting
the inequalities of Equation (1), since H is an encoding of
the partial order of non-blocking executions and there is at
least one valid execution for the polygraph from the liveness
property. As such, with the completion jitter extension, any
sequence of firings ordered by firing date, such that the firings
occur within their realization frame, is a valid execution for
the polygraph.

Note that if refining the time frames results in pessimistic
frames smaller than the budget or frames where the pessimistic
upper bound is out of the realization frame, the system is
infeasible regardless of scheduling and resources. Indeed, a
frame smaller than the budget implies that the actor have

insufficient time to complete in the pessimistic scenario. A
pessimistic upper bound out of the realization frame translates
in a requirement to produce data sooner that the firing can be
realized, which is a contradiction.

For final time frames respecting the inequalities of Equa-
tion (1), different approaches can then be used to assess the
feasibility of the system timing requirements defining these
frames, taking into account a scheduling policy and execution
resources. We explore and characterize some approaches in
the following sections.

B. Execution model

In this section, we suppose now that a polygraph system
is implemented by mapping actors to a set of real-time,
partitioned, fixed-priority tasks, connected through first-in,
first-out (FIFO) message queues, where each token on channel
represents a distinct message. In a service-oriented imple-
mentation, these message queues are typically implemented
as a publish/subscribe channel supported by a communication
middleware such as ROS, DDS, MQTT or ZMQ. We suppose
that a common time source is available to all tasks.

We consider that each actor Vj is implemented by a single
task, which loops infinitely over the following 4 states. For
job index n = 1, 2, ...:

• 1. Wait: If Vj is strictly timed, i.e. has a period/phase
offset constraint specified, block until the allowed time
frame lower bound is met. If Vj is loosely-timed, switch
immediately to Pend state.

• 2. Pend: block until all the required input data is avail-
able, that is for each input channel Ei of actor Vj , block
until at least ρi(n)−ρi(n−1) tokens are available in the
corresponding FIFO.

• 3. Compute: this stage performs the application-specific
business logic computation associated with this job. This
typically involves processing the payload of the available
input messages and computing the payload of the output
messages, using CPU time less than or equal to the
budget.

• 4. Send: Block until the start of the realization time
frame, then atomically pop required input data from the
input queues and push the produced data samples to
the output queues, that is on each output channel Ei,
σi(n)− σi(n− 1) tokens.

We further suppose that during the Wait and Pend phases the
processor is left free to run other jobs, i.e. the processor does
not waste time in busy-waiting or input polling loops; and that
the time spent in the communication stack in the Send phase
is negligible – or at least, negligible in comparison to the time
spent in the Compute phase. This is a reasonable hypothesis
for several communication stacks such as ROS or ZMQ. For
now, we also neglect message transmission times, i.e. a given
message is available to its consumer immediately after it was
sent by its producer job.

With these assumptions, and given the definition of the
time frames in Section IV-A, scheduling a polygraph system
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becomes equivalent to scheduling the Compute phase of all
jobs, subject to the following constraints:
• the release, jitter and deadline constraints imposed on

strictly-timed actors,
• the precedence constraints imposed by messages tokens.
Since all these time and precedence constraints can be

predetermined off-line from the polygraph system definition,
we can lean on the body of knowledge accumulated about
precedence-constrained scheduling.

C. Absolute execution window

Scheduling using the allowed time frames (neglecting the
budgets) gives the most flexibility to the execution (as the time
frames are maximal). When guarantees on the feasibility of a
schedule are required, it is best to account for budgets and use
the pessimistic frames instead.

When a feasibility test is required, it is mandatory to have
a characterization of the execution times of the jobs, we thus
consider that BCET and WCET are available.

From there, setting the budgets to the BCET and refining the
time frames as defined in Section IV-A provides pessimistic
time frames that are the largest possible frames for the
Compute phase of the jobs (since they are built considering
that all jobs perform as fast as possible without processor
resource constraints). We call this time frame for any job V n

j

its absolute execution window, noted [aesnj , alf
n
j ].

As a corollary we have a first necessary condition on
schedulability: if, for any actor/job indices j, n, the absolute
execution window is not long enough for the worst-case
execution time, i.e. aesnj + WCETj > alfnj , then it is not
possible to schedule that job within these bounds. Such a
system is proven unfeasible.

If this condition is verified, it makes sense to analyze further,
by accounting contention on each processor resources.

D. Priority-driven scheduling

If we further suppose that each actor Vj is scheduled, using
the Fixed-Priority Preemptive (FPP) policy, on a processor πj ,
with distinct priority Pj , then we can refine our estimates of
when each job will be executed, and whether processors can
schedule all jobs.

In priority-driven scheduling, several jobs might compete
for execution time on the same processor. Henceforth a high-
priority job might defer or preempt a lower-priority job, hence
causing scheduling interference (as illustrated in Fig. 5). To
model the execution of tasks in the FPP policy, we introduce
the following notions.

For any job V n
j in a FPP schedule, we denote by snj the start

time of its Compute phase, fnj the completion of its Compute
phase, and Cn

j its execution time.
In addition, we denote by ifnj the amount of interference

that V n
j suffers from other, higher-priority jobs (i.e. the total

time during which V n
j is ready to run, but not actually running,

on processor pij). Finally, we denote Rn
j the response time

Rn
j = Cn

j + ifnj .

Fig. 5. Scheduling interference caused by a high-priority job HP on a lower-
priority job LP. Jobs become ready at ↓. Bright green: LP job is running; dark
green: LP suffers interference from HP.

The FPP schedule is then subject to the following con-
straints:

∀V n
j ∈ J ,fnj = snj +Rn

j

BCETj 6 Cn
j 6WCETj

aesnj 6 snj

fnj 6 alfnj

∀(V n
j , V

p
k ), V n

j ≺ V p
k ⇒ fnj 6 spk

(2)

Our task is now to estimate, or bound, the amount of
interference that any job suffers.

E. FPP simulation

In order to estimate interference, we developed a simula-
tor for FPP-scheduled polygraph systems. This simulator is
derived from Equation (2), using a discrete-event simulation
strategy: at each scheduling point, we compute the state of
each actor, and each processor elects the highest priority job
among those in the Compute state, to run until completion or
preemption by another event. Fig. 6 illustrates the chronogram
generated by this simulation.

If actor jobs have constant execution times (i.e. BCETj =
WCETj), such a simulation might provide a sufficient
schedulability test. If execution times are variable however, it
is not sufficient to simulate a schedule with all actors’ WCET
to get a worst-case response time estimate. Indeed, in certain
circumstances, a job taking less time to execute might cause
another job to have a longer response time and even miss a
deadline. Fig. 7 illustrates such a scheduling anomaly, where
the first job of A executes for its full WCET duration, then
releases the first job of B after C has completed. During
the second run at t = 40ms however, A completes earlier,
releasing B sooner. This time, B preempts C, increasing its
response time.

To build a higher confidence in system schedulability, we
simulate many runs of the system (actually, many hyperpe-
riods) in a Monte-Carlo fashion. For each job simulated, a
execution time sample is drawn from a uniform distribution be-
tween BCETj and WCETj . The outcome of the simulation
is a chronogram, and a histogram for each actor of its response
times such Fig. 8. Remember that the maximum observed
response time is only a lower bound on the actual maximum
response time, therefore this method does not constitute a
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Fig. 6. Simulated FPP schedule

Fig. 7. Illustration of a scheduling anomaly: a shorter execution of actor A at t = 40ms leads to a longer response time of C.

Fig. 8. Response latency histogram of the ObjDetection actor.

sufficient schedulability test. Indeed, a rare interference pattern
might remain unveiled during any fixed-length simulated run.

F. Compositional performance analysis

In complement to the simulation approach, which provides a
lower bound to job response times, several formal approaches
are known to provide upper bounds. The Compositional Per-
formance Analysis method seems an interesting approach,
which supports modeling fixed-priority jobs with precedence
constraints, deployed over multicore platforms.

We experimented with the open-source pyCPA library how-
ever, the response times estimates were very pessimistic.
Indeed, current pyCPA implementation does not take into
account the phase offsets in job release times. When we
attempted to transform a polygraph job graph into a pyCPA
precedence-constrained task system, many time constraints
were therefore lost in translation, and as a consequence the
pyCPA solver accounted many interferences that can not occur
in practice. For this reason, we tried to reduce pessimism by
adapting another method: the response-time analysis approach.

Fig. 9. Interval-based representation of job timing uncertainty. Dark green:
best/worst-case total amount of interference; bright: best/worst case execution
time.

G. Interval-based response time analysis

From the classical RTA algorithm, we derive an interval-
based variant. Its main stage consists in rewriting the
execution-time equation 2 using intervals to bound the un-
certainty on each operand, then using the precedence graph to
propagate these uncertainty intervals to neighboring jobs (sim-
ilar to the method used for absolute execution windows), and
then using these intervals to estimate possible job interference.

If we suppose that the release time of a job V n
j lies within

an interval snj ∈ [esnj , ls
n
j ] (early start, late start), and that

the total interference is bounded within ifnj ∈ [bcifnj , wcif
n
j ],

then from (2) we can bound the job completion time fnj ∈
[efnj , lf

n
j ] (early finish, late finish) with:

efnj = esnj +BCETj + bcifnj (3)

and
lfnj = lsnj +WCETj + wcifnj (4)

Fig. 9 illustrates the notations for early/late start and finish
times, and their relation with best/worst-case interference and
execution times.

Equation (4) resembles the classic RTA update equation.
Note that updating a job’s completion date might result in
discovering new interfering jobs, so the classic RTA algorithm
is applied recursively, until either fix point convergence or a
deadline miss is identified. In our case, another argument calls
for recursive application: updating the completion interval of a
job might also postpone the release time of its successor jobs.
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Now let’s estimate the interference that a job V n
j might

suffer from another job V p
k , noted as above as an interval

[bcif(V n
j , V

p
k ), wcif(V n

j , V
p
k )]. Consider two arbitrary jobs,

with their execution windows as indicated by their early and
late start/finish dates. A job V p

k might defer or preempt a job
V n
j , therefore cause interference, if and only if:

• both are deployed on the same processor, and the victim
job has lower priority than its interferer, i.e. πj = πk,
and Pj < Pk,

• and at some point in time, they are simultaneously ready
to run.

Remark that if we’re sure that an interferer’s release
time occurs while the victim is running, then the interferer
will certainly interfere with the victim. We therefore set
bcif(V n

j , V
p
k ) = BCETk when [espk, ls

p
k] ⊆ [lsnj , ef

n
j ]. In

all other case, 0 is a safe lower bound to interference.
Similarly, an interference can occur only if the execu-

tion frame of the interferer overlaps that of the victim:
wcif(V n

j , V
p
k ) = 0 when [esnj , lf

n
j ] ∩ [espk, lf

p
k ] = ∅, in all

other cases, WCETk is a safe upper bound.
By further noting that two jobs can’t interfere with each

other if they are linked by a precedence chain, we can reduce
the set of potentially interfering jobs to consider:
HP (V n

j ) = {V p
k |πj = πk and Pj < Pk and V p

k /∈
Pred∗(V n

j ) and V n
j /∈ Pred∗(V p

k )}
Hence, we define:

bcif(V n
j , V

p
k ) =





BCETk if V p
k ∈ HP (V n

j ) and
[espk, ls

p
k] ⊆ [lsnj , ef

n
j ],

0 otherwise
(5)

and

wcif(V n
j , V

p
k ) =





WCETk if V p
k ∈ HP (V n

j ) and
[espk, lf

p
k ] ∩ [esnj , lf

n
j ] 6= ∅,

0 otherwise
(6)

It follows that a lower bound the total amount of interference
suffered by job V n

j is the cumulative interference from all jobs:
bcifnj = ΣV p

k ∈HP (V n
j )bcif(V n

j , V
p
k ). It might be tempting

to similarly sum all wcif(V n
j , V

p
k ), however that would lead

to accounting multiple times across a precedence chain the
interference from a single job: Fig. 10 shows a schedule
where a single high-priority job HP which might interfere
with either LP2 (at t = 100ms) or LP1 (at t = 1100ms),
which are part of a precedence chain LP1 → LP2; but HP
can obviously not interfere simultaneously with both. For this
reason, we add to wcifnj only the interference that was not
already accounted on predecessors of V n

j , i.e.:
wcifnj = ΣV p

k ∈HP∗(V n
j )wcif(V n

j , V
p
k )

with
HP ∗(V n

j ) = HP (V n
j ) \ {V p

k |∃V
q
l ∈ Pred∗(V n

j ),
wcif(V q

l , V
p
k ) > 0}

This last remark leads to the interval-based response-time
analysis Algorithm 1.

Algorithm 1 Interval-based response-time analysis
Input: polygraph system
Output: early and late release/completion times

Initialisation: for all jobs
esnj ← aesnj
lsnj ← aesnj
efnj ← aesnj +BCETj
lfnj ← aesnj +WCETj
repeat

for all jobs in topological order do
Update the release interval
esnj ← max(aesnj ,maxV p

k ∈Pred(V n
j ) ef

p
k )

lsnj ← max(aesnj ,maxV p
k ∈Pred(V n

j ) lf
p
k )

Update best/worst case interference
bcifnj ← ΣV p

k ∈HP (V n
j )bcif(V n

j , V
p
k )

wcifnj ← ΣV p
k ∈HP∗(V n

j )wcif(V n
j , V

p
k )

Update completion interval
efnj ← esnj +BCETj + bcifnj
lfnj ← lsnj +WCETj + wcifnj
if lfnj > alfnj , schedulability is not guaranteed
if efnj > alfnj , deadline miss is certain; return.

end for
until fix-point convergence

If this algorithm converges, then the system is schedulable,
and for each job V n

j we have computed a lower- and upper-
bound to its release and completion times. Fig. 12 visualizes
the outcome in a chronogram: each job is represented by two
slices: an “early run” between esnj and efnj and a “late run”
between lsnj and lfnj .

H. Evaluation
Our performance analysis was evaluated on both our ADAS-

inspired use-case, as well as with the use-case proposed
by [13], which illustrates a precedence-constraint task set
similar to our model.

Reference [13] presents a DAG task model with 2 tasks,
detailed in a total of 8 precedence-constrained sub-tasks which
are deployed on a 2-processor machine. By modeling message
transmission times as additional non-interfering sub-tasks, this
DAG task model injects easily into our PolyGraph language,
which allows us to analyze it through both simulation and
interval-based RTA analysis. This comparison confirms that
for most tasks both [13]’s probabilistic method and our
interval- based RTA algorithm gives a tight bound, equal to
the maximum response time observed in simulation for most
sub-tasks, with an overestimation corresponding to 1 message
transmission time for two of them.

If we chose to deploy our ADAS use-case on a 2-core
machine with the parameters in Table I, Core 2 is overloaded.
As a result, both the simulation and interval-based RTA detect
a deadline miss. Since the miss probability is low (see the
histogram in Fig. 11), many hyperperiods are simulated before
detecting a deadline miss.

If however we change the configuration, for instance by
deploying the PerspWarp actor on core 1 instead, the system
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Fig. 10. Example interference on a precedence chain: high-priority job HP may defer or preempt either LP1 or LP2.

Fig. 11. Response time histogram of the Display actor, in overloaded
configuration

Actor Core Prio. BCET -
WCET
(ms)

Simul.
WCRL
(ms)

RTA
WCRL
(ms)

ImgSrc 1 5 1-2 2 2
PerspWarp 2 4 22-23 24.9 25

LaneDetection 2 3 6-7 31.8 32
PerspUnwarp 2 2 11-12 43.8 44
ObjDetection 2 0 100-150 206.7 209

Display 1 1 12-13 37.9 38
TABLE I

ADAS USE-CASE PARAMETERS AND WORST-CASE RESPONSE LATENCIES

becomes schedulable. The last two columns of Table I show
the worst-case response latency computed by our interval-
based RTA algorithm, and observed over a simulation of 100
hyperperiods. Since the simulation approach provides a lower
bound on the actual maximum response times, and the interval-
based RTA proves an upper bound, the small gap between both
predictions indicates that we have a rather accurate estimation
of the actual maximum possible response times.

In addition, from this polygraph system definition we gen-
erated a set of task threads communicating through ZMQ
messages, respecting the same scheduling parameters. We ran
the generated code on a physical multicore target and traced
the effective execution during a few minutes. The actual trace
of Fig. 13 confirms that each job ran within the early/late
bounds observed in simulation and computed with interval-
based RTA.

V. CONCLUSION

The PolyGraph language supports modeling of a rich set
of SDV applications, typically in the form of reaction chains
involving services running at various rates, deployed over
multi-core and distributed ECUs. Equipped with the model

of execution proposed in Section IV-B, we have shown that
two powerful verification methods can be extended to support
the timing analysis of polygraph systems, namely scheduling
simulation (Section IV-E) and an interval-based variant of the
response-time analysis method (Section IV-G). This approach
is validated by comparing the response latencies measured on
a simulation, computed with the interval-based RTA method,
and measured on an actual target execution.

This paper focuses on the partitioned, fixed-priority pre-
emptive scheduling policy, however both the simulation and
response-time analysis tools could be extended as future work,
to support other policies such as deadline-driven policies –
especially the Constant-Bandwidth Server configuration which
is also often used in SDV applications. Similarly, the effect of
network scheduling policies on message transmission times
(typically in Time-Sensitive Networking configurations) could
be integrated in our analysis to refine the estimated response
latencies in network-distributed applications. Moreover, we
consider adapting some heuristics that have been proposed in
literature to assign priorities and explore partitioning configu-
rations.
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Abstract—The emergence of Deep Neural Network (DNN) and
machine learning-based applications paved the way for a new
generation of hybrid hardware platforms. Hybrid platforms em-
bed several cores and accelerators in a small package. However, in
order to satisfy the Size, Weight and Power (SWaP) constraints,
limited and shared resources are integrated. This paper presents
an overview of the standards applicable to the certification of
hybrid platforms and an early mapping of their objectives to
said platforms. In particular, we consider how the classification of
AMC20-152A for airborne electronic hardware applies to hybrid
platforms. We also consider AMC20-193 for multi-core platforms,
and how this standard fits different types of accelerators.

I. INTRODUCTION

New software paradigms and capabilities drive the demand
for additional computing power in avionic systems. Hybrid
architectures can, in a small SWaP package, support this
demand. They embed on the same platform general-purpose
cores, and specialised accelerators which can support some of
the additional workload. However, like any other hardware
platform, they need to go through a stringent certification
process before they are deployed in avionic system.

The European Union Aviation Safety Agency (EASA) and
Federal Aviation Administration (FAA) respectively define Ac-
ceptable Means of Compliance (AMC) and Advisory Circulars
(AC), setting down objectives applicants to the certification
process satisfy. The joint A(M)C AMC20-152A and AMC20-
193 in particular define objectives for the respective certifica-
tion of hardware platforms and multi-core processors.

The PHYLOG methodology [1] was proposed as mean of
supporting applicants, especially regarding AMC20-193 on
multi-core processors. PHYLOG is based on the definition
of argumentation patterns for the certification objectives in
AMC20-193, with each objective decomposed in supporting
claims, strategies, or evidences. At the core of the methodol-
ogy, the PHYLOG Modelling Language (PML) [2] captures
knowledge about a platform, both hardware and software
aspects, and their configuration. PML supports analyses to
fulfil claims in the certification patterns instantiated for the
platform.

The contributions of this paper are to present an overview
of the objectives applicable to hybrid platforms. We also
identify the issues related to modelling the accelerators in
such platforms and propose related PML model templates.
This paper is organised as follows. Section II briefly recaps

the PHYLOG methodology, with Section III providing an
introduction to PML. An example of accelerator and its hybrid
platform is introduced in Section IV to support further discus-
sions and examples. In the context of hybrid platforms, we
identified two relevant AMC: AMC20-152A [3] and AMC20-
193 [4] discussed respectively in Section V and Section VI.
Section VII briefly discusses related work, before Section VIII
recaps the discussion and outlines perspectives.

II. PHYLOG METHODOLOGY

Platform
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Platform
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Safety Analysis Capacity
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Validation of
Mitigation

Means

Configuration
Settings
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Implementation
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Fig. 1. Overview of PHYLOG methodology

The PHYLOG methodology [1] describes the activities to
produce the elements for instantiating the PHYLOG argumen-
tation patterns. These patterns were derived from the objectives
defined in AMC20-193, on multi-core processors, to build an
argumentation strategy for certification. They decompose the
top-level AMC objectives into supporting claims, strategies,
evidence, and warrants. An overview of the methodology is
presented in Figure 1. It is composed of eight main activities:

• Platform description captures the knowledge about the
platform characteristics based on the available documents
and the applicant’s assessments. It also captures the
target configuration, including hardware and software
settings such as the mapping of applications hosted on
the platform to cores.



• Platform modelling formalises the platform description
knowledge in order to support further analyses. It is
based on PML. While not an objective of AMC20-193, it
allows running the supporting automatic safety, capacity
and interference analyses in order to contribute to said
objectives.

• Safety analysis identifies and evaluates the failures and
alterations which can affect the platform and hosted
applications.

• Interference analysis enables the identification of inter-
ferences via interference calculus and the classification
of their effects.

• Capacity analysis enables the verification of shared
resources’ usage, ensuring the demand for resources of
the platform never exceeds their capacity.

• Validation of mitigation means encompasses the design
and validation of mitigation means for failure, interfer-
ence, and other alterations identified in earlier activities.

• Configuration settings rationale justifies that all config-
uration settings support the requirements on the platform,
or are harmless to them.

• Implementation concerns the certification of the system
implementation on the platform. It is associated with the
DO-178C standard and out of the context of PHYLOG.

Note that the activities form an inherently iterative process.
As an example, the interference analysis may highlight a
misunderstood interference channel, feeding back into the
platform description and its model.

We focus in the following on the platform aspects (de-
scription and modelling), as they are the most relevant to
hybrid platforms. We consider specifically the use of PML,
and its limitations, to model accelerators. The use of PML
would thus allow for the application of existing PHYLOG-
based analyses [1], discussed in other work for interference
or safety, to instantiate the PHYLOG certification patterns for
hybrid platforms. PML is introduced in the next section.

III. PML

PML, the PHYLOG Modelling Language [2], is a Domain
Specific Language embedded with the SCALA language to
capture the description of a platform. A hardware platform is
modelled in PML as a collection of components, capturing the
functional blocks of a multi-core processor, e.g. a core, cache,
memory, or bus, and links between components. Composite
components encapsulate one or more components, composite
or atomic, to allow for the hierarchical specification of a
model. Atomic components provide generic services to the
software hosted by the platform, such as a load from the main
memory or a store to a configuration register.

The relationship between a component and other services
of the platform defines its role in the model. Initiator com-
ponents, such as a core, call services from other components
on the platform, most often as a result of software running
on the initiator, be it a user application or platform-embedded
micro-code. Target components, such as the main memory,
expose services to satisfy transactions from other components.

Transporter components, such as an interconnect, process
transactions between an initiator and its target.

A transaction is a footprint of a use of the platform by a
software component. A transaction more formally captures the
set of components, and their services, used by a request from
an initiator to a target. A transaction must follow a valid path
in the platform, through the links between its components.
Services thus model the dependencies between the software
and the hardware.

Example 1. To exemplify the use of PML, we consider a
representation of the KEYSTONE TCI6630K2L from Texas
Instruments. An overview of the KEYSTONE is presented in
Figure 2. It is composed of a four C66 DSP pack where
cores are characterised by dedicated L1 and L2 caches, and a
memory extension and protection unit (MPAX). The platform
also comprises a 2 ARM A15 pack where cores are charac-
terised by dedicated L1 caches, memory management units
(MMU), and a shared L2. In addition, it includes a central
memory system giving access to SRAM and external DDR.
Memory accesses are managed by a Multicore Shared Memory
Controller (MSMC). A set of I/O and utility peripherals (e.g.
GPIO, UART, boot) is also present on the platform and
an ultra speed bus (TeraNet) connects the peripherals, the
memories, and the cores altogether.

Fig. 2. Overview of the TI KEYSTONE TCI6630K2L

Figure 3 illustrates a PML model for a simplified version
of the KEYSTONE1. This basic model includes:

• Cores as initiators: 4 C66 DSP, and 2 ARM A15 cores;
• Memories as targets: DDR, SRAM, and all caches;
• Peripherals as targets: GPIO, I2C, SPI port, PCIe, etc.;

1For the sake of brevity, coprocessors have been omitted, as well as implicit
links between stacked components. Peripherals have been simply classified as
targets.
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• Buses and Memory protection units as transporters: the
TeraNet bus connected to the Memory Shared Multicore
Controller (MSMC), memory and cache controllers, etc.

Pe
rip

he
ra

ls
Memory Subsystem

MSMC
Controller

64-bit DDR3 
EMIF

MSMC
SRAM

DDR
Memory

Boot ROM

Semaphores

Power Mgmt

PLL

EDMA

G
PI

O

I2
C

U
SB

 3
.0

U
AR

T

SP
I

PC
Ie

SR
IO

L2
L2 Ctrl

MPAX

C66X
CorePac

L2SRAM

SRAM
L1P

SRAM
L1D

TeraNet

L1P L1D

A15
ARM

MMU

L1P L1D

A15
ARM

MMU

Legend

Initiator

Transporter

Target

Composite

Fig. 3. Simplified PML model for the KEYSTONE platform

IV. HYBRID ARCHITECTURES - THE GPU EXAMPLE

To support the discussion around hybrid platforms, we
introduce an example of accelerator: Graphical Processing
Units (GPU). Compared to traditional CPUs, GPUs feature
numerous cores with simpler control flow but efficient data
ones. GPU cores tend to work in a lockstep-like fashion called
Single Instruction Multiple Threads (SIMT) in reference to
SIMD (Single Instruction Multiple Data). Internal scheduling
policies on the GPU aim to maximise core occupancy and
throughput. With their focus on high-throughput floating point
computation, GPU are well suited to the acceleration of neural
network workloads. Their reuse has been facilitated by the
advent of General Purpose GPU programming frameworks
(GPGPU).

There has been considerable effort to characterise the be-
haviour of GPU accelerators, in particular work on NVIDIA
GPU [5], [6], [7], [8] and the assorted GPGPU CUDA software
stack [9], [7], [10], [8]. These efforts highlight the difficulty
of characterising complex, multi-core, COTS (Commercially
available Off-the-Shelf) platforms. To the best of our knowl-
edge, PasTiS [6] and the hybrid analysis in [11] are some
of the few efforts to build a GPU model respectively for
static and hybrid WCET analysis. The inherent parallelism
at the application-level, as opposed to instruction-level like
vectorised arithmetic units [12], [13], can also pose problems
for WCET and interference analyses [14].

Example 2. The NVIDIA Jetson AGX Xavier [15] is a high-
performance SoC designed for embedded systems. The Xavier
uses an 8-core “Carmel” ARM processor, organised in clusters
of 2 cores. The “Carmel” processor complies the ARM v8.2A

specification, but it is unclear if it is based off an existing ARM
design (e.g. the Cortex-A78) and the level of customisation
introduced by NVIDIA. The Xavier features amongst other
accelerators a GPU using the Volta architecture, highlighted
in Figure 4. The GPU is composed of 512 cores, grouped
in 8 Streaming Multiprocessors (SM). The Volta GPU shares
a memory fabric with other accelerators, and the memory
controller with the CPU.

Fig. 4. Overview of the NVIDIA Jetson AGX Xavier

We present in Figure 5 a high-level PML model of the
NVIDIA AGX Xavier SoC. Fabrics and backbones act as
transporters for the components of the system. The main
memory is a target shared by the CPU and the GPU. The cores
of the “Carmel” ARM processor act as multiple initiators.
As for the KEYSTONE, we currently omit coprocessors and
peripherals from the classification. A key question is: How to
model a complex accelerator like the Volta GPU? It acts as
an initiator, causing interference on the main memory and the
controller fabric, and as a target for commands from the CPU.

Jetson AGX Xavier

Volta GPU

Main Memory

Peripherals

Accelerators

Control Backbone

Memory Controller Fabric

Data Backbone

Boot/Power
Management

Carmel CPU
Cluster

Fig. 5. Simplified PML model for the NVIDIA AGX Xavier

V. AMC20-152A ON HYBRID ARCHITECTURES

AMC20-152A discusses the certification of existing (COTS)
or newly-developed platforms, the distinction between the two,
and the objectives relevant to each.
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A. Overview of the AMC20-152A

The ED-80/DO-254, both dated from the year 2000, define
guidance for the design of airborne electronic hardware. The
AMC20-152A aims to provide additional guidance and clarifi-
cation. It is thus complementary to the AMC20-193 on multi-
core platforms. The clarifications proposed by the AMC20-
152A are important, as devices, especially COTS, become
more complex and integrate in a single chip more functions
than older ones. The AMC20-152A objectives are classified
according to whether they apply to complex custom devices,
COTS IP (design functions used to design and implement a
custom device, be it a PLD, a FPGA or an ASIC), or COTS
devices2. Applicants for certification must address them as part
of the Plan for Hardware Aspects of Certification (PHAC), or
related planning documents.

The first distinction in the AMC20-152A is between COTS
and custom functions. COTS functions (IP or devices) are,
as the name implies, commercially available, off-the-shelf.
The AMC20-152A recognises the risks inherent to the use of
COTS, and incomplete or incorrect documentation. COTS may
not have been developed within the ED-80/DO-254 standard
or avionic applications, nor have sufficient service experience.
The development assurance for COTS items (hardware or
software components ED-80/DO-254) thus follows different
objectives from custom devices. Items developed and fully
controlled by the applicant cannot classify as COTS. Those
items may however be previously developed hardware, which
may take credit from prior deployment and in-service expe-
rience provided their new function, usage and environment
conditions do not invalidate the original design assurance.

The key objectives of the process for COTS items are
1) identifying used functions, and 2) assessing correct use
of the COTS item. The used functions need to support the
system requirements on the device. Unused functions, such
as unused cores on a MCP (as per AMC20-193), need to be
properly deactivated, with means of mitigation to prevent their
inadvertent activation. Correct use of a COTS item requires
to assess its integration against the operation conditions,
such as temperature or input parameter ranges, defined by
the manufacturer. This may preclude the use of undefined
or undocumented configurations, unless their reliability can
be established. The identification of failure modes3 and the
item configuration also need to be considered. This includes
identifying if any microcode may contribute to a used function.
Microcode is a hardware-level set of instructions, typically
stored in the COTS item. It may be qualified by the man-
ufacturer, if left unmodified, or require a separate mean of
compliance.

Devices are further classified into simple or complex ones
as defined by the ED-80/DO-254. The classification captures
whether a comprehensive verification of the device is realistic.

2We omit circuit boards assemblies (CBA), as the AMC20-152A in practice
redirects to ED-80/DO-254.

3Single Event Effects (SEE) are explicitly omitted from the AMC20-152A
scope.

It must be explicit, and justified for simple devices (custom or
COTS). The simplicity of a device relies on the simplicity and
independence of all its functions, interfaces, building blocks,
etc. The composition of simple items may therefore be a
complex item.

B. Considerations for accelerator-related objectives

As per the AMC20-152A, most hybrid or multi-core archi-
tectures should fall under the definition of complex devices
with multiple processing elements interacting. The Platform
description and modelling phase for custom models, including
any accelerator, will directly benefit from the AMC20-152A
objectives’ outcome, notably the conceptual and detail designs,
and the device verification. For COTS functions, as prescribed
by the AMC20-152A objectives, a PML model should be built
from the manufacturer specification supplemented by char-
acterisation and verification activities. COTS IP specifically
may provide detailed information on the function based on
the stage of the design where they are instantiated, from Hard
IP, embedded in the silicon by the manufacturer, to Soft ones,
captured by a hardware description language. Microcode, if
present on used functions, needs to be considered as part of
the platform model, as transactions between components.

We identified 4 activities for hybrid platforms and accelera-
tors, per AMC20-152A objectives: Activity 1: An assessment
should be performed for each device or its integration, as they
may fall under different classifications: COTS, custom, soft
IP, hard IP, multi-core processor... In particular, one should
consider how the device is configured and accessed through
hardware and software means, how it interacts with the rest
of the system, and whether or not existing analysis techniques
and tools apply.
Activity 2: It is necessary to master complex core architec-
tures. More specifically stressing benchmarks would be needed
in addition to documentation reviews.
Activity 3: The utilisation of COTS must be within the limit
of the device manufacturer specification. This means that we
need a specification of the COTS and its limits to check the
compliance of usage.
Activity 4: It is mandatory to qualify the COTS behaviour and
all micro-code, as defined in AMC20-152A (Section V-A).

VI. AMC20-193 ON HYBRID ARCHITECTURES

The AMC20-193 was extensively studied in PHYLOG to
define a certification methodology specifically for multi-core
platforms [1]. We provide a brief summary of AMC20-193 in
the following.

A. Overview of the AMC20-193

The AMC20-193 defines a Multi-Core Processor (multi-
core processor) as a device with two or more activated process-
ing cores, with a core being a device that executes software.
The AMC20-193 recognises two exceptions to the definition
of active cores, cores in lockstep executing the same software
and inputs to compare their output; and cores connected solely
through data buses typically used in avionics systems.
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The AMC identifies both temporal and functional interfer-
ence. Interference occur when the behaviour of an application
varies over its behaviour in isolation when running in parallel
with others. Interference occur as a result of shared hardware
or software resources of the multi-core processor. As an
example, interference may cause additional delays due to the
arbitration of accesses to the resource or control flow variations
due to external modifications of a shared variable. Interference
may cause a loss of deterministic behaviour for the application.

All software components should exhibit correct functional
and timing behaviours in the presence of interference. The
AMC thus defines an interference channel as “a platform
property that may cause interference between software ap-
plications or tasks”. The impact of interference channels on
applications in the system should be assessed. The planning
objectives in AMC20-193 require the identification of shared
resources, their use by, and their allocation to software ap-
plications, where applicable. This aims to first ensure the
overall demand for resources at any given time does not
exceed the available resources’ capacity, and second to avoid
or mitigate interference. Mitigations should be deployed and
verified for impactful interference channels. The definition
of an interference channel in the PHYLOG methodology is
a conservative one, in line with the AMC objectives.

The objectives require all software hosted on the multi-core
processor to be identified, including applications, operating
systems, hypervisors, as well as libraries and runtime. The
AMC20-193 prescribes that any component for which inter-
ference is mitigated, possibly at the platform-level through
robust partitioning, may be separately analysed and verified.
Otherwise, they should be tested on target with all other soft-
ware components under the final configuration. The PHYLOG
methodology, and in particular interference calculus, can help
assessing whether a modelled accelerator or a platform sup-
ports robust partitioning, by identifying interference channels,
their impact, and that of any deployed mitigation (through
benchmarking).

The question in the context of accelerators, is whether or not
the PML model is suitable to model them, and whether and
how it should be extended. Let us now characterize what type
of resource is an accelerator. We have identified 3 dimensions
to take into account.

B. Dimension 1

The first dimension concerns the number of applications
that can simultaneously access the accelerator. We define two
categories within that dimension:

• those that can be accessed solely by one application at
any given time are called unitary accelerators;

• those that can be accessed by multiple applications si-
multaneously are called parallel accelerators.

Note that the classification of an accelerator as unitary may
be inherent to the accelerator itself, e.g. if it cannot support
multiple applications by design, or enforced by the platform,
e.g. through application design or partitioning mechanisms.

C. Dimension 2

The second dimension concerns how the accelerators are
connected to the core and how the workload is launched.
In that dimension, we have identified four categories. The
simplest case concerns tightly coupled accelerators.

Category 1. Tightly coupled accelerator. The accelerator, as
an example a vectorised functional unit, operates in the context
of a complex core; all transactions effectively originate from
the core operations and transit through the core interfaces.
Modelling impact on PML. The core is still modelled as
the sole initiator. Such an accelerator can only be unitary,
as a core executes only one application at any given time4.
However transactions caused by an application using the
accelerator may present a different profile.

Example 3 (of category 1). The ARM A15 [16] cores can
include a NEON VAU and floating point execution unit. SIMD
Load/Store instructions allow for transfers between NEON
registers and the memory. Vector accesses target one or
more lanes of the same or of consecutive vector registers.
The architecture thus does not guarantee the atomicity of
the access to the memory even for scalar accesses. Each
instruction can generate multiple transactions depending on
the access size, the alignment of the address and the memory
segment. Served by the private or shared caches, or the main
memory, SIMD Load/Store may be subject to high timing
variability and interference.

The A15 cores in the KEYSTONE presented in Example 1 do
feature a NEON VAU. As discussed, the core is still modelled
as a single initiator and the model in Figure 3 remains valid
even when the NEON is in use.

The second case concerns passive accelerators that are
controlled by a remote core, e.g. via configuration registers. A
passive accelerator cannot generate any transaction to access
any shared resource and is thus a target that can be shared by
several cores.

Category 2. Passive accelerator. The accelerator is a resource
used by the core(s). It behaves from a high level point of view
like a DDR that receives requests for load and store.
Modelling impact on PML. It can be abstracted as a target.
Two or more applications using the accelerator concurrently
would be assumed to interfere. Thus it could be unitary or
parallel, but in both cases it will be modelled in the same way.
The transactions caused by the controlling core may present
a different profile.

Example 4 (of category 2). The NVIDIA Deep Learning
Accelerator (NVDLA) outlined in Figure 6 is an accelerator
developed by NVIDIA, with both open-source hardware and
software. The NVDLA is a complex COTS device. Tailored
to neural network applications, it features functional blocks
dedicated to convolution, activation functions, pooling, nor-
malisation, or reshaping operations. The blocks can operate

4AMC20-193 explicitly excludes hyperthreading.
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independently, performing memory-to-memory operations, or
pipelined, passing data to each other to avoid the memory
round-trip. The memory (DBBIF), interrupt (IRQ), and config-
uration (CSB) interface can be connected to various protocols
such as ARM AXI.

Fig. 6. Integration of the NVIDIA NVDLA in a passive configuration [17]

As a soft IP, the NVDLA exposes all information regarding
its internal behaviour which eases the development of a
model for timing or interference analysis. The DBBIF, CSB,
and target memory subsystem are obviously shared resources
between functional blocks. The scope and mitigation of any
resulting interference however require more information about
the NVDLA integration. The device can be included as part
of custom devices or available in future COTS platforms.
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Fig. 7. Simplified PML model for the NVDLA in a passive configuration

Figure 7 presents a PML model for a NVDLA in a passive
configuration. The accelerator and all its resources are ab-
stracted as a single target, accessed through the interconnect.
Transactions initiated within the NVDLA remain within the
device, e.g. from its functional blocks to the CSB or SRAM.
As such they would not need to be captured by the model.
They are thus implicitly assumed to be non-interfering with
external transactions, e.g. from the CPU to the CSB. Such an
assumption must be verified during interference analysis.

The third case concerns semi-active accelerators. In that
situation, the accelerator is triggered by a remote core but
it accesses shared resources (e.g. DDR) to load/store its data.
Thus it generates interferences within the hybrid architecture.

Category 3. Semi-active accelerator. The accelerator oper-
ates under the control of a core and it behaves from a high

level point of view as a DMA that generates requests for load
and store under the impulse of another core. However the
precise role of the core needs to be clarified, as well as the
interface between the accelerator and the hybrid platform.
Modelling impact on PML. A unitary semi-active accelerator
is thus modelled as a single initiator and the profile of the
remote core must contain all the transactions needed to con-
figure the accelerator. Parallel accelerators would need more
refined analyses to check whether they will be decomposed
into one or multiple initiators.

Example 5 (of category 3). An example is the NVDLA in a
”Small” configuration as depicted in Figure 8. Compared to
the passive configuration of Example 4, the NVDLA accesses
resources shared with other initiators in the system. The
NVDLA [17] could be modelled, as depicted in Figure 9,
using a single initiator with interfaces to the system, as no
interface or resource between the NVDLA and the controller
is shared with other devices. This model assumes a pipelined
configuration of execution on the NVDLA, where a single
application may use the NVDLA and components do not
interfere on the DBBIF. (Example 9 considers a configuration
where each functional block is a separate initiator.)

Fig. 8. Integration of the NVIDIA NVDLA in a small configuration [17]
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Fig. 9. Simplified PML model for the small NVDLA

Example 6 (of category 3). The i.MX 8M Plus processor from
NXP [18] features, amongst other accelerators, a NPU, e.g.
a VIP8000 hard IP from VeriSilicon. The NPU is a complex
COTS device. The processor reference manual unfortunately
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provides little information about the NPU, except for the high-
level functional description in Figure 10. It probably features
VAU and systolic-like blocks as it supports hundreds of mul-
tiply and accumulate operations every cycle. The interface
with the processor uses ARM AXI and AHB bus interfaces
which might help bound the demand of the NPU on the shared
memory, and the interference it generates.

Fig. 10. NPU High-level Block Diagram in the i.MX 8M Plus processor [18]

It is difficult to model such a COTS device with no further
information on its functional blocks, or without a characterisa-
tion by evaluation. It could be abstracted as a single initiator.
This abstraction would need to be supported by limiting the
use of the NPU as a unitary accelerator, e.g. through platform
configuration. Furthermore, the abstraction will still require
an assessment of the nature and volume of transactions the
NPU generates.

The fourth case concerns active accelerators. An example
of such accelerators are GPU.

Category 4. Active accelerator. The accelerator operates
independently and generates many load and store transactions.
Modelling impact on PML. A unitary accelerator is thus
modelled as a single initiator where, as for semi-active
accelerators, parallel accelerators would need more refined
analyses to check whether they will be decomposed into one
or more initiators.

Example 7 (of category 4). When the accelerator is a GPU
used by a unique application at a time, it can be modelled as
an initiator and single transaction forking to multiple targets
should capture the combinations of behaviours of multiple
threads running concurrently on the accelerator. Threads from
the same application may not be considered as interfering
with each other but with other applications in the system.
The GPU scheduler decides upon execution of a computation
kernel of the allocation of different blocks of threads to cores.

The scheduling policy on most COTS platforms is subject to
speculation, and the allocation of threads to cores is dynamic.

In PML, the initiator of a transaction from a given thread
would thus be uncertain as well as for AMC20-193. Modelling
the GPU as a single initiator abstracts away this uncertainty.
This should be a conservative, but sound abstraction for
interference analysis between applications. It needs to be
backed by the platform to ensure only one task accesses the
GPU at any given time.

Example 8 (of category 4). When the GPU is used simul-
taneously by several applications, the GPU cannot probably
be modelled as a single unit. Different threads from different
applications may share the GPU cores, interfering on the
GPU internal resources and the shared platform resources.
Uncertainty may arise in the mapping of threads to cores,
and thus the generated interference by an application.
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Fig. 11. Simplified PML model for the Volta GPU

However, the exact group of cores where an application is
scheduled may not be relevant, provided said group is equiv-
alent to the other groups of core on the platform. Capturing
such platform symmetries in the PML models would allow
for some level of uncertainty. As illustrated in Figure 11, SM
are symmetrical groups of cores on the Volta GPU (Example
2). Each SM has the same number of cores and private
resources. Thus a group of threads should exhibit the same
behaviour running in isolation in either SM. All SM can access
the same shared resources through the same paths on the
Volta; the interference suffered and generated by a group of
threads is thus independent of the SM where they run. Isolating
different applications to separate SM does however rely on
undocumented support from the platform [19] (causing issues
for Activity 3 in Section V-B).

Example 9 (of category 4). A NVDLA in a ”Large” con-
figuration features its own separate microcontroller, depicted
in Figure 12, tightly coupled with the accelerator. Where the
CPU was in charge in the small configuration of Example 5,
the microcontroller drives the accelerator. Modelling the whole
as a single accelerator would fail to distinguish transactions
originating from the microcontroller and ones originating from
the NVDLA functional blocks. Each functional block of the
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Fig. 12. Integration of the NVIDIA NVDLA in a large configuration [17]
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Fig. 13. Simplified PML model for the Large NVDLA

NVDLA can be mapped to its own initiator, as depicted in
Figure 13. This abstraction, compared to the one in Example 5,
would allow transactions where one or more applications use
the different functional blocks without interfering. However
each component (CONV, SDP, PDP...) may operate indepen-
dently and interfere on the DBBIF.

Example 10. The Xilinx ZYNQ-7000 AP [20], outlined in
Figure 14, is a FPGA SoC with both Programmable Logic (PL)
and Processing System (PS). The PS features a 2-core A9
processor, with a NEON VAU, memory resources, and input-
s/outputs. The processor offers multiple ports to connect PL
devices to resources on the PS. Different ports may reach
different or the same resources, through different protocols.
Depending on if and how PL devices use said ports, the ports
themselves or devices on the PL side may become shared
resources and be classified as interference channels.

The PL features three types of ports: 4 general-purpose
AXI ports (2 master and 2 slaves), 4 high-performance AXI
master ports, and 1 AXI ACP port. The different ports first
exhibit functional differences: as master ports cannot be used
for the A9 processor to initiate reads from the PL. The AXI
ACP port offers a high throughput and limited hardware
coherency, as its accesses traverse the processor. However,
it may result in serious cache trashing on the processor (as a
result of invalidations), and interference on the A9 processor
interconnect. The general-purpose ports allow access to most
of the SoC interfaces, but share the interconnect with all
input/output devices. The high performance ports only support
high-throughput accesses from the PL to the main memory.

As a programmable logic device, the model for an FPGA is
dependent on the devices and functions that have been config-
ured, and on their use of the available platform resources. As
an example, a DMA configured on the PL may solely read
memory from the flash controller using a general purpose

Fig. 14. Overview of the Xilinx ZYNQ-A7000 AP

port. It initiates transactions, contributing to and suffering
from interference on shared resources. As such, it should be
included as an initiator in the PML platform model. Unless its
interference is mitigated, it should further be included as part
of the final system configuration during analyses and tests.

Care is thus required upon integrating devices on the PL
side. Each configured device should be considered and mod-
elled per the aforementioned cases. The PS can be modelled
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as any platform. Existing interfaces to the PL or between the
PS and PL should also be considered as part of the model
most likely as transporters, based on their use by configured
devices.

D. Dimension 3

The third dimension concerns the applicative layers that
necessarily come with the accelerator, e.g. a runtime used to
offload work from the CPU to an accelerator. They contribute
to the interference generated on a platform. As an example the
scheduling queue for a device may be shared between different
applications, causing delays depending on the scheduler. The
transactions generated by an applicative layer also need to be
characterised, by assessing their documentation and their use
of resources on the platform. The identification and verification
must include all software running on accelerators as well as
software interfaces or libraries used to program them. Some
accelerators may indeed only be addressed through vendor-
specific software interfaces.

Example 11. The definition and execution of kernels, func-
tions running on the Volta GPU, use the CUDA toolkit, or use
higher-level libraries and runtimes which themselves offload
computation on the GPU through CUDA. CUDA Kernels are
written using a superset of a subset of C/C++. That is kernel
code supports most of the C language, and the toolkit provides
additional syntax for mapping code and data to the GPU,
or calling kernels. As such CUDA-enabled code cannot be
analysed through existing tools as it may not parse as valid
C/C++.

As part of the CUDA toolkit are the compiler (nvcc) and
assembler (ptxas) . The compiler is based on the mature
LLVM compiler. The open-source nature of LLVM supports
the verification of the generated code, and the development
of compiler passes to support further analyses [21]. The
assembler, which converts NVIDIA virtual assembly format
into an executable binary, is closed. Information relevant for
timing or coverage analysis may thus be lost at compilation.

Example 12. NEON instructions can be exploited through
compiler optimisations, intrinsics, or assembly code. Intrinsics
are compiler- or vendor-provided functions often used to
expose optimisations or vectorisation in languages without
such constructs such as C. Compiler optimisations may jeop-
ardize the traceability of the generated binary to the original
source [21], and ARM recommends the use of intrinsics
over manual assembly code. Intrinsics explicit the use of
vectorisation and of the NEON VAU. The added benefit is
that the source code only exposes function calls, amenable to
analysis.

Example 13. The software stack for the NVDLA comprises
at its core the User-mode driver (UMD) and the Kernel-mode
driver (KMD). The UMD loads a representation of a neural
network, maps its inputs and outputs in memory, and informs
the KMD that an inference job is ready. The KMD schedules
available jobs, allocating DNN layers to function blocks,

configuring the NVDLA registers, and collecting completed
jobs. The KMD (and UMD) can run on the main CPU
(”Small” system in Figure 8) or through a dedicated core
(”Large” system).

Similarly the open source software stack clearly identifies all
required software, and opens the source code for analyses such
as coverage or timing. Note that the NVDLA itself does not
feature a core which executes user- or vendor-defined software.
A NVDLA-enabled platform, depending on the integration,
may not fall under the multi-core processor classification.
Nonetheless, it still counts as one or more initiators as,
once configured through the CSB, each block may initiate
transactions to the memory.

Example 14. The NPU is accessed through an OpenVX
Driver. OpenVX [22] is a standard and API which defines
reusable computer vision and neural network functions. An
OpenVX computation is expressed as a graph. Each node in
the graph refers to its parameters and a kernel, the underlying
function. The standard defines a number of vision and neural
network functions. OpenVX is supported as a backend for nu-
merous neural network runtimes through the Neural Network
Runtime middleware [23].

Nevertheless, the use of such runtimes raises several con-
cerns. The transition from a model (computation graph) to
software items is not explicit, and controlled by the runtime
itself. This is not in line with the identification of software
running on the platform as per AMC20-193. As the NPU
supports only a subset of the OpenVX functions, runtimes may
further elect to fallback to the CPU to run some software items.
Using the NPU through the lower-level OpenVX driver would
provide control over software items allocation between cores
and the NPU. However, additional characterisation effort is
still required to clarify the transactions the NPU might initiate.

VII. RELATED WORK

Worst-Case Execution Time (WCET) analysis methods [24],
[25], [26], [27] rely on accurate processor models to produce
conservative timing estimates of the execution of applications
on a processor. As such, the underlying processor models
do often capture a more concrete and precise representation
of the processor, e.g. accounting for the internal state of a
core. Those are finer-grained models than our transaction-
based approach, but validating the underlying models may
be a complex process [28]. To the best of our knowledge,
PasTiS [6] is one of the few efforts to build a GPU model.

PML takes inspiration from Initiator-Target modelling ap-
proaches found as an example in in [29], where paths to
shared resources are paramount to the interference analysis.
The computation of interfering paths exponentially grows as a
function of the number of initiators and targets. To cope with
this issue, they propose to introduce reduction criteria (e.g.,
symmetries).

(Memory) interference analysis approaches fall in two main
categories: (1) Request-driven, which is based on a per-
(memory) request analysis of an application [30], (2) job-
driven, which focuses on the number of (memory) requests
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of an application as a whole. Hybrid approaches blend the
request-driven and job-driven [30], i.e. considering both ap-
proaches jointly in a analysis [31].

Model checking can be used to identify the interference of
a platform as done in [32]. To do so, the approach uses formal
languages for describing the behaviour of the application and
multicore platform and introducing the interference concept
and CADP toolbox to evaluate the model.

Interference mitigation techniques are used for minimizing,
or even eliminating, the resource contention impact between
processing cores. These techniques either make use of space
(e.g., cache partitioning, bank parittioning) or time (e.g.,
scheduling, bandwidth reservation) partitioning to reduce the
impact that interference entails. Survey [33] summarizes many
of the techniques employed to this end.

VIII. CONCLUSION AND PERSPECTIVES

We discussed the impact hybrid platforms on certification
objectives for avionic systems. Hybrid platforms embed sev-
eral cores and accelerator devices in a small package, to
provide high computational power while satisfying strict SWaP
constraints. We considered in particular two AMC: AMC20-
152A for airborne electronic hardware, and AMC20-193 for
multi-core platforms. Both require careful consideration about
how devices are used and integrated in the system.

Most accelerators support highly parallel workloads and as
such fall into the AMC20-152A complex device category, and
in scope of the AMC20-193. As such, they require a thorough
assessment of their behaviour and their integration in the
platform. We thus considered the use of PML to capture and
model knowledge about said devcices. We identified 3 main
dimensions relating to the hardware and software integration
of the device in the platform, and proposed a related taxonomy.

We introduced a number of examples of COTS and Soft
IP devices to illustrate the proposed taxonomy with PML
modelling templates. COTS devices expose little information
about their behaviour, and sometimes very limited control on
said behaviour. They thus require conservative assumptions
and abstractions to comply with certification requirements.
Said abstractions have an impact on the performance of the
accelerator and they do require backing by the platform
configuration, e.g. a single GPU user.

On the other hand, Soft IP (or custom devices), such as
the NVDLA, do provide extensive information about their
behaviour. They also tend to offer higher configurability than
COTS devices. However, they do require separate objectives
per AMC20-152A. There might also be a vast amount of
implementation and configuration choices to compare to select
the most suitable integration w.r.t. to certification and perfor-
mance objectives.

We did highlight that PML is generic enough to model
complex accelerators. However, we also identified venues for
improvements. Accelerators such as GPUs cause uncertainty
about the allocation of applications (threads) to initiators
(cores), and thus the source of transactions. The highly parallel
nature of accelerators does also imply a high number of

initiators in the system. This raises concerns about the required
granularity of the platform model, the scalability of related
analyses, and that of their output.
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Abstract—Security has become a major concern in the last
decade, specially with the increment of low-level attack vectors
present in COTS MPSoCs. Safety-relevant systems are not an
exception, and they are also exposed to security concerns. Side-
channel attacks (SCAs) in general, and cache-based SCAs in
particular, have gained prominent importance due to the prolif-
eration of cache memories for increased performance. However,
there are a plethora of such attacks and effective countermeasures
are needed for all of those.

This paper investigates the effectiveness of using hardware
traffic injectors to counteract those attacks with the aim of
assessing to what extent those can be effective. In particular, we
consider the SafeTI, an open source traffic injector developed by
us, and assess to what extent attack-specific traffic patterns can
defeat Bernstein’s SCA targeting an AES-128 encryption process
in a space-relevant platform based on Frontgrade Gaisler’s IPs.

Index Terms—Cyber security, MPSoC, side-channel attack,
AES encryption

I. INTRODUCTION

The increasing importance of security in all sorts of comput-
ing devices has pushed for the standardization and implemen-
tation of secure cryptographic ciphers (e.g., RSA) on modern
machines. For instance, the growing RISC-V ecosystem has
ratified in the past years two volumes of Instruction Set
Architecture (ISA) extensions for the integration of inter-core
cryptographic modules [8], [17], providing standardization
for high-performance and secure encryption to the RISC-V
community. However, these implementations include several
components to be treated with security, such as cryptographic
keys, intermediate cryptographic operations, etc, that may
leak information that an attacker could use for malicious
purposes. This is the specific case for side-channel attacks
(SCAs), where an attacker without direct access to the de-
sired data, for instance an encryption key, may be able to
discover it through indirect methods such as temperature [15],
electromagnetic radiation [11], power consumption [10] or
timing [4], [14] analysis. Even modern Commercial-Off-The-
Shelf (COTS) Multi-Processor System-on-Chip (MPSoC) plat-
forms, using advanced Trusted Platform Modules (TPM2.0)
following industry-adopted standard ISO/IEC 11889 [13], are
vulnerable to such attacks [18].

This paper aims at assessing to what extent safety-critical
platforms are vulnerable to those attacks and whether a pro-
grammable traffic injector could be used to counteract those

attacks. In particular, we consider the open source platform
SELENE [12], which is based on Frontgrade Gaisler 64-
bit NOEL-V processor cores [3] and other Gaisler’s IP, and
whose main target is the space domain. We also consider
a modified version of Bernstein’s cache-based timing attack
on AES [4]. Originally, this is a cache-based SCA against
Advanced Encryption Standard (AES) [19] symmetric block
cipher on a network environment, which we move to occur in
an MPSoC (the SELENE platform).

To counteract the attack, we build on the SafeTI traffic
injector [21], which we integrate into the SELENE platform.
The SafeTI allows programming traffic patterns (i.e., read and
write operations with varying parameters) that are injected into
the specific interface where the SafeTI is integrated (e.g., the
bus connecting the cores to the shared L2 cache). In particular,
we focus on the injection of traffic patterns to evict some AES
data from the second level (L2) cache of the core performing
encryption tasks so that the SafeTI can provide, apart from
support for performance validation during MPSoC design [9],
security capabilities during operation.

The solution investigated in this paper uses the SafeTI
traffic injector for evicting cached data at regular intervals.
By enforcing the eviction of a specific AES table from L2
cache periodically, we are able to reduce the amount of
information that Bernstein’s attack can discover from a victim
in a system without other countermeasures. This particular
solution causes a marginal encryption latency increase, around
4% in average at our experimental environment, and since
SafeTI is programmable, it can be adapted through software
for other applications that may benefit from this solution.

The rest of the paper is organized as follows. Section II
provides some background on Bernstein’s attack and existing
solutions. Section III introduces the framework used to con-
duct our case study, which includes the SELENE platform and
the SafeTI traffic injector. Section IV provides a summary of
the contributions made for this case study, being the tailoring
of the Bernstein’s attack for our study environment and SafeTI
programming for timing SCA protection. Section V provides
result data and explanations on the different SafeTI based
protection vectors and Section VI provides a discussion of
various subjects related to SafeTI based protection and its
applicability. Finally, Section VII provides some final remarks
and future work.



II. BACKGROUND AND STATE OF THE ART

Among the attack vectors based on collateral information
leakage, timing attacks require special attention due to the high
risk level they present on interconnected systems. An attacker
with user permissions can perform a timing analysis on a
specific task to extract secret information (e.g., cryptographic
keys) remotely, without requiring physical access to the target
device in comparison to other attacks. In this section, we first
introduce the main characteristics of those timing SCAs in
Section II-A, and then present the state of the art on protection
methods in Section II-B.

A. Side-Channel Timing Attacks

Time based SCAs leverage the dependence between (a)
the operation of secret data, where the term ‘secret’ refers
to any un-encrypted data, key or information unknown by
arbitrary users, with (b) the execution time, or operation
latency, of the task using the secret data as an input. Time
dependence is a by-product of the operation from two sources;
(i) in-processor or accelerator execution of the algorithm (e.g.,
cryptographic encryption) and (ii) memory access latency.
Leakage from both sources can be mitigated by designing
time-constant algorithms, basing the logic operations on con-
stant latency instructions with no latency-variant branches,
while constraining memory allocation within the same cache
level so all data access have an identical time cost. Full com-
pliance with these statements limit the quality of the algorithm
(e.g., encryption complexity), reduce the compatibility by
targeting specific platform characteristics (e.g., cache capacity,
instruction latency), and may hold back performance against
using optimal operations (e.g., disable L1 cache). Moreover,
some other SCAs would still be possible by, for instance,
learning the cache sets or DRAM banks [16], [20] accessed by
the protected algorithm. Thus, industry has opted for design
policies and certification instead of a single air-tight solution,
providing diversity in implementation with low risk of single
point failure from a security standpoint.

Statistical analysis of the execution times has proven to be
effective regardless of the leakage source. As example, this
study uses Bernstein’s attack as a base, whose source code is
publicly available [4]. Operations with secrets are identifiable,
due to non-constant-time operations and/or non-constant data
access latencies, through a classification and correlation of
the average encryption timings from two data samples, with
a known (attacker) and unknown (victim) cryptographic keys
respectively. In particular, the timing measurements are cat-
egorized by the value of the plaintext bytes being encrypted
in byte segments, which for AES-128 makes a total of 4096
individual metrics (256 possible values for each of the 16
plaintext bytes), taking advantage from the internal byte-
wise operation, a common characteristic among cryptographic
ciphers. This segmentation allows the reduction of the total
number of encryptions, or sample size, required by the attack
to obtain a clear profile of the timings for each plaintext
byte value. Furthermore, the samples obtained by measuring
the duration of the cryptographic operation must be from

Fig. 1. Average encryption timings, in clock cycles, with plaintext byte posi-
tion 11 values listed by the x-axis. Data obtained from modified Bernstein’s
SCA with a sample size of 227 encryptions for each known and unknown
keys. Data values used by the SCA correlation are marked by arrows.

a randomized input, referring to the plaintext in encryption
or ciphertext in decryption, avoiding producing timing data
with dependencies on the attack itself instead of the target
operation.

As a practical example, Figure 1 shows the plaintext en-
cryption timings of a SCA in an unprotected system. The
SCA uses a sample size of 227 encryptions for each key, for
specifically the byte position 11. In detail, Bernstein’s SCA
correlation is a simple observation step, leaving aside standard
error calculations, where the most distant timings from the
average, around 732.25 clock cycles in the example, are taken
as usable data. The idea is that these plaintext values, 10 and
11 for the unknown key and 254 and 255 for the known
key marked in the figure, incur in an equivalent systematic
latency overhead during the cryptographic execution. Hence,
they can be correlated. Since the cipher base operation is the
logic exclusive or ⊕, the attacker is able of producing a list of
candidates for the key to discover by operating with the same
operation between the known key and the usable plaintext
values.

The actual equation used is K ′
b⊕P ′

b = Kb⊕Pb, where Kb

is the key byte value, Pb is a plaintext byte value, b the byte
position, and the ′ apostrophe indicates to be from unknown
key byte value or plaintext. Note that the exclusive or neutral
element in ⊕ is 0 (x⊕ 0 = x), therefore, using a zero for the
known key simplifies the operation to K ′

b|K=zero = P ′
b ⊕ Pb.

Hence, all experiments presented in this paper use a zero
known key. Following the figure example, the candidates the
SCA produces for the unknown key byte position 11 are found
as 10 ⊕ 254 = 244, 10 ⊕ 255 = 245, 11 ⊕ 254 = 245 and
11 ⊕ 255 = 244, finding 7 out of 8 bits from the actual
unknown key byte position 11, whose value is 244. Note that
each byte position has its own timing profile. Therefore, the
same operations are made for each byte position.



SCA sample sizes of a low number of encryptions will
provide a noisy cloud of timings, with high dispersion and
difficult correlation. Thus, for the attack to succeed, it is
crucial to work with large sample sizes, so the values with
particular higher or lower average encryption times move far
away from the average, reducing the number of dots to be
correlated. Modifications made to Bernstein’s attack for our
study are listed in Section IV-A, while further practical details
are explored in Section V-B.

B. State of the Art

Invulnerability against timing SCAs is challenging to
achieve since several factors and components interact in non-
obvious ways. Solutions to prevent timing SCAs can be
categorized into two branches: (i) implementing time-constant
cryptographic operations, and (ii) uncorrelating the access
latency during operation.

Time-constant operations executed by processors require
compliance with design policies for cryptographic security,
such as RISC-V ISA extensions [8], [17], which have already
been applied in a practical implementation [24]. Accelerator
and discrete co-processor solutions, such as TPMs, are also
included within this time-constant category, where the security
and performance trade-off is apparent due to lacking full
time-constant compliance for some products [18]. Software
solutions also tend to focus on the operation latency, such
as compiler optimizations [23] for avoiding branch prediction
and instruction cache attacks that may present non-constant
timings, and hence, a side-channel leak. Even if the cipher
algorithm was designed to comply with constant-time require-
ments, fitting within the lowest cache layer, an SCA could still
occur by forcing specific cache evictions between the timed
cryptographic operations, exposing secret data through cache
misses, hence leaking side-channel information. This paper
aims at counteracting SCA by focusing on the data access
latency.

Uncorrelation of the operating data and access latency, to
avoid timing pattern identification of secrets, can be achieved
by modifying the replacement policy of the data with custom
cache implementations [22], [25], forcing SCA data samples
to diverge due to timing diversity, making them uncorrelated,
hence, protecting secret data. In detail, the address allocation
of the application are encoded with a randomized seed, using
the resulting encoding for allocating the data in the cache sets.
In order to make the protection effective, it is necessary to en-
sure the seed is randomized periodically, not to let the attacker
learn. Such re-randomization needs to be performed by the
Operating System (OS), by the user program or, periodically
in an automated manner. One of the key characteristics of these
solutions is that the amount of timing data that can be used for
correlation purposes by the attacker is proportional to the time
a given seed is used for both keys without re-randomization.
Therefore, an attack can only be successful if the time elapsed
between seed updates is long enough to collect a sufficiently
large sample to learn from.

Fig. 2. SELENE platform schematic including SafeTI integration.

In our case, we investigate the effectiveness of a less
intrusive hardware solution based on the integration and soft-
ware programming of the SafeTI traffic injector for protecting
against timing SCAs. While the SafeTI is not particularly
suited for security purposes, it is a flexible and programmable
component that could be leveraged for multiple functions, such
as providing protection against multiple attacks, as well as for
platform testing.

III. CASE STUDY FRAMEWORK

This section introduces the platform used as research vehicle
for our work, as well as the SafeTI traffic injector used to
counteract Bernstein’s SCA.

A. SELENE MPSoC Platform

The SELENE platform considered in this work [12] has
been released fully integrated and as an open-source platform
usable on FPGA [7]. It is based on Frontgrade Gaisler’s
technology including its 64-bit NOEL-V processor cores [3],
as well as the Advanced Microcontroller Bus Architecture
(AMBA) Advanced Peripheral Bus (APB) and Advanced
High-performance Bus (AHB) interconnects, and L1 and L2
caches, which are integrated from Gaisler’s GRLIB IP [1].

For this case study, we have integrated a SafeTI module
targeting the shared L2 cache level in a SELENE instance
with 4 NOEL-V cores (see Figure 2). The 4-way 32 B line
512 KBs L2 cache includes a pseudo-Least Recently Used
(pLRU) replacement policy and keeps coherence within the
core cluster. The L2 cache is also connected to the off-chip
DRAM through an AMBA Advanced eXtensible Interface
(AXI) and a memory controller. Each NOEL-V core integrates
two individual L1 caches, for instruction (IL1) and data (DL1),
of 4 ways and 16 KBs each, implementing a LRU replacement
policy, and write-through policy with bus-snooping and an
equal cache line size of 32 B to maintain coherence with the
L2 cache. Both pLRU and LRU replacement policies offer
vulnerabilities in front of SCAs due to their systematic eviction
patterns, which attackers can leverage to alter the latency of
data allocation during the cryptographic task.



B. SafeTI Traffic Injector

The SafeTI is an open-source hardware component, created
in our research group, devised as a flexible, portable and
programmable traffic injector [5], developed in VHDL. It
is AMBA AHB compatible, and we foresee making it also
AMBA AXI compatible in the near future. The SafeTI is
programmed through its integrated AMBA APB interface
using 32-bit descriptors, which are stored within the internal
descriptor buffer, made user-friendly through the public drivers
along with the component designs.

Traffic injection is effectively limited by the throughput
capable to be generated at the target interconnect. However, if
such traffic is injected by software means through processor
cores, it is further limited by the transaction size allowed
by cores (either a double-word or a cache line) and con-
trolled indirectly by inducing specific hardware behavior with
a sequence of software operations. Conversely, the SafeTI
can inject precisely any traffic pattern, programmed as a set
of descriptors, that the target interconnect accepts, including
varying size data requests (e.g., from 1 byte up to 512 MBs),
with/without burst mode, read/write, etc., and even intro-
duce specific cycle-accurate delays between traffic injections.
Hence, the SafeTI offers the flexibility and controllability
needed for our work.

Compared with some previous solutions, SafeTI pro-
grammability permits tailoring it for different applications,
compatible with virtually any cryptographic algorithm or vul-
nerable process to timing SCAs under certain conditions (e.g.,
shared L2 cache access). Integrability is supported by being a
standalone module, making it suitable for other platforms as
long as it is included with a compatible interface for targeting
the desired interconnect. Further discussion is provided in
Section VI.

IV. ATTACK CHARACTERISTICS AND COUNTERACTING
APPROACH

Our realizations in this paper include the adaptation of
Bernstein’s attack for a bare-metal execution on the SELENE
MPSoC platform, explained in Section IV-A, and the prepa-
ration of injection patterns for programming the SafeTI traffic
injector to counteract the attack, presented in Section IV-B.

A. Tailoring of Bernstein’s Attack

The original implementation [4] allows an attacker to dis-
cover part of the AES-128 encryption key stored in another
computer server by timing plaintext encryptions with a known
key and the unknown victim’s key. We modified the attack
source code to adapt it for the following evaluation envi-
ronment: (i) an MPSoC case study on bare-metal without
a network connection, meaning that all data and required
resources for the encryption are loaded in main system’s
memory prior to the start of the attack; (ii) AES encryption
implemented using the OpenSSL 3.1.2 low-level API [6]; and
(iii) programmation of the SafeTI injection patterns through
calls within the OpenSSL library.

The original source code of the attack is split into individual
programs for commodity and presentation, which we packed
into a single program and extended to apply an incremental
sample size, producing timing data and unknown key candi-
dates every power of 2 encryptions for each key. For instance,
whenever we indicate a SCA sample size of 221 encryptions,
we refer to a pair of timing data samples, one for each
key, of 221 encryptions each. Compiling data following this
method allows us to study the evolution of the attack at every
step, displaying the SCA sample size needed to retrieve some
information about the unknown key (i.e., what key values can
be discarded) and how much information is discovered with
increasing attack samples, which reduces the size of a brute
force attack to explore all remaining combinations (i.e., those
that the attack could not disregard).

These modifications have been made to evaluate the pro-
tection in the most favorable environment for the attacker. In
detail, we reduce the sources of noise that could challenge
the effectiveness of the attack by (1) constraining the attack
to occur in the cache hierarchy of the cores without any
other external interference (e.g., due to peripheral activity)
and (2) avoiding the simultaneous execution of any other
software within the MPSoC. This includes shrinking the timing
to exclusively the encryption operation, data access latencies
inclusive, cutting off any algorithm related to networking. Re-
garding the encryption AES cipher from the OpenSSL library,
we selected specifically the 128 bits Electronic CodeBook
(ECB) mode due to being the simplest one to attack.

B. SafeTI Injection Patterns

SafeTI countermeasure potential against SCAs has a great
dependence on the physical location of the module within
the hardware platform, being the best location as close to
the processor running the vulnerable operations as possible.
However, in this paper we wanted to consider a realistic
implementation where the SafeTI does not have access to the
DL1 cache, limiting protection capabilities, but instead it has
access to the shared L2 cache, expanding protection to any of
the processor cores from the MPSoC as Figure 2 shows.

Note that, in order to maximize the protection range, it is
required to design an injection pattern tailored for the target
environment. For instance, given that the SafeTI is unable to
access the DL1 cache, and the DL1 is non-inclusive with
the L2 cache in our case study, the data utilized by the
vulnerable operation cannot be pre-cached or evicted by the
SafeTI at the lowest cache level. Instead, SafeTI protection
must be completely based on L2 cache evictions and rely on
the vulnerable data to not be fully allocated within the DL1
cache. That way, SafeTI traffic generation may influence the
timings of the operation by evicting essential data from the L2
cache, producing eventual L2 misses with increased latency.

Considering the L2 cache implementation characteristics,
i.e., pLRU replacement policy and 4-way set associative, it
is compulsory, in order to ensure data eviction, to execute
at least 4 traffic accesses to each of the cache sets used by
the target data (see Figure 3). Therefore, for every targeted



Fig. 3. Traffic generated by SafeTI injection to evict a specific data array,
allocated at the cache lines marked with asterisks, from the L2 cache by filling
all sets with arbitrary data using a stride of 128 KBs, the L2 cache way size.
The arrow out from the end to the start of the injection pattern indicates an
execution loop, which is always present in all injection patterns used.

block for eviction, SafeTI injection pattern includes 4 read
descriptors with an address stride of 128 KB, the L2 cache way
size, targeting the same cache sets as the target data. In detail,
if the data desired to evict is allocated starting from address
P, the first descriptor is programmed to start the access at
address P+S·128 KBs, the second P+(S+1)·128 KBs, the third
P+(S+2)·128 KBs, and the fourth P+(S+3)·128 KBs, where S
is any integer but -1, -2, -3 and -4 to avoid accessing the
eviction target.

In addition, the descriptors include an access size field, al-
lowing us to study protection capabilities with varied eviction
size with bursty accesses. In Figure 3, the different strided
accesses (with starting addresses separated by 128 KBs across
accesses) are shown with different colors, namely red, green,
blue and yellow. The amount of data fetched by each access
is set identical for all accesses matching the amount of cache
lines to be evicted from the L2 cache.

The data selected for eviction is data accessed by the
vulnerable operation recurrently at a fixed memory address for
each execution. This ensures that evicting such data produces a
latency overhead generated by the L2 eviction that propagates
to the SCA’s timing profile. In this paper, we have used the 4
encryption tables from the AES library as eviction target, from
Te0 to Te3, whose size is 1 KB each, being the address of all
of them set at compile time. The access of these tables by
the ECB cipher depends on both the key and plaintext being
encrypted, making several accesses to different segments of
the tables for every encryption operation.

Finally, a constant (too frequent) data eviction may be
detrimental for the operation latency and/or the protection.
Therefore, a stand-by time, in clock cycles, is added between
target evictions to adjust the eviction rate frequency. To sustain
the protection, SafeTI is programmed during initialization and
configured in QUEUE mode, where the injection pattern is
iterated until disabled. In summary, this paper explores a
SafeTI L2 eviction based protection against Bernstein’s SCA
testing a wide range of injection rate frequencies, varying also
the target (a fraction of a table, a full table, or several tables),
and considering increasingly large sample sizes for the attack.

TABLE I
NUMBER OF BITS DISCOVERED BY THE SCA

AGAINST ALTERNATIVE CACHE COMPOSITIONS

Enabled caches SCA sample size (encryptions)
DL1 L2 221 222 223 224 225

✓ ✓ 2.9 14.3 33.3 70.6 72.2
✓ 0.0 0.0 0.0 0.0 0.0

✓ 3.7 14.9 28.1 89.3 92.0
41.8 64.2 72.6 80.0 80.0

V. EMPIRICAL ASSESSMENT

A. Evaluation Framework

The experiments and data presented in this paper have been
produced from software executions on a bare-metal synthesis
of the MPSoC SELENE hardware platform on the Xilinx
Virtex UltraScale+ VCU118 FPGA-based evaluation kit [26],
operating at a frequency of 100 MHz. Software programs
executed on the cores have been written in C and compiled
with Frontgrade Gaisler AB’s NCC GCC Bare-metal toolchain
version 1.0.4 on a Linux system with an O2 optimization
level for a RISC-V target. Programs are loaded into memory
using the FPGA debug software GRMON3 [2] with the main
core set with a specific pointer during the platform booting,
matching the program compilation pointer. All secondary cores
are left disabled to provide a noise-free environment for the
experiments. The program software includes the modified
Bernstein’s timing SCA targeting AES-128 ECB cryptographic
cipher. Specifically, the attack targets low-level encryption
operations of randomized plaintext.

The evaluation presented in this paper is divided per each
type of countermeasure tested as follows:

• Disabling platform caches (Section V-B).
• Evicting Te tables by segments in every time interval

(Section V-C).
• Evicting a single Te table every time interval (Sec-

tion V-D).
• Evicting a combination of Te tables every time interval

or alternatively in every time interval (Section V-E).

B. Cache Disabling as Countermeasure

Obtaining a base reference of the timing SCA effectiveness
on this case study environment is imperative in order to pro-
vide a contrasted view of the protection achieved by the SafeTI
in the following sections. Therefore, this section presents
and reasons about the SCA capabilities in four different
environments where DL1 and L2 caches can be enabled or
disabled, namely, when both are enabled, when only DL1 is
enabled, when only L2 is enabled, and when both are disabled.

Table I shows the equivalent number of bits found by the
attacker (out of the total 128 bits of the key) for several sample
sizes of the attack in our evaluation platform. These values
must be read as follows: if the attacker discovers X bits of the
key, it would need a brute force attack exploring 2128−X key
values. Note that, in practice, the attacker does not discover
specific key bits but discards byte values for different parts



of the key. However, we represent results as the number of
key bits that would need to be discovered to match the same
cost of a brute force attack to facilitate understanding. For
instance, given a key of 16 bits, hence consisting of 2 bytes,
if the attack narrows down the value of the key to 37 out of
256 values for one byte and 59 for the other, the subsequent
brute force attack would require exploring 37x59 = 2, 183
key combinations (instead of 216), which we express as having
to find 11.1 bits (i.e. log2(2183)), or equivalently, as having
found 4.9 bits.

Starting from the base cache composition of DL1 and L2
caches enabled, the SCA results correspond with the infor-
mation presented in previous sections. The attacker is capable
of discovering more bits of the unknown key by increasing
the sample size of the attack, since that way, it is capable
of reducing the number of plaintext values highlighted by a
higher or lower average encryption times compared to other
plaintext value timing averages.

Disabling the DL1 cache but maintaining the L2 cache
enabled shows that no information has been discovered by the
timing SCA, therefore, we learn 2 things. First, all memory
accesses from the AES-128 CBS algorithm have an equal op-
eration latency in this setup. This evidence proves data access
latency is the exclusive leakage source from the cryptographic
operations being timed, at least on the SELENE platform. Sec-
ond, not finding timing differences between plaintext values,
even when increasing the SCA sample size, indicates all data
accessed by the SCA fits within the 512 KBs of the L2 cache.

The complementary case where the DL1 cache is enabled
but the L2 cache is disabled denotes slightly more suscepti-
bility to the SCA than the base cache configuration. In this
case, DL1 cache misses, instead of hitting in L2 cache, need
to access main memory, whose latency is higher than that of
L2 cache hits. Hence, those timings that were discrepant in the
setup with both caches enabled become even more discrepant
when the L2 cache is disabled. Therefore, larger differences
provide easier correlation, which in turn provides a smaller list
of unknown key candidates, or what is equivalent to, a higher
discovery rate.

Last but not least, the disabled DL1 and L2 caches con-
figuration shows to be the most susceptible to the attack
from all cache combinations with small samples. Initially,
one could expect this case to behave similarly to the prior
case with disabled DL1 and enabled L2 caches, given that all
data accessed by the timed operations fits within the external
DRAM. However, these off-chip components introduce data
and access latency dependencies [16], [20], leaking side-
channel information whereas the previous case where DL1 is
disabled and L2 enabled provides homogeneous latency for all
L2 cache hits. In detail, there is an access latency difference
when accessing depending on the data accessed due to bank
and rank access patterns, generating a data-dependent timing
profile due to specific plaintext encryption values requiring
extra latency for their accesses than others.

From a countermeasure perspective, the disabled DL1 and
enabled L2 cache composition is a strong contender as a

protection solution against Bernstein’s timing attack. However,
reducing cache levels results in higher data access latencies,
increasing the average encryption time, from the 730 clock
cycles of the baseline case (both caches enabled) to 4,763
clock cycles, a considerable 552% overhead. Moreover, it
could be argued that a smart attacker may be able to re-
enable the attack by evicting parts of the data used by the
cryptographic operation to highlight the use of specific data,
hence enable correlations in the timing behavior of the cipher
algorithm since the accesses latency would depend on the
plaintext.

C. Partial Table Eviction with SafeTI

The first countermeasure method using SafeTI for evicting
data from the L2 cache consists of evicting AES Te tables,
block by block, but only evicting one segment in every time
period. For instance, if a table occupies 1 KB of cache space,
and it is divided into 4 blocks of 256 B each, SafeTI evicts
bytes 0-255 in period P , 256-511 in period P + 1, 512-767
in P + 2, 768-1023 in P + 3, 0-255 again in P + 4, and so
on and so forth.

Due to SafeTI’s limited descriptor buffer, the injection pat-
terns tested have been constrained to the following 4 different
cases: Te0 eviction by 64 B blocks; Te0, Te1 and Te2 eviction
by 128 B blocks; all Te tables eviction by 256 B blocks; and
all Te tables eviction by 512 B blocks. Between each evicted
block, the injection pattern includes a stand-by time in clock
cycles, which we refer as Delay, that is constant for each
experiment so that evictions are homogeneously distributed
over time.

Regardless of the Delay or table/s eviction granularity,
experimental results show that this protection method is in-
effective at counteracting the SCA. The Delay values tested
are in the range between 103 and 105 clock cycles. These
values allow full tables to be evicted at the same frequency
as the best cases for subsequent experiments where tables are
evicted at once instead of block by block. Results show a
similar discovery rate of the key by the attack among all 4
protection cases.

Furthermore, the SCA is slightly more successful with this
approach than for the base SCA without protection. This
negative effect (i.e., the protection helps the attack rather than
counteracting it) relates to the fact that the data accessed from
the cryptographic operation depends on the plaintext. Hence,
evicting single blocks of the Te tables only highlights such
plaintext values that access the recently evicted cache lines.
Therefore, the attacker learns faster and injection patterns
evicting full tables at once are expected to cure this anomaly
as analyzed next.

D. Table Eviction with SafeTI

The injection pattern for the experiment in this section is
analogous to that of the previous section, but with the evicted
block matching the table size of 1 KB. Hence, in every period
the target Te table is evicted. Then, SafeTI stands by for Delay
clock cycles before looping again.



Fig. 4. Remaining key combinations from several SCAs with single table
eviction protection, including different Delay values, from 223 to 226 en-
cryption sample sizes.

Figure 4 shows the result of the SCA while a full Te
table eviction protection is in place (for Te0 in particular),
for different sample sizes for the SCA (between 223 and 226

sample sizes), varying the Delay between full-table evictions.
We reach the following observations:

• Results are noisy due to minor modifications in the source
code, presenting an intrinsic variability in the execution
time measurements and SCA results (shown in Figure 5)
as we discuss next.

• There is a (central) range of Delay values for which the
SCA is unable to learn anything about the key so that
the number of potential key combinations to explore by
brute force remains at 2128. However, as the sample size
increases, such Delay range narrows down. If the sample
is large enough, as we show in later experiments, the
range becomes null and the SCA starts learning about
the secret key regardless of the Delay value. Still, there
is always a particular delay minimizing the amount of
information learnt by the SCA.

During our experiments, we noticed that small variations in
the code created significant variations in the results for a given
Delay and sample size, and concluded that the particular cache
alignment of the data has an impact on the results in absolute
terms, yet trends hold. This is illustrated in Figure 6, which
represents two sets from a 4-way cache, where there is data
in static addresses allocated during compile time, and data in
dynamic addresses allocated during runtime (e.g., in the stack
frame), both marked with s and d suffixes respectively. The
data is ordered from most recently used A to least recently
used E. Focusing on the first case without a filler size (i), the
set 0 caches sA (spanning across two cache lines), dC, dD
and dE data lines, but once a filler size is applied to displace
dynamic data by one set at (ii), dE is no longer able to fit
within the cache, illustrating why some pointer displacements
are able to leak more information than others.

Fig. 5. Remaining key combinations from unprotected and protected SCAs
with Te3 table eviction and optimal Delay of 2x105 clock cycles for different
sample sizes, and varying filler sizes shifting the compile address alignment
of useful data.

Fig. 6. Associative-set mapping diagram from a 4-way cache in two instances
of (i) no filler size and (ii) filler size with one set of displacement. Data is
named after being statically s or dynamically d allocated, from most used A
to least E.

Figure 5 shows both the protected (straight lines) and
unprotected attacks (dashed lines) for several compilations
of the same program (cipher and attack) but with different
filler sizes (between 512 B and 8 KB), which is an unrelated
data array used to shift the cryptographic operation pointers
for each experiment. The figure shows the diverse results in
the unprotected case, ranging between 225 and 257 unknown
key candidates, with a sample size of 227 encryptions. In
the protected case, variability is drastically decreased, partly
because few key combinations are filtered out by the attack.
Note that, whenever the filler size is a multiple of the DL1 way
size (4 KBs), such as 4 and 8 KBs, results remain the same,
confirming the DL1 set-mapping influence over the SCA. In
any case, no array for shifting pointers has been used for the
remaining experiments in this paper.

As shown before in Figure 4, the degree of protection
achieved depends on the Delay value, or eviction period. Such
evictions aim at generating arbitrary noise able to remove any
correlation that could be used by an attacker. If performed
with the right periodicity, evicting a Te table from the L2
cache causes L2 misses, and hence, access latency increases
(and so execution time increases) arbitrarily and with enough
magnitude to surpass the execution time variability caused by
the underlying access patterns that the attacker is trying to



Fig. 7. Remaining key combinations from protected SCAs with Te0, Te1,
Te2 or Te3 table eviction and optimal Delay, in order to maximize protection,
for each table at different sample sizes.

learn. For instance, a DL1 cache set may contain a Te table
line or not depending if it has been recently used. Given that
the plaintext encrypted in the recent past has determined, along
with the pLRU replacement policy of the DL1 cache, what
lines of the Te tables are stored in DL1, Te lines retrieved
from L2 are, to some extent, arbitrary. Hence, when those
accesses experience higher latencies due to L2 misses caused
by SafeTI evictions is, therefore, highly arbitrary. This makes
execution times be apparently random because the level of
noise introduced is high enough and, apparently, uncorrelated
with the key. However, if the eviction period is too small, DL1
misses also miss in L2 highly systematically, which makes
overall execution time increase, but noise be low. Similarly,
if the eviction period is too high, meaning that evictions only
occur seldom, the protection effect SafeTI has on the SCA is
very limited.

Finding the optimal Delay for the protection is challenging,
due to a dependence with collateral data being evicted from
the same sets where the target Te is cached. This makes, in
fact, that the optimal Delay varies across Te tables, as shown
in Figure 7. Therefore, the only method available to optimize
the Delay and choose the value that maximizes the sample
size needed by the attacker is through empirical testing. As
shown in the figure, the degree of protection achieved across
the different tables, even for near-optimal Delay periods, may
also vary. For instance, Te1 periodic eviction provides slightly
higher protection than that achieved by evicting other tables
due to the interactions with other data of the cipher program.
Yet, these results also depend on the program pointer shift as
shown before in Figure 5.

Overall, the single table eviction protection, once adjusted
with the optimal delay, maintains zero side-data leak up to
an attack sample size no lower than 225 with an average
encryption time of 741 clock cycles, x32 times the attack
sample size at the cost of 1% increase in average encryption
latency when compared with the unprotected SCA.

Fig. 8. Remaining key combinations from unprotected and protected SCAs
using all 4 methods presented in this paper at different sample sizes.

E. Multiple Table Eviction with SafeTI

This section extends the injection patterns, considering cases
where all tables are evicted rather than focusing on one of
them. The goal of evicting all tables rather than the very same
one systematically is introducing higher entropy, and hence,
further challenging the attack.

Figure 8 shows a summary of all SCA cases presented in
this paper, focusing on the most favorable setups identified in
each case, including scenarios where all tables are evicted. In
particular, the configurations evaluated are as follows:

• Unprotected SCA (dashed purple line).
• Te3 eviction by 64 B blocks every 400 clock cycles (red

line).
• Full Te3 table eviction every 2x105 clock cycles (green

line).
• All Te tables evicted simultaneously every 2x105 clock

cycles (orange line).
• Same as previous one, but instead of evicting all Te

tables at once, we evict them in an interleaved manner
so that one Te table is evicted every 5x104 clock cycles
(blue line), which matches the eviction frequency of the
previous case where all tables are evicted every 2x105

clock cycles.
Focusing on the patterns where we evict all tables, the

orange line withstands full protection up to an attack sample
size of 227, with a 4% average latency overhead, whereas
the blue line keeps full protection up to an attack of 230

encryptions, with a 12% average latency overhead. Although
one could expect the encryption latency overhead to be pro-
portional to the number of L2 misses induced, and thus to the
L2 cache evictions performed by the traffic injector, this is not
the case between orange and blue lines, which correspond to
an equivalent eviction rate, and thus, should cause a similar
performance overhead. However, the case of individual table
evictions at a higher frequency (blue line) turns out to perform



the evictions clashing with the execution of the encryption
function more often, and hence causing higher L2 cache access
interference, and increasing encryption latency.

All Delay values present in the figure have been empirically
optimized, with the exception of the last case where we evict
all tables in an interleaved manner, where the 231 encryptions
experiment duration has been 29 hours in our FPGA, making
it unreasonable any further increase in the sample size.

VI. DISCUSSION

This section provides light and additional considerations
for several topics related to the proposed mechanism, namely,
alternative cache compositions in Section VI-A, comparison
with related work in Section VI-B, considerations and re-
quirements of the protection in Section VI-C, and protection
capacity against alternative SCA sources in Section VI-D.

A. Alternative cache compositions

The case study setup includes a write-through DL1, hence
propagating all write operations to the L2 cache. Our eviction
patterns evict all data in specific L2 cache sets (i.e. those sets
where the target Te is mapped). Hence, write operations to
data in those sets also experience L2 misses due to SafeTI’s
evictions. If DL1 implemented a write-back policy instead,
those other write operations would not be affected by our
evictions if they hit in DL1. Hence, the effect of the evictions
would be lower and we would expect to need a higher eviction
frequency to compensate this effect or, alternatively, being able
to plug the SafeTI in a way that it can evict data from DL1
rather than from L2 cache only.

Using a random replacement policy in the L2 cache would
challenge to some extent the generation of eviction patterns
with the SafeTI to evict full tables, which would only be
evicted probabilistically. However, noise introduced would be
more random, which would play against the attack.

The SELENE platform used in this work implements 2
levels of cache. Adding further cache levels is expected to
be innocuous since all data fits in L2, and hence, it would
also do in L3, which would provide analogous behavior to
that of the DRAM memory in the current setup.

B. Related work comparison

Being SafeTI a hardware component, the closest solution
for a fair comparison would be the caches implementing
custom placement policies [22], [25] in order to uncorrelate
cryptographic operation input data with its data access latency.
These solutions offer a higher protection grade (full protection,
indeed) than our protection based on SafeTI, with negligi-
ble execution time impact. However, they are intrusive with
the original cache components, which would require a new
implementation, and verification and validation processes for
each affected cache component, hence challenging portability
and increasing costs. Our solution, instead, offers a different
tradeoff by providing some relevant protection and needing
only additional validation of the SafeTI integration, since
existing cores and caches remain unaltered.

In terms of resource usage, the SafeTI implementation
represents a 1% LUTs and 5% registers with respect the whole
platform, or 3.2% LUTs and 12.6% registers with respect to
one of the NOEL-V cores, which we consider to be low by
supporting all cores.

C. Considerations and requirements of the protection

Eviction patterns caused by the SafeTI are systematic since
they repeat specific actions at specific time intervals. This
could, theoretically, be leveraged by the attacker to speed up
its learning process and decrease the size of the sample needed
to retrieve information from the secret key. However, it is
unclear how this could be done given that the impact of the
evictions caused by the SafeTI vary depending on the plaintext
encrypted, as discussed before. Moreover, it would not be
difficult extending SafeTI to make Delay across evictions be
random while preserving average eviction frequency to further
challenge any attack.

Overall, we do not find practical methods where SafeTI-
based protection could be defeated other than increasing the
attack sample size, or disabling the SafeTI altogether.

All experiments presented show protection capabilities on
a SCA targeting AES-128 ECB cryptographic cipher for a
specific unknown victim key on encryption operations. In
principle, the base of the protection builds exclusively on the
SCA profiling dynamic and the encryption timings. Therefore,
the protection is agnostic to the key being protected and the
calibration may be kept for symmetrical operations such as
decryption, offering an equivalent protection level. Tailoring
for other vulnerable operations may be achieved through cali-
bration of the inter-eviction Delay time, which in theory makes
it capable of tailoring virtually to any vulnerable operation
under the following specific requirements:

• The initial address and size of a cryptographic resource,
such as the Te table(s), is required to be known during
SafeTI injection pattern programming in order to evict
such data during operation.

• Our protection method requires the SafeTI be able to
reach a cache memory where the protected process (e.g.,
the encryption function) performs a relevant number of
cache hits since, otherwise, SafeTI evictions would be
ineffective.

D. Defense capacity against alternative SCA sources

The focus on this case study has been timing attacks, but
other attack vectors exist as mentioned at the introduction,
such as power, electromagnetic, temperature analysis, among
others. A defining characteristic of SCAs is that, due to
being a collateral data analysis, they build on some non-
functional metrics from where to infer information about secret
keys. We believe that SafeTI patterns can be used in many
cases to induce additional activity or alter the activity of the
unprotected system in a way that attack vectors other than
timing can also be counteracted. Yet, how to tailor SafeTI
patterns in each such case is beyond the scope of this work.



VII. CONCLUSIONS AND FUTURE WORK

Security concerns become increasingly significant in safety-
relevant platforms. In this paper, we explore the effectiveness
of Bernstein’s SCA in a space-relevant platform and show how
it rapidly discovers encryption key information by exploiting
cache latencies. We propose using a programmable traffic
injector as a lowly intrusive and adaptable countermeasure and
show that it is highly effective and causes very low perfor-
mance degradation for some configurations, but starts losing
efficacy as the sample size of the attack grows. Therefore, we
consider this solution is particularly appropriate to be used
in conjunction with other defense mechanisms that may take
advantage or require the attacker to be staggered in order to
provide full protection against timing SCA. This would be the
case of, for instance, software solutions whose latency may be
substantially higher than that of a hardware mechanism as the
one proposed in this work.

The solution proposed in this paper aims at emphasizing
the feasibility to use a traffic injector to counteract SCAs, and
how it can be easily programmed to challenge the ability of
the attacker to learn. However, underlying patterns to be learnt
by the attacker still exist and, with a sufficiently large sample,
eventually emerge and are learnt. Part of our ongoing research
consists of devising approaches to inject traffic with the aim of,
rather than adding noise, making emerge fake information so
that the attacker is completely fooled and, instead of learning
more or less information, it simply learns false information,
which would completely defeat the attack.
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Abstract—In times of digitalization, the encryption and sign-
ing of sensitive data is becoming increasingly important. These
cryptographic processes require large quantities of high-quality
random numbers. Which is why a high-performance random
number generator (RNG) is to be developed. For this purpose,
existing concepts of RNGs and application standards are first
analyzed. The proposed approach is to design a physical true
random number generator (PTRNG) with a high output of
random numbers. Based on this, the development begins with
the analog part of the RNG, the noise signal source and a
suitable amplifier for the analog noise signal. Therefore, a
special noise diode from Noisecom and an amplifier from NXP
were chosen and analyzed in different measurements. From
the results of the measurements, it can be concluded that both
components are suitable for use in the RNG.

Keywords—RNG, Random Number Generation, Noise Source,
Random Processes, Cryptography, Random Sequences

I. INTRODUCTION

Due to the increasing demand of cryptography in commu-
nication and other domains, more attention falls to random
numbers, which feature high entropy and are evenly dis-
tributed, and their generation. One distinguishes between true
random processes like thermal noise, quantum mechanical
effects or atomic decay processes on one hand and pseudo
random numbers which seem genuine but are generated by
a deterministic process on the other. True random numbers
have a higher quality than pseudo random numbers, and
are therefore mandatory for the proper function of many
cryptographic processes. In cryptography, random numbers
are used, for example, to generate keys for cryptographic
procedures or non-deterministic padding. For the correct and
secure functionality of these applications, it should not be
possible to guess the random numbers or parts of them.

In enterprise environments on server, where many connec-
tions are established in a short time, exists a high demand
for cryptographic keys. In fact, there are random numbers
required in high frequency to seed the key generation.
This point is in contrast with the fact that physical true
random number generators (PTRNG) require more time to
generate random numbers than deterministic random number
generators (DRNG), which means they are too slow to meet
the requirements of the cryptographic components. PTRNGs
however generate random numbers with a higher rate, but
have the disadvantage of being deterministic.

This is the main reason why the focus of this research is
on the approach of developing a high-performance random
number generator (RNG). The first idea of the approach is to
evaluate whether a PTRNG can be realized with a suitable
performance for these applications. The aim is to get as much
performance as possible out of a PTRNG, and then combine

it with a DRNG to cover applications that require even
more throughput. The result is a hybrid RNG with a higher
performance than a PTRNG and better random numbers
than a DRNG. Regardless of the approach, determining
the maximum achievable performance of a PTRNG is a
suitable first step. Furthermore, the economic viability of the
developed solutions has to be considered. This also means
evaluating the use of cheaper or off-the-shelf components
for the RNG. Irrespective thereof, the different RNGs should
be a tradeoff between price and quality.

The Federal Office for Information Security (BSI) is the
central authority for IT security in Germany. The objective
of the BSI is to preventively promote cybersecurity to enable
and support the secure use of information and communication
technology in society. The BSI provides support to ensure the
issue of IT security, and minimum standards and guidelines
are developed and published to support users in avoiding risks
or strengthening their systems. Regarding RNGs, there is the
technical guideline TR-02102 [2] which contains recommen-
dations for the key length in cryptographic systems but also
includes information about the use of RNGs. For certification
of RNGs in Germany, the AIS 20 (for deterministic RNGs)
and the AIS 31 (for physical true RNGs) are mandatory [3].
These two application notes define the different classes of
random number generators, PTG.1 to PTG.3 and DRG.1 to
DRG.4, and their mathematical background. An overview of
the RNG classes is depicted in Fig. 1. The nomenclature in
this paper is based on the naming convention in the AIS20/31.

This paper aims to answer the following research ques-
tions:

• How can a high-speed noise signal source be realized?
• How and from which properties of the noise signal can

conclusions be drawn about which properties of the raw
random numbers (before post-processing)?
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Fig. 1. Overview of the RNG classes [1]



• How must the analog noise signal be amplified so that
good digitization is possible?

The paper is structured as follows: Section II shows the
current state of the art regarding the RNGs, especially the
application notes of the BSI. Chapter III provides a review
of existing RNG concepts. Chapter IV gives an overview of
the proposed approach of the research work. In Section V, the
intermediate results are described. And Chapter VI concludes
the paper and gives an outlook to the future work.

II. CURRENT STATE OF THE ART

Random number generators are divided into three types:
• The physical true RNGs (PTRNGs), which are based on

physical phenomena like thermal noise or atomic decay
processes, for example.

• The deterministic RNGs (DRNGs), which generate
pseudo random bit sequences out of one initial random
value called seed.

• Non-physical and non-deterministic RNGs, which are
used if there is no certain cryptographic hardware avail-
able (beyond scope of this paper).

Each type consists of different classes, higher numbers in-
dicate that an RNG provides better security capabilities, while
the requirements to be met by the RNGs are consequently
also increasing. According to the AIS20/31 workshop in
June 2023, the classes DRG.1 and PTG.1 have been dropped
because they are no longer sufficient for the required security
features [1].

A. Physical true RNGs (PTRNGs)

One type is the physical true RNG based on specific
hardware to generate true randomness, which means gen-
erating unpredictable random numbers. Calculating previous
or subsequent random numbers based on known sequences
and the physical environmental conditions at the time of
generation must not be possible. The generation of ran-
dom numbers is based on the unpredictable behavior of
electronic circuits, like thermal noise etc. Reducing bias or
dependencies between the random numbers can be achieved
by a deterministic post-processing of the noise raw data
(the digitized noise signals). But post-processing can also
have different objectives like statistical inconspicuousness or
entropy extraction, for example increasing the entropy per
bit. [3]

A common deficit of PTRNGs is the slowness compared
to other RNGs due to the fact that the generation of random
numbers is more time-consuming due to the amplification and
digitization of the raw analog noise signal. The bottleneck is
therefore the more complex processing of the analog signals.
Changes of the environmental conditions like temperature,
electromagnetic fields etc. may impact the the generated ran-
dom numbers. PTRNGs are also more difficult to evaluate in
comparison to DRNGs because, due to the lack of standards
of how an RNG should be set up, they can take on many
different forms and utilize various physical phenomena as an
underlying technology. [3]

The technical guideline TR-02102 recommends using a
generator according to PTG.3, if a physical true RNG is
required in an application. The recommendation applies in
particular to generating keys for calculating signatures and to
Diffie-Hellman based key exchange. For some applications,
PTG.2 generators are sufficient, e.g. for the production of

keys for symmetric encryption or seed generation for a de-
terministic RNG of class DRG.3 or DRG.4. Random numbers
produced by PTG.2 RNGs feature high entropy but do not
foreclose statistical dependencies. PTG.2 generator can be
appropriate if it can be proven, that the potential advantage
to an attacker caused by these dependencies is difficult to ex-
ploit. But nevertheless, it is not recommended to use a PTG.2
RNG directly. An RNG of class PTG.2 can be upgraded to a
class PTG.3 generator using cryptographic post-processing,
which is usually implemented as a software component. The
following example of post-processing, shown in Fig. 2, is
based on the Davies-Meyer compression function [4]. The
raw random numbers from the RNG are divided into 128 bit
blocks Mi where each block is XORed with 128 bit values
(z1 and z2) from the digitized noise source and AES-128
encrypted afterwards. The results of the AES-128 encryption
and the initial 16 byte block are XORed again to produce
the final block of secure random numbers. The purpose of
the post-processing is to increase the entropy of the random
numbers and to eliminate statistic anomalies [5].

RNGs of classes PTG.2 and PTG.3 must comply with the
following properties [2]:

• It is possible to describe the statistical properties of the
random numbers with a stochastic model, capable of
reliably entropy estimating.

• The average increase of entropy per random bit is above
a defined minimum (near 1).

• Statistical weaknesses or deterioration must be detected
within a reasonable time through statistical tests during
operation.

• A total breakdown of the noise source or an unaccept-
able change of the random numbers must be detected
immediately. In this situation, an alarm signal must be
triggered. The generation of random numbers must be
ceased after a breakdown occurs.

• This property is only relevant for PTG.3 generators: A
strong cryptographic post-processing ensures a security
level of a DRG.3 generator despite total breakdown of
the noise source.

B. Deterministic RNGs (DRNGs)

The following section describes the second type of RNGs,
the deterministic generators. DRNGs extend short random
sequences, handed over as seed from an entropy source,
to very long random bit sequences in a deterministic way.
Although the bit sequences look random, the total entropy
can never be larger than that of the seed. Depending on the
generator, the seed can be renewed during its service life. [3]

The DRNGs have the advantage over PTRNGs to be less
difficult to evaluate because the computational security can
be evaluated independently of its implementation and there
are also some approved standard DRNG mechanism. This is
not possible for PTRNGs, where the same design may behave
completely different with different hardware. [3]

The inner state of the generator is initialized with the seed
value. Within every step, the inner state of the generator is
updated, the random numbers are derived from this state and
the values are issued as bit sequence with fixed length. Hybrid
deterministic RNGs update their inner state in a process
called reseed or seed update with true random values. This
process can be cyclic or triggered by the application. The
inner state of the RNG must always be protected against
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Fig. 2. Cryptographic post-processing based on the Davies-Meyer compression function [4]

access and manipulation, especially during reseed. If a deter-
ministic RNG is required in an application, it is recommended
to use a generator of class DRG.3 or DRG.4. For the DRG.3
class, a regular inflow of new entropy is required. However,
this property is not sufficient to fulfill class DRG.4. For
conformity with DRG.3 respectively DRG.4, the RNG must
comply with the following requirements [2]:

• It is not possible for an attacker to calculate the prede-
cessor or successor for a known subsequence of random
numbers or to estimate one of them with a higher
probability as without knowing the partial sequence.

• For an attacker with knowledge of the inner state, it is
not possible to calculate previously issued random num-
bers or to estimate the numbers with higher probability
as without knowing the inner state.

• If the RNG should be upgraded to DRG.4, there is
another requirement to be met. Even with knowing the
inner state of the generator, the attacker should not
be able to calculate the random numbers which are
generated after the next reseed/seed update or estimate
them with higher probability as without knowing the
state. [2]

Using inappropriate RNGs should be avoided because it
can weaken strong cryptographic mechanisms. The most
important property of the generators is the unpredictability
and secrecy of the inner state at all times. For a good quality
of the random numbers, they should be evenly distributed
on {0, 1}n. To achieve this, the individual bits of the random
sequences must be independent of each other and the history.
[2]

Basically, PTG.3 and DRG.4 generators have greater re-
sistance against side channel attacks in comparison to PTG.2
and DRG.3. In side channel attacks, the principle is to

observe the RNG and find correlations between observed data
and generated random numbers. Characteristic information
can be obtained, for example, by analyzing the runtime or
energy consumption of the RNG. Attacks interfere with the
device and provoke errors during execution. Due to the steady
inflow of new entropy at PTG.3 and DRG.4 RNGs, side
channel attacks regarding the cryptographic post-processing
become more difficult. The attacker is not able to combine
information about the inner state at consecutive points of
time. Besides side channel attacks, there is a higher risk of
long-term compromise of RNGs of class DRG.3 compared
to DRG.4 and PTG.3 when the RNGs generate long random
sequences from one single seed value. [2]

RNG class Properties
DRG.3 calculation of predecessor or succes-

sor of known subsequence not possi-
ble, not even with knowledge of the
inner state

DRG.4 calculation of predecessor or suc-
cessor of known subsequence not
possible, not even with knowledge of
the inner state, calculation of random
numbers after reseed not possible

PTG.2 statistical model to estimate entropy,
statistical tests during operation, de-
tection of breakdown and alarm sig-
nal, automatic deactivation of noise
source

PTG.3 statistical model to estimate en-
tropy, statistical tests during oper-
ation, detection of breakdown and
alarm signal, automatic deactivation
of noise source, cryptographic post-
processing



C. Non-physical and non-deterministic RNGs

The third type of RNGs are the non-physical and non-
deterministic generators (NTG). These are used in particular
for cryptographic applications when neither a deterministic
nor a physical RNG is available, as these applications are
generally run on computers without certified cryptographic
hardware. Typically, entropy is gained from system data
(timing values, random access memory (RAM) data, etc.) or
user’s interaction (mouse movement, keystrokes, etc.). NTGs
are beyond scope of this research because they are completely
based on deterministic random numbers and therefore not
suitable for cryptography. [2]

D. Hybrid RNGs

An RNG is called hybrid DRNG if it accepts additional
input or if it is able to trigger a seeding/reseeding procedure.
Hybrid RNGs use design elements from both DRNGs and
PTRNGs. The combination aims to increase the computa-
tional complexity of the output sequence and also to increase
the entropy per bit. A cryptographic post-processing applies
additional security to the RNG in case the entropy per bit is
smaller than assumed.

The security of a hybrid deterministic RNG of class DRG.4
is based on the complexity of the deterministic part of the
RNG. Backward secrecy and forward secrecy should be
ensured by the algorithmic properties of the DRNG alone
and without relying on any entropy in the additional input
data. Backward secrecy is the assurance that previous random
numbers cannot be determined from the knowledge of current
or subsequent random numbers, whereas forward secrecy
means, it is not possible to determine subsequent random
numbers from current or previous random numbers.

Originally, the functionality classes DRG.2 and DRG.3
were designed for pure DRNGs, but the AIS20/31 also covers
hybrid DRNG designs. The functionality class DRG.4 defines
requirements for all DRNGs, but these can only be fulfilled
by hybrid DRNGs. Hybrid random number generators of
class PTG.3 utilize a strong noise source and powerful
cryptographic post-processing. [2] [3]

E. Test suites

The quality of random number generators can be deter-
mined with the help of statistical test suites. The following
gives an overview of the NIST- [6] and Dieharder-Suite [7].
The NIST provides a test suite, which consists of 15 statistical
tests, freely available on their website [6]. The suite was
developed to test the randomness of arbitrarily long binary
sequences produced by any type of RNG. Thereby, the tests
focus on different types of non-randomness that could exist
in a sequence. [8]

The Dieharder random number generator test suite is an
open-source project developed and maintained by Robert G.
Brown. This suite is the expansion and optimization of the
original Diehard test suite introduced by George Marsaglia
in 1995 [9]. It also includes tests of the NIST test suite
and a variety of tests contributed by users, introduced by
the Dieharder contributors or implemented from descriptions
in literature. The test suite aims to provide a universal set of
tests for random numbers. [10]

However, both test suites cannot definitively determine
whether an RNG deliver true random numbers, they can only

detect statistical correlations between the generated random
numbers and mark the generators as weak in this case. [10]

F. General PTRNG structure and basic parts

In most cases, PTRNGs are designed and afterward evalu-
ated for their security by independent institutions or compa-
nies. As only a limited number of laboratories are approved
for certification, it is important and simplifies the process
when the PTRNG designer and the certification institution
use the same vocabulary and definitions.

Therefore, this section provides an overview of the general
structure of a PTRNG and the main components that must be
included. The main function of the PTRNG is to produce a
series of unpredictable bits or binary numbers. The PTRNG is
based on an unpredictable physical phenomenon, the output
of which must be converted into a series of bits or numbers.

Since the majority of PTRNGs are based on analog phys-
ical effects, a component that performs the analog to digital
conversion is an essential component of the PTRNG. For
this reason, the following four basis blocks are required for
PTRNGs [11]:

• Source(s) of randomness
• An analog-to-digital converter (ADC)
• A post-processor
• Embedded tests
An overview over the general structure is depicted in Fig.

3. The PTRNG usually contains one or more sources of
randomness, each generating an analog signal. These analog
signals are converted into a stream of bits with the help of
an analog-to-digital converter. The ADC outputs a stream
of random numbers in bits or multi-bit values, which may
still be of poor statistical quality at this point. If necessary,
this low statistical quality can be improved by an algorithmic
post-processor to obtain a high-quality digital noise.

Using embedded tests according to predefined testing
procedures, the quality of the generated random numbers is
continuously monitored during the operation of the PTRNG.
At least two tests should be carried out: one initial test at
startup of the RNG for correct operation, and one function
for continuous monitoring. [11]

This section described the different types of RNGs and
also how the classification works for RNGs. PTRNGs have
some advantages in comparison to DRNGs, but are therefore
more complex. Hybrid RNGs combine the benefits of both
types and thus offer a good intermediate solution. All RNGs
can be tested with the help of statistic test suites. After this
overview, the next section gives some examples of existing
RNGs.

III. RELATED WORK

This section describes and analyses existing RNG concepts
and thus creates a basis for comparison for the newly
developed RNG.

The first RNG to be analyzed is the Quantis QRNG engi-
neered by the company ID Quantique [12]. This generator is
a physical RNG based on a quantum optics process with
a maximum rate of random data of 4 Mbit/s. The device
functions by emitting photons one by one towards a semi-
transparent mirror and their reflection or transmission events
are detected and associated with the bit values 0 and 1. In
comparison to other noise sources, quantum RNGs are less
vulnerable to environmental perturbations, as the underlying



Fig. 3. General structure of PTRNG [11]

processes, for example light, have no dependencies to tem-
perature or electromagnetic fields. On the other hand, as a
manipulation attempt, laser light or the sending of photons
onto just one of the detectors could compromise the produced
noise signal. To avoid this, the hardware of the generator
and the random numbers are continuously monitored and if
a failure is detected, the random bit stream is immediately
disabled.

The next RNG is the PRG310 developed by the IBB
engineering office Bergmann [13]. This RNG is based on
Z-diodes as thermal noise source for a continuous generation
of random numbers for the classes PTG.2 and PTG.3 with a
continuous random number bit rate of 300 kBit/s. A perma-
nent monitoring of statistical properties of the digitized noise
data verifies the quality of the random numbers.

The PRG700, also developed by the IBB engineering
office Bergmann [14], is the third object of comparison. This
RNG is designed on a small printed circuit board (PCB) for
integration in other applications. It also uses thermal noise
as an entropy source and continuously generates random
numbers. But the RNG is not as fast as the PRG310, therefore
it is only suitable for low bandwidth applications, because the
maximum data rate for random numbers is 40 kBit/s for this
RNG.

The last tested RNG is a smart card of the company
Atos, which is classified as PTG.3 and includes cryptographic
post-processing [15]. The smart card is based on the SLE78
security crypto controller developed by the semiconductor
manufacturer Infineon [16]. This controller is recommended
for applications like ID cards, passports or electronic sig-
natures. For the smartcard, no data rate is specified for the
output of the random numbers, but it is to be expected that
it can output significantly less random data than the RNGs
described above because typical smartcard applications only
sporadically require random numbers for cryptographic ap-
plications.

The aim of this research approach is to achieve better
performance than the RNGs described above. Performance
describes in this case the maximum possible data rate in bit
per second for random data.

IV. PROPOSED APPROACH

The subsequent section outlines the initial step in the de-
velopment approach for a high-performance Random Number
Generator (RNG). This includes the noise signal source and
the amplification of the analog signal. A short preview of the
further steps of the development process are presented at the
end of the section, but they are part of future work.

Initially, this work focuses on the development of a
PTRNG to assess its maximum performance as a standalone
solution without integrating it into a hybridized approach.
Performance is in this context defined as the number of
generated random bits per second. In addition to performance,
the quality of the generated random bits, the resilience against
external interferences and the reproducible implementation
has to be taken into consideration either. If this is not
satisfactory, a hybrid RNG is to be developed as a second
variant. The aim is to evaluate the impact of the hardware
components on the quality of the generated random numbers.
Atomic decay processes are not used as noise source in this
research as these processes are too slow and radiation sources
in RNGs are unsafe because, in this case, the RNG would
have to be shielded against so that no radiation reaches the
outside.

The initial step of the development process is the se-
lection and analysis of adequate noise signal sources for a
TRNG. During our research, the choice fell on the Noisecom
NC302BL diode [17] which is to be investigated as a poten-
tial noise source for a first approach. The Noisecom diodes
are suitable for broadband noise generation because they
are optimized for this purpose. Theoretically, all Noisecom
diodes have these properties, but to ensure the ideal perfor-
mance, the best ones are hand-picked for performance charac-
teristics from all those produced. According to the datasheet,
the diodes deliver symmetrical white Gaussian noise and
flat output power across the frequency band from 10 Hz to
3 GHz. In order to perform tests on the Noisecom diode,
a PCB with the reference design as noise source according
to the datasheet was developed. This PCB facilitates the
investigation of the frequency spectrum of the noise source.
The frequency response should be nearly horizontal because



the power should be as independent of the frequency as
possible. [17]

The analog signal of the noise signal source only pro-
vides low output power. That is why a suitable amplifier is
needed to amplify the signal for its digitization, otherwise the
amplitude of the signal is too low for the hysteresis of the
digitizing circuit. A relevant feature for the selection of the
amplifier is the possible bandwidth. The amplifier is tested
in combination with the noise source. Since the gain of the
amplifier also has a certain dependence on the frequency, this
characteristic can be used to improve the frequency response
of the noise source. This means that the combination of
noise source and amplifier offers a more horizontal frequency
response than the individual components.

According to the required features, the NXP BGA2818 was
selected as a suitable amplifier for the RNG. It is a wideband
amplifier for frequencies up to 2 GHz with a maximum gain
of +30 dB. The BGA2818 delivers a nearly constant gain
over the complete frequency range. For the initial testing of
the amplifier itself and in combination with the noise signal
source, both parts are designed according to their reference
circuits on individual PCBs. This simplifies the test process
and offers the opportunity to use different components if
one of them does not fulfil the expectations. The overview
of these building blocks is depicted in Fig. 4. This figure
also includes the digitization of the noise signal and the
microcontroller, which are part of future work. After all
components are tested on their individual PCBs, the complete
circuit will be united on one PCB.

There are two options for the digitization of the amplified
analog signal. Either using a comparator or with the aid of
an analog to digital converter (ADC). The ADC needs to be
fast enough so that the analog signal is sampled correctly.

The digitized noise signal is processed with the help
of a microcontroller. The controller collects bits from the
ADC and prepares the bit sequences for the cryptographic
post-processing. This is the last step before the random
numbers are ready for use in an application, which is done
using a software component on the microcontroller. Via a
defined interface, the random numbers are provided to the
application demanding them. During the whole process, the
controller needs to monitor the random bits in the event that
errors occur in the process, such as the failure of the noise
signal source or a deterioration in the quality of the random
data due to external influences like temperature changes or
electromagnetic fields.

The proposed approach is described in this section, starting
with the analog part of the RNG, the noise signal source and
the amplification of the analog signal. During the research,
a special diode was chosen as noise signal source according
to the characteristics described in the datasheet. To provide
a analog signal for digitization, the analog signal of the
noise sources needs to be amplified. Therefore, a suitable
amplifier was also chosen. The intermediate results with both
components are presented in the following section.

V. INTERMEDIATE RESULTS

The following section describes the intermediate results
achieved so far. Starting with the noise signal source and the
amplifier up to the combination of both components.

A. Noise signal source (Noisecom NC302BL)

For the first approach, the Noisecom NC302BL is chosen
as noise source to be evaluated because it is developed for
this use case. To ensure a comparable test environment, a
PCB with the reference circuit mentioned in the datasheet, is
created for the Noisecom diode. In addition, the output signal
is routed via a SMA connector to ensure a better connection
to the measuring device. The operating point of the diode,
that is defined by the current flowing through it, is adjustable
via a potentiometer.

With the help of this setup, the analog noise signal of this
diode could be measured with an oscilloscope depicted in Fig.
5. The figure shows a section of the noise signal produced
by the diode with a voltage level of 2 mV peak-to-peak. This
voltage level is too low for direct digitization, which means
an amplification is required to digitize the signal properly.
No direct statement can be made about the quality of the
signal on the basis of the chronological sequence. For this,
the frequency spectrum of the signal must be analyzed.

The power density spectrum was also measured up to a
frequency of 3 GHz with the PCB described before using
a spectrum analyzer. The result of this measurement is the
almost horizontal frequency response across the entire range
depicted in Fig. 6. This is important for the frequency
response because the power should be as independent of the
frequency as possible, making predictions about the random
numbers much more difficult. Otherwise, it would be possible
to see at which frequencies more power is transmitted and
thus draw conclusions about the noise signal. Since frequen-
cies above 600 MHz are the mobile radio frequencies (which
are recognizable in the spectrum) the RNG to be developed
must either be shielded or suppress these frequencies using
a filter.

To analyze the electromagnetic compatibility (EMC) re-
sistance of the board, it was tested in an EMC laboratory
under the influence of electromagnetic fields. The test board
is irradiated with fields of different frequencies and field
strengths to investigate the influence on the spectrum. The
result is displayed in Fig. 7 where the yellow signal shows
the maximum, the green one shows the average and the
orange signal shows the minimum of the spectrum. The
influence of the electromagnetic fields is clearly visible at
the two peaks in the low frequency range. This means that
the noise signal source can be influenced by electromagnetic
radiation and must be shielded against EMC influence. Al-
ternatively or additionally, other methods such as the use
of a differential amplifier could be used. This requires two
noise signal sources, whereby the difference between the two
noise signals is first formed and then amplified. In this way,
interference affecting both noise sources simultaneously can
be eliminated.

B. Amplifier (NXP BGA2818)

Due to the fact that the amplitude of the noise signal is
only 2 mV peak-to-peak, the signal needs to be amplified to
be digitized properly and with a sufficient resolution. For this
purpose, the NXP BGA2818 is selected as amplifier for the
RNG. This component is a monolithic microwave integrated
circuit (MMIC) wideband amplifier with an internal matching
circuit to 50Ω and a nearly constant gain of +30 dB over its
complete frequency range. The special feature of this type of
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Fig. 4. Building blocks of the hardware development process

Fig. 5. Noise signal of the NC302BL

component is the integration of all active and passive com-
ponents on a semiconductor substrate. This miniaturization
enables the design of circuits down to the millimeter wave
range.

However, since an amplification of +30 dB is not sufficient
to generate a signal with adequate amplitude, an amplifier
stage consisting of two BGA2818 in series was designed on
a further test PCB. This corresponds to the procedure men-
tioned in the previous section of first realizing the individual
components as building blocks. After each block is tested
individually, they are combined on a common PCB.

To reduce the influence of the power supply to the amplifier
and the analog noise signal, the LTM8080 from Analog
Devices is chosen as a component for low noise voltage
supply. At this stage of development, the LTM8080 is used
with the help of a development board. Later on, this will also
be integrated on a custom PCB with the other components
of the RNG. The LTM8080 can be supplied with a voltage
from 6 V to 40 V and generates from this a selectable output
voltage from 0 V to 8 V with a ripple in the µV range. [18]

Fig. 6. Power density spectrum of the NC302BL

Fig. 7. Power density spectrum of the NC302BL under EMC influence

Fig. 8. Spectrum of the BGA2818

In Fig. 8 the spectrum of the BGA2818 with a constant
reference signal over the frequency range from the spectrum
analyzer is depicted. The reference level before amplification
is at -60 dB (light blue horizontal line). There are placed four
markers in the spectrum at different frequencies, showing the
level at these points of the spectrum. Until marker 4 at 1 GHz,
the figure shows a nearly horizontal spectrum, which means
that the amplifier works as expected for this frequency range.
According to the level at the markers, the gain is slightly
below the ideal 60 dB that two amplifiers of this type can
theoretically achieve when connected in series.

This means, the BGA2818 is suitable for use in this RNG
development. The test PCB amplifies the noise signal up to
about 2 V peak-to-peak so that the amplitude of the signal fits
for the digitization. However, it must be taken into account
that a direct current (DC) voltage offset needs to be added to
the voltage signal for digitization. Without this DC offset, the
voltage signal can also take on negative values, which can
lead to problems during digitization. If digitization is carried



out using an ADC, for example, it could be damaged by the
negative voltages because their operating range is between
0 V and typically 3.3 V.

C. Noise signal source and amplifier in series

After testing the noise signal source and the amplifier
individually, the combination of them is to be tested as a
next step. The aim is to exclude the possibility of interactions
between the two PCBs.

The amplified noise signal has an amplitude of 2 V peak-
to-peak. As the signal oscillates around the voltage level of
0 V after amplification, a DC offset of VCC/2 should be
added to the signal. This means that the analog signal is ex-
actly in the middle between 0 and VCC and can be digitized
with an ADC, for example. To protect the digitization circuit,
the voltage signal must be also limited to the maximum input
voltage of the circuit.

Since the combination of the two boards provides an
amplification gain of +60 dB, an emission measurement is
then carried out, because interference frequencies are also
amplified when they reach the high frequency signal line.
This involves measuring whether the circuit boards emit
electromagnetic fields and, if so, at what frequency they
are located. This ensures that other parts of the RNG or
other devices are not influenced or disturbed by the amplifier
circuitry.

For this measurement, the structure consisting of the noise
signal source and amplifier was placed under a stripline
and the radiation of the two boards was measured with
its help. The result of the measurement over the frequency
range from 100 kHz to 6,25 GHz is depicted in Fig. 9. Up
to a frequency range of around 2 GHz, the amplitudes of
the signals at the various frequencies are below -80 dBm,
which means that the emission of the PCBs in this range
is very low. Only two peaks at about 2 GHz and 2,8 GHz
attract attention, because the amplitudes at these frequencies
are above -60 dBm and thus significantly higher than the
remaining frequency spectrum. Although this is noticeable,
it is not critical for the time being. The two peaks occur
because the matching of the high frequency tracks on the two
PCBs is not optimal. This is improved when the components
are integrated onto a common circuit board at a later stage.

Fig. 9. Emission measurement of noise signal source and amplifier

VI. CONCLUSION AND OUTLOOK

In conclusion, the demand for high-quality random num-
bers is high due to the increasing use of cryptography. A
distinction is made between deterministic RNGs, physical
true random generators and non-deterministic RNGs, each
consisting of different classes with special properties. For
some applications, certain classes are recommended to meet
the security requirements. Physical true RNGs are prefer-
able to deterministic RNGs due to the fact that they use
unpredictable behavior of specific hardware components like
thermal noise as a base for the random numbers. The quality
of the random number generators can be evaluated with the
help of statistic test suites like the NIST test suite and the
Dieharder suite.

The aim of this approach is the initial step in the develop-
ment approach for a high-performance RNG. Therefore, first
a suitable noise signal source is selected based on a frequency
spectrum analysis and also a fitting amplifier to prepare the
analog signal of the noise signal source for digitization.

For the tests of the first noise signal source, a PCB
was developed, and the noise signal measured with an
oscilloscope. Measuring the power density spectrum with
a spectrum analyzer, the Noisecom diode shows a nearly
horizontal frequency response, marking it as a promising
candidate. Tests in the EMC laboratory for the influence
of electromagnetic fields with different frequencies and field
strengths show that the output signal is affected by those
fields. Hence, a shielding of the noise source or the whole
RNG is necessary.

Since the noise signal has only low power, it needs to be
amplified for later digitization. Therefore, the NXP BGA2818
was chosen as an amplifier for the analog noise signal.
This amplifier is a MMIC wideband amplifier with a nearly
constant gain of +30 dB over its complete frequency range.
Due to the low amplitude of the analog signal, two BGA2818
in series are designed on another PCB to test the amplifier
individually and in combination with the noise signal source.
With this two-stage amplifier circuit, a suitable signal for
digitization can be achieved.

This paper focuses on the analog part of the high-
performance RNG, thus the noise source and the amplifica-
tion of the noise signal are of interest. Initially starting with
the Noisecom diode and a suitable amplifier, in a later step,
other noise sources should be tested and compared.

The next step after amplifying the noise signal is the digi-
tization of the noise data and the statistical evaluation with an
associated model. An important aspect is the cryptographic
post-processing of the generated random numbers to meet
class PTG.3 of the RNGs. In addition, the RNG must also
provide online-tests to monitor the correct functioning and
quality of the random data during the runtime. The digitiza-
tion, statistical evaluation, cryptographic post-processing and
the online-tests are part of future work.
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Abstract—New complex functions are emerging for avionic sys-
tems. These new functions ask for high performance computing,
which mean the need to embed new type of hardware such as
hybrid architectures integrating multi or many-core processors.
However, these processors are often Commercial Off-The-Shelf
and suffer a lack of documentation and predictability. In the
all-connected trend of today digital world, these issues can lead
to new security vulnerabilities exploitable by malicious people.
In the context of the PHYLOG 2 research project aiming at
defining a certification framework for multi-core platforms, we
study the aeronautics standards ED-202A/DO-326A and ED-
203A/DO-356A about airworthiness security. The objective is
to take into account these standards at the level of the multi-
core processors in order to ensure the compliance of security
assessment and development for certification. We present our
review and understanding of the standards and their projection
at the level of multi-core platforms. In addition, we describe our
application on a use case and report our feedback.

Index Terms—cyber-security, multi-core processors, aeronau-
tics, certification

I. INTRODUCTION

New types of hardware are making their way to avionic
systems as new complex functions are emerging, such as
pilot assistance or flight supervision coupled to machine
learning. These new functions are indeed asking for high
performance computing. This implies the need to embed
hybrid architectures integrating multi or many-core processors
and accelerators. However, these processors are mainly COTS
(Commercial Off-The-Shelf), so they suffer from low pre-
dictability and a significant lack of documentation. This lack
of documentation and the complexity of these processors open
new vulnerabilities for cyber-attacks. In addition, the avionic
systems are becoming more open and connected in the modern
digital era (e.g. the use of Electronic Flight Bag), leaving these
vulnerabilities more accessible to malicious persons.

Standards such as ED-202A/DO-326A and ED-203A/DO-
356A offer guidelines, considerations and certification ob-
jectives to address airworthiness security. The airworthiness
corresponds to the capacity of an aircraft and its systems to
operate safely and to carry out their expected function. The
airworthiness security consists in the protection of the aircraft
against intentional unauthorized electronic interactions. How-
ever, these standards have been created to be applicable at the
classical levels of aeronautics development: aircraft, system
and item. To be able to reason about airworthiness security

for the multi or many-core processors, we need to refine these
standards to assess cyber-security at the level of the platform,
i.e. the processors architecture (hardware) and its executive
layer. This is not the system level or the item level, but a level
in between.

PHYLOG 2 is a research project1 supported by DGAC,
which aims at defining a certification framework for multi-
and many-core hybrid architectures. In this context, we study
the security standards ED-202A/DO-326A and ED-203A/DO-
356A. The objective is to understand the guidelines and con-
siderations expressed in these standards and how to apply them
at a platform level to gain confidence on the airworthiness
security of multi-core platforms and ensure compliance with
certification.

In this paper, we present the work done to achieve this
objective in the context of COTS. It is organised as follows. In
Section II, we introduce the cyber-security standards by giving
a summary of our understanding of the standards contents
and our understanding of the application of a part of the
Airworthiness Security Process on the use case example given
in the ED-203A/DO-356A. In Section III, we present the
challenges brought by the use of multi-core architecture in
terms of existing cyber-attacks for processors, and in terms
of considered level of development for the application of
the standards. In Section IV, we present how we interpret
the cyber-security standards at the development level of the
platform and we apply this interpretation on a revised version
of the Air Management System use case based on a simplified
version of a Texas Instruments platform. In Section V, we
discuss our feedback and the applicability of the standards at
platform level. We conclude in Section VI.

II. UNDERSTANDING THE STANDARDS

A. Overview

Standard ED-202A/DO-326A (Airworthiness Security Pro-
cess Specification) [14] and companion document ED-
203A/DO-356A (Airworthiness Security Methods and Consid-
erations) [15] describe the process, guidelines and regulatory
considerations to address airworthiness security. From our un-
derstanding, the standards offer different kind of information.
First, a definition of the fundamental concepts required to

1https://w3.onera.fr/phylog/



understand and to conduct the Airworthiness Security Process.
Second, an overview of the process, activities and suggested
methods to be carried out. Third, a list of Security Assurance
Objectives to satisfy at the different level of development.
Finally, a set of appendixes on methods and examples of
application on different use cases. In this section, we focus
on giving an overview of the Airworthiness Security Process,
introducing the necessary concepts along the way, and we
present our understanding of the application of a part of
this process on the use case coming from the ED-203A/DO-
356A. We finish with an introduction to the Security Assurance
Objectives.

B. The Airworthiness Security Process

A simple representation of the recommended process is
visible Figure 1.
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Fig. 1. Airworthiness Security Process preview

It is based on three major activities. First, the security scope
definition activity identifies the elements under consideration
in the process. The security scope is composed of the assets
considered for the airworthiness security, their security perime-
ter i.e. the border between the assets and the external world,
and their security environment i.e. all the elements external to
the security perimeter that can interact with the assets.

The second activity is the security risk assessment that iden-
tifies and qualifies the security risks. Based on the definition of
the security scope, this activity identifies the threat conditions
and their effects, i.e. the conditions resulting from potential
attacks, the threat scenarios leading to these threat conditions,
and the existing security measures. From this information,
it allows evaluating the risk for security by calculating the
level of threat and evaluating the severity of threat conditions
effects. The Level of threat represents the likelihood of a threat
condition to occur, while the severity provides a qualitative
evaluation of the level of harm of their effect.

The security development activity focuses on the design of
security related development (e.g., security measures) adapted
to the evaluated security risks and the verification of their
effectiveness.

The process always starts by conducting a preliminary
Security Risk Assessment at design phase and proceed with

one or many iterations of the Security Risk Assessment once
the implementation is available. Indeed, once the security risk
is evaluated and the security development to mitigate this risk
is achieved by modifying the architecture, it is necessary to
re-evaluate the risk to find out whether it is acceptable.

The airworthiness security process also interfaces with
other activities. It particularly interacts with the airworthiness
security process at a higher level. Moreover, the process
interfaces with activities linked to other standards. The archi-
tecture issued from the Architecture Development following
the standard ED-79A/ARP-4754A [17] is necessary to conduct
the airworthiness security process. In addition, the failure con-
ditions coming from the Safety Assessment following standard
ED-135/ARP-4761 [16] and the implementation following
standards ED-12C/DO-178C [13], ED-80/DO-254 [12] and
AMC20-193 are required for the Security Risk Assessment.
So these interfaces are mainly represented as inputs to the
airworthiness security process.

C. Illustration on The Air Management System from ED-
203A/DO-356A

The standards illustrate the application of the different
activities of the Airworthiness Security process on practical
examples. One of this example is the Air Management Sys-
tem (AMS) described in ED-203A/DO-356A. The standard
presents the application of the the Security Scope Definition
activity and the Security Risk Assessment activity on this
particular use case. The Security Development for this use
case is not described in the standards and is out of the scope
of this paper. The following is our understanding based on the
material available in the standard.

1) Description: As described in ED-203A/DO-356A, the
AMS of an aircraft fulfils five functions: it provides cabin
acclimatization, cabin pressurization, In-Flight information,
support for maintenance and support for manufacturing. To
manage these functions, the AMS is composed of a Tempera-
ture Controller and a Pressurization Controller as depicted in
Figure 2.
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Fig. 2. AMS overview

Each of these controllers contains a software, a firmware and
a data storage but also interfaces to the external world. First,
there are physical interfaces such as Ethernet interface, ARINC
664 interface, CAN (Controller Area Network) interfaces.
The Pressurization Controller is connected to the Temperature
Controller via an Ethernet connection. The Pressurization
Controller is also the only controller to be equipped with an



USB port. Second, there are logical interfaces that represent
digital connections to equipment, such as Aircraft Systems,
most of the time via a network of intermediate equipment, e.g.
an Ethernet switch. In addition to these descriptive elements,
a list of identified Failure Conditions for the AMS is also
available in the ED-203A/DO-356A. In this paper, we will
primarily focus on the Loss of pressurization for crew and
passengers which is identified as catastrophic.

2) Definition of the Security Scope: The representation of
the complete security scope for the AMS is described in
Figure 3 (This figure is based on representations from the
ED-203A/DO-356A and [19]). It is composed of the assets
under consideration, their security perimeter and their security
environment.

a) Assets under consideration: The security scope def-
inition of the AMS starts by the identification of the as-
sets under consideration. Here, the Temperature/Pressurization
controllers are considered in their entirety. Each of them
includes, as assets: their constituents (e.g. micro-processor),
their functions (e.g. ”Provide Cabin pressurization”), their
information (e.g. software, firmware, data storage, etc), their
interfaces.

b) Security Perimeter: The Security Perimeter is the
border between the assets and the external world. For the
AMS, it is composed of the physical and logical interfaces
of the two controllers. The physical interfaces include the
interfaces to A664 Switch, to ethernet switch, to Maintenance
Ground Support Equipment (GSE) and the USB interface. The
logical interfaces are composed of the interfaces to Bleed
System, to EFB, to QAR, to IFE File Server, to Avionic
Systems and to Airline and Manufacturer network.

c) Security Environment: The Security Environment rep-
resents the external world of the assets and what can interact
with them. It is the place where attacks originate. In the case of
the AMS, the security environment includes MRO personnel,
pilot, first officer, operator’s personnel, operator’s maintenance
personnel, airline ground infrastructure, manufacturer ground
infrastructure and avionic systems. The security environment
also covers security assumptions that have been made. One
example for the AMS is ”The Pressurization Controller can
be updated via GSE or embedded Ethernet switch”.

3) Security Risk Assessment: A part of the security risk
assessment activity on the AMS is described in the ED-
203A/DO-356A. Here we summarize the threat conditions
identification, the threat scenario identification and the security
measure characterisation available in the standard. We then
carry out ourselves a level of threat evaluation on a security
measure of a scenario in order to illustrate this particular part.

a) Threat condition identification: An example of Threat
Conditions identification on the AMS as presented in ED-
203A/DO-356A is given in Table I. It describes a threat
condition impacting the asset ”Logical interface to the Bleed
system” and resulting in the loss of pressurization for the crew
and passengers. It is is associated to the failure condition
coming from the safety assessment, Loss of pressurization
for crew and passengers. This threat condition considers

the corruption of the pressurization controller leading to the
dispatch of misleading commands to bleed system. In terms
of impact, each threat condition affects a security attribute of
an asset. There are typically three security attributes which are
considered: confidentiality, integrity and availability. They are
referred as CIA. Here, the threat condition is considered as a
loss of integrity for the logical interface to the Bleed system
and the severity of the effect is identified as catastrophic.

TABLE I
EXAMPLE OF A THREAT CONDITION FOR THE AMS

Threat
Cond.

Asset Attribute
(CIA)

Description Effects Severity

TC.1 Logical
Interface
to Bleed
system

Loss of
Integrity

Misleading com-
mands to bleed
due to Pressuri-
sation Controller
corruption

Loss of pres-
sure control
for crew and
occupants

Catastrophic

b) Threat scenario identification: An example of threat
scenario identification is given in Table II. It represents a
scenario where a criminal, terrorist or insider uses the Wire-
less Connection to bypass security measures2, to access the
Pressurization Controller Storage and to achieve the threat
condition presented in Table I.

TABLE II
EXAMPLE OF A THREAT SCENARIO FOR THE AMS

Threat
Sc.

Threat Sources Attack Path Security
Measures

Threat
Cond.

Attacker Attack Vector

TS.1 Criminal,
Terrorist,
Insider

Wireless con-
nection

Wireless Bridge,
Ethernet switch,
Pressurization
Controller storage

Flight Phase
(SR1), Wireless
Bridge Access
Control

TC.1

c) Security Measures Characterization: In the ED-
203A/DO-356A, the Wireless Bridge and its access control
is used as example for Security Measures Characterization, as
it is on the attack path of the scenario defined in Table II.
A summary of this characterization extracted from the ED-
203A/DO-356A is presented in Table III. It offers password
protection to access the wireless network but its main vulner-
ability is that it comes with default login and password at the
delivery of the aircraft. If the credentials are not changed by
the operator, an attacker with knowledge of the default settings
can exploit this vulnerability.

d) Level Of Threat Evaluation: Following the examples
of methods available in ED-203A/DO-356A, the assessment
of the level of threat can be carried out in different ways.
Here, we consider the assessment of the level of threat based
on the evaluation of the effectiveness of protection. This kind
of evaluation depends on three criteria. First, the preparation
means i.e. is previous knowledge required to conduct the

2In the table, SR1 represents the Security Requirement 1 as defined in ED-
203A/DO-356A: ”The Pressurization Controller shall only accept external
connections routed via Wireless Bridge when the aircraft is on-ground and
engine is off.”
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Fig. 3. AMS Security Scope from ED-203A/DO-356A

TABLE III
EXAMPLE OF CHARACTERISATION OF THE SECURITY MEASURE

WIRELESS BRIDGE ACCESS CONTROL

Description Protected
Assets

Capability Type of
effect

Position
in the
architec-
ture

Known
vulnerabil-
ity

Dependencies

Standard
wireless
access point
with optional
channel
encrypting and
access controls

AMS
system,
functions
and data

Provide
password
protection,
interface
hardening,
etc

Preventive In the
security
perimeter
border

Delivered
with
standard
user
name and
password

Need to
enforce
password
definition
after
delivery or
replacement

attack? Second, the window of opportunity i.e. when will
the attack be possible? Finally, the execution means, which
prerequisites need to be carried out?

For each of this criterion, a score table is presented in ED-
203A/DO-356A in order to give a score depending on pre-
defined answers for the associated question. By combining
the three scores, the user obtains an effectiveness score of
the protection, denoted A. The level of threat can then be
decided following the score table presented in Table IV. It is
then up to the user to combine the effectiveness scores of the
different security measures, following specific rules defined in
ED-203A/DO-356A annex E, to obtain the total score of the
effectiveness of protection and so the level of threat of the
threat scenario.

For the AMS use case, we tried to carry out this assessment
on the Wireless Bridge Access Control in the context of
the scenario presented in Table II, as the illustration on this
example does not seem to be available in the standards.
In terms of preparation means, the Wireless Bridge Access
Control corresponds to a standard equipment and uncontrolled
information, as the equipment is delivered with standard login

TABLE IV
LEVEL OF THREAT DEPENDING ON EFFECTIVENESS SCORE

Level of threat Effectiveness A

Very High None < 7
High Basic ≥ 7
Moderate Moderate ≥ 13
Low High ≥ 19
Extremely Low Very High ≥ 25

and password. The obtained score for this criterion is then 2.
In terms of window of opportunity, the access to the wireless
bridge is only available on ground engine off which is a
reduced window. The evaluated score is then 2. In terms of
execution means scale, the attacker needs to be proficient with
standard equipment to gain access. The given score is then 4.

The total computed effectiveness score for the Wireless
Bridge Access Control is 8. Following Table IV, it corresponds
to a basic effectiveness and a high level of threat for this
protection. However, other security measures are available for
this particular threat scenario and would need to be taken into
account to obtain the final level of threat.

D. Assurance Objectives

Finally, the standards also defined security assurance ob-
jectives for certification. There are 39 objectives organised
following 13 categories (e.g. security risk assessment, design,
verification, etc). Each objective is tagged with its scope of
application, i.e. Aircraft development, System development or
Item development and its level of application according to the
Security Assurance Level (SAL). In the same vein as the DAL,
the SAL represents the level of rigor to demonstrate, in terms
of security, for a product and its development process. It goes



from level 0, no protective effect, to a maximum level of 3. It
is determined based on the severity of threat condition effects
to which the product is exposed to and it is assigned to the
security measures and assets of the product. SAL is considered
out of the scope of this paper, as we reviewed every objective
in our work.

To give an example of Assurance Objective, let us consider
for the remainder of the paper the objectives O1.1, O1.2 and
O1.3 from the Security Risk Assessment category, all applying
to the Aircraft and System development level. They are respec-
tively: The security scope is established and validated (O1.1),
the Threat Condition Identification and Evaluation is com-
plete and validated (O1.2), the Preliminary Aircraft/System
Security Risk Assessments and Aircraft/System Security Risk
Assessments are performed and consistent with related air-
craft/system safety assessments (O1.3).

III. THE SECURITY CHALLENGES BROUGHT BY
MULTI-CORE PLATFORM

A. Cyber-Attacks at the level of the processors

Many works of the literature have identified cyber-attacks
targeting processors, including multi and many-core proces-
sors. For instance, [21] presents a sophisticated attack that
retrieves information on a secret cipher key by observing the
shared Last Level Cache (LLC) of a platform. This attack
is called Flush + Reload and illustrates a larger category
of attacks called side channel attacks. Side channels attack
principle is to infer information by observing a phenomenon
correlated to the computation (e.g. power consumption, execu-
tion time, sound, etc.). Here the attack context is a multi-core
platform with shared LLC. On one core, a victim program
encrypts a message with its secret key. On another core, an
attacker program seeks to retrieve the key to decrypt the
message. All encryption programs are considered accessing
the same memory location where its instructions are stored.
The cache structure of the platform is said to be inclusive, i.e.,
when a user flushes a line in cache, the line is flushed from
all cache levels and for all users. The encryption algorithm
used is a non-protected version of RSA. The RSA algorithm is
composed of three basic operations: square, multiply, modulo.
In a non-protected version of RSA, the order of execution
of these operations depends on the bit stream of the secret
key. Hence, the order of the operations executed by the victim
informs on the secret key. The scenario of the attack is the
following. When the victim is encrypting data, only one out of
the three operations will have a reduced access time, meaning
that it has been loaded in cache by the victim. After the
attacker measured the time of access to all the commands and
found the one executed by the victim, it flushes all the three
operations from the cache and waits for the victim to execute
another operation. Repeated during the whole encryption, this
process gives the sequence of executed commands, which
informs on the secret key used by the victim. In terms of
security measures, it is quite easy to protect against some of
this type of attacks. However, it is very difficult to protect

against all of them. Some security measures may need hard-
ware modification or could be only software. For instance, an
easy way of protection for the case described in [21] is to make
the algorithm load all the operations at each step whatever the
one it executes currently. The observation of the exploitable
phenomena is then mitigated.

Other versions exist such as Prime + Probe [10] or Flush +
Flush [5] that are all based on the same concept of obvervable
phenomena but with different configurations and efficiency.
Additional ways to exploit those phenomena via side channel
attacks are described in [22]. From another perspective, work
such as [20] studies protection mechanisms against side chan-
nels attacks in the context of Simultaneous Multi-Threading
(SMT) processors. Indeed, SMT architecture allows multiple
threads to compete for shared resources on a single core. Even
if it offers performance benefits, it comes at the cost of higher
security risks, especially from side channels attacks which
exploit shared resources. The protection mechanism described
in [20] is based on a spatial and time partitioning of the
execution units and ports to prevent side-channel execution
on this kind of processor.

Side channel attacks can also be part of more recent
sophisticated attacks, such as Meltdown [7] or Spectre [6].
Both of these attacks take advantage of a specific feature
that is implemented in modern processors called out-of-order
execution. This feature allows a processor to speculate on
future operations and schedule them to idle execution units.
If the speculation becomes correct, the changes induced by
the operations are applied otherwise they are discarded. It
increases performance but provides observable side effects
which can be exploited. For instance, Spectre attacks trick a
victim into speculatively performing operations that would not
happen during the nominal program execution and which leak
confidential information. The side effects can then be exploited
to retrieve this information via side channel attacks.

In a different vein, [9] describes an attack on the In-
put–Output Memory Management Unit (IOMMU) of a plat-
form that, in a particular configuration, gives a malicious hard-
ware access to the whole memory space. On some processors,
Direct Memory Access (DMA) can make direct accesses to
the shared memory. It allows to bypass the CPU (and thus the
OS if any) so that other devices, such an Field-Programmable
Gate Arrays (FPGA), could access in parallel the memory.
For example, an FPGA dedicated to cryptographic operations
could encrypt and decrypt messages in parallel to the main
OS running. But such an unlimited access is not without
dangers if the code on the device is malicious or simply
flawed. An IOMMU can then be implemented to filter memory
access requests. It serves both as a protection against illegal
access and as an abstracted interface since it translates vir-
tual addresses to physical addresses. However, at the start
of the system, the IOMMU is not immediately configured
while the DMA access is enabled immediately after the CPU
initialization. The IOMMU is set after some time in the boot
process, which leaves a time window for unlimited memory
access. This is exploited in this attack. The attack context is



a heterogeneous architecture with one or more CPUs and a
Linux OS. The architecture also includes hardware devices
like FPGA, external to the OS. These hardware devices are
connected to the main memory via DMA and an IOMMU is
set to protect the main memory. It is considered that one of the
hardware devices is infected by a malicious program at startup.
The scenario is the following. On startup, the Linux kernel
creates the configuration table of the IOMMU that contains the
access policy rules. This table is in the main memory before
it is loaded in the IOMMU internal register, where it becomes
protected. However, while this table is in the main memory
and before it is loaded, the malicious hardware will rewrite it
to give itself access to the whole memory space. This scenario
is based on the assumption that the DMA access is enabled by
default at startup. Nowadays, this is true for many platforms
because of legacy reasons, as explained in [9]. Concerning
security measures, this work also illustrates the vulnerability
that a security mechanism at the level of the platform (the
IOMMU) can have and that could be exploited to bypass the
protection.

In [4], the authors list a number of attacks targeting
Network-on-Chip (NoC). A NoC is a network between
System-on-Chips (SoC) which are integrated circuit contain-
ing processors. A NoC design combines notions from the
network and the hardware domains, including their security
vulnerabilities, and creates a completely new set of attack
possibilities between processors. For example, we present one
of the attacks described in [4], the attack concerning packet
corruption at routers. In this attack, a Trojan hardware is
inserted in a router of the network and is able to either copy
and resend packets, send forged packets or tamper the data
inside a transiting packet. The context of the attack is based
on two CPU clusters on the network, a sender and a receiver,
which need to communicate. A hardware element has been
introduced into a router of the network that is on the path
between the sender and the receiver. There is no encryption
or authentication mechanism implemented on the network
and the Trojan is sufficiently stealthy to not be detected by
traditional means of network monitoring. The attack scenario
is quite simple. The message from the sender to the receiver
is intercepted by the Trojan and is modified or additional
messages are forged. In terms of security measures, detecting
a Trojan hardware is very difficult if not impossible. Current
research works are more focused on protecting the network in
case of such compromising. Protection mechanisms include
what is already done in networks, i.e. error-correcting codes,
encryption, authentication, etc. However, this attack requires
the installation of hardware on the network, which makes the
feasibility of the attack more difficult.

Despite the numerous processor level attacks identified
in the literature, we did not find any example of attacks
in the aeronautics domain or any practical applications of
ED-202A/DO-326A and ED-203A/DO-356A on a multi-core
platform.

B. The need to consider a development level of the platform

In this paper, we consider that a platform is composed of
several hardware and software items interacting between them.
It includes a processor architecture, a platform configuration,
which can be hardware and/or software, and an executive layer,
i.e. the hypervisor. Cyber-attacks reported in the literature
show that it exists many attacks happening at the level of
processors and their interactions. Security measures are also
defined at this level of details. In this case, it becomes essential
to consider the whole content of a platform to carry out
the Airworthiness Security process. As seen in Section II,
the standards ED-202A/DO-326A and ED-203A/DO-356A
consider the traditional development level of an aeronautic
development. However, the platform is neither a system nor
an item. It is something in-between. It is then necessary to
consider an alternative level of development to apply the
recommendations of the cyber-security standards. We suggest
studying their application at the level of the platform.

IV. INTERPRETATION OF THE STANDARDS AT THE
PLATFORM LEVEL

Based on our review of the standards ED-202A/DO-326A
and ED-203A/DO-356A and the need to reason at platform
level, we first extracted the concepts needed to carry out
the activities, along with their definitions and relationships.
Accordingly, we designed a representation of the security
process as we understood it and we outlined it at the level of
the platform, along with the Security Assurance Objectives. In
addition, we took the AMS example described in Section II-C
and we brought it at the platform level to review the activities
at this specific level. The work achieved for the process, the
assurance objectives and the use case is summed up in this
section.

A. Interpretation of the Standards at the Level of Multi-Core
Platforms

1) Interpretation of the Airworthiness Security Process:
We present our understanding of the Airworthiness Security
Process in Figure 4.

In particular, we describe the precise links between the
different activities of the Airworthiness Security Risk Man-
agement introduced in Figure 1. Three activities are out of
the Airworthiness Security Risk Management. The architecture
development provides the architecture to the three main activi-
ties of the Airworthiness Security Risk Management. The Plat-
form Safety Assessment provides the failure conditions to the
Platform Security Risk Assessment and the Implementation
activity provides the implementation and derived requirements.
From this point, the Security Scope Definition is carried
out and supplies the security scope (Assets under consider-
ation, security perimeter, security environment and security
assumption) to both the Platform Security Risk Assessment
and the Platform Security Development. Based on the pro-
vided artefacts, the Platform Security Risk Assessment is first
conducted and supplies security requirements, the evaluation
of the security risks and their level of threat to enable the
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Fig. 4. Extract of our interpretation of the standards of the Airworthiness Security Process

Platform Security Development. The detailed activities of the
Security Risk Assessment follow the representation available
in ED-203A/DO-356A. Once the Security Development is
conducted, it provides all the necessary information to the
architecture development in order to take into account the
required modifications to mitigate the security risks.

All the mentioned activities happen at platform level. Fol-
lowing Figure 1, there are also links between the activities of
the Airworthiness Security Risk Management and the Security
Risk Assessment carried out at an upper level. Here we
consider that this upper level could be the System level or
the Item level.

2) Interpretation of the Assurance Objectives: Assurance
objectives have been interpreted for the platform regardless
their SAL application. The idea was to obtain an overview
of their relevance at the level of the platform. Our review
shows that most of them can be interpreted as they are
specified at platform level, as long as they now specifically
mentioned the platform level. For example for O1.3 mentioned
in Section II-D, it becomes The Preliminary Platform Security
Risk Assessments and Platform Security Risk Assessments
are performed and consistent with related Platform Safety
Assessment. Only two objectives are deemed not interpretable
at the level of platform. They correspond to objectives linked
to configuration management process and credentials, which
are not specific to the platform, but to the development process
of the overall system.

In addition, each objective was mapped to the activity
we judged it was related to in our process interpretation.
For example, the objectives O1.1, O1.2 and O1.3 mentioned
in Section II-D are positioned on the process presented in
Figure 4. The three of them are mapped to the respective
activities they referred to. In addition, O1.3 mentioned the
need of consistency between the security risk assessment and
the related safety assessment. This need is interpreted in

Figure 4 as a traceability link between both activities.

B. Bringing the AMS use case to the platform level

1) Description: To reason at platform level, the AMS de-
scribed in Section II is adapted on a simplified representation
of the KEYSTONE TCI6630K2L multi-core platform from
Texas Instruments composed of only three cores. This rep-
resentation is presented in Figure 5. It describes the structure
of the platform itself and the location of the assets of the AMS.
The representation of the structure of the platform follows an
initiator-target modelling described in [3]. This modelling is
based on three types of components. The initiator component
can initiate a transaction, i.e. a request for resources. The
target component is the final destination of the transaction. The
transporter component routes the transaction from the initiator
to the target.

In terms of assets, the two controllers composing the
AMS are hosted on two different cores. The Pressurization
Controller is hosted on a C66 DSP core, namely CorePac0.
Its software and specific data (computation data, part numbers,
certificates, cryptographic keys) are stored in the core SRAM.
The Temperature Controller is hosted on an ARM core. Its
software is stored in the MSMC SRAM and the regular
controller data (Health Monitoring, CAN Messages, ARINC
messages, configuration) are stored in the external DDR mem-
ory, along the regular controller data for the Pressurization
Controller. The firmwares of both controllers are stored in
the Boot ROM. In addition to these two cores, only one
another core C66 DSP core, namely CorePac1, is present in
the platform. The core is unused by the AMS but still present
for the sake of the example.

2) Security Scope Definition: We conduct the security
scope definition on the use case by identifying the assets
under consideration, the security perimeter and the security
environment.
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a) Assets under consideration: The assets under consid-
eration correspond to the same assets as in the original AMS
example in ED-203A/DO-356A described in Section II, but
mapped on different elements (e.g. the cores). In this way, we
consider both controllers in their entirety (constituents, data
and interfaces) as assets.

b) Security Perimeter: Here the security perimeter in-
cludes the security perimeter of the AMS defined in ED-
203A/DO-356A. It contains the physical and logical interfaces
to different equipment, to Bleed System, to IFE File Server, to
Avionic Systems and to Airline and Manufacturer network. In
addition, at platform level, the security perimeter includes the
logical interface with an external code, most likely malicious,
present in the unused C66 DSP core CorePac1. This choice
is based on an assumption that the external code, which is
not part of the AMS, is already uploaded on the platform
and executes on CorePac1. This assumption has been made in
order to reason about cyber-security at platform level.

c) Security Environment: The security environment is the
same as the original AMS example described previously with
the difference that it now includes the malicious code.

3) Security Risk Assessment: We conduct the four steps of
the Security Risk Assessment on this use case. We start by
the identification of threat conditions. We identify two threat
conditions representative of our problematic. We continue by
the identification of threats scenarios. Finally, we give an
example of security measures characterisation and evaluate the
level of threat.

a) Threat condition identification: An example of Threat
Conditions identification on the AMS platform example is
described in Table V. The first threat condition, TC.1, is
similar to the one presented in the original AMS example
in Section II-C3. It considers the sending of erroneous data
to bleed system. It is considered as a loss of integrity for the
logical interface to the Bleed system. The second threat con-

TABLE V
EXAMPLES OF THREAT CONDITIONS FOR THE AMS PLATFORM EXAMPLE

Threat
Cond.

Asset Attribute
(CIA)

Description Effects Severity

TC.1 Logical
Interface
to Bleed
system

Loss of
Integrity

Pressurization
controller sends
erroneous data to
the Bleed system

Loss of pres-
sure control
for crew and
occupants

Catastrophic

TC.2 Logical
Interface
to Bleed
system

Loss of
Avail-
ability

Pressurization
controller does
not send data to
the Bleed system

Loss of pres-
sure control
for crew and
occupants

Catastrophic

dition, TC.2, has been identified especially for this use case.
It considers the blocking of data sent by the pressurization
controller to the Bleed system. It is considered as a loss of
availability for the logical interface to the Bleed system. Both
threat conditions can lead to the loss of pressurization for the
crew and passengers and are identified as catastrophic.

b) Threat scenario identification: Two threat scenarios
related to the previously described threat conditions are iden-
tified and given in Table VI. The first scenario deals with
threat condition TC.2 and considers that the malicious code
executing on CorePac1, modifies the MPAX (Memory Protec-
tion and Address eXtension) configuration register in order to
block CorePac0, i.e. the pressurization controller, to access the
Ethernet switch of the platform and so to communicate data to
the Bleed system. The second threat scenario is associated to
threat condition TC.1. It also considers that the malicious code
present in CorePac1, modifies the MPAX configuration register
but in this case to give itself writing rights on CorePac0 and
to corrupt the pressurization controller. In this case, use of
side channel attacks can inform the malicious code on where
are stored the Pressurization Controller Computation data to
corrupt. Note that these scenarios follow the assumption that



TABLE VI
EXAMPLES OF THREAT SCENARIOS FOR THE AMS PLATFORM EXAMPLE

Threat
Sc.

Threat Sources Attack Path Security
Measures

Threat
Cond.

Attacker Attack Vector

TS.1
Criminal,
Terrorist,
Insider

CorePac1 1- Malicious code modi-
fies MPAX configuration
register to block CorePac0
access to Eternet Switch

MPAX,
OS
Access
Control

TC.2

2- Logical Interface to
Bleed system is blocked

TS.2
Criminal,
Terrorist,
Insider

CorePac1 1- Malicious code modi-
fies MPAX configuration
register to give itself writ-
ing rights on CorePac0
L2SRAM

MPAX,
OS
Access
Control

TC.1

2- Logical Interface to
Bleed system is corrupted

the malicious code has already been uploaded on the platform.
Also note that both the MPAX, which is in charge of enforcing
the rules included in the configuration register, and the OS,
which is in charge of loading the configuration table into the
MPAX configuration register, are countermeasures.

c) Security Measures Characterization: An example of
security measure characterization on the platform is conducted
on the OS access control. It is a preventive security measure
that corresponds to a Linux Operating System (Symmetric
Multi Processing). The access control protects the memory
storage of the platform but presents a known vulnerability at
boot time, as described in Table VII and as seen in Section III.

TABLE VII
EXAMPLE OF CHARACTERISATION OF THE SECURITY MEASURE OS

ACCESS CONTROL

Description Protected
Assets

Capability Type of
effect

Position
in the
architec-
ture

Known vulnera-
bilities

Dependencies

Linux
Operating
System
(Symmetric
Multi
Processing)

Memory
storage
of the
platform

Provide
memory
access
protection

Preventive Inside the
security
perimeter

During activation
of access con-
trol mechanisms
at boot time, it is
possible to mod-
ify configuration
tables [9]

N/A

d) Level Of Threat Evaluation: For this use case, we
used the same type of effectiveness of protection assessment
as in the section II-C3, but carried out at a global level on the
platform for the considered scenarios. In terms of preparation
means, the platform can be considered as a special equipment
with a specific configuration to host the AMS. So insider
knowledge or significant preparation time would be needed for
the attack. The obtained score for this criterion is then 6. In
terms of window of opportunity, the identified attack can only
be carried out during a very restricted time slot independent
from the flight phase, e.g. during system reboot. The evaluated
score is then 8. In terms of execution means scale, the attack
requires experts in multiple domain in order to be carried out
on the platform. The given score is then 12.

The total computed effectiveness score for the platform
and the considered scenarios is 26. Following Table IV, it

corresponds to a very high effectiveness of protection and a
very low level of threat.

V. FEEDBACK AND DISCUSSIONS ON THE CONSIDERATION
OF THE INTERNAL PLATFORM FOR SECURITY

We presented our understanding of the standards ED-
202A/DO-326A and ED-203A/DO-356A through the AMS
use case and we adapted this use case to the platform level
in order to reason about cyber-security in the context of the
PHYLOG 2 project. The AMS as described in ED-203A/DO-
356A lacks some details that made it challenging to under-
stand. The projection at platform level was not an easy task
either, example of attacks, or application of the standards, on
aeronautic use case were not available in the literature. We
had to make assumptions to reason about cyber-security at
platform level.

The strongest assumption was made on the attack origin:
the malicious code is already uploaded on the platform and
executes on CorePac1. The question of how to get to this
situation is the most difficult one. The starting point of the
attack pathway is in fact external to the platform. We can make
the same observation on the attacks on processors described
in the literature. As we have seen, the work presented in [9]
and [4] consider that the infected hardware device is already
present in the architecture. From our point of view, adding a
malicious element to the platform would require a lot of effort
to bypass a number of existing security measures, e.g. physical
access to the platform, ability to load malicious code, etc. This
particular problem of loading malicious code challenges the
plausibility of the attack as we understand it today. However,
cases of more sophisticated attacks on information systems,
i.e. attacks composed of a series of attacks on different
assets to target another specific asset, are appearing today. For
instance, the supply-chain attack reported in [11] started by
gaining access to the source code of a particular software
developed by a company to directly insert malware in it.
In this way, the malware was automatically distributed to
all the customers in the next update via official channels,
allowing the attackers to gain access to customer’s information
without directly attacking them. The update containing the
malware was installed by thousands of customers, including
numerous U.S. federal agencies. We could imagine a similar
sophisticated scenario happening for the update of a COTS
platform. We could also imagine the same scenario for an
Open Hardware platform where the shared high-level hardware
description of the platform is targeted to impact the final
users. This increasing sophistication of cyber-security attacks
reinforces our idea of the necessity to study cyber-security
at the level of multi-core platforms in aeronautics in order
to gain confidence on the protection against attacks reaching
this level. However, the security analysis cannot start at the
platform level. It needs first to be conducted at an upper level
to get a global picture of the origin of the attack and the attack
path itself.

Considering the security risk of a multi-core platform comes
with challenges. It would first mean study the vulnerability,



threat conditions, threat scenarios and the security measures
at this level. In Section III, we reported on existing at-
tacks, scenarios and security measures on processors, in-
cluding multi-core platforms. In the general case, hardware
and software cyber-attacks have been documented in cyber-
security databases online. For instance, as mentioned in [8],
there are databases dedicated to vulnerabilities found in ex-
isting systems such as CVE [2]. This database provides a
catalogue of known vulnerabilities in applications, operating
systems and hardware products. There are also databases
reporting attack patterns as mentioned in [8] and [18], such
as Common Attack Pattern Enumeration and Classification
(CAPEC) [1]. The CAPEC database provides more than
500 known cyber-security attack patterns, including hardware-
related ones. While all these databases are not dedicated
especially to multi-core platforms, they offer a more global
overview of actual known attacks in the cyber-security domain.
But vulnerabilities, attacks scenarios and security measures at
the level of multi-core platform might be very well dependent
of the studied architecture. As we have seen in the example
in Section IV, they seem specific to the architecture we
used. The use of COTS and their lack of predictability and
documentation may also make the task more complex. Further
work would be necessary to understand precisely all these
challenges by studying the application of the airworthiness
security process on a larger panel of multi-core platforms,
including Open Hardware solutions.

VI. CONCLUSION

To conclude, we presented our understanding of the Security
Airworthiness process as described in ED-202A/DO-326A
and ED-203A/DO-356A and assurance objectives that are
relevant at platform level. Our main feedback is that even
though the standards provide rich details on the different
cyber-security concepts and lay the foundation of a sound
assessment process, the process as described in these standards
may lack some details that made it challenging to understand
for non-insiders. The standards would benefit from a use case
which would serve as a common thread for an application of
the Security Airworthiness process in order to give an end-
to-end example to the future applicant. In addition of our
understanding, we applied our interpretation of the Security
Assessment process on a platform use case and we opened
the discussion on the usefulness of considering the internal
platform in the context of cyber-security analysis. Our work
is limited to the study of a fictitious use case inspired from ED-
203A/DO-356A and to an exploratory overview of the current
literature on attacks on processors. Nevertheless, it introduces
an example of application of the standards in the case of a
multi-core platform. In this sense, it gives a first glance on the
difficulties behind an attack inside a multi-core platform, but
the increasing sophistication of today cyber-attacks suggests
it might be worth starting discussing the application of the
standards at platform level.
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Abstract—The verification and validation of AI-based
systems raise new issues that are not easily addressed
by existing practices and standards. We think that this
gap is actually an opportunity to introduce new practices
and establish a clearer and more formal link between the
engineering activities and artefacts, the expected properties
of the system, and the verification and validation evidence.

Therefore, in this paper, we describe and illustrate
an approach integrating (i) the definition and modelling
of an AI-based system engineering workflow, (ii) the
identification of the trustworthiness properties, and
(iii) the argumentation demonstrating the satisfaction
of these properties. This approach is centred on the
model of Assurance Cases, a semi-formal representation
of argumentation which supports the claim of system
trustworthiness. In addition, we present supporting tools
for this formalism that enable the automatic production of
Verification and Validation plans for specific properties of
AI-based systems.

Index Terms—Assurance Case, Machine Learning,
Robustness, V&V

I. INTRODUCTION

There is an obvious and strong willingness to leverage
the capabilities of Machine Learning in all domains of
industry, including those delivering business- or safety-
critical services. However, the adoption and deployment
of this technology remain slow, for we fundamentally
lack confidence in these methods.

In the Confiance.ai program1, we address this
problem by tackling all stages of the development of
systems involving Artificial Intelligence (AI), spanning
from defining engineering workflows to implementing
and deploying ML-related components on hardware
platforms. This process revolves around the notion
of trustworthiness, which becomes increasingly crucial
as AI plays a larger role in the system. Besides,
the program’s effort is essentially directed toward
identifying and addressing the novel challenges that
emerge during the integration of AI into such systems.
More specifically, focus is placed on specific attributes
of ML-based systems, such as model robustness,

1https://www.confiance.ai/en/

explainability, or fairness, with the broader goal of
improving our confidence in the final system. Besides,
the justification of this confidence forms a necessary
condition of the safety case for such system. It requires
a global approach to explicit the link between the
different parts of this safety case: the Engineering
Items produced during development, the Activities that
produce them, the expected Properties of these items and
the justifications that these properties actually contribute
to the confidence on the ML-based system, all these used
in a structured argumentation allowing to demonstrate
the satisfaction of those properties. This approach is
needed to guarantee the completeness, transparency
and auditability of the argumentation. It also supports
traceability and impact analysis.

The approach is based on Assurance Cases (ACs) [1],
a method that associates the property of interest to be
demonstrated with the evidence supporting it through
convincing and valid reasoning. The Goal Structuring
Notation standard (GSN) [2] used in this work is one
of several formalisms (e.g. Claims Arguments Evidence
(CAE) [3] or Structured Assurance Case Metamodel
(SACM) [4]) designed to model an assurance case. It
consists of decomposing, according to a specific strategy,
a high-level claim representing a property of interest
into elementary sub-goals that can be easily proven
with evidence. This formalism has already been adopted
in several industries, particularly under the specific
form of Safety Cases [5] (when the argued property is
safety). It is also a practice recommended by several
international standards such as IEEE and ISO [6], [7]. By
providing clear and explicit reasoning to demonstrate the
property of interest, assurance cases simplify the tasks
of reviewing the argument, as well as correcting it or
completing it if necessary.

We argue that this approach is particularly suited for
ensuring properties about an ML-based system for which
the guarantees provided by conventional engineering
practices are sometimes insufficient and often simply
not applicable [8]. The approach is not specific to
any particular industrial domain, but its application



clearly makes more sense in domains where significant
stakes are involved. These stakes may relate to the
impact on individuals (such as aeronautics, industry, or
automotive), costs, or overall image (across all domains).
Our contributions are: • A process and the associated
tool that enable (i) building a generic argument
to demonstrate that the system actually complies
with some expected overarching properties thanks
to appropriate development practices and/or V&V
activities, (ii) formalising the relationship between this
argument and the development artefacts of the system
(engineering activities, engineering items and their
properties). • A set of argumentation templates covering
some major properties expected for a system involving
AI. • A means to (i) derive a generic argument based on
the contribution of each of its elements and (ii) produce
the complete workflow including both the development
and the V&V activities determined by the argument.

All these contributions are supported by a dedicated
tooling support section which details how the method
used is effectively implemented in our framework and
how the tool can be used to reproduce each step or
activity.

The remainder of this paper is structured as follows.
Section II gives an overview of our approach which is
then further decomposed into the 5 sections: Section III
presents an extract of a development workflow and the
associated engineering items of interest and Section IV
identifies a set of properties for which guarantees are
expected. Section V provides several generic assurance
cases to ensure these properties and Section VI details
how these assurance cases can be instantiated. The
choices made during this phase lead to the selection
of Development and Verification and V&V activities
that must be integrated into the workflow and compiled
into a V&V plan as presented in Section VII. Finally,
Section VIII provides an overview of the related works,
and Section IX concludes the document and opens some
questions and future work.

II. APPROACH OVERVIEW

Our main objective is to exhibit the elements to be
provided to demonstrate the satisfaction of a safety-
related property of the system, considering the activities
conducted to build it, and the artefacts produced in the
process. The demonstration in this case is neither formal
nor mathematical, but it shall nevertheless provide the
argumentation and evidences necessary to convince –
for instance, a regulation authority – that the property
actually holds.

One necessary condition to support this objective
is to define precisely the concepts involved in the

development, verification and validation of a system, and
their relationships. Towards that goal, we rely on the
Model-Based Systems Engineering (MBSE) approach
where activities and Engineering Items are well defined
(i.e., they comply with a metamodel) and are associated
with modelling artefacts.

Figure 1 presents the different steps that compose our
approach to verifying the safety-related properties of the
system. The numbering corresponds to the one used in
the sections of this paper.

Fig. 1. General approach to demonstrate the satisfaction of safety-
related properties

The starting point of this approach is the engineering
workflow, from which we will extract the engineering
items of interest. On each of these engineering
items, we will then identify properties related to
requirements on the system. The couple ⟨item, property⟩
will therefore constitute the root of an Assurance
Case, claiming that the property is satisfied on this
particular item. We will provide in Section V a set of
generic Assurance Case patterns for specific ML-related
properties. However, these generic patterns cannot be
used as is. They may contain contexts and elements
that need to be instantiated, typically with engineering
items from the current system of interest. Besides, these
argumentation trees may contain alternative branches
in their decomposition, sometimes mutually exclusive,
which implies that a choice has to be made in the
argument by the user. This step is crucial as the resulting
argument will dictate which Verification and Validation
activities must be performed and integrated in the
workflow. These new activities will finally be extracted
in the form of a Verification and Validation plan which
can be followed to ensure the expected property.

Tooling support details

Within the Confiance.ai program, the MBSE approach
is implemented in the Capella2 solution: an open source

2https://mbse-capella.org/

2



extensible Eclipse3 application dedicated to Systems
Architecture modelling. The solution implements the
Arcadia method [9] that promotes the use of dedicated
modelling perspectives: “Operational Analysis”,
“System Analysis”, “Logical Architecture”, “Physical
Architecture”, “EPBS architecture”. The Confiance.ai
program approach extends the “Operational Analysis”
(OA) one, to provide a methodological end-to-end
engineering approach to support the particularities
of engineering activities related to critical AI-based
systems [10]. It defines an “Engineering Activities for
trustable AI” Capella Viewpoint, in which: Engineering
Process, Process Sequence Flow, Process Activity,
Process Item Flow, Engineering Role, Engineering
Activity, and Engineering Exchange concepts, are
mapped to Capella objects.

III. WORKFLOW DESIGN

The development workflow, which models the
development activities and the corresponding
Engineering Items (more specifically Exchanged
items in Capella) they produce, is the starting point
of our approach. Figure 2 is an excerpt of the
comprehensive workflow for developing ML-based
systems produced in the Confiance.AI program [11].
It presents a view of the activities and sub-activities
commonly considered during the model engineering
phase [12]. The ML model development is typically
absent from conventional software workflow, as it is an
ML-related activity. There are 3 possibilities to ensure
a specific property on this activity:

1) Ensure that property holds for the item resulting
from this activity (here the trained ML
model),

2) Rely on a development activity which guarantees
the property by design (or by construction),

3) Verify that the property holds on the item before
the activity, and rely on guarantees that the activity
preserves the property.

For this part of the workflow, we focus on the first
two solutions, as the last solution implies to preserve
a property during the training phase. This can be
particularly challenging due to the absence of control
over the optimisation process used during ML model
training. Moreover, some of the properties we are
interested in, such as robustness, are typically stemming
from the training process itself, making it impossible to
ensure any property preservation from a prior activity in
this case.

3https://www.eclipse.org/

On the opposite, the first solution is typically
based on additional verification and validation activities.
Providing guarantees by design can also be effective for
specific properties but is often insufficient and requires
additional verification activities to obtain the appropriate
level of guarantees, especially for critical systems.

In the following, we will therefore focus on
the Trained ML Model, our engineering item of
interest, and on the Train ML Model activity that
produces it.

IV. PROPERTIES IDENTIFICATION

In a safety-critical context, one major concern is the
system’s trustworthiness. Therefore, this paper focuses
on trust-related properties that are specific to Machine
Learning ([13]) and particularly difficult to verify.
Historically, these properties are determined by the
potential threats to which each activity is exposed.
However, in the case of ML-based systems, the list of
new threats is considerable [14], and highly dependent
on the system of interest and the different activities
involved in the development workflow. Therefore, in
practice, we rely on specific regulation [15] or general
guidance [16] to express these properties. Among the
key aspects often considered in these documents, we
selected Robustness, Explainability and Fairness as the
three main properties to ensure on the Trained ML
Model engineering item, as illustrated in Figure 3.

Furthermore, for these properties to be meaningful
and carefully considered during the design of a system,
they must be refined into low-level requirements that
directly relate to the item of interest (the Trained ML
Model in our case). For now, it is up to each industrial
to interpret these guidelines and produce his own
refinement of these properties in coherence with his use
case. This may imply to consider the Operational Design
Domain (ODD), which is a set of conditions in which the
system is designed to operate [17], [18]. Indeed, some of
these conditions can be propagated through the system
down to the ML component and expressed as input
constraints. Depending on the condition considered,
this propagation may establish a link with a specific
property like robustness or fairness. A typical example
of operational conditions impacting the robustness of a
trained ML model could be scenarios where a camera
system is subject to vibrations, resulting in blurred
images, or foggy environments leading to noisy images.
These effects could then be translated into quantifiable
metrics in the image space, for instance in maximum
acceptable perturbations expressed with regard to the
L∞-norm.
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Fig. 2. Generic ML workflow focused on Model Engineering

Fig. 3. Focus on the Trained ML Model Exchange Item in an
extended Capella Class Diagram [CDB] with Engineering Properties

Although these analyses are typically application-
dependant, we argue that, at least for the robustness
property, a first level of refinement can be made
generically, aligned with the capabilities of existing tools
for verifying these properties or ensuring them by design.

Low-level refinements

For the Robustness property, we consider the
following definition of local robustness: “A Trained
ML Model is locally robust for a single input x to a
perturbation radius λ if it produces the same output
for any perturbation x′ with distance(x, x′) ≤ λ”,
where distance can be the l2-norm or the l∞-norm
commonly used in that context.

Leveraging this definition which focuses on a single
input, we can express global robustness criteria using
three possible metrics:

• Percent robust: The percentage of samples that are
locally robust for a fixed λ

• Max robust: The maximal λ for which all samples
are locally robust

• Mean robust: The mean of the maximal λ for
which each sample is locally robust

These three possible criteria expressed at the level of
the ML component, coupled with our engineering item
of interest –the Trained ML Model– form the root

goals of three different argumentation trees. This helps
separate methods depending on whether they support the
corresponding norms and metrics, although these root
goals must still be instantiated with the appropriate λ
and l-norm.

The Robustness property can be formalised using
mathematically grounded concepts and formulas, which
make it suitable for the refinement presented above.
However, it is less direct for more softer properties. For
instance, considering the main usages of Explainability
in our case, we refined this property in two main
requirements: providing explanations for successful
model decisions or ensuring the absence of bias
in the model’s decision-making process. These two
aspects reflect the separation between local and global
explanations, which consist of either explaining a single
decision or explaining a set of decisions. Moreover,
we further divided the local explanations into success-
case and failure-case explanations. However, the primary
usage of failure-case explanations is for the ML-
Algorithm Engineer (see Figure 2) to find, during
training, the reasons for a model failure, and to use
these insights to retrain it and correct it. Conversely, the
verification and validation of the Trained ML Model
resulting from the application of the assurance case
consider the model to be in a final, stable version. In that
state, there should be no more failure cases to explain,
but only success cases, which would still need those local
explanations for increased trustworthiness. Therefore our
main refinement for local explanations is expressed as
“The correct decisions of the model are explained”.

Global explanations, on the other hand, serve to
detect general biases in the model, which might reflect
a problem during training or even an issue with the
training dataset. Therefore we proposed “The model is
unbiased” as a second refinement of the Explainability
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in a separate Assurance Case.
Finally, the expression of the Fairness property was

made more explicit with the following refinement:
“The ML model does not contribute to any undesired
discrimination”.

Tooling support details

In our approach, this decomposition of properties
into low-level refinements is supported by a dedicated
tool named pure::variants4 entirely integrated into the
Capella environment (more details are provided in
the following sections). This tool handles both the
workflow model and the assurance case trees and
will be used during several more or less complex
steps of our approach. Notably, it offers a filtering
functionality (configuration process of pure::variants)
that extends up to the selection of the appropriate low-
level requirements, as illustrated in Figure 4.

Fig. 4. Illustration of the filtering capability of pure::variants.

V. GENERIC ASSURANCE CASES

We provide in a git repository5 a set of generic
assurance case patterns for the identified properties,
namely Robustness, Explainability and Fairness,
modelled in GSN. As explained in previous section, we
refined these properties into more specific requirements,
each resulting in a new Assurance Case. We present
two extracts of these argumentation trees in Figures 5
and 6.

These argumentation trees are modelled in Capella
using a dedicated Assurance Case Viewpoint supporting
an enriched version of the GSN meta-model, and
integrated in the Arcadia method.

The first extract in Figure 5 shows the decomposition
of a robustness criterion according to several strategies,
including the type of method used (by design or by
evaluation) and the choice between these methods which
is materialised in the tool by a diamond-shaped node.
In these assurance cases, no choice has been made yet
between the multiple branches, as these trees remain
generic and thus can be considered and adapted to a
variety of use cases.

4www.pure-systems.com/purevariants
5github.com/AssuranceCasesEC6/ML-based Assurance Cases

The second extract, presented in Figure 6 shows
a generic argument for the local explainability of a
Trained ML model. It focuses on the use of attribution
methods for computer-vision tasks, ensuring that, for
each decision, the part of the images used in each image
is relevant. The main branch of this argument relies on
the validation of the method results by experts whose
legitimacy is verified in a specific subgoal. However, the
AC also contains a specific branch dedicated to ensuring
that the explainability method used is trustworthy, which
will require additional V&V activities.

Using these generic assurance cases in our approach
consists of instantiating the generic contexts and
resolving the pending choices.

Tooling support details

As introduced before, the Capella environment is
enhanced with an Assurance Case Viewpoint. It provides
new Capella modeling elements, and new and enhanced
diagrams at operational analysis level. The modeling
elements added to support this Viewpoint are twofold:

• The concepts from the GSN standard in the version
3, cf. [19]. These are added to the “Operational
Analysis” metamodel part and gathered into
“Assurance case” elements in “Assurance Cases
Pkg” ones. A specific GSN diagram implements
the diagrammatic concrete syntax of the assurance
case, composed of goals, strategies, solutions, etc.
The relation with engineering operational activities
is made via “Engineering item” and “Engineering
item elements” referenced from GSN Solution
elements.

• Some Glossary entries are also added to the
“Operational Analysis” metamodel part and
grouped into a “Glossaries pkg” element. Indeed,
each GSN element is described (in rich text format)
with hyperlinks to definitions in the glossary, or to
external referential.

VI. AC INSTANTIATION AND CHOICES

Two tasks must be completed to instantiate an AC:
The choices between branches must be made and
the generic contexts must be instantiated. These tasks
cannot be performed independently since, the selection
of one branch might depend on the availability of
the corresponding contexts, and on the opposite, only
the instantiation of contexts of selected branches is
mandatory to obtain a complete, instantiated AC.

An example of choice is provided on the extract of the
Robustness AC in Figure 5. The cardinality of choice
(here [1..4]) indicates that each method provided
below in isolation is able to provide a certain degree
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Fig. 5. Extract of the Assurance Case for the robustness of the Trained ML Model, considering a Percent robust metric with a l2-norm,
with a focus on the methods providing guarantees by-design. The whole assurance case is provided on the following git repository

of guarantee for the l2-norm robustness. This choice
can be based on several criteria, such as the criticality
of the property of interest, the cost resulting from the
deployment of a certain strategy/approach (i.e., time,
effort, computational power, etc.) or other considerations
related to the profile/experience of the engineer or its
company. For instance, a critical property in a critical
system will require the approach, or the combination
of approaches, that brings the most guarantees to
the satisfaction of the property of interest. On the
other hand, numerous approaches [20], [21], [22] of
confidence/uncertainty assessment of assurance cases,
based on experts’ judgements, can be used as a selection
criterion. Indeed, a user may choose the strategy or
the approach which provides the most (resp. the least)
confidence (resp. uncertainty) to the satisfaction of its
property.

In the generic arguments provided, nothing prevents
the user from selecting several, if not all methods,
regardless of their compatibility. Despite this issue,
which needs to be verified on a case-by-case basis, it
is even often recommended to use all possible methods
available for a given choice to increase the overall
confidence in the top-level argument. However, this will
naturally come with increased costs, appearing when
producing the corresponding V&V plan.

On the right of the Explainability AC extract in
Figure 6, the context C000139 (in yellow) is an
example of node requiring instantiation: The list of
attribution methods to verify is not known in advance
as it will be highly use-case dependant and may change

over time, which is why only a few suggestions can
be provided. The context node C000176 also requires
instantiation, as it is used in the attached goal as the set
of “selected metrics” which must be evaluated for each
explanation method considered.

These choices can be made in the assurance case
viewpoint in Capella, where the user can either directly
select the appropriate method for his use case , or use
the tool pure:variants presented earlier, as illustrated in
Figure 7.

The Assurance Case is considered instantiated
when these two tasks are completed. However,
this instantiation (especially the choices) structurally
removes branches from the AC, leaving only the subset
of V&V activities required to produce the expected
pieces of evidence. Hence, the instantiation process
impacts both the workflow and the AC. Depending on
the structure of the workflow and the argumentation,
and the potentially dual role of engineering items –
i.e., playing a role in the argumentation and in the
development workflow – this chain of effects can
propagate back and forth between the workflow model
and the argumentation model.

Tooling support details

In summary, GSN and Capella extended OA models
are defined exhaustively, i.e. considering every possible
goal, strategy and solution for any ML-based component
and any property. However, an argumentation, in the
end, has to be fit for a specific purpose. This means
methodically removing specific model elements (On
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Fig. 6. Extract of the Local Explainability Assurance Case with a focus on the attribution branch. The whole assurance case is provided on the
following git repository

Fig. 7. Illustration of the functionalities of pure::variants for the
selection of AC choices.

both Assurance case and Capella engineering parts) from
the initial exhaustive models.

One community has already addressed these
implementation problems for another intent: reuse and
rationalisation of product families. Indeed, Software
product line (SPL) [23] techniques aim at deriving
a tailored product from a set of features [24]. The
variability between these features is consistently
managed, defining options, alternatives (AND,
OR, XOR), and mandatory and exclusive features.

The implementation follows a so-called negative
variability [25] (or annotative [26]) approach, which
uses some form of explicit or implicit annotations in the
models. This approach is here, as previously introduced,
implemented with the use of a commercial SPL tool
named pure::variants.

In our case, the exhaustive assurance case modelling
represents a so-called 150% modeling [27] that acts
as a base model, including all supported variability.
Options or alternatives that are not selected for a specific
argumentation during the configuration phase are then
removed from the base models in the AC instantiation
phase.
The implementation is done as depicted in Figure 8:

• (A) In the feature models (.xfm files) are encoded
the valid possible configurations of the tactics that
are applicable to a given property. An example
for the robustness AC is given in Fig. 9. The
feature model defines first-order logical constraints

7



Fig. 8. Pure::variant implementation and workflow overview

between features with operators (e.g. the AND
operator between “Local Robustness” and applying
a “strategy pattern” as represented in the Figure),
and direct constraints (e.g. selecting “Property
satisfied by design” requires to apply a “Design
Method”). It gathered all possible choices available
in the configuration, from the AC selection
property to consider (Non-exclusive OR between
“Robustness”, “Fairness”, “Explainability”), to the
partitioning choices (cf. 4), to the different strategy
choices into the GSN model (i.e. the cardinality
of choice in the GSN model, e.g. [1..4] in
Figure 5 has to be consistent with the one in the
feature model – Non-exclusive OR with cardinality
constraints).

• (B) In the Capella model is represented exhaustively
(150%) the modelling element (engineering and
assurance cases in GSN).

• (C) The mapping between the external feature
model is performed at two levels: (C1) a specific
mapping between one feature model and the
Capella model (.ccfm file); (C2) generic deletion
(propagation) rules. Indeed, in the extended
Capella, different element types are semantically
related to each other. Propagation rules utilise
these semantic relations to simplify the mapping
of Capella elements to conditions. Basically, a
propagation rule ensures that if Element A is
removed during transformation, also Elements B,
C, and D are removed. We defined 16 customised
rules.

• (D) The configuration model drives the possible
choices according to the feature model logic (.vdm
file). It also stores the final configuration. This
configuration is graphically customised via the use
of a configuration wizard model (.vcwm file) to
provide a graphical interface as illustrated in Fig. 4
or Fig. 7.

With the information given in all these files,
the pure::variants derivation engine produces a new
Capella project containing only the instantiated AC, as

represented in Figure 8.

Fig. 9. Extract of the Pure::variants feature model on the robustness
AC

VII. V&V ACTIVITIES INTEGRATION

The instantiated AC provides a list of evidences that
must be produced through specific V&V activities which
must therefore be added to the development workflow6.
These activities produce the required evidence as V&V
Engineering Items, and they should take as input
either development Engineering Items or other V&V
Engineering Items. At this stage, the Workflow contains
both the development activities and the V&V activities,
as illustrated in Figure 10.

The AC serves as an intermediate yet important model
for building a comprehensive and convincing V&V
plan7, by combining the new V&V activities needed
to produce the evidences required. This plan can thus
be automatically generated from information related to
the engineering item, the property to be verified and all
other elements carried by the argument. It also includes
other information, such as the glossary, which defines
all key terms used in the argumentation (e.g., local
robustness, l2 local robustness, etc.). Only the part of the
V&V plan dealing with specific solutions which require

6In practice, the V&V activities that produce the evidences required
by all the branches of the AC are added a priori to the workflow and
simply selected depending on the choice made in the AC

7Please note that we use the term V&V plan in a broader sense as
it may include both design elements and V&V activities
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Fig. 10. Example of enrichment of the generic workflow of Figure 2 with the new activities (in light green) required by a specific branch of
the robustness assurance case (robustness by design using Lipschitz training).

precise knowledge of the methods to be used and how
to implement them needs to be manually produced by
the experts of the method. Figure 11 shows an extract
from such a plan, related to the robustness property, for
the implementation of a Lipschitz network.

Fig. 11. Extract from the V&V plan related to robustness property

VIII. RELATED WORKS

This section focuses on existing works that applied
ACs to ML-based systems. Indeed, as mentioned
previously, Assurance Cases appear as relevant tools
for addressing certification-related issues and ensuring
systems safety [28]. Applying this approach to ML-
based systems seems like an appropriate solution, as no
consensual method exists in this domain and standards
are not yet established [29].

A first step in this direction was made by Hawkins
et al. with AMLAS [30], a general guidance on
the use of ACs for ML-based system. Their analysis
covers a generic ML development workflow, which they
enriched with high-level ACs at each main step of the
development.

While this paper is of major interest for the application
of ACs to an ML-based workflow, the arguments
provided rely heavily on requirements to be defined and
contain numerous elements (variables) that need to be
instantiated. This approach is highly generic and handles
any type of workflow, as the AC’s solutions are mainly
assessments of the satisfaction of the requirements. Yet,
for this reason, the decomposition of main goals remains
limited to a few steps, since refining argumentation until
concrete evidence needs requirements to be defined and
variables to be instanciated. Nevertheless, this paper
provides a solid foundation for developing ACs further.
In particular, this approach is complementary to ours:
it could be used as a common high-level argument for
linking all the main properties of interest of ML-based
systems such as robustness, fairness or explainability
presented in our work. This would provide additional
steps of decomposition in the assurance case before
reaching the step where the requirements need to be
instantiated.

In addition to this general guidance, a few recent
studies provide argumentation patterns applicable to
ML-based systems. These generic solutions to common
problems are intended to be reused and instantiated in
various contexts for similar problems. However, they
often highlight the fact that a concrete operational
context or risk analysis is needed in order to go down
in the argumentation until reaching final evidence.

For instance, the work of Picardi et al. [31] defines
ACs for the deployment of ML-based systems in
a medical context. Their approach focuses on the
interpretability of the system’s outputs, going beyond
conventional performance measurements. They propose
an argumentation pattern that encompasses the entire
context of the ML component, from datasets to model
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architecture. This pattern also covers domain-specific
contexts, such as information about experts involved and
the technical tasks they realise. In [32], they refine their
generic pattern with a more precise taxonomy and focus
on providing additional guarantees on the confidence
in the Trained ML Model (called “Machine Learning
Learnt” in their paper) and on the confidence in the
data. However, these new arguments are composed of a
single decomposition step and thus remain particularly
generic and high-level. Finally, the authors extend their
work in [33] to reflect better the relationship between
the ML models and the safety of the system. In the
process, they also develop an assurance process for the
engineering of ML components built upon existing best
practices. This process facilitates the instantiation of the
confidence argument patterns through consideration of
the required activities to be undertaken and the artefacts
to be generated at each stage in the ML lifecycle.
They also propose a generic way of decomposing
ML requirements (“desideratas”) into property-specific
arguments such as model performance, model robustness
and model interpretability. However, these properties are
only decomposed one step further, and their subgoals
remain “to be developed”, which contrasts with our
approach that proposes a multi-step decomposition down
to concrete evidence.

Although previous literature provides a significant
foundation in the development of assurance cases for
ML-based systems, its traceability with respect to the
ML development workflow is still exploratory, and none
of them provide the associated tooling support.

In the automotive domain, Bloomfield et al. [34]
propose an AC template for an experimental autonomous
vehicle and its social context. The decomposition of
their argumentation follows a top-down approach, from
the system to its components, including the ML model.
To ensure the trustworthiness of their system, their
systematic approach explicitly considers sources of
doubt and vulnerabilities in the system’s behaviour. To
this aim, their pattern is designed to identify gaps and
challenges during the justification of system behaviours,
as well as gaps within the assurance framework itself.
This approach is complementary to ours and could be
used to identify new gaps and properties on specific
engineering items of the complete workflow of an ML-
based system, providing a starting point for developing
new arguments.

Among the most recent studies, Dong et al. [35]
present a specific ’end-to-end’ AC applied to an ML
model. First, they introduce a framework called the
Reliability Assessment Model (RAM) that assesses the
reliability of a classification model, covering both its

robustness and its operational profile. Then, all evidence
produced by the RAM is represented with an AC that
tackles the argumentation from a probabilistic point of
view and ends with quantitative evidence. This rigorous
approach provides a complete, vertical argumentation
for an ML property. While we share the authors’
argumentation approach, our work differs in two key
aspects. First, we do not focus on a specific property
including all the mathematical formalism. Our focus is
set on an end-to-end assurance case with a model-based
formalism. In other words, an assurance case whose
evidence and contextual information are mapped onto
the engineering workflow. Each necessary element of the
assurance case considers a pre-established workflow of
activities alongside the injection of V&V activities to
be performed. Second, our proposal develops assurance
cases horizontally, while they include the selection of
multiple sub-arguments for the user, which allows them
to select different demonstration approaches.

IX. CONCLUSION

Throughout this paper, we presented a tool-supported
process that enables the systematic derivation of
V&V plans, specifically tailored to address the unique
challenges posed by the introduction of ML-based
systems in critical domains. We addressed these
challenges across the entire lifecycle of AI-based
systems, integrating our approach into an engineering
workflow specific to such systems. This workflow
constitutes a pivotal resource for identifying relevant
properties and integrating the V&V activities required
by our assurance case patterns. Indeed, our contributions
extend beyond the mere formulation of a process and
offer a set of argumentation templates, focusing on
key properties of these systems, such as robustness,
explainability and fairness. Nevertheless, combining
these arguments under the same overarching property
is an open problem. A first step in this direction is
provided with the AMLAS [30], which can be used as
a common high-level argument, but conflicts between
branches may still arise. However, while additional
research is required to explore this subject, our tooling
and the choice mechanic offer a partial solution to this
problem since the branches are structurally removed
from the argument, and conflicts will thus appear in the
form of non-supported goals during the instantiation of
the assurance case.
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Abstract—Assurance case (AC) patterns are structured ar-
guments in a tree-like form in which certain choices are not
frozen. By making these choices a user can determine a design,
implementation, integration, verification and validation workflow
that will produce artifacts supporting the argument for his/her
use case. However, it is difficult to make choices in an AC
pattern because of the lack of information on the consequences
of these choices and the cost/effort they may require. Based on
recently published results, this work proposes an uncertainty
assessment that allows the user to be aware of the confidence
in the argument induced by those choices. To do so, confidence
features are elicited from experts. The elicitation procedure is
presented and the propagation of uncertainty through the AC
is analyzed. Finally, application of the method on a use case
related to robustness of machine learning models demonstrates
the validity of the approach.

Index Terms—Assurance case, Dempster-Shafer theory, robust-
ness, machine learning, experts’ judgments elicitation

I. INTRODUCTION

Functions designed using Machine Learning (ML) have to
comply with standards and nowadays an effort is devoted to
the proof of their dependability. Justification of such high-
level properties can be done with structured arguments named
Assurance Cases (AC). In order to streamline and normalize
the design of AC, AC patterns are proposed. The objective of
the research presented here is to add uncertainty or confidence
to AC patterns. The final objective of uncertainty assessment
in instances of AC is to provide to certification authorities an
AC presenting a full belief assessment. However, intermediate
steps with intermediate objectives are necessary because the
product to be certified follows a design, implementation,
integration, verification and validation cycle. At the beginning
of the cycle, the product owner only relies, for all cycle steps,
on an AC pattern that provides choices in a pre-defined tree
structure. The difficulty for making decisions among choices
is high when the subject of the AC is a new technology with a
large number of approaches with different levels of readiness,
as it is the case for robust ML. In those cases an uncertainty
assessment can be useful for making a judgment about the

opportunity of using a specific approach. Moreover, the un-
certainty assessment of each strategy in the tree structure may
be performed at no cost and could be directly provided with
the AC pattern. At the opposite, the evidence at some leaves
of the tree is subject to dynamical uncertainty assessment:
The evidence will be provided at no additional cost by the
chosen design process but the uncertainty before producing it
may be different from the uncertainty after producing it and
depending on the choice made in the AC pattern, the evidence
must be provided independently from the design process by
the verification and validation process with some cost.

The objective of this research raises several issues: Choice
of an uncertainty representation, elicitation of uncertainty asso-
ciated to atomic elements such as relations and evidences, and
propagation of the uncertainty of atomic elements through the
AC. Working with AC patterns that will become instantiated
as actual AC is also quite challenging.

The approach followed here is based on recently published
results [1], [2] and brings the following contributions:

1) An uncertainty assessment based simultaneously on
qualitative and quantitative uncertainty modeling,

2) an elicitation method allowing simultaneous capture of
qualitative and quantitative uncertainty,

3) an analysis of uncertainty modeling and propagation on
AC patterns and

4) demonstration of the approach with a use case related
to robustness of ML models.

The following section is devoted to positioning the approach
described above with respect to the state of the art. Then,
a section presents the uncertainty assessment. Section IV is
devoted to the elicitation process. Modeling and propagation
are analyzed in section V. Section VI demonstrates the ap-
proach on the use case. Finally the conclusion provides a
global assessment of the approach and possible improvements.

II. BACKGROUND AND RELATED WORKS

In this section, we introduce the necessary background
information to facilitate a comprehensive understanding of our



work and we highlight the weaknesses of related works.

A. Structured arguments

1) Formalism: Goal Structuring Notation (GSN) [3] is a
graphical way to describe AC including concepts such as Goal,
Solution, Strategy, Context, Assumption, Justification and their
relationships such as Is supported by and In the context of.
Figure 1 illustrates some of these elements. Further versions
of GSN include an extension allowing the description of argu-
ment patterns using the concepts of Choice and Uninstantiated
Element and the description of confidence argument using
the concept of Assurance Claim Point that refers to another
argument for assessing the confidence [4]. The work presented
here was conducted in the scope of GSN using another
method to assess confidence. An alternative graphical way of
describing AC is Claim Argument Evidence (CAE) [5]. More
recently, Structured Assurance Case Meta-model (SACM) [6]
was build upon GSN and CAE and transformations from these
models to SACM were developed. SACM allows arguing the
confidence in the arguments provided in the AC by using a
meta-claim feature of the Assertion element. Meta-claim as
its name suggests, is a Claim about an Assertion to argue
the trustworthiness of the Assertion. The approach presented
here is quite different from the SACM approach because
here confidence is not modeled by additional claims but is
grounded on uncertainty measures. Nevertheless, using the
transformation GSN to SACM the results obtained here could
be used in SACM.

2) AC for machine learning: Safety criteria, which if
enforced would contribute to justifying the safety of neural
networks, were determined and structured in an AC pattern
presenting an undeveloped goal “The neural network tolerates
faults in its inputs” [7]. The AC pattern for robustness of ML
used in our work corresponds to a development of this goal.

Burton and Herd proposed a high level AC pattern for claim-
ing that the ML system satisfy its allocated safety requirements
within the defined context [8]. A strategy refines this goal
in five sub-goals concerning specification, data sets, design,
demonstration and operation. Only the sub-goal concerning
specifications is detailed to the level of solutions. The AC
pattern used in our work addressees design and demonstration
and is detailed to the level of solutions on the design part.

B. Uncertainty modeling

Uncertainty is most of the time modeled using probabili-
ties. Those are most of the time related to frequencies and
are more suited for aleatory uncertainty than for epistemic
uncertainty. T-norms and T-conorms are binary operations
which generalize respectively conjunction and disjunction in
valued logic [9]. The probabilistic T-norm corresponds to
the product while the Zadeh’s T-norm correspond to the
minimum. Their associated T-conorms are the sum minus
the product and the maximum. If T (x, y) and T ∗(x, y)
are a T-norm and its conorm, the distributivity property is
characterized by T (x, T ∗(y, z)) = T ∗(T (x, y), T (x, z)) and
T ∗(x, T (y, z)) = T (T ∗(x, y), T ∗(x, z)) and the absorption

property by T (T ∗(x, y), x) = x and T ∗(T (x, y), x) = x. Fi-
nally the idempotency property is characterized by T (x, x) =
x and T ∗(x, x) = x.

The Dempster-Shafer Theory (DST) [10] is a general
framework for reasoning with uncertainty. It uses a frame
of discernment and may allocate parts of an unitary mass
on all non empty subsets of this frame of discernment. DST
operations are extension to the cross product of frames of
discernment, combination of masses from different sources
managing the conflict issue and marginalization. Capacities
[11], are set functions which give 0 for the empty set, 1 for the
sure event and respect monotonicity with respect to inclusion.

Fig. 1. An example of parts of a GSN pattern (Extract from Robustness AC
pattern)

C. Uncertainty assessment in AC

1) Probabilistic approach: The question of uncertainty
assessment in ACs has been the subject of a number of
approaches. Some are based on probability theory. They use
Bayesian Networks (BN) [12]–[15] to propagate probabilities
on pieces of evidence provided by the argument up to the
top-goal. Probabilities deals well with aleatory uncertainty.
However, this is less the case for epistemic uncertainties due
to lack of information. For this reason the work presented here
is not based on BN.

2) Approaches based on DST theory: To address the issue
related to BN, other approaches using DST are proposed. In
addition to efficiently modeling epistemic uncertainties, these
kinds of approach require less data than Bayesian approaches.
First of all, those approaches assume that uncertainty is asso-
ciated on the one hand to goals directly linked to solutions and
on the other hand to the support relation between goals, either
directly or through an explicit strategy. The other elements
of GSN, such as context, assumption, justification and in the
context of, provide information about uncertainty but don’t
carry this information. For instance, Wang et al. [16] use DST
to propose models to elicit confidence values about evidence
and propagate them according to the relationships between a
goal and its sub-goals. The confidence on these relations is also
quantified using DST. To determine their values, Wang et al.
proposed to use the non linear least square method. However,
this method can lead to values outside the unit interval [0.1]



which makes no sense. Chung-Ling et al. [17] propose to use
Vector Space Model (VSM) to identify these values.

Authors in [1], [18], [19] used an approach based on experts
judgment to deal with this issue. They assume that Goals
directly supported by a Solution can be believed, disbelieved
and epistemically uncertain, rules involved in Strategy can be
believed, epistemically uncertain but cannot be disbelieved.
Considered rules, pi ⇒ C, ¬pi ⇒ ¬C, (∧i pi) ⇒ C and
(∧i ¬pi) ⇒ ¬C, with pi a child goal and C a father goal,
provide a formal and flexible definition of Is supported by.
Their corresponding belief are noted here reciprocally Bi

⇒,
Bi

⇐, B⇒ and B⇐. Two approaches to uncertainty assessment
of GSN are proposed: the quantitative approach and the
qualitative approach. For the quantitative approach elicitation
is performed using scales and the rankings are transformed
in numbers. For the propagation child Goals with masses Bi

p,
Di

p and 1 − Bi
p − Di

p on respectively itself pi, its negation
¬pi and tautology ⊤ = pi ∨ ¬pi lead to conclusion Goals
with masses on C, ¬C and ⊤ = C ∨ ¬C. If masses on
goals linked to solutions are provided, the mass computation
can be propagated from the bottom of the tree to the top
of the tree and provides belief, BC and disbelief DC in top
claim. Formulae for numeric propagation are derived from the
hypotheses and the DST:

BC = B⇒ ·
∏

i

Bi
p(1−Bi

⇒)+1−
∏

i

(1−Bi
p ·Bi

⇒)−MC (1)

DC = B⇐ ·
∏

i

Di
p(1−Bi

⇐)+1−
∏

i

(1−Di
p ·Bi

⇐)−MC (2)

where MC is the conflict mass on C. For its computation see
[19]. For the qualitative approach elicitation is also performed
using scales but there is no need to transform rankings in
numbers. Formulae for qualitative propagation are derived
from the hypotheses, the DST and the properties of capacities:

βC = max{min(β⇒,min
i
βi
p),max

i
min(βi

p, β
i
⇒)} (3)

δC = max{min(β⇐,min
i
δip),max

i
min(δip, β

i
⇐)} (4)

where β and δ are reciprocally the qualitative counterparts of
B and D.

3) Criticism to propagation of uncertainty in AC: Bur-
ton and Herd indicate that these approaches depend on the
availability of reliable confidence values that can be assigned
to elements of the assurance argument and combined into
an overall confidence score, they are themselves subject to
uncertainty and subjective judgment [8]. In order to avoid this
problem they propose to use locally, i.e. for each element of the
AC, a first scale of uncertainty including subjective ranking,
subjective probabilities, probabilities and variance combined
by a second scale including ignorance, imprecise judgment,
precise judgment and certainty. Those scales are quite helpful
for improving locally an AC but seem inoperative for making
choices in an AC pattern.

III. QUALITATIVE AND QUANTITATIVE MODELING SHALL
BE CONSIDERED TOGETHER

Requirements are proposed for uncertainty modeling and
assessment: (i) The assessment shall be useful for focusing
validation effort and for identifying weaknesses of AC struc-
ture, (ii) the result of the assessment of an AC tree shall not be
driven by its dimension, (iii) the sensitivity of the assessment
shall allow discriminating strategies and (iv) methodological
choices should not be arbitrary.

A. Usefulness

The uncertainty assessment is useful for focusing validation
effort on most sensitive parts of the AC because it is performed
at each goal and can indicate its weakness and contradictions
between proof elements. For nodes corresponding to conjunc-
tions a procedure to focus on the most sensitive element, i.e.,
the one with least belief is derived. If this element corresponds
to a Solution, consider means for improving its belief, for
example, doing a higher number of tests. The uncertainty
assessment is also useful for identifying weaknesses of AC
structure and applying uncertainty reduction techniques. The
proposed procedure is quite like the one for focusing valida-
tion. A Strategy associated to a node, whose uncertainty is
sensitive but whose uncertainties of the children are not so, is
not sufficiently convincing. Then, an alternative strategy can
be considered.

B. Dimension

The result of the analysis of this requirement on a large
conjunctive argument case indicates that, for the numeric
approach, while the number of solutions increase the general
trend is the rejection of the property corresponding to the root
goal. At the opposite, for the qualitative approach the belief
of the root goal cannot be lower than the belief of the solution
with the lowest belief. Moreover, the disbelief of the root goal
cannot be larger than the disbelief of the solution with the
largest disbelief. With the qualitative approach the uncertainty
of the root goal is bounded.

C. Sensitivity

Changing a strategy changes the goal supported by this
strategy. This goal supports its father goal. Thus, changing
a strategy changes a premise of a goal. For the numeric
approach, partial derivatives of the belief and disbelief of the
father goal with respect to belief and disbelief of a premise
are highlighted. Thus there is a sensitivity to each premise.
Concerning the qualitative approach, sensitivity of goal belief
to belief of premise argmin and sensitivity of goal disbelief to
disbelief of premise argmax are highlighted. However, those
sensitivities are valid only when argmin respectively argmax
are single premise. Finally, there is no sensibility to other
premises.



TABLE I
COMPLIANCE OF UNCERTAINTY MODELING WITH REQUIREMENTS

Requirement Numeric Qualitative
Usefulness + +
Result not dimension driven – ++
Sensitivity ++ –
Not arbitrary methodological choices + +

D. Methodological choices

The T-norm used in the numeric approach can only be
applied to numbers and is grounded on: assimilating the
uncertainty measure to frequencies, representativeness of fre-
quencies and independence of events. The T-norm used in
the qualitative approach can be applied on numbers as well
as on ordered linguistic qualifiers and is the unique T-norm
complying with idempotence, absorption and distributivity.
Concerning the assessment of elementary elements, the con-
sensus on the association of a number with a linguistic
qualifier is difficult. The numeric approach highlights slight
differences between belief degrees. However, it is unlikely that
two experts provide the same value. The scale used by the
qualitative approach is associated to linguistic qualifiers, there
is consensus on their order and it is likely that two experts
associate the same qualifier to the same element. However,
there is gaps between the degrees of the scale and results on an
extreme case highlight the negative effect of a limited number
of linguistic qualifiers on sensitivity. Indeed, improving the
AC implies substituting several elements in a single step.

E. Synthesis

Table I, presents a synthesis of the compliance of uncer-
tainty assessment methods with requirements. It indicates that
in order to comply with all requirements it is needed to work
with both a scale and numbers and use the numeric and
qualitative methods together.

IV. ELICITING QUALITATIVE AND QUANTITATIVE
UNCERTAINTY IN A SINGLE STEP

Another important result of the work is the definition of
a methodology for elicitation of uncertainty associated to
rules and Goals directly linked to Solutions. Following this
methodology, the full tree is presented without Strategies to
experts, i.e. child Goals are directly connected to father Goals
by a Is supported by relation. Then a questionnaire with a form
for each hidden Strategy has to be filled by experts. Figure 3
presents an extract of the form for a Goal supported by two
children Goals. In those forms, the number of questions per
hidden Strategy is equal to the number of rules, i.e. two plus
twice the number of child Goals.

Answers are given by experts associating a confidence in
decision on the scale { very low, low, high, very high }. For
positive rules the provided decision is the acceptance of the
father Goal. For negative rules it is the rejection of the father
Goal. In both cases the strength of the decision is scaled on
{no decision, weak, moderate, strong }. Numerical values are

Fig. 2. Assurance case assessment process

captured using a scroll-bar that drives the linguistic qualifier
of the corresponding scale.

Answers are converted to masses on belief and tautology
for each rule. The quantitative approach considers the values
provided by scroll-bars. The qualitative approach uses the
semantic qualifiers.

It is important to know that the elicitation phase may require
several round of assessment by experts. Normally during its
elaboration, an AC is subject to an internal reviewing. How-
ever, Rushby et al. [20] explained that this kind of evaluation
is not only insufficient, but also not very effective. This is
because developers tend to justify their reasoning rather than
question it, while external assessors will most likely try to
criticise it. Analysis of the elicitation results provided by the
external experts allowed us to improve the structure of the
argument (i.e., reasoning and evidence). Hence, the necessity
of reassessing the argument after each major modification,
until we get a structure approved by a reasonable number of
experts. Figure 2 shows this process. The answers collected
during the closing phase are those that will be used to
propagate confidence and uncertainty measures to the top-goal.

As shown Figure 2, the first stage after the selection of
external expert(s) is to introduce the GSN standard if required,
present the assurance case, and the assessment procedure.
I.e., how to interpret and answer the questions in the form.
Once the form is filled, answers (i.e., direct responses to
questions in Figure 3 for example, and comments left by the
expert(s)) are analyzed in order to detect any inconsistency
or misunderstanding. A debriefing session is then scheduled
to answers pending questions and discuss possible corrections
on the AC. If improvements are required, the AC is modified
and reassessed by a different set of experts. If this is not the
case, the confidence/uncertainty measures resulting from these
responses are associated to the AC so that they can be used
during the propagation step.

The choice of an expert depends on his/her knowledge and
competence in the fields covered by the AC. (e.g., ML, formal
proof, V&V processes, etc.). Ideally the expert/assessor needs
to have experience from both: (1) industrial domain to judge
the use case-dependent arguments, notably for the instantiated
assurance cases (i.e., all required artifacts are supplied), and
(2) academia to assess relatively new methods from articles
used as evidence. However, since such profiles are not easy
to identify, one can call a set of experts. Aggregating their
answers can be done through discussion by agreeing on a



Fig. 3. Extract from the form used for elicitation

single answer, which can be difficult and time-consuming. It
can also be computed using aggregation formulas. This issue is
not addressed in this paper since the evaluation of “Robustness
AC” was made by a single expert.

V. ANALYSIS OF UNCERTAINTY MODELING AND
PROPAGATION IN AC PATTERNS

Results indicate that conflicts, as meant by DST, cannot be
detected at single rule level because for rules mass is only
on tautology ⊤ = r ∨ ¬r and the rule itself r. However
variation of mass between experts can be recorded. Moreover,
the results indicate that conflicts cannot be detected at node
level. Indeed, it is shown that if masses on rules of expert 1
and 2 respect consistency, consistency is respected by masses
on rules of the fusion. Finally, conflicts cannot be detected
at tree level with an optimistic leaf assignment because the
propagation of an optimistic leaf assignment induces for any
node of the tree a belief in [0,1] and a null disbelief. Globally
those results indicate that conflicts between experts are not
detectable without applying the AC to a use case.

For assessing the sensitivity of arguments to disbelief in
premises, a parameter ϵ is defined and belief and disbelief
in premises are set respectively to 1 − ϵ and ϵ. Results
indicate that for the conjunctive argument belief and disbelief
of conclusion are highly sensitive to ϵ, for the disjunctive
argument belief and disbelief of conclusion are not sensitive
to ϵ and that for the hybrid argument belief of conclusion is
sensitive to ϵ while disbelief of conclusion is not sensitive to
ϵ. Nevertheless, for this argument uncertainty is sensitive to
ϵ. Additional sensitivity analysis is performed by varying the
mass on individual direct rule. It indicates that the decrease
of this mass reduces uncertainty and increases disbelief in
conclusion. Finally, it is observed that for those cases the
uncertainty is equal to the degree of conflict.

VI. UNCERTAINTY IN THE AC PATTERN FOR ROBUSTNESS
OF ML

A. AC pattern for robustness of ML

The root goal of the AC pattern for robustness of ML,
i.e. goal 15 in Table II, is “<The Trained ML model> is
<robust>”, where “<Trained ML model>” is an artifact
resulting from the design and building stages of the life cycle

TABLE II
GOALS SUPPORTED BY STRATEGIES

Goal Wording
number

15 <The Trained ML model> is <robust>
17 <The Trained ML model> satisfies the

<global robustness criteria>
18 <The Trained ML model> satisfies the

<Global nbsample robustness criteria>
21 <The Trained ML model> is <locally robust>
23 <The Trained ML model> is < l2 locally robust>
24 <The ML model design> ensures that <The Trained ML

model> is < l2 locally robust>
25 <The ML model design> integrates applicable <robustness

reinforcement methods> and these methods allows that <The
Trained ML model> is < l2 locally robust>

99 <The Trained ML model> is < l∞ locally robust>
100 <The ML model design> ensures that <The Trained ML

model> is < l∞ locally robust>
101 <The ML model design> integrates applicable <robustness

reinforcement methods> and these methods allows that <The
Trained ML model> is < l∞ locally robust>

and “<robust>” is a property defined in the AC. This goal
is reformulated and then decomposed in three sub-goals, all
based on the concept of local robustness. Then a decomposi-
tion is performed with respect to the norms involved in the
local robustness criterion and then with respect to the way
robustness can be obtained, either by design or by validation.
The tree further develop the branch dedicated to by design
methods, splitting in sub-goals corresponding to families of
methods of this category. Tables II and III present some stages
of this decomposition. Note that goal 19 corresponds to “The
<verification set> is relevant for robustness evaluation”. Goals
98 and 178 are respectively “The evaluation of the <Trained
ML Model> demonstrates that the <Trained ML Model> is
< l2 locally robust>” and “The evaluation of the <Trained
ML Model> demonstrates that the <Trained ML Model> is
< l∞ locally robust>”. Finally, as shown on Figure 4, the
goal corresponding to each method is supported by a set of
three goals: two which are dependent on artifacts linked to the
trained ML model, and one connected to a solution referencing
published research articles, cf. Table IV. The goals connected
to solutions for goals 30, 42, 55, 76, 103, 126, 139, 150, and
165 are respectively goals 36, 48, 60, 82, 108, 132, 143, 154,
and 168.

This structure is a pattern AC and not an AC because
artifacts are not present and branches of the tree can be deleted
for a specific ML model.

B. Elicitation results

One expert filled forms of the type of the one shown in
Figure 3, for goals connected to articles and for nodes upper in
the tree. The results are derived by gathering and analyzing the
filled forms. It consists in filling the AC pattern from expert’s
answers.

1) Qualitative analysis: The analysis of answers to open
questions and binary questions highlights the following points.

a) Too demanding expert effort: The expert indicated that
he didn’t analyze articles related to goals 108, 154 and 168,



TABLE III
SUPPORTING GOALS FOR GOALS SUPPORTED BY STRATEGIES

Goal number Sub-goals
15 17
17 18
18 19, 21
21 23, 99
23 24, 98
24 25
25 30, 42, 55, 76
99 100, 178
100 101
101 103, 126, 139, 150, 165

TABLE IV
GOALS SUPPORTED BY SCIENTIFIC ARTICLES

Goal Norm Solution
number

36 l2 Jacobian regularization [21]
48 l2 Lipschitz training [22]
60 l2 Certified robust training [23]–[25]
82 l2 Randomized smoothing [26]–[28]

108 l∞ Empirical robustness reinforcement [21], [29]–[32]
132 l∞ Lipschitz training [22]
143 l∞ Gowal certified robust training [33]
154 l∞ Certified robust training [34], [35]
168 l∞ Random Noising [27], [36]

i.e., Empirical robustness reinforcement method, Certified ro-
bust training and Random Noising for linf robustness. It seems
that the reason is the amount of effort needed to fill seriously
the questionnaire is too large. Indeed, this evaluation procedure
requires considerable time and effort to complete the ques-
tionnaire especially for parts concerning the goal/solution(s)
nodes, which require the reading and processing of extensive
documentation (e.g., technical reports, scientific articles, etc.).

b) Definitions: Concerning the definition of robustness,
the expert indicated that the definition of robust provided
by the AC is restrictive. For instance, this definition don’t
cover robustness with respect to distribution shift. The expert
thinks that in the definition of <Global nbsample robustness
criteria>, i.e., “the number of samples of a subset that are
<locally robust> is greater than a threshold”, a criterion of
representativity of the “subset” is needed. The expert found
that the wording of goal 21 is incomplete because <local
robustness> is defined for a single input while it supports the
goals 18 that is grounded on <Global nbsample robustness
criteria> that refers to several inputs. A consistent wording
for goal 21 could be “<The Trained ML model> is <locally
robust> for a sufficient number of inputs”. The expert consid-
ered such wording. The addition of “for a sufficient number
of inputs” could also be done for goals 23, 24, 25, 99,
100, 101 and for all goals of table IV. The expert stated
that he was unable to assess Goal 19 whose wording is
“The <verification set> is relevant for robustness evaluation”
and support is “<Verification set>” because the definition of
a relevant verification set is not provided. Nevertheless, he
indicated values for the answers to the questions.

c) Contexts: For the context associated to goal 101, the
expert has some doubts about the applicability for l∞ robust-
ness of all methods among Double Backpropagation, Jaco-
bian regularization, Saturated Network, Ensemble adversarial
training, Lipschitz Training, Wong Kolter, Universal Random
Smoothing, Feature pruning and Random Noising. Moreover,
the expert has specific doubt about Lipschitz Training even if
he thinks that the method helps obtaining l∞ robustness

d) Relations between goal and sub-goals: The expert
signaled that, for a given perturbation radius, goal 99 implies
goal 23 because the l2 ball is included in the l∞ ball. This is
true from a formal point of view, but the hidden Strategy is
“Argument by partitioning of norms”. It seems that the expert
has understood goal 21 as “<The Trained ML model> is
<locally robust> for any norm with the same radius”. The
expert indicated that the conjunction of goals 30, 42, 55 and 76
is impossible because the methods cannot be applied together
at learning time. This also applies to goals 103, 126, 139, 150
and 165. Moreover, for the negation of the use of all methods
he assumed that those methods are the only available methods.

e) Relations between goal and solutions: The expert
pointed out that when multiple solutions are provided for
a goal, it is unclear whether the goal shall be assessed as
supported by a logical “and” or by a logical “or” of solutions.
Some articles are subject to a deep analysis by the expert.
For Jacobian regularization [21] the expert concludes that it
improves l2 robustness but doesn’t ensure it. For Lipschitz
training [22] he indicates that a specific loss function should be
used as done in recent work [37]. For Certified robust training
for l2 robustness, the expert indicates that one article [24] is
out of scope

2) Quantitative analysis:
a) Completing the AC for unassessed goals: Goals 30,

42, 55, 76, 103, 126, 139, 150 and 165 are not assessed
through the questionnaire. However, they have the lx and
Method of Goals 36, 48, 60, 82, 108, 132, 143, 154 and
168 respectively. In the full AC they are connected through
structures like the structure of Figure 4. Without a concrete
use case with a specific ML model, it is not possible to
assess GOA2 and GOA4 in this figure. Thus goals 30 and
36, 42 and 48... are linked for uncertainty propagation by
simple arguments with no uncertainty. Goals 98 and 178
corresponding to robustness by evaluation are not assessed
through the questionnaire. At the first order, it is assumed
that the evaluation provided a full confidence in robustness
and that their assessment is Bel = (1, Acceptance, with Very
High Confidence) and Disb = (0, Rejection, with Very Low
Confidence). Despite being in the questionnaire goals 19,
108, 154, and 168 were not assessed by the expert. Goals
108, 154 and 168 are dismissed because their branches lead
almost directly to a choice node with multiple incompatible
alternatives. The case of goal 19, is more complex. Indeed,
during the debriefing the expert suggested a quite different
property than relevance for data without a clear link with
robustness. Thus, the structure of goal 18 is changed to a
simple argument with sub goal 21. Uncertainty of rules for



TABLE V
UNCERTAINTY ASSOCIATED TO RULES

Goal Sub- Direct belief Inverse belief
goal(s)

quantitative qualitative quantitative qualitative
15 17 1.000 VH 1.000 VH
17 18 1.000 VH 0.915 VH
18 21 0.765 VH 0.845 VH
21 23 0.860 VH 1.000 VH
21 99 0.860 VH 1.000 VH
21 all 1.000 VH 1.000 VH
23 24 0.325 H 0.345 H
23 98 0.400 L 0.345 VH
23 all 0.870 VH 1.000 VH
24 25 1.000 VH 0.330 L
25 30 1.000 VH 0.500 VH
25 42 1.000 VH 0.500 VH
25 55 1.000 VH 0.500 VH
25 76 1.000 VH 0.500 VH
99 100 0.310 H 0.320 H
99 178 0.410 L 1.000 VH
99 all 0.650 H 1.000 VH

100 101 0.320 L 0.240 L
101 103 1.000 VH 0.500 VH
101 126 1.000 VH 0.500 VH
101 139 1.000 VH 0.500 VH
101 150 0.995 VH 0.500 VH
101 165 1.000 VH 0.500 VH

this simple argument is derived from the answers in the form
to questions concerning goal 21 alone.

b) Elicitation problems: Analysis of answer to elemen-
tary questions indicate that the expert takes sometime a deci-
sion that is excessive with respect to its confidence leading to a
disrespect of Josang constraint. Moreover some inconsistency
between elementary and conjunctive rules is observed. Finally,
some strategies that were considered by the AC developers
as pure rewording or as pure logical operators are assessed
differently by the expert when the goal and sub-goals are
presented without explaining the strategy, indicating that the
wording of goals should be revised. This has been particularly
critical for the node 21, that is a choice of a norm and that was
interpreted by the expert as a competition between norms. All
those elicitation problems were solved during the debriefing
with the expert.

c) Elicitation of uncertainty associated to rules: Table
V presents the uncertainty associated to rules after correcting
the elicitation problems. In this table VH, H and L stand
reciprocally for Very High, High and Low.

d) Elicitation of uncertainty for goals associated with
solutions: Table IV presents the uncertainty associated to
goals directly supported by solutions. In the table VL stands
for Very Low. The table indicates that at the leafs of the
tree the expert is confident of using Lipschitz training when
considering robustness criteria based on l2 norm, goal 48, and
less confident when considering robustness criteria based on
l∞ norm, goal 132. For all other methods the belief is too low
and sometime the disbelief is larger than the belief.

TABLE VI
UNCERTAINTY ASSOCIATED TO GOALS LINKED TO SOLUTIONS

Goal Belief Disbelief

quantitative qualitative quantitative qualitative
36 0.120 L 0.880 VH
48 0.600 VH 0.400 H
60 0.040 VL 0.060 VL
82 0.000 L 0.300 L
132 0.375 L 0.115 L
183 0.270 L 0.110 L

TABLE VII
UNCERTAINTY PROPAGATION FOR LIPSCHITZ TRAINING BASED ON l2

NORM

Goal Belief Disbelief

quantitative qualitative quantitative qualitative
42 0.600 VH 0.400 H
25 0.600 VH 0.200 H
24 0.600 VH 0.066 L
23 0.719 VH 0.014 L
21 0.618 VH 0.014 L

C. Propagation results

Results on the use of the AC pattern by a ML model
developer are obtained by making uncertainty propagation
under different hypotheses for the solution directly linked to
artifacts. Assuming that Lipschitz training is applicable to a
specific ML model, confidence can be propagated higher in the
AC assuming that goals 98 and 178 related to verification will
be fulfilled with very high belief and no disbelief. A user of
the AC pattern will then make a propagation up to the choice
between l2 and l∞ norms and use the propagation results to
make the choice.

1) Propagation to the choice of a norm:
a) l2 norm: As shown in Table VII for Lipschitz training

considering a robustness criteria based on l2, the argumenta-
tion improves its initial strength, i.e. belief of 0.6 qualified as
very high, because of the confidence brought by the validation,
c.f. goal 23.

b) l∞ norm: As shown by Table VIII, for a robustness
criteria based on l∞ the initial belief of 0.375, qualified as low,
is also improved by the hypothesis of successful validation.

Note that for both training methods all depends on the pres-
ence of successful validation. Moreover, disbelief is reduced
by propagation in the AC and reaches 0.014 and 0.003, both

TABLE VIII
UNCERTAINTY PROPAGATION FOR LIPSCHITZ TRAINING BASED ON l∞

NORM

Goal Belief Disbelief

quantitative qualitative quantitative qualitative
126 0.375 L 0.115 L
101 0.375 L 0.057 L
100 0.120 L 0.014 L
99 0.462 L 0.003 L
21 0.430 L 0.003 L



TABLE IX
POST CHOICE PROPAGATION

Goal Belief Disbelief

quantitative qualitative quantitative qualitative
18 0.473 VH 0.012 L
17 0.473 VH 0.011 L
15 0.473 VH 0.011 L

qualified as low, for reciprocally l2 and l∞ Lipschitz training.
Finally, all depends on the presence of a successful validation.

2) Choice of a norm: The user of the AC pattern has to
make a choice on the basis of at least four criteria: quantitative
and qualitative belief to maximize, quantitative and qualitative
disbelief to minimize and other criteria such as cost of artifact
production to minimize. Considering only the four criteria,
using a ranking with Leximin the values for l2 are (0.618, 2/3,
0.986, 1) and the values for l∞ are (1/3, 0.430, 2/3, 0.997).
0.618 being larger than 1/3, the l2 norm is chosen.

3) Post choice propagation: The Table IX presents the
propagation from the choice to the top property of the AC.
Quantitatively there is some decrease of belief at goal 18 due
to a possible difference between local robustness and global
robustness.

D. Lessons learned

1) Strategies shall be shown: The choice of methodology is
to hide from the expert the strategies and choices. The results
show that with the information included in the strategy the
expert can make a quite different uncertainty assessment of
rules than without this information. Moreover, this difference
may lead to a quantitative difference in the assessment of the
AC property. The methodology could be revised concerning
hiding or not the strategies.

2) Consistency shall be enforced: The procedure and asso-
ciated Excel file type for uncertainty elicitation developed here
is based on scrollbars actuated by the expert. Each scrollbar
drives at the same time a numerical value and a semantic
qualifier. The scrollbar associated with decision is totally
independent from the scrollbar associated with confidence.
However, the Josang constraint must be respected. The results
indicate that, when the Josang constraint is violated, the
projection may depend on the context. This limitation could
be addressed by asking first the question about confidence
and limiting the decision scrollbar by the confidence value.
The absence of automatic enforcement of consistency between
rules at elicitation time is also a serious limitation. Finally, in
case of large choices with incompatible sub goals, the question
for all sub goals true and the question for all sub goals false are
irrelevant. The possibilities for sub goals combinations should
be assessed before making uncertainty assessment.

3) GSN format shall be adjusted for uncertainty
assessment: So far, there is no systematic method to
design an assurance case using GSN formalism. Moreover,
uncertainty assessment procedures proposed in the state of
the art are not mature enough to consider their features

Fig. 4. Example of an argument to be adjusted for uncertainty assessment

during the development of an AC. For example, in the
literature, one can find an argument that presents a goal with
a method to verify a property (defined as a top goal) and
another goal that argues that this method ensures the property.
However, “Is supported by” arrows, formally define by rules,
already fulfill this role. I.e., saying that the application of
a method m supports a property p means, according to the
nature of the chosen strategy, that m ensures, demonstrates,
implies, etc. p. Thus, a goal carrying the inference between a
method and the property it supports, must not be considered
during the uncertainty assessment. For example, questions
about goal GOA3 (“<Certified robust training>
ensures that the <Trained ML Model> is
< l2 locally robust >”), in Figure 4, will not be
included in the form. In addition, solutions are either used as
a reference to an artifact (e.g., a formal verification report,
test results, etc.) or to a method to be applied. Remember
that the assessment approach describe in this paper does
not assess the inference between the solution and the goal
connected to it. However, in the second case the assessment
of inference is needed. To keep coherence in the approach all
solutions that carry a method are transformed to goals. The
artifacts resulting from the application of these methods, such
as reports results, can serve as new solutions.

4) Multi criteria choice methods shall be integrated: The
result on comparison of approaches indicates that uncertainty
modeling in AC is useful and that, when considering relevant
requirements, the assessment of uncertainty shall be performed
at the same time with both qualitative and quantitative ap-
proaches. This leads to a valuation of goals by four elements:
the quantitative belief, the qualitative belief, the quantita-
tive disbelief and the qualitative disbelief. For most nodes,
propagation of those four elements is quite easy and for the
case study the conflict mass value is always low indicating
that there is no strong contradiction inside the argument.
However, at choice node uncertainty propagation relies on
building consistent sets of sub goals and on performing a
choice among those sets. This would require a better definition
of the choice and it is not sure that the propagation could be
fully automatized at those nodes. Moreover, there is no total
order between goals assessed following different strategies
because there are four uncertainty elements and other elements
such as, for instance, the cost. Thus, a multi criteria reasoning
shall be performed for choosing the best solution.

5) The AC pattern shall be extended and consolidated:
The case study highlights the benefits and some limitations of
the proposed methodology. However, limited effort and time



inducted additional limitations:
• Only one expert has been involved. It is impossible to

distinguish between one the one hand the results that are
specific to this expert and on the other hand the results
that could be consolidated with a large panel of experts.

• Uncertainty has not been assessed on the whole AC for
robustness of ML. Some elements, that are not purely
logical were not considered, for instance the branches
corresponding to two alternative definitions of robustness
and the branches corresponding to verification.

• The expert had the possibility to not assess a node or to
indicate that something is missing in the argument of a
node and used this possibility. This induced some doubts
about the structure of the AC.

In consequence new AC patterns are derived: One pattern is
developed for each norm and each robustness definition. Figure
5 presents the structure of the pattern devoted to the number
of samples robustness criterion.

Fig. 5. Updated AC pattern

VII. CONCLUSION

The work presented here shows that recently proposed
methods [19] can be applied to large AC patterns. However,
the elicitation of masses requires a large number of questions
to experts. Fortunately, the results obtained indicate that large
AC don’t imply large uncertainty on conclusion. The work
also shows that it is useful to work with both scale and
numbers and that the uncertainty in AC patterns contributes
to performing design, implementation, integration, verification
and validation choices and improving the AC structure. Finally,
the result of this research will be integrated in the Capella
system engineering environment1.

An open question for future researches is the use of uncer-
tainty levels in the context of certification and a possible link

1https://eclipse.dev/capella/

between the qualitative belief and disbelief of the top goal of
a final AC with Safety Integrity Levels or Design Assurance
Levels (DAL). For instance a belief VH and a disbelief VL
could be requested for DAL A and B, a belief VH and a
disbelief at most L for DAL C and D and a belief VH and a
disbelief at most H for DAL E.
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Abstract—Safety-critical real-time systems must comply 

with stringent certification requirements, including temporal 

ones. Failure to comply with these temporal requirements may 

contribute to system failure. Therefore, timing considerations, 

such as response times, are of the foremost importance for such 

systems. As the use of multi-/many-core hardware platforms is 

becoming inevitable in the avionics industry due to the 

increasing computing performance required by modern 

embedded systems, integration activities are getting more and 

more complex. Increasing concurrency and parallelism 

exacerbates integration issues and introduces new challenging 

problems. To answer those challenges, certification authorities 

have issued guidelines, referenced as A(M)C 20-193, describing 

some additional objectives to fulfill for multi-/many-core 

integration. The present paper describes how a time-aware 

approach, based on the Synchronous Logical Execution Time 

paradigm (sLET), makes the design and integration of A(M)C 

20-193 compliant safety-critical multi-/many-core systems 

easier by separating functional and time interference concerns. 

Keywords—safety-critical real-time systems, strong 

determinism, synchronous Logical Execution Time, multicore 

timing analysis, AMC 20-193. 

I. INTRODUCTION 

Avionics systems, and more particularly safety-critical 
ones, are usually subjected to stringent certification 
constraints to ensure their compliance with safety 
requirements. Indeed, failure of such systems may result in 
catastrophic consequences. In particular, for high-criticality 
real-time systems, functions should be ensured to complete 
within strict timing constraints. In addition, the avionics 
industry increasingly relies on modular systems, where 
multiple applications of possibly different criticality levels can 
safely share a common hardware platform. Integration 
activities must ensure that all hosted applications still meet 
their functional and temporal requirements after their 
composition in the final system. 

Driven by the increasing computing performance required 
by modern embedded systems and the obsolescence of high-
performance single-core processors (SCPs), the avionics 
industry is moving towards the use of multi-/many-core 
processor (MCP) hardware platforms. But the increasing 
parallelism and potential throughput brought by MCPs comes 
at a cost: integration activities are getting more and more 
complex, and thus time-consuming and costly [1]. 

The use of MCPs exacerbates integration issues already 
present for SCPs. Moreover, it introduces new challenging 
problems [2]. In particular, when multiple cores are used and 
different threads of execution simultaneously access the same 
hardware resource (e.g., a shared memory, a bus, etc.), the 
hardware must arbitrate these concurrent accesses, effectively 
introducing additional latency on some of the accesses. This 
time interference may lead to the violation of the system’s 
temporal requirements. It can also result in new or different 
data or control coupling paths, and thus functional interference 
causing the system to behave in a non-deterministic way, or 
possible data corruption [3]. For example, with MCPs, 
functional modules can be allocated to different CPU cores, 
which may create inter-core execution dependencies due to 
inter-task synchronization (e.g., for communication or to 
prevent race conditions). Thus, one task could prevent another 
task, allocated to a different core, from running, and thus 
forestall any other computation. This may have a significant 
impact on efficiency and testability for MCP systems. 

As per DO-178C/ED-12C, safety-critical systems are 
usually associated with the highest Design Assurance Levels 
(i.e., DAL-A or DAL-B). Certification of MCP systems to the 
highest criticality levels presents the greatest challenge for the 
avionics industry. As functional and time interference may 
degrade the system safety, applicants must elaborate an 
argumentative strategy defending that their systems are indeed 
robust to such interference. Certification authorities have been 
working on guidelines to address this specific topic, with the 
AMC 20-193 document recently issued by EASA [3], and its 
AC counterpart from the FAA [4]. Few safety-critical MCP 
systems have been certified until now, and very often at the 
cost of underusing the additional CPU cores. Thus, new 
methodologies and tools are needed to support the 
development and integration process of MCP systems and 
meet the objectives defined in the A(M)C 20-193.  

In this paper, (i) we propose a time-aware strategy based 
on the Synchronous Logical Execution Time (sLET) 
paradigm, which encompasses time from system-level design 
to integration on the final hardware (Section III), (ii) then we 
show how sLET helps to tackle the MCP functional and 
temporal interference problem (Section IV), and (iii) 
eventually, we discuss the application of such time-aware 
strategy to avionics safety-critical systems (Section V) and 
illustrate it on an industrial case study, using the combination 
of ASTERIOS and Rapita’s on-target analysis tools and 
MACH178 multicore certification solution (Section VI). 

These works have been supported by the French Defense Procurement 

Agency (DGA) and the French National Research Agency (ANR) in the 

context of respectively the ASTERLINK and ARCHEOCS projects. 



II. POSITIONING 

A. Time-aware approaches 

Many programming abstractions have been developed to 
model and reason about real-time systems. For safety-critical 
systems, they are often coupled with a time-triggered 
execution model due to its determinism and predictability [5]. 

The Synchronous-Reactive (SR) model, implemented by 
synchronous languages [6], totally abstracts execution time to 
focus on logical instants on which computations are triggered. 
Each computation should be completed before the next 
possible instant, and its output must be available before any 
other computations could use it on the same instant. Thus, SR 
languages offer both determinism and concurrency. For an 
implementation on an actual target, logical instants are then 
mapped to physical time. Multiple logical clocks can exist in 
SR programs to design multi-rate systems. But due to the 
causality between computations, induced by instantaneous 
communications, compilation of SR languages can be quite 
complex, in particular for multicore platforms (on which 
computations can be parallelized) [7]. The PRELUDE 
architecture design language offers a solution to implement 
multi-periodic synchronous systems, by adding real-time 
primitives to specify the durations of tasks [8]. Then, the 
program can be automatically translated into a set of real-time 
tasks, with periods of tasks computed using clock calculus [9]. 
Finally, those tasks can be scheduled on-line using policies 
such as Deadline-Monotonic or Earliest-Deadline-First [10]. 

The Logical Execution Time (LET) paradigm, 
implemented for example in the GIOTTO [11] and TDL [12] 
languages, describes the logical duration taken by 
computation. Each computation must fit in a logical interval, 
called LET interval [13]. Furthermore, communications are 
only made on the boundaries of LET intervals, to ensure 
determinism. Thus, compared to the SR model, the LET 
paradigm allows more time variability due to the specified 
logical duration, which makes concurrent implementations 
easier.  But this comes at the price of a lesser temporal and 
functional expressiveness, as (i) LET applications in GIOTTO 
and TDL are limited to strictly periodic tasks and (ii) contrary 
to SR, LET builds on a delayed communication model. 

B. Multicore timing analysis 

Multicore timing analysis usually aims to determine safe 
WCET estimates for software hosted on multicore processors. 
Different methods can be used: 1) measurement-based 
analysis, 2) static analysis (deterministic or probabilistic), or 
3) hybrid approaches combining both previous points [14]. In 
every case, the primary challenge that must be overcome is 
that of multicore interference channels. 

1) Interference channels 

An interference channel is defined in A(M)C 20-193 as 

being ‘a platform property that may cause interference 

between software applications or tasks’. Interference 

channels can be discovered in many parts of a processor, and 

are often (but not always) associated with shared hardware 

resources. Interference channels may be one of the following: 

• A bandwidth constraint: e.g., a shared interconnect 

will typically have a finite bandwidth available which 

must be shared between any bus masters. 

• A space constraint: e.g., shared caches have finite 

capacity, and tasks that are executing concurrently on 

different cores may cause evictions of data and 

instructions that belong to each other, leading to an 

increase in cache misses and thus execution time. 

• An indirect coupling: e.g., a coherency mechanism, 

whose purpose is to ensure that all levels of cache 

maintain a consistent view of the state of the memory. 
A resource may contain (i) no interference channels, (ii) 

just one or two, or (iii) a large number (e.g., some complex 
interconnects, shared caches, and network accelerators can 
contain more than 10 independent interference channels). 

There exist formulations of multicore interference that 
instead of treating ‘interference channels’, are built around the 
concept of ‘interference paths’. The pre-eminent example of 
the latter is the PHYLOG Model Language (PML) [15], which 
considers all the possible ‘initiators’ of transactions, all the 
possible ‘targets’ for transactions, and all the possible routings 
between initiators and targets. The assertion follows that if all 
intersections of these paths are exercised, then all multicore 
interference will have been assessed. While this approach can 
provide assurance that all bandwidth constraints are likely to 
have been tested, additional analysis and test specification 
may be necessary to ensure that the indirect interference 
channels have also been adequately covered. 

2) Static Analysis and Measurement-based Methods 
In older single-core avionic systems, static analysis and 

simulation can prove useful for timing analysis. However, for 
complex multicore systems, this is no longer the case. 
Modern, high-performance processors (particularly multicore 
ones) have many complex features, such as multilevel caches 
and DMA engines, which frequently (and, in the case of 
features like random replacement caches, intentionally) 
sacrifice temporal determinism in favor of average-case 
performance. These mechanisms can be very hard to model 
with sufficient accuracy. Moreover, most modern processors 
incorporate IP cores from a wide range of sources. So, the 
silicon vendor may either not be in a position to share (or even 
build) a complete model of the processor. Furthermore, due to 
this complexity, errors or inconsistencies in implementation 
and integration of these IP cores are common, resulting in real-
world behavior that doesn’t perfectly match the 
documentation. 

Owing to these complexities, A(M)C 20-193 takes a 
cautious approach to static analysis, and states that ‘simulation 
of those [interference] mechanisms is, therefore, less likely to 
be representative in terms of functionality or execution time 
than testing conducted on the target MCP in the intended final 
configuration, and thus is less likely to detect errors.’ If an 
airworthiness authority deems that an analysis method is ‘less 
likely to detect errors’, then it should generally be avoided. 

3) Accounting for pre-emptions 
In processors with caches, it is well-documented that pre-

emption can be delayed by cache state [16]. In a multicore 
context, it’s also possible for pre-emption to be delayed by 
operations from other cores, as typically cache coherency 
transactions will have a higher priority than local accesses. 

From a multicore timing perspective, the determination of 
the maximal pre-emption latency isn’t significantly different 
to the single-core case. However, there may be additional 
scenarios that need testing (e.g., including cases where other 
cores are generating many coherency transactions with the 
intent of maximizing the additional impact). 



III. SYNCHRONOUS LOGICAL EXECUTION TIME 

Hereafter, we introduce the synchronous Logical 

Execution Time (sLET) paradigm. This is a generalization of 

the Psy model introduced during the 90’s [17]. 

A. sLET paradigm 

The sLET paradigm combines the benefits (but also some 
shortcomings) of both the Synchronous-Reactive (SR) and 
Logical Execution Time (LET) models [18]. It bridges the gap 
between both approaches by incorporating LET intervals into 
SR. Thus, it combines SR’s properties with more time 
variability, which makes concurrent implementations (in 
particular multicore scheduling) easier. 

As for the SR model, logical and physical times are 
considered independent under the sLET paradigm and serve 
different purposes. Logical time is used to specify the system 
high-level temporal requirements through an abstraction of 
time, whereas physical time corresponds to the execution time 
of the system implementation on a specific hardware platform. 
As for the SR model, time in sLET is purely logical in the 
sense that physical time is fully replaced by partial or total 
ordering between computations. In sLET, logical time is 
expressed through logical clocks. A logical clock, in the sense 
described by Lamport [19], abstracts time through a series of 
events called clock ticks. sLET can be seen as a multiform 
logical time [20] generalization of LET, hence using multiple 
logical clocks. A set of clocks C can be constrained by a set of 
precedence and simultaneity relations (e.g., periodicity). 

B. Tasks and Elementary Actions 

In sLET, all computations are specified by their activation 
and termination events, expressed using logical clocks. 
Computation time intervals can be abstracted by the concept 
of the Elementary Action (EA): an EA is a computation that 
fits in a sLET interval, bounded by the EA’s activation and 
termination dates. Thus, as depicted in Figure 1, it is defined 
as a sequence of instructions constrained by two logical dates, 
referred to as Temporal Synchronization Points (TSPs): 

• An activation date (its earliest start date) defined on 
some event of a logical clock. 

• A termination date (its deadline) defined on some 
other event of a possibly different logical clock (with 
both clocks related together with a total order). 

So, unlike the LET paradigm, sLET does not rely on 
logical durations: instead, as for SR, it uses logical clock 
instants (of possibly different non-harmonic clocks) to specify 
interval boundaries. For example, the EA depicted in Figure 1 
has its activation date defined on the second tick of Logical 
Clock c1 and its termination date defined on the fifth tick of 
Logical Clock c2. Thus, the sLET interval is defined in terms 
of clock events and not as a logical duration. 

An sLET task is defined by an infinite sequence of EAs. 
The termination date of an sLET interval corresponds to the 
activation date of the next interval for the task. Note that it is 
possible in sLET to have empty logical intervals (i.e., in which 
no EA from the task can be executed). It allows, for example, 
to define periodic tasks with constrained deadlines (i.e., with 
a relative deadline strictly smaller than the period). Moreover, 
as logical intervals are defined at the EA level (for a same 
sLET task), this makes it possible to design more complex 
temporal patterns than strictly periodic tasks. 

C. Visibility principle 

As part of a larger system, a task usually consumes and 
produces data from and to other tasks during its execution. To 
ensure determinism, sLET inter-task communication is 
performed through dedicated channels implementing the 
Visibility Principle [21]. Note that by determinism we mean 
‘the ability to produce a predictable outcome […] based on 
the preceding operations and data […] in a specific period of 
time with repeatability’ [3]. Under the Visibility Principle: 

• Data produced by an EA over an sLET 
communication channel will only become visible 
(i.e., available) to the rest of the system from the end 
of the EA’s interval, i.e., for a logical date greater or 
equal to the EA’s termination date. 

• Data can be consumed by an EA from an sLET 
communication channel only if it has become visible 
prior to the start of the EA’s interval, i.e., for a logical 
date lesser or equal to the EA’s activation date. 

The logical date from which the data becomes available to 
some other EA is referred to as the Visibility Date. Usually, 
this corresponds to the termination date of the EA producing 
the data, but some sLET communication channels may have 
their own temporal behavior defined on a different logical 
clock: in that case, the Visibility Date corresponds to the tick 
of that logical clock which is greater or equal to the EA’s 
termination date. Note that the producer and consumer’s 
clocks, as well as the one used to define the Visibility Date, 
must be related with a total order. For example, a data 
produced by the EA depicted in Figure 1 can only become 
visible after its termination date (defined on the fifth tick of 
c2). If we assume that the Visibility Date corresponds exactly 
to the EA’s termination date, this means that another EA can 
consume this data only if its own activation date is defined on 
either the same logical tick (fifth tick of c2) or a tick occurring 
afterwards (e.g., sixth tick of c2, eighth tick of c1, etc.). 

So, as for LET, sLET builds on a delayed communication 
model, which can somehow limit functional expressiveness, 
in particular compared to SR. Note that, some kind of 
instantaneous communication can actually be achieved in 
sLET (as briefly introduced in Section IV), but at the cost of 
more complex concurrent implementations. 

D. Implementation for safety-critical systems 

To implement an sLET design on a specific hardware 
platform, logical time is mapped to physical time. sLET tasks 
must then be properly scheduled to ensure design timing 
constraints (i.e., sLET interval bounds). For a single-core 
platform, the logical ordering of EAs is sufficient to guarantee 
the correctness of the execution, whereas for MCPs, inter-core 
synchronization is required to preserve the logical ordering 
across CPU cores. Moreover, for the resulting tasks’ 

Figure 1: Example of sLET interval (the activation date, 

respectively termination date, is defined on Clock c1, resp. c2). 



scheduling to be valid, all EAs must have enough CPU time 
to complete before the end of their respective intervals. In the 
remainder of this document, we focus more specifically on 
static scheduling, based on Time-Division Multiplexing, as it 
provides strong guarantees on predictability [22] and is 
generally favored for safety-critical avionics systems. In this 
case, for deploying an sLET design on a specific hardware 
target, the user must provide a Time Budget (TB) for each EA, 
corresponding to the maximum amount of physical time 
allocated to the computation of that EA. Based on the relations 
between logical clocks and the provided TBs, a compiler may 
generate a time-triggered schedule. In that respect, a given 
scheduling (and so the corresponding sLET implementation) 
is valid if no EA actually exceeds its allocated TB at run time.  

For safety-critical systems, a TB should be an upper-
bound on the worst-case execution time (WCET) of the 
corresponding EA, to ensure that the resulting schedule will 
always be valid at run time. Thus, safe TB values are 
synonymous with safe WCET estimates. How such safe TBs 
could be obtained is discussed in Section V. 

IV. TAMING FUNCTIONAL AND TIME INTERFERENCES 

Hereafter, we assume that every computation (i.e., EA) is 

provided with enough physical time (i.e., safe TB) to 

complete within its logical time constraints. 

A. Functional and time interference 

As defined in [23], interference corresponds to an 
alteration of the processor’s behavior (e.g., longer delay 
required for a load operation, etc.) experienced by some part 
of the software executed on one CPU core, and related to the 
activity of the remaining software running on the other cores. 

As per A(M)C 20-193, time interference can be produced, 
for example, when the MCP arbitrates simultaneous accesses 
to shared hardware resources, causing contention for those 
resources and therefore an increase in execution time [3]. 
Execution of concurrent software on a different CPU core, and 
in particular the time interference that may be induced, can 
result in new or different data or control coupling paths 
leading to functional interference: a communication buffer 
may be sometimes read before being written (depending on 
the producer’s and consumer’s actual execution times), shared 
data could be corrupted if accessed in parallel, etc. 

B. Preventing functional interference 

The sLET Visibility Principle applies the LET 
communication model [13] to logical clocks. Provided tasks 
exchange data exclusively through sLET communication 
channels (H1), their execution is solely driven by their 
associated logical clocks. It means that communications 
between tasks become independent from the underlying real-
time scheduling (resulting from the implementation of the 
system on a specific platform). Any schedule complying with 
the logical constraints defined by the sLET design results in 
the same functional behavior, as long as physical timing 
constraints are fulfilled (H2). Thus, if this later hypothesis 
holds, sLET allows for transparent distribution as functional 
determinism is ensured whatever the allocation of tasks to 
CPU cores. This allows dataflow determinism to be achieved. 
For example, a longer execution of a third-party EA (not 
involved in the same functional chain) may delay the 
execution of a producer EA. This could result in the 
corresponding consumer EA (allocated to another core) being 

executed beforehand. But, thanks to the Visibility Principle, 
this has no impact on the dataflow determinism: the consumed 
data does not depend on the actual execution instants but 
solely on the sLET intervals bounds.  Therefore, functional 
interference can be prevented by design using the sLET 
model, as long as tasks exclusively communicate through 
sLET-based communication mechanisms. 

It is the responsibility of the user to ensure that their 
application complies with both H1 and H2. If H1 is a design 
constraint, H2 is closely related to the design’s 
implementation on a specific hardware target. 

C. Preventing time interference 

Time interference between tasks can arise within a single 
CPU core, e.g., due to cache effects. MCP time interference 
adds to this ‘traditional’ time interference, making WCET 
estimation harder. Here, we focus on MCP time interference, 
as some extensive work has already been conducted regarding 
mitigation methods for single-core time interference [14]. 

Multicore-related time interference can originate from 
deep and intricate hardware implementation details [24]. 
Preventing contention (or at least, bounding or minimizing 
contention) for MCPs reduces potential time interference. A 
wide spectrum of methods and techniques are available to 
address this objective, many of which can be used in 
combination. This paper focuses specifically on temporal 
exclusion, which can be enabled thanks to the sLET model. 

With imperative and non-temporal programming models, 
concurrent accesses to shared resources (hardware peripheral, 
software buffer, etc.) are usually guarded, e.g., using mutexes 
or semaphores. Using sLET, temporal exclusion can be 
enforced by design, and automatically verified, to prevent 
such concurrent accesses. Thus, sLET can be used to 
guarantee that simultaneous accesses to a shared resource 
never happen, while preventing some issues encountered with 
mutexes, such as deadlocks. This temporal exclusion is 
provided through exclusion groups [25]. An exclusion group 
provides a safety property: the EAs it contains must not share 
any physical date in common. More formally, for a set of 
sLET tasks 𝑇, with 𝐸𝑡 = {𝑒𝑖|𝑖 ∈ ℕ} the infinite sequence of 
EAs that constitute Task 𝑡  (𝑒𝑖  being the ith EA of 𝑡 ), an 

exclusion group 𝐺  is defined as 𝐺 ⊂ 𝐸 = ⋃ 𝐸𝑡: ∀𝑒𝑖 , 𝑒𝑗 ∈
𝑇
𝑡

𝐺, 𝑒𝑖 ∩ 𝑒𝑖 = ∅.  As a result, a common resource accessed only 
by EAs from a single exclusion group can only be accessed by 
at most one EA from that group at a time. 

As previously stated, an sLET task consists in an infinite 
succession of EAs, each bounded by an activation date and a 
termination date defined on clock events. So, given that all 
logical clocks can be reduced to a unique global clock, it is 
possible to define sLET intervals for EAs of a same exclusion 
group such that they never overlap in time. For example, let 
us consider the two EAs depicted in Figure 2. Originally 
(assumably to cope with some high-level timing 
requirements), EA1’s sLET interval is delimited by the first 
and fourth ticks of c1 and EA2’s interval by the first and third 
ticks of c2. This means that both intervals overlap in time. If 
EA1 and EA2 need to be part of a same exclusion group, a 
solution is to modify the sLET design, as depicted in the left 
sub-figure: EA1’s termination date is now defined on the 
second tick of c1 and EA2’s activation date on the second tick 
of c2. Thus, sLET intervals no longer intersects and temporal 
exclusion is achieved. 



Thus, by constructing exclusion groups, time interferences 
caused by contention on shared resources may be strongly 
constrained. However, defining such timing exclusion groups 
comes at a cost: the user needs to re-design some part(s) of its 
temporal architecture. This may be arduous work, depending 
on the temporal patterns of the different tasks. Moreover, this 
means introducing additional timing constraints (i.e., new or 
different TSPs) to manage multicore interference (related to a 
specific integration). This may result in different sLET 
intervals, which means that overall latencies (derived from 
high-level requirements) may also change. One solution, 
described in Section VI, is to deal with timing exclusion only 
at implementation level: instead of re-designing sLET 
intervals, scheduling is used to enforce the specified exclusion 
groups (e.g., by introducing precedence constraints between 
EAs to avoid concurrent execution). Another solution, using 
an additional sLET construct, is introduced hereafter. 

D. Fractional Temporal Synchronization Points 

The sLET paradigm extends ‘classic’ logical clocks with 
the concept of fractional logical clocks. As any logical clock, 
a fractional clock abstracts time through a series of clocks 
ticks, referred to, in this case, as fractional logical ticks. The 
difference is that a fractional clock is defined with regard to a 
‘standard’ logical clock, such that there is exactly one 
fractional tick occurring between any two consecutive ticks of 
the ‘parent’ logical clock. Note that, as depicted in the right 
part of Figure 2, this fractional tick can occur anywhere in-
between. This means in particular that two fractional clocks 
defined with regard to the same ‘parent’ clock cannot be 
compared as their fractional ticks may occur in any order 
between two consecutive ticks from the ‘parent’ clock. 

sLET intervals for Elementary Actions can only be defined 
using ‘standard’ logical clocks, which means that any EA’s 
activation and termination dates necessarily correspond to 
logical clock ticks. But an EA execution in its sLET interval 
can be over-constrained using fractional logical clocks: 

• The activation of an EA can be further ‘delayed’ until 

after some fractional logical tick, referred to as a 

fractional Temporal Synchronization Point. 

• The termination of an EA can be constrained before 

some other fractional TSP. 
For example, as depicted in the right part of Figure 2, EA1 

can be constrained to be executed before the second fractional 
tick of cf1 (derived from Logical Clock c1) and EA2 after it. 

As can be seen in that example, when using fractional 
TSPs there is no modification of the original sLET interval: 
the EA’s activation and termination dates are left unchanged. 
As the Visibility Principle is defined with regard to sLET 
interval boundaries, Visibility Dates for data flows are left 
unchanged and thus the corresponding latencies. Thus, 
fractional logical clocks can be used to implement exclusion 
groups without impeding the original temporal architecture: 
one EA’s execution can be constrained before a fractional 
TSP while the execution of another EA of the same exclusion 
group is delayed after the same fractional TSP, thus ensuring 
that they don’t overlap over time. For example, as depicted in 
the right part of Figure 2, EA1 and EA2 can no longer be 
executed concurrently thus enforcing the exclusion group 
without modifying the original sLET intervals. 

Note that, fractional clocks can be used to achieve 
instantaneous communication in sLET. It is possible to define 

sLET communication channels with regard to fractional 
clocks, instead of ‘standard’ clocks. In that case, the Visibility 
Date corresponds to a fractional TSP. On the example from 
Figure 2, this means that a data produced by EA1 could 
become visible from the fractional TSP onward, and thus be 
consumed by EA2. 

The additional constraints introduced through fractional 
TSPs should be ensured by the implementation. Either the 
corresponding fractional tick is mapped to an actual physical 
date, as it is the case for ‘standard’ logical dates, or fractional 
TSPs are used to derive precedence constraints between EAs’ 
executions that should be ensured by the tasks’ scheduling. 

V. TOWARDS A TIME BUDGETS EVALUATION ENCOMPASSING 

TIME INTERFERENCE    

As stated in Section III, an sLET implementation relies on 
compliance with respect to physical timing requirements. In 
particular, unaccounted time interference defeats this 
hypothesis. We discuss here how this issue can be addressed.  

A. Basis of the approach 

As stated before, we focus on static scheduling. A given 
schedule is valid if no Elementary Action exceeds its allocated 
Time Budget at run time. To evaluate safe TBs for all EAs, we 
propose a measurement-based A(M)C 20-193 compliant 
approach encompassing time interference. Note that other 
methodologies, as discussed in Section II, are possible. 

1) Time Budgets in isolation 
 The goal of the approach presented hereafter is to compute 
Time Budgets in isolation (from a scheduling point of view, 
i.e., non-preemptive WCETs [26]). This means that additional 
delays due to pre-emptions (e.g., additional cache misses 
resulting from cache evictions caused by the pre-empting 
tasks) should be accounted for separately when considering 
the final integration (i.e., with all the application’s tasks). As 
the approach targets multicore integration, this TB in isolation 
should encompass the maximum possible overhead due to 
MCP interference. Indeed, dealing at the scheduling level with 
the interaction between tasks executing in parallel on different 
CPU cores is much harder than accounting for pre-emptions, 
and might not always be feasible. In the general case, it’s not 
possible to reason about the test vectors necessary to drive one 
task to suffer the maximum possible impact from interference 
caused by another task. Moreover, synchronization is very 
important for interference impact. Even a single clock cycle 
of jitter between cores can make a large difference to the 
interference inflicted on one core by another. 

 Considering TBs in isolation allows tasks to be handled 
separately for the timing evaluation, making measurement 

Figure 2: Example of exclusion group between two EAs 

enforced by: (left) sLET re-design, and (right) using a 

fractional TSP defined on fractional Logical Clock cf1 derived 

from c1 (‘classic’ clock ticks and TSPs are in plain lines 

whereas fractional ones are denoted by dashed lines). 



campaigns and analyses easier. It also allows for composable 
approaches and re-usability, and thus possible incremental 
certification [27], as a single TB could be considered for 
different multicore integrations of the same task. 

2) Incremental approach 
 The TB evaluation approach presented hereafter is 
incremental and consists of four main steps: 

1. First, an evaluation is performed in single-core to 

compute a TB upper-bound in isolation, referred to 

as a single-core Time Budget. 

2. Then, analyses are conducted to identify possible 

multicore interference channels and quantify their 

impact on the different tasks. 

3. From those results, multicore interference can be 

accounted for, either by implementing some 

mitigation means, or by computing an upper-bound 

on the maximal overhead to be added to the single-

core TB, to derive a multicore Time Budget. 

4. Finally, multicore TBs for all tasks are verified. 

The first three steps are conducted on tasks in isolation. 

Only the final step is performed on the final configuration. 

B. Single-core Time Budget evaluation 

First, a TB evaluation is performed in single-core for each 
task in isolation. As the approach targets TBs in isolation, it 
means that each task is considered separately, without needing 
other parts of the application to be present. This is possible as 
the execution of sLET tasks is solely driven by logical time. 
So, each task can be executed independently from the others. 
Of course, inter-task communications, if any, might need to be 
stubbed. Thanks to the sLET visibility principle, this is easier 
to achieve as data availability is well-defined. 

Measurements are performed using maximizing tests, i.e., 
exercising the worst-case execution paths for each task at run 
time, which have to be defined by the applicant on a case-by-
case basis. Coverage analyses can be helpful to achieve 
confidence when building these tests. Moreover, additional 
metrics might also be collected at this step (e.g., number of 
memory reads/writes, cache hits/misses, etc.), to (i) construct 
a profile for the task, which could help understand some 
software variabilities, and (ii) identify the resources actually 
used by the task. The high-water mark (HWM), i.e., the 
highest measured execution time, for each EA can be retrieved 
from the measurements. Then, a safety margin might be added 
to get a single-core Time Budget for each EA of the task. 

C. Hardware characterization 

Hardware characterization deals with the identification 

and characterization of possible interference channels. To do 

so, several steps are needed: 

1. Hardware resource identification: (i) the resources of 

the processor need to be identified, and (ii) those that 

may contain interference channels are singled out. 

2. Interference channel identification: any singled-out 

resource is analyzed in detail, to identify the possible 

interference channels it contains [23]. 

3. Interference channel characterization: any non-fully 

mitigated interference channel is characterized on 

target to determine its possible effect. 
 Note that both the hardware resource and interference 
channel identifications are paper activities and are performed 
using any available technical documentation and datasheets. 

1) Hardware resource identification 
 Hardware resource identification is required by A(M)C 
20-193’s MCP_Planning_2 objective. It is important to note 
at this stage that not all multicore interference channels arise 
from the explicit sharing of resources. For example, cache 
coherency mechanisms can cause interference even when only 
private cache memories are being accessed. 

2) Interference channel identification and 

characterization 
 Interference channel identification and characterization 
are partly to satisfy A(M)C 20-193’s MCP_Resouce_Usage_3 
objective. Characterization can also be used to provide 
evidence that some interference channels can have no 
practical or measurable timing impact. This activity should be 
conducted on target. Interference generators can be used for 
this purpose [28]. For each channel, it is required to:   

1. Determine what properties such a benchmark must 
possess to be sensitive to that interference channel. 

2. Execute and perform measurements on the ‘sensitive’ 
benchmark on one core, while other cores are idle, to 
establish a baseline when there is no interference. 

3. Identify the properties a benchmark must possess to 
be aggressive on the interference channel. 

4. Execute and perform measurements on the ‘sensitive’ 
benchmark on one core, while the ‘aggressive’ 
benchmarks are run on the other cores. 

5. Compare the timing properties of the ‘sensitive’ 
benchmark with and without interference.   

3) Mitigation mechanism identification 

In parallel with the hardware resource identification, 

mitigation mechanisms for these interference channels 

should be identified. Different mitigation levels are possible: 

• Hardware configuration. For example, it may be 

possible to mitigate an interference channel related to 

cache evictions by configuring cache partitioning on 

hardware platforms that support it. Alternatively, 

hardware devices and features may be disabled to 

remove some interference channels.  

• Integration-level configuration. For example, a 

specific data/code placement in memory could be 

configured to enforce spatial partitioning for some 

resources. Time partitioning at scheduling level can 

also be used to achieve exclusion between some 

tasks’ executions and thus avoid concurrent access to 

some resource. 

• Software architecture. For example, timing exclusion 

can be ensured by creating exclusion groups, either 

through sLET intervals re-design or by adding 

additional timing constraints using fractional clocks. 

D. Multicore Time Budget evaluation 

Once characterized, the identified interference channels 
need to be accounted for to derive multicore TBs in isolation. 
This can be done by mitigating the interference, or upper-
bounding its maximal impact to add it to the single-core TB. 

1) Multicore interference impact evaluation 
Results from the interference channel characterization can 

be used to assess whether the impact is sufficiently small for 
the interference channel to be neglected. For interference 



channels that cannot be neglected, their actual impact on the 
different tasks needs to be assessed. Indeed, interference may 
not have an impact for all interference channels, depending on 
the actual use of hardware resources by the different tasks. 

As for the hardware characterization step, the interference 
impact evaluation should be conducted on target: 

1. First, each sLET task is executed in isolation on one 

core, with some instrumentation for timing and 

resource usage, while other cores remain idle. 

2. Then, the list of interference channels against which 

the task should be characterized is refined, removing 

the ones related to resources the code won’t exercise. 

3. Finally, the task is executed again on one core, while 

exercising the remaining interference channels 

(using the same combinations of ‘aggressive’ 

benchmarks as for the hardware characterization). 
Comparing for each EA the distributions of execution 

times measured with and without the ‘aggressive’ benchmarks 
provides the applicant with qualitative and quantitative 
information which allows the identification of: (i) interference 
channels of concern, i.e., ones that can actually cause time 
interference due to their use by the application, and (ii) EAs 
making significant use of each identified interference channel. 

Results from the hardware characterization and the 
interference impact evaluation can be used to discriminate 
among identified channels, between: (i) those for which the 
impact is acceptable (in terms of safety but also performance 
[23] for safety-critical systems), and (ii) those for which 
mitigation is required. Indeed, full mitigation for all 
interference channels is impossible in practice, except for very 
simple applications [29]. Nevertheless, through A(M)C 20-
193, the goal is not to reach total freedom from interference, 
but rather to demonstrate upper bounds on the possible impact 
of time interference, and that safety is not impacted. A 
quantitative criterion (e.g., statistical) or an empirical 
observation may be used, as proposed in [30]. Note that the 
exact meaning of ‘significant’ is to be defined by the applicant 
regarding their needs, as it is an integral part of the 
argumentation process and highly dependent on the use-case. 

2) Multicore time interference mitigation 
Mitigation strategies, such as spatial isolation or temporal 

exclusion using exclusion groups, should be enforced for 
those interference channels with the most ‘significant’ impact 
on processing time, or for high-criticality tasks (e.g., DO-
178C/ED-12C DAL-A).  For example, for all EAs impacted 
by the same interference channels, an exclusion group could 
be constructed by adding additional fractional TSPs so that 
those EAs can no longer be executed simultaneously. Note 
that dealing with EAs allows a finer granularity than working 
at the task level: indeed, a task may not access a given shared 
resource in all its EAs, and thus some of them could be 
executed in parallel with other tasks’ EAs. 

Once implemented, mitigation strategies should be 
validated. For spatial isolation, a new interference impact 
evaluation could be conducted; as for temporal exclusion, this 
may be only tested on the final integrated system. 

3) Multicore Time Budget 
Finally, the impact of the non-mitigated interference can 

be bounded for each EA, thanks to the interference impact 
evaluation step. This upper-bound can then be added to the 
single-core TB to account for MCP interference. As for the 

single-core case, a safety margin might be added to get the 
final multicore Time Budget for each EA. 

E. Multicore Time Budget validation 

Eventually, measurement campaigns on the final 
configuration should be conducted to validate that the 
computed multicore Time Budgets are actually upper-bounds 
(all measurements for an EA in the integrated system should 
be less than the multicore TB derived from the previous step). 

For this step, all the application’s tasks must be considered 
at the same time. In case of pre-emptions, (i) the maximum 
number of times each task can be pre-empted should be 
evaluated, and (ii) an upper-bound on the overhead the task 
might experience due to a pre-emption should be computed. 

VI. APPLICATION TO A CASE STUDY 

To illustrate the approach, we consider an industrial use 
case from Safran Electronics & Defense. This application 
work has been conducted as part of the ARCHEOCS project. 
For our case study, we focus on a single interference channel. 

A. Presentation of the use-case 

 The use-case consists of a simplified Landing Gear 
System (LGS), in charge of the aircraft main undercarriage. 
As depicted in Figure 3, it has 5 functional chains:  

• One duplicated acquisition and command chain per 

side of the undercarriage, to get the wheel speed and 

apply the braking order on the hydraulic valves. 

• The main chain to compute the braking command. 
The different functions are all executed periodically, but at 

different rates: from 1Hz (for the braking order calculation 
function) up to 10Hz (for the acquisition part). 

The LGS is deployed over an NXP T1042 multicore  
hardware platform consisting of four e5500 PowerPC cores 
running at 1.4GHz, with private L1 caches, split between 
instructions and data, and a unified L2 cache per core. An 
interconnect (CoreNet) is used to access a shared 4GB DDR4 
memory, as well as several peripherals and accelerators. 

B. Tools to support a full time-aware strategy 

To support an application of the TB evaluation approach 
on the LGS, we use ASTERIOS as our integration solution 
and Rapita’s tools to help with the TB evaluation process. 

1) ASTERIOS solution 
The ASTERIOS solution is developed and 

commercialized by ASTERIOS Technologies (formerly 
Krono-Safe), based on a technology from the CEA (French 

Figure 3: Functional architecture of the LGS application. 



Atomic and Alternative Energies Research Organization). It 
offers a time-aware methodology, supported by a set of 
industrials tools, to develop safety-critical embedded systems. 

ASTERIOS is centered around an implementation of the 
sLET model as the PsyC language. It comes with a dedicated 
toolchain to (i) help with the design and configuration of a 
PsyC (i.e., sLET) application and (ii) support the compilation 
for a given hardware target. EA timing constraints (i.e., sLET 
intervals), extracted from the PsyC design, once mapped to 
physical time, and Time Budgets, provided by the user for a 
specific hardware target, can be used as inputs for 
automatically computing a feasible static schedule (if any) 
thanks to the ASTERIOS toolchain. To support and enforce 
sLET execution at run time, ASTERIOS provides a certified 
target-specific real-time microkernel which implements time 
and space partitioning. In particular, it ensures that the 
schedule generated by the toolchain is not violated at run time 
(i.e., that no EA exceeds its TB): a run time mechanism is able 
to detect any violation to prevent the offending task (or the 
whole application) from continuing its execution, as neither 
timing nor functional determinism can thereafter be ensured. 
Finally, ASTERIOS offers a qualified tool to verify that the 
toolchain’s outputs are compliant with the user’s input (and in 
particular the specified sLET design) [31]. 

2) Rapita’s solution 
Rapita Systems provides a tool suite, called Rapita 

Verification Suite (RVS), to support verification of critical 
aerospace and automotive systems. From a multicore timing 
perspective, it allows users to: (i) analyze and verify 
scheduling behavior on-target using RapiTask, (ii) analyze 
and verify software timing behavior on-target down to the 
basic block level using RapiTime, (iii) automate test harness 
generation using RapiTest, and (iv) perform testing that 
exercises specific multicore interference channels using 
RapiDaemons. Where applicable, these tools are available 
with DO-330/ED-215 qualification kits. 

RVS can be used as a key part of Rapita’s MACH178 
solution for certifying multicore aerospace projects in 
accordance with DO-178C/ED-12C and A(M)C 20-193. 
MACH178 comprises several components, including software 
tools with associated qualification kits; procedures, templates, 
and checklists for generation of multicore certification 
evidence; an IP library covering interference channels in 
popular avionic multicore processors; and specialist 
engineering and consultancy services. The MACH178 

procedures both directly address A(M)C 20-193 objectives 
related to multicore timing, but also intend to provide the 
required supporting evidence. For example, if debug 
performance counters are used to provide evidence that: (i) a 
tool is performing correctly; or (ii) some software is not 
accessing a particular hardware resource, then these counters 
also need validation. Therefore, an event monitor validation 
procedure is incorporated.  

3) Tools integration 
The LGS software is integrated on the T1042 platform 

using ASTERIOS. Each function is mapped to a PsyC task. 
Two additional tasks are added for logging. All inter-task 
communications are performed through sLET communication 
channels. At this point, the logical and functional behavior of 
the PsyC application, in particular the data/control coupling, 
can be verified offline (i.e., without a compilation and 
execution on the T1042) thanks to the dedicated ASTERIOS 
simulator. Specifically, it allows verification that worst-case 

dataflow latencies resulting from the application’s timing 
architecture (according to the visibility principle) are 
compatible with the high-level end-to-end requirements. 

For the LGS application integration on the T1042, a static 
allocation of the tasks to the CPU cores is used. The main 
chain tasks, as well as the two logging tasks (one per core), are 
allocated to Cores 0 and 1. The duplicated chains are allocated 
to Cores 2 and 3 (2 chains per core). All tasks have access to 
the shared DDR4 memory. Moreover, all caches are enabled 
and a write through policy is set for the data cache. 

As each task is strictly periodic, we consider one single 
Time Budget for all EAs of a same task. For TB evaluation, 
Rapita’s tools have to be used with ASTERIOS. A connection 
has been prototyped as part of the ARCHEOCS project: (i) an 
interfacing layer allows RVS to derive ASTERIOS-relevant 
timing results, which means in particular computing timing 
estimates for each EA, and (ii) RapiDaemons can be run 
against an ASTERIOS application on dedicated CPU core(s) 
without altering scheduling on other core(s).  

C. Single-core Time Budget evaluation 

As presented in Section V, TB evaluation is conducted on 
each task in isolation. To stub the communications from and 
to that task, an additional task is added to act as a ‘mock’ 
producer and receiver. It is allocated to the same CPU core as 
the task under analysis, to avoid creating multicore 
interference, and its timing behavior is designed to match 
exactly the one of the task under analysis (i.e., same period, as 
all LGS tasks are strictly periodic), to avoid any pre-emption. 

Moreover, to conduct measurements, a valid schedule is 
required for the task in isolation. So, an initial TB has to be 
provided. This presents a cyclic dependency, as the goal of 
this initial schedule is to perform measurements that will allow 
an actual TB to be derived. To overcome this issue, and as 
each task is run in isolation, oversized TBs can be used for the 
sole purpose of generating a valid schedule. Another solution 
is to use the concept of ambivalent logical clock, which is 
implemented in ASTERIOS. An ambivalent clock can map 
logical time to physical time but can also switch to purely 
logical execution (i.e., regardless of physical time). Since 
ambivalent clocks are logical clocks, the execution of the 
scheduled tasks remains correct: logical ordering is preserved, 
only their physical timing constraints are altered. Thus, 
ambivalent clocks are definitely not suitable for production 
systems, but can be used to logically execute a whole system 
on a hardware target by relaxing the TBs constraints at run 
time: if a TB is exceeded, then the ambivalent clock allows for 
the corresponding EA to complete its execution by 
temporarily delaying any activation of other EAs.  

The task’s code is instrumented to capture timing and 
resource usage information on each activation and termination 
of an EA of the task. The maximal observed Time Budget 
estimates (i.e., HWMs) for a few tasks are summarized in 
Table I. There is quite a large variability in execution times 
among the different tasks, from a few µs to more than 1ms. 

D. Hardware characterization 

1) Hardware resource identification 
The output of the hardware resource identification step 

should be a complete list of the hardware components in the 
platform. This can then be used to check that all relevant 
hardware resources have been adequately analyzed and 



characterized. Additionally, this activity can provide an early 
indication of whether there is adequate documentation 
available for the platform to support further analysis. 

For our case study, we focus on a single resource, the 
T1042’s shared DDR memory. As it is used by all tasks for 
instructions and data (including stacks), this is likely to be a 
major interference source for the application. In a typical DDR 
controller, there are several interference channels. We focus 
only on the one concerned with competition for rowbuffers. A 
DDR memory device stores data in ‘rows’, which in the 
T1042 are 8KiB long. When data is requested from a 
particular row, the DDR controller performs a destructive read 
on the entire row and buffers it in a rowbuffer. While the row 
is in the buffer, many reads and writes may be performed on 
that row. When the row has been finished with, the buffer is 
needed for another transaction, or a timeout has been reached, 
it is written back into the DDR device. On many multicore 
platforms, this interference can cause a significant increase in 
execution time. 

2) Interference channel characterization 
To evaluate the maximal possible impact of rowbuffer 

interference, we use a specifically tailored RapiDaemon, 
targeting the DDR controller rowbuffers, as our interference 
benchmark. The T1042’s DDR controller contains 64 
rowbuffers: up to 64 rows may be buffered at a time, but 
accesses to unbuffered rows require that a currently-buffered 
row is written back to the DDR memory device before the new 
row can be accessed. So, the RapiDaemon used in this case 
study is designed to cause a row eviction with every 
instruction executed; this should be able to demonstrate the 
worst-case effect of contention for rowbuffer availability. 

For the interference channel characterization, we create a 

specific task, referred to as the unit under test (UUT), to act 

as a benchmark for the analysis. It executes the RapiDaemon 

code on Core 0 at a 10Hz frequency. RapiDaemons on other 

cores (to create interference), are executed continuously in 

bare metal. For the measurements, we consider 4 scenarios: 

1. No RapiDaemon is run in parallel with the UUT. 

2. 1 RapiDaemon is run in parallel on Core 1. 

3. 2 RapiDaemons are run on Cores 1 and 2. 

4. 3 RapiDaemons are run on Cores 1, 2 and 3. 
Timing measurements are retrieved for each execution of 

the UUT under each scenario. From those measurements, TB 
estimates accounting for rowbuffer interference are computed 
for each execution of the UUT, using the RVS tools with the 
dedicated ASTERIOS interfacing layer. As depicted in 
Figure 4, the impact of interference can be quite high: up to a 
43% increase for the HWM when suffering from interference 
due to RapiDaemons running on all three remaining cores. 

3) Mitigation mechanisms identification 
Different mechanisms provided by ASTERIOS can be 

used for mitigation. At design level, we can use fractional 

TSPs to construct exclusion groups between some EAs. At 
integration level, we can rely on the ASTERIOS toolchain’s 
frames exclusion mechanism, which allows the automatic 
computation (if possible) of a static schedule enforcing a 
temporal exclusion between some EAs specified by the user. 
Note that spatial partitioning is not considered as it would be 
more cumbersome to implement for a shared-memory 
architecture like the T1042. For other architectures using 
memory hierarchies (with some shared memory and other 
local to the CPU cores), this could be a sustainable solution. 

E. Multicore Time Budget evaluation 

1) Multicore interference impact evaluation 
As competition for rowbuffers can be a potentially 

significant interference channel, its actual maximal impact on 
the LGS tasks needs to be quantified. This time, we deal with 
each task as the UUT and we consider the same 4 
RapiDaemons configuration scenarios as previously. 

HWMs for the worst-case scenario (3 RapiDaemons) are 
synthesized in Table I. As all tasks access the DDR, there is 
always some interference when running contender code. But 
its impact differs a lot: some tasks of the main chain suffer 
from overhead of several dozen µs (compared to a few µs for 
the other tasks). As this impact is larger than the HWMs of 
most tasks, we chose to consider them as part of an exclusion 
group for which some mitigation should be implemented. 

2) Multicore interference mitigation 
For the LGS case study, we consider 2 different mitigation 

means serving different purposes. First, we deal with the 2 
logging tasks which both share a common resource (the 
logging mechanism). As they can be executed in parallel, this 
could lead to a functional interference. So, a temporal 
exclusion between their EAs is enforced, using fractional 
TSPs. Then, we consider the set of tasks that can suffer 
significantly from interference over the DDR4 memory, 
identified in the previous step. As those tasks have very 
different rates, implementing temporal exclusion through 
fractional TSPs might be quite hard and over constraining 
when generating the static schedule. Thus, we rely on the 
ASTERIOS toolchain’s frames exclusion mechanism to 
generate a static schedule ensuring the temporal exclusion. 

Table I: Timing results for LGS tasks. 
Task Single-core 

evaluation 

Multicore interference 

evaluation (3 RapiDaemons) 

Overhead Multicore final integration 

(with mitigation) 

ADIRS consolidation 1397.0µs 1455.2µs +58.2µs 1492.0µs 

Aircraft phase & braking mode management 1255.3µs 1306.2µs +50.9µs 1316.3µs 

Braking order calculation 1264.6µs 1310.4µs +45.8µs 1279.6µs 

Global wheel speed calculation 1279.0µs 1325.2µs +46.2µs 1294.6µs 

Other tasks 12.5µs-115.9µs 13.5µs-120.7µs +0.9µs-5.3µs 21.6µs-260.0µs 

 

Figure 4: Histograms of execution times (in µs) computed by 

RVS for the hardware characterization under the different 

scenarios (green: isolation; red: 1 RapiDaemon; blue: 2 

RapiDaemons; purple: 3 RapiDaemons). 



3) Towards multicore Time Budgets 
To derive safe multicore TBs (in the context of a 

certification project), all possible interference channels should 
be dealt with. This can be seen from the measurements 
conducted on the final configuration (i.e., integration of all the 
LGS tasks on the T1042). As depicted in Table I, HWMs for 
all tasks are larger than the ones observed for the interference 
evaluation step. Thus, there are clearly other interference 
channels that should be characterized and accounted for. Note 
that, for the mitigated tasks, the increase in execution times 
remains quite small (less than 10%). So, the impact of those 
other interference channels could be accounted for as an 
additional safety margin on the multicore TB. 

VII. SUMMARY AND PERSPECTIVES 

In this paper, we described a time-aware strategy suitable 
for safety-critical real-time systems, based on the sLET 
paradigm. We showed that sLET properties can help a DO-
178C/ED-12C applicant build an argumentative strategy for 
answering A(M)C 20-193 objectives related to functional and 
time interferences. Thanks to sLET, functional interference is 
fully prevented by design, and time interference can be 
restrained through temporal exclusion. 

The application of a sLET-based strategy to an industrial 
use case has been illustrated using the ASTERIOS solution, 
which is already being deployed by Safran Electronics & 
Defense for single- and multicore commercial systems. To 
meet the required A(M)C 20-193 objectives, we showed that 
Rapita’s approach and tools can support interference and 
timing analyses for ASTERIOS-based systems. 

In future steps, we plan to further develop our multicore 
Time Budget evaluation methodology to provide a 
comprehensive solution for implementing and integrating 
safety-critical real-time systems on MCPs. 
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Abstract—The Logical Execution Time (LET) model has de-
terministic timing and data-flow properties, which simplify the
computation of end-to-end latencies of multi-rate cause-effect
chains. However, the LET model results in pessimistic end-to-
end latencies since it abstracts the underlying platform and
scheduling choices. In this paper, we propose a method to reduce
end-to-end latencies of multi-rate cause-effect chains applying
the LET model, by considering knowledge of the schedule in
later design phases of safety critical embedded systems. Our
method shortens and shifts the communication intervals of the
LET model. If needed, e.g., for legacy reasons, our method can be
applied to a subset of tasks only. We evaluate our work based on
automotive benchmarks and synthetic task sets. We compare our
results with previous work and the LET model. The experiments
show significant reductions of maximum reaction time and data
age values.

Index Terms—Safety Critical Embedded Systems, Real-Time
Systems, End-to-End Timing Analysis, LET

I. INTRODUCTION

Designing safety critical applications in embedded systems,
such as in AUTOSAR, requires complex analysis for temporal
properties, such as end-to-end latencies. During early design
phases, designers abstract system semantics, e.g., scheduling
algorithms, in order to reduce the complexity. However, ab-
stracting system semantics in this manner results in pessimistic
end-to-end latencies [1].

A cause-effect chain (CEC) represents a sequence of tasks,
which are executed to achieve a given functionality. A typical
example is a sensor to actuator CEC, which consists of a task
that reads the sensor (cause), a task that processes the read
value, and a task that writes the output to an actuator (effect).

The analysis of whether or not the end-to-end (E2E) la-
tency between the cause and the effect respects system’s
timing requirements is not trivial [2]. Especially when the
CEC contains tasks with different periods and multiple data
dependencies. The complexity of computing E2E latencies
of multi-rate CECs increases even further when considering
multi-core systems as tasks can be mapped to different cores
and can execute in parallel [3].

Depending on the adopted communication model, the points
in time when inter-task communications (accesses to shared
resources) occur can be non-deterministic. They depend on
when tasks start and finish their execution.

The Logical Execution Time (LET) model [4] emerged as a
solution which significantly reduces timing analysis complex-
ity of multi-rate CECs. By having fixed inter-task communica-
tion points that are independent from the actual task execution,
the LET model brings timing and data-flow determinism to the
analysis of multi-rate CECs. In LET, inter-task communication
only occurs at the boundaries of the so-called communication
interval [5], which is considered equal to the period interval
of the task. As a result, the LET model helps abstracting from
the actual system implementation (scheduling choices), and
consequently reduces complexity of analysis, but at the cost
of increased pessimism, i.e., larger E2E latency values.

In this paper we propose a method to reduce the pessimism
present in the LET model by taking scheduling choices into
consideration. The method shortens and shifts communication
intervals based on a chosen scheduling algorithm. Therefore,
our method is applied later in the design process (after
scheduling choice). By analyzing a feasible schedule, it derives
new boundaries for the communication intervals.

Our method is built on the ideas of adding phase to specific
tasks [6] and shortening the communication interval equal to
task’s worst-case response time [7].

As design phases progress and a schedule has to be deter-
mined, our method can be applied during later design phases
to optimize the E2E latencies of multi-rate CECs applying
the LET model. Without losing the timing and data-flow
determinism of LET, our method keeps tasks periodic and
with well-defined communication points. If needed, it can be
applied individually to selected tasks and/or CECs during later
design phases, e.g., for legacy reasons. Results from evaluation
based on an automotive benchmark presented by BOSCH [8],
as well as synthetic task sets show a reduction of ≈ 65% for
the E2E latencies, on average.

Summary of contributions: Our method
• significantly reduces the E2E latencies of multi-rate CECs

applying the LET model
• shortens and shifts tasks’ communication intervals by

taking scheduling decisions into consideration
• keeps tasks periodic and with well-defined inter-task

communication points
• can be applied individually to selected tasks and/or CECs

for legacy reasons



II. RELATED WORK

The two most commonly considered latencies when an-
alyzing a multi-rate CEC are: reaction time (First to First
semantic) and data age (Last to Last semantic) [9]. The
reaction time measures the reactivity of the system. It is the
time interval between the occurrence of an external event until
the first output based on that event. Data age measures the
freshness of data in the CEC. It is the time interval between
a data sampled (read) by the first task in the CEC until the
last output (actuation) based on such data is produced by the
last task in the CEC. Recently Günzel et al. [10] showed that
the values for the maximum reaction time and maximum data
age are equivalent.

In order to take data propagation delays into account, Klaus
et al. [11] proposed an extension of the Real-Time Systems
Compiler (RTSC), while Forget et al. [12] proposed a language
to do a formal verification of E2E constraints at the model
level. Becker et al. [13] proposed to use job-level dependency
as a way to control data propagation and E2E latencies in
multi-rate CECs. In [14], Dürr et al. introduced the concept of
job chains and provided an analysis of the maximum reaction
time and maximum data age. Schlatow et al. presented in [15]
an analysis of the data age for periodic offset-synchronized
tasks. In [16], Günzel et al. presented a timing analysis of
asynchronized distributed CECs.

The LET model [4] was first introduced as part of the Giotto
programming language in the context of time-triggered tasks.
In [17], Biondi et al. presented a method to implement the LET
model using additional dedicated tasks to realize the logical
behavior of LET. In [18], Pazzaglia et al. used LET to enforce
causality and determinism as a way to control accesses to
shared memory and optimize the functional deployment on
multi-core platforms.

In [19], Kloda et al. proposed to decouple the communi-
cation interval from the periods of tasks as an extension for
the Timing Definition Language (TDL) [20], a successor of
Giotto. However, Kloda et al. [19] did not present a method
to formally compute the additional offsets or how to actually
decouple the communication intervals.

Techniques have been proposed to compute the E2E laten-
cies of multi-rate CECs applying the LET model. Becker et
al. [21] presented a method to compute the maximum data
age considering different communication models. Kordon and
Tang [22] proposed a method to determine the maximum data
age based on a task dependency graph. In [6], Martinez et
al. presented a phase-aware LET analysis to improve the E2E
latencies of multi-rate CECs. In [7], Bradatsch et al. proposed
a method to reduce data age by setting the communication
intervals equal to tasks’ worst-case response time.

We build our work on top of the ideas proposed by Martinez
et al. [6] and Bradatsch et al. [7]. By taking scheduling
decisions into consideration, our method shortens and shifts
communication intervals while keeping tasks periodic and with
well-defined inter-task communication points.

III. SYSTEM MODEL

We consider a multi-core system composed of identical
cores and a task set Γ containing periodic and independent
real-time tasks.

A. Tasks and Jobs

A task τ is a tuple (Cτ , Tτ , Dτ , φτ ), where Cτ represents
the worst-case execution time (WCET), Tτ is the period, Dτ

is the deadline, and φτ is the phase. We assume tasks have
implicit deadlines, i.e., deadline is equal to period. A job J
represents an instance of τ , where J(i) is the ith instance
of τ , i ∈ N+. J(i) has a release time at φτ + (i − 1)Tτ
and an absolute deadline Dτ time units later. A schedule S
specifies the execution behavior of all jobs of τ according to
a scheduling policy. The start time of J(i) according to S
is sSJ(i), while the finishing time is fSJ(i). If the choice of a
schedule is clear, we omit the index S for all definitions.

B. Communication Model

We assume communication between tasks happens through
the use of shared resources and to be based on the LET model.
Each task τ has a fixed and well defined communication
interval Lτ (Figure 1). The inputs and outputs of τ are
logically updated at the boundaries of Lτ . begin(Lτ ) and
end(Lτ ) are relative points in time representing the boundaries
of Lτ , i.e., Lτ = [begin(Lτ ), end(Lτ )]. |Lτ | represents the
length of interval Lτ .

Each job J of τ has a communication interval LJ . The
boundaries of LJ define when a job J logically receives (read)
input from a shared resource, as well as when it logically
transmits (write) output to a shared resource. At begin(LJ),
the logical read-event of J from a shared resource occurs. For
instance, if begin(Lτ ) = 0, that means the logical read-event
of each J ∈ τ happens during its release. At end(LJ), the
logical write-event of J to a shared resource occurs.

Figure 1 shows the communication boundaries of interval
LJ(i) for a given job J(i) of task τ assuming |Lτ | = Tτ , i.e.,
Lτ = [0, Tτ ].

Fig. 1: Communication boundaries of interval LJ(i) for a
given job J(i) of task τ assuming Lτ = [0, Tτ ]

C. Cause-Effect Chain

A Cause-Effect Chain (CEC) represents an ordered se-
quence of communications carried out between a finite set of
tasks. We represent a CEC by E = (τ1 → τ2 → · · · → τ|E|),
|E| being the number of tasks in E. The function E(i) returns
the ith task in E, i ∈ {1, 2, · · · , |E|}. The → operator
indicates that τi+1 acts as a consumer/reader task, while τi
as a producer/writer task.



We assume that E samples (acquires data) at every
begin(J1), J1 being a job of task E(1). We use z to represent
the time interval between the occurrence of an external event
(input) and its sampling by J1. Likewise, z′ represents the
time interval between end(J|E|) and the actuation (output).

D. Job Chain
Given a CEC E, a job chain cE = (J1 → · · · → J|E|)

is a finite sequence of jobs representing one of the possible
data propagation paths of E. In a job chain, the following
requirements are respected:
• Ji is a job of E(i), i ∈ {1, 2, · · · , |E|}.
• The data written by Ji is read by Ji+1. That is,
end(LJi) ≤ begin(LJi+1) for all i ∈ {1, 2, · · · , |E| − 1}

We use cEi to represent the ith job chain of E, i ∈ N+, while
function l(cE) returns the time interval between end(LJ|E|)
and begin(LJ1).

IV. MANIPULATING LET COMMUNICATION INTERVALS TO
REDUCE END-TO-END LATENCIES

As discussed in Section I, multi-rate CECs applying the
LET model have timing and data-flow determinism, but pes-
simistic E2E latencies. By exploiting information from a feasi-
ble schedule, our method reduces the pessimism present in the
LET model while maintaining its deterministic characteristics
and the periodicity of tasks.

Instead of setting |Lτ | = Tτ , i.e., Lτ = [0, Tτ ] ∀τ ∈ Γ, our
method derives new relative points in time for begin(Lτ ) and
end(Lτ ). By repositioning the boundaries of Lτ and therefore
the boundaries of LJ , it can postpone the logical read-event
of J and prepone the logical write-event of J .

A. Defining Schedule-Aware Intervals
In order to make Lτ schedule-aware, ∀τ ∈ Γ, our method

sets Lτ ’s length and position equal to a new time inter-
val Iτ , where the length of Iτ is Cτ ≤ |Iτ | ≤ Tτ .
begin(Iτ ) and end(Iτ ) delimit the boundaries of Iτ , i.e.,
Iτ = [begin(Iτ ), end(Iτ )].

The length and position of Iτ are defined according to
schedule S. As explained in Section III-A, S specifies the
start time sJ and the finishing time fJ for all J ∈ τ .

Below we define the terms relative start time (SJ ) and
relative finishing time (FJ) to derive the communication
boundaries for Iτ .

Definition 1: Relative Start Time (of a Job). Let J(i) be
the ith job of task τ in schedule S. The relative start time
(SJ(i)) of a job is the start time of J(i) minus its release
time.

SJ(i) = sJ(i) − (φτ + (i− 1)Tτ ) (1)

Definition 2: Relative Finishing Time (of a Job). Let J(i)
be the ith job of task τ in schedule S. The relative finishing
time (FJ(i)) of a job is the finishing time of J(i) minus its
release time.

FJ(i) = fJ(i) − (φτ + (i− 1)Tτ ) (2)

Depending on when each J executes between its release and
deadline, the values for SJ and FJ can change for each J ∈ τ
(one job may execute early during its period, while another job
may execute later). In order to keep the timing and data-flow
determinism of LET when setting Lτ = Iτ , it is necessary to
ensure that all J ∈ τ have a common periodic communication
interval, i.e., respects SJ and FJ , for all J ∈ τ .

Our method sets communication boundaries for Iτ by
computing the earliest relative start time (ESτ ) and the latest
relative finishing time (LFτ ) of a task τ based on S.

Definition 3: Earliest Relative Start Time (of a Task).
Let τ be a task in schedule S. The earliest relative start time
(ESτ ) of τ is the minimum relative start time among all jobs
of τ in S.

ESτ = min
∀J∈τ

SJ (3)

Definition 4: Latest Relative Finishing Time (of a Task).
Let τ be a task in schedule S. The latest relative finishing time
(LFτ ) of τ is the maximum relative finishing time among all
jobs of τ in S.

LFτ = max
∀J∈τ

FJ (4)

In order to exemplify definitions 1 to 4, we show in Figure
2 a schedule S for three tasks that are part of a CEC E,
E = (τ1 → τ2 → τ3). In this example, we analyze task τ2,
which has three jobs in S . Following definitions 1 and 2, the
first job of τ2, J(1), has SJ(1) = 2 and FJ(1) = 3, while
J(2) has SJ(2) = 0 and FJ(2) = 1. J(3) has SJ(3) = 1
and FJ(3) = 2. Following definitions 3 and 4, ESτ2 = 0 and
LFτ2 = 3. By using definitions 1 to 4, ESτ and LFτ for
the other tasks in E, ESτ1 = 0 and LFτ1 = 1 for τ1, while
ESτ3 = 1 and LFτ3 = 2 for τ3.

Fig. 2: Schedule S for a CEC E = (τ1 → τ2 → τ3)

Based on the values of ESτ and LFτ , our proposed method
shifts and shortens the communication intervals of a given task
τ . It repositions the communication intervals of τ by shifting
them according to ESτ . For instance, it sets the new phase of
τ to be: φτ = φ′τ +ESτ , φ′τ is τ ’s initial phase. Our method
shortens the length of τ ’s communication intervals according
to LFτ . Since the boundaries of Iτ are relative points in
time with respect to τ and our proposed method shifted τ



according to ESτ , begin(Iτ ) = 0 and end(Iτ ) = LFτ−ESτ .
Therefore, by setting Iτ = [begin(Iτ ), end(Iτ )], and Lτ = Iτ ,
our method shortens and shifts the communication intervals of
τ . For instance, for task τ2 shown in Figure 2, instead of setting
Lτ2 = [0, Tτ2 ], i.e., [0, 5], our method sets Lτ2 = Iτ2 = [0, 3].
Note that in this example τ2 is not shifted because ESτ2 = 0.

In Figure 3, we show the communication boundaries of
interval LJ(i) for a given job J(i) of task τ assuming Lτ = Iτ .

Fig. 3: Communication boundaries of interval LJ(i) for a
given job J(i) of task τ assuming Lτ = Iτ

Note that although our method adds a phase ESτ to a task
τ , neither the schedulability of the task set nor jobs’ execution
order in schedule S are affected: for any J(i) ∈ τ , i ∈ N+,
there is no J(i) that executes before (i−1)Tτ+ESτ according
to S. All J of τ have to wait at least ESτ time units after its
release in order to execute. Therefore, as long as our method
postpones the release of τ by ESτ time units, ∀τ ∈ Γ, our
method does not affect the schedulability of the task set and
preserve the execution order of jobs in schedule S.

B. Computing Communication Points

Since the logical read and write-events of J happen at
well defined points in time, it is possible to identify the
communication points where data propagates from one task to
the other. Martinez et al. [6] presented an analysis to compute
the communication points between two tasks applying the LET
model assuming that |Lτ | = Tτ , ∀τ ∈ Γ. As our method
shortens and shifts communication intervals, the assumption
does not hold anymore and the analysis is no longer applicable.

Inspired by the work done by Martinez et al. [6], we present
a new analysis to compute the communication points of tasks
applying the LET model assuming that Lτ = Iτ in theorems 1
and 2. Below we define the terms publishing point and reading
point, which are later used in theorems 1 and 2.

Definition 5: Publishing Point. Given a pair of tasks in a
CEC E, where τi → τi+1, i ∈ {1, 2, · · · , |E| − 1}. Let a
publishing point (Pnτi,τi+1

) be the nth point in time where the
resource shared by τi and τi+1 is updated by τi. After Pnτi,τi+1

,
no other logical write-event of τi will take place before the
next logical read-event of τi+1.

Definition 6: Reading Point. Given a pair of tasks in a CEC
E, where τi → τi+1, i ∈ {1, 2, · · · , |E| − 1}. Let a reading
point (Qnτi,τi+1

) be the nth point in time where the resource
shared by τi and τi+1 is read by τi+1. The logical read-event
of τi+1 after the nth publishing point of τi is the reading point
Qnτi,τi+1

.

Theorem 1: Let τi → τi+1 be a pair of tasks applying the
LET model with schedule-aware intervals in a CEC E, where
Tτi ≤ Tτi+1

, i ∈ {1, 2, · · · , |E| − 1}. Then the reading and
publishing points between τi and τi+1 can be computed as:

Qnτi,τi+1
= nTτi+1 + φτi+1 (5)

Pnτi,τi+1
=

⌊
Qnτi,τi+1

− φτi − end(Lτi)

Tτi

⌋
Tτi + φτi + end(Lτi)

(6)

n ≥
{

0, if φτi+1
≥ φτi + end(Lτi)⌈

φτi+end(Lτi )−φτi+1

Ti+1

⌉
, otherwise

Proof: We prove this theorem in two steps.
Step 1 (Reading point): Since Tτi ≤ Tτi+1 , there is always one
job of τi being released between two job releases of τi+1. That
means, τi always updates the resource shared with τi+1 before
each logical read-event of τi+1. By definition (Section III-B),
the inputs of τi+1 are logically updated at begin(Lτi+1

), which
occurs every Tτi+1 time units after φτi+1 . Therefore, a reading
point between τi and τi+1 occurs every nTτi+1 + φτi+1 .
Step 2 (Publishing point): By definition (Section III-B), the
logical write-event of the first job of τi logically occurs at
φτi + end(Lτi). That means, any reading point Qnτi,τi+1

has
to be ≥ than φτi + end(Lτi). If Qnτi,τi+1

= φτi + end(Lτi),
then Pnτi,τi+1

= Qnτi,τi+1
. If Qnτi,τi+1

> φτi + end(Lτi), the
publishing point that immediately precedes Qnτi,τi+1

depends
on how many logical write-events of τi happened within
the interval [φτi + end(Lτi), Q

n
τi,τi+1

]. Since logical write-
events of τi occur periodically according to Tτi , the num-
ber of logical write-events within the considered interval is⌊
Qnτi,τi+1

−φτi−end(Lτi )
Tτi

⌋
. Hence, the publishing point that im-

mediate precedes Qnτi,τi+1
is at

⌊
Qnτi,τi+1

−φτi−end(Lτi )
Tτi

⌋
Tτi +

φτi + end(Lτi).

Theorem 2: Let τi → τi+1 be a pair of tasks applying the
LET model with schedule-aware intervals in a CEC E, where
Tτi > Tτi+1 and i ∈ {1, 2, · · · , |E| − 1}. Then the publishing
and reading points between τi and τi+1 can be computed as:

Pnτi,τi+1
= nTτi + φτi + end(Lτi) (7)

Qnτi,τi+1
=

⌈
Pnτi,τi+1

− φτi+1

Tτi+1

⌉
Tτi+1

+ φτi+1
(8)

n ≥
{

0, if φτi+1
≤ φτi + end(Lτi)⌊

φτi+1
−(φτi+end(Lτi ))

Ti

⌋
, otherwise

Proof: We prove this theorem in two steps.
Step 1 (Publishing point): Since Tτi > Tτi+1

, there is always
one job of τi+1 being released between two job releases of τi.
That means, τi+1 always reads the resource shared with τi after
each logical write-event of τi. By definition (Section III-B), the
outputs of τi are logically updated at end(Lτi), which occurs



every Tτi after φτi + end(Lτi). Therefore, a publishing point
between τi and τi+1 occurs every nTτi + φτi + end(Lτi).
Step 2 (Reading point): By definition (Section III-B), the
logical read-event of the first job of τi+1 logically occurs
at begin(Lτi+1

), i.e., φτi+1
. That means, any reading point

Qnτi,τi+1
has to be ≥ than φτi+1

. By intuition, if Pnτi,τi+1
≤

φτi+1 , then Qnτi,τi+1
= φτi+1 . If Pnτi,τi+1

> φτi+1 , the reading
point that immediately succeeds Pnτi,τi+1

depends on how
many logical read-events of τi+1 happened within the interval
[φτi+1

, Pnτi,τi+1
]. Since logical read-events of τi+1 occur peri-

odically according to Tτi+1
, the number of logical read-events

within the considered interval is
⌈
Pnτi,τi+1

−φτi+1

Tτi+1

⌉
. Hence,

intuitively, the read point of τi → τi+1 that immediately

succeeds Pnτi,τi+1
is at

⌈
Pnτi,τi+1

−φτi+1

Tτi+1

⌉
Tτi+1

+ φτi+1
.

In Section V, we show how to compute the E2E latencies
of a given CEC using theorems 1 and 2.

V. COMPUTING END-TO-END LATENCIES

In Section IV we presented a method that exploits informa-
tion from a schedule and define new communication intervals
for tasks applying the LET model. Since our method shortens
and shifts the communication intervals, we derived theorems 1
and 2 to identify the points in time when data propagates from
one task to another in a CEC. In the following, we demonstrate
how to identify which job chains have to be investigated during
the E2E analysis of a multi-rate CEC. We also show how to
compute the maximum reaction time and data age latencies
related to those job chains.

A. Identifying Job Chains

Due to the under/oversampling nature of multi-rate CECs,
some job chains might have jobs in common. For instance,
when multiple actuations (outputs) of a CEC E are based on
the same sampled (input) data, multiple job chains have the
same J(i) as their J1 in E. As mentioned in Section II, when
analyzing the data age of a multi-rate CEC, it is necessary to
know for how long a sampled value affects the actuation of the
CEC, i.e., know the time interval between two consecutive job
chains with different J(i) as their J1. In order to distinguish
job chains that have different J(i) as their J1, below we define
the term primary job chain.

Definition 7: Primary Job Chain. Given a set of job chains
that have the same J(i) as their J1. We call primary job
chain (pcE), the job chain with the earliest end(LJ|E|) in
the set. pcEi = (J1 → J2 → · · · → J|E|) represents the
ith primary job chain of E, i ∈ N+. Given a prime job
chain pcEi , we represent the next prime job chain of E after
pcEi as pcEi+1. That is, pcEi+1 is the first job chain after pcEi
that has a different J(i) as J1. Function pcEi (k) returns the
communication interval LJ(k) of the kth job in the given
primary job chain, k ∈ {1, 2, · · · , |E|}. Function l(pcEi ) return
the time interval between end(pcEi (|E|)) and begin(pcEi (1)).

In order to identify the primary job chains of a given
CEC E, our method first identifies the job chains of E using

algorithms 1 and 2. As shown by Leung et al. [23], for a
task set with periodic tasks and offsets, a schedule S repeats
itself every LCM(Tτ1 , · · · , Tτ|E|) units of time. The repetition
starts at: Φ(E) + H(E), Φ(E) = max(φτ1 , · · · , φτ|E|) and
H(E) = LCM(Tτ1 , · · · , Tτ|E|). Günzel et al. [10] showed
that for the sake of computing the maximum reaction time
and data age latencies of a given CEC E applying the LET
model, it is enough to analyze the job chains within one of
the repetition intervals after the warm-up period. The warm-up
period covers the time interval required for an input to fully
traverse E for the first time [10].

In order to identify which jobs are part of the job chains
within one of the repetition intervals, our method applies
Algorithm 1 to all jobs of E(|E|) released within the rep-
etition interval. The process of identifying jobs chains starts
with the J|E| that has the earliest begin(LJ|E|) within the
repetition interval. Our method starts the analysis with the
last communication task pair in E, i.e., τ|E|−1 → τ|E|. By
applying Algorithm 1 to a given J|E| of E(|E|), our method
obtains the publishing point related to a J|E|−1.

Algorithm 1 Compute publishing points
Input: begin(LJi ), τi−1, τi

1: if Tτi−1 ≤ Tτi then

2: According to Theorem 1

3: else

4: According to Theorem 2

5: end if

6: Find mmax, the largest value of m such that Pmτi−1,τi
≤ begin(LJi )

Output: Pmτi−1,τi

Using the output of Algorithm 1 as an input to Algorithm 2,
our method computes the publishing and reading points of the
previous communication task pair in E, i.e., τ|E|−2 → τ|E|−1.
Note that the process of identifying a job chain‘ starts from its
tail (J|E|) and stops when its head (J1) is found. Our method
identifies the remaining part of the job chain by applying
Algorithm 2 recursively to all the other communication task
pairs in E until our method obtains the reading and publishing
point related to a job J1 of E(1).

Algorithm 2 Compute reading points
Input: Pnτi−1,τi

, τi−2, τi−1

1: if Tτi−2 ≤ Tτi−1 then

2: According to Theorem 1

3: else

4: According to Theorem 2

5: end if

6: Find mmax, the largest value of m such that Qmτi−2,τi−1
< Pnτi−1,τi

7: n = mmax

8: Compute Qnτi−2,τi−1
and Pnτi−2,τi−1

9: i = i− 1

Output: Qnτi−1,τi
and Pnτi−1,τi



Our method uses Equation 9 on each identified publishing
point (Pnτk,τk+1

), k ∈ {1, 2, · · · , |E|−1}, in order to determine
the ith job of each task τk that is part of the communication
task pairs in the CEC E. Note that reading points could also
be used to determine the ith job of each task τk, i.e., i =

1 +
Qnτk,τk+1

−φτk
Tτk

.

i = 1 +
Pnτk,τk+1

− end(Lτk)

Tτk
(9)

Following Definition 7, our method selects, within the
repetition interval, the primary job chains among the set of
job chains identified using algorithms 1 and 2. Our method
adds the selected primary job chains to a set ζ and use it to
compute the maximum reaction time and data age latencies.

B. Computing the Maximum Reaction Time and Data Age
Latencies

As discussed in Section V-A, in order to compute de
maximum reaction time and data age latencies of a given CEC
E, our method first needs to identify all primary job chains
of E within one of the repetition intervals after the warm-
up period. In this section we show how to compute the E2E
latencies of a CEC E given the set of primary job chains
within a repetition interval.

We follow the definitions of maximum reaction time and
data age latencies used by Günzel et al. [10]. As mentioned
in Section III, we consider an additional delay z between
the occurrence of an external event (input) and its sampling
by J1. In the same manner, we consider that z′ represents
an additional delay between end(LJ|E|) and the actuation
(output). Therefore, in order to compute the maximum reaction
time and data age latencies as done by Günzel et al. [10], we
append z to the beginning of a primary job chain pcE and
z′ to its end, i.e., pcE = (z, J1, · · · , J|E|, z′). Despite the fact
that the maximum latency values of the reaction time and data
age are equivalent [10], in the following we also demonstrate
how to calculate individually the intermediate values of those
two latency metrics.

1) Maximum Reaction Time: For a given CEC E and its
set of primary job chains ζ, our method computes the reaction
time for all pcEi ∈ ζ considering the maximum delay z that an
incoming input could suffer. In the worst case, for a primary
job chain pcEi , an input arrives right after the logical read-
event of the first job of pcEi . As a result, the incoming input
has to wait until the logical read-event of the next primary job
chain (pcEi+1) in order to be recognized and propagated through
E. We consider, as Günzel et al. [10], that actuation takes place
at the logical write-event of pcEi+1(|E|), i.e., z′ = 0.

Equation 10 shows how to compute the reaction time of
a given primary job chain pcEi assuming the maximum input
delay.

RT (pcEi ) = z + l(pcEi+1) + z′ (10)

where:
z = begin(pcEi+1(1))− begin(pcEi (1)) and z′ = 0

The maximum reaction time of a CEC E is:

MRT (E) = max
∀pcEi ∈ζ

RT (pcEi ) (11)

2) Maximum Data Age: For a given CEC E and its set of
primary job chains ζ, our method computes the data age for all
pcEi ∈ ζ considering the maximum delay z′ that an actuation
output could suffer. In the worst case, for a primary job chain
pcEi , the last actuation based on a given input happens right
before the logical write-event of the last job of pcEi+1. We
consider, as Günzel et al. [10], that the input data on which
the outputs are based is read during the logical read-event of
pcEi (1), i.e., z = 0.

Equation 12 shows how to compute the data age of a given
primary job chain pcEi assuming the maximum output delay.

DA(pcEi ) = z + l(pcEi ) + z′ (12)

where: z = 0 and z′ = end(pcEi+1(|E|))− end(pcEi (|E|))
The maximum data age of a CEC E is:

MDA(E) = max
∀pcEi ∈ζ

DA(pcEi ) (13)

VI. PRACTICALLY ENFORCING DETERMINISTIC
COMMUNICATION POINTS

The LET model assumes that tasks’ inputs and outputs are
logically updated at the beginning and end of their commu-
nication intervals. However, platforms are not infinitely fast
to realize such behavior. Therefore, the deterministic ordering
and atomic execution of these updates must be enforced to
preserve the desired logical behavior. At the implementation
level, the LET model is enforced by using hardware/software
mechanisms [24] [17]. In the literature, different ways to
implement the logical behavior of the LET model have been
proposed [2] [5] [17] [18] [25].

One way to implement the logical behavior of the LET
model is by implementing auxiliary tasks, which are respon-
sible for updating the inputs and outputs of the tasks [2] [17].
For instance, the implementation of a task τ would consist of
three tasks: (i) a reader (copy-in) task τR; (ii) an execution task
τE ; (iii) a writer (copy-out) task τW . Hereafter, we discuss
one of the possibilities of implementing the logical behavior
of the LET model when shortening and shifting communica-
tion intervals. Note that other implementations respecting the
logical behavior and the deterministic ordering of execution
of the tasks could be used.

At the beginning of Lτ , the auxiliary reader task (τR) copies
all the input data necessary for τE’s execution to a local
variable. At the end of Lτ , the auxiliary writer task (τW )
copies τE’s output data to the shared variable that will be
accessed by the next task in the CEC. Therefore, tasks τR

and τW are responsible for updating the inputs and outputs of
τ at the boundaries of Lτ .

Since the auxiliary reader (resp. writer) task has to be
executed as close as possible to the start (resp. end) of Lτ , τR

and τW have to be characterized by a very short WCET and a



very high priority level [17]. Therefore, the correct positioning
of τR and τW is important in order to achieve the expected
logical behavior of τ [2].

We use the parameters of τ and its communication interval
Lτ to set the parameters of τR, τE and τW . The auxiliary
tasks τR and τW are periodic task with period TτR (resp.
TτW ) equal to Tτ . The correct positioning of τR and τW

is done by means of an additional phase. Therefore, τR has
a phase φτR = φτE = φ′τ + ESτ , while τW has a phase
φτW = φ′τ +LFτ . We consider that the execution times of the
copy operations done by τR and τW are very short and their
overhead included in Cτ . The parameters (CτE , TτE , DτE ) of
τE are equal to the parameters of τ .

Figure 4 shows how the auxiliary tasks τR and τW of a
given task τ can be modeled. Note that in Figure 4 τE = τ .

Fig. 4: Enforcing deterministic communication points by
means of auxiliary tasks

The copying operations carried out by the auxiliary tasks
(τR and τW ) are facilitated via highest priority interrupts,
which are added for each periodic auxiliary task. These
interrupts are activated with the same period as the tasks
they correspond to, allowing them to execute immediately. In
order to obtain freshest data values, write output operations
are favored over read input operations. Therefore, the write
output operations are given the highest priority in the system,
whereas read input operations are given the second highest
priority.

VII. EXPERIMENTAL RESULTS

We evaluate our work based on the Real World Automotive
Benchmarks presented by BOSCH [8] and synthetic task sets.
We compare our method with the approach presented by
Bradatsch et al. [7] and the LET model. The method proposed
by Bradatsch et al. [7] will be referenced as the WCRT-
LET model. We consider that the task sets run on a system
comprising four cores and that tasks are scheduled according
to rate monotonic.

A. Real World Automotive Benchmarks
We generated and tested 500 schedulable task sets based on

the parameters of the Real World Automotive Benchmarks [8].
We assign periods to tasks following the definitions of Table
III in [8]. The range of possible periods is: [1, 2, 5, 10, 20,
50, 100, 200, 1000]ms. Note that the sum of the probabilities
for possible periods in [8] is 85%. The remaining 15% is for
angle-asynchronous tasks. Since, we do not consider angle-
asynchronous tasks, we divided all probability values by 0.85.
Inter-task communications follow the definitions of Table II
in [8]. For each task we generated a WCET following the
definitions of Tables IV and V in [8].

As stated in [8], in typical engine control applications there
are between 30 and 60 CECs. In our experiments, on average,
there are 38 CECs per task set. The number of periods per CEC
is randomly chosen between the interval [1,3] following the
definitions of Table VI in [8]. For each period that composes
the CEC, there are 2 to 5 tasks with that same period (Table
VII in [8]). Each CEC is composed of 2 to 15 tasks. The total
utilization of cores is ≈ 71% (per core), on average.

In figures 5 and 6, we show the maximum reaction time
and data age results respectively. The box plots show the
25th percentile, average, 75th percentile and the maximum &
minimum-case values. Note that in Figure 5, we normalized
the results with respect to the maximum reaction time obtained
by the LET model, while in Figure 6 we normalized the results
with respect to the maximum data age.

Fig. 5: Normalized maximum reaction time w.r.t LET

As shown in Figure 5, our model managed to obtain
maximum reaction time values that are on average, ≈ 63%
lower than the values obtained by LET. Similarly, the WCRT-
LET model managed to improve the maximum reaction time
values by ≈ 20%.

As recently shown by Günzel et al. [10], values for the
maximum reaction time and data age are equivalent. Figure
6 shows the results for the maximum data age. On average,
our method obtained maximum data age values that are ≈
63% lower than the values obtained by LET. The WCRT-LET
model improved the maximum reaction time values by ≈ 20%.



Fig. 6: Normalized maximum data age w.r.t LET

Table VI in [8] shows that 70% of the CECs present in
the benchmarks are single-rate. Since our method shortens
and shifts the communication intervals of the tasks, it makes
possible for incoming inputs to propagate through the CEC
within one repetition interval rather than in multiple as with
|Li| = Ti. As a result, in some cases our method resulted in an
improvement exceeding 80% of that achieved using the LET
model as shown in figures 5 and 6.

B. Synthetically Generated Workloads

We randomly generated 500 schedulable task sets, where
we chose task periods and inter-task communication as in the
previous experiment. However, this time we allowed tasks to
have higher WCET values, increased the number of possible
periods per CEC from 3 to 5 and reduced the probability of
single-rate CECs from 70% to 7%. The 63% difference was
split equally among the other possible number of periods. The
new probabilities for possible number of periods per CEC are
{1: 7%, 2: 35.75%, 3: 25.75%, 4: 15.75%, 5: 15.75%}.

As a result of increasing the number of possible periods in
a CEC, we increased the total number of tasks composing it
from 15 to 25. We chose randomly the amount of CECs per
task set from interval [10, 20], with an average of 13 CECs per
task set. The total utilization of cores is ≈ 80%. The obtained
results are summarized in figures 7 and 8.

As shown in figure 7 and 8, our method outperformed
WCRT-LET and the LET model once again. For synthetic
task sets, our model managed to obtain maximum reaction
time values that are on average, ≈ 67% lower than the values
obtained by LET, while the WCRT-LET model managed to
improve the maximum reaction time values by ≈ 20%.

In Figure 9, we analyze a single task set to further show how
much improvement our method achieves over the LET model
with respect to the maximum data age. We randomly selected
one task set from the 500 schedulable task sets to analyze.
The selected task set has 12 CECs and a total of 107 tasks
distributed on the 4 cores. For example, the CEC with ID=9
has 18 tasks and 5 periods [20, 50, 100, 200, 1000]ms. Figure

Fig. 7: Normalized maximum reaction time w.r.t LET

Fig. 8: Normalized maximum data age w.r.t LET

9 shows that for the CEC with ID=9, our method improved the
maximum data age value by ≈ 76%, while the WCRT-LET
model improved it by ≈ 20%.

Fig. 9: Comparison of the normalized maximum data age
values of the CECs present in a randomly selected task set



VIII. CONCLUSION

In this paper, we proposed a method to obtain less pes-
simistic end-to-end latencies of multi-rate cause-effect chains
applying the LET model, by considering knowledge of the
schedule in later design phases of safety critical applications.

Our method shortens and shifts communication intervals
by exploiting schedule information, while maintaining the
deterministic characteristics of the LET model and tasks’
periodicity.

Experiments showed that for task sets based on the Real
World Automotive Benchmarks presented by BOSCH [8] or
randomly generated, our method produced less pessimistic
end-to-end latencies than previous works. On both test case
scenarios, it obtained end-to-end latency values that are, on
average, ≈ 65% lower when compared to the LET model.

If needed, e.g., for legacy reasons, our method does not have
to be applied to the entire task set, but also to only a subset.

In future work, we plan to investigate the impact of our
method in cause-effect chains containing different execution
models and how it can influence the end-to-end latencies.
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Coupled with a Security-Enhanced Ada Runtime
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Abstract

In an age where security breaches and cyberattacks
have become increasingly prevalent, the need for robust
and comprehensive security mechanisms within embed-
ded real-time systems is paramount. We propose a novel
solution to enforce fault-detection and increase security
assurance: "Security by Default", specifically combin-
ing Capability Hardware Enhanced RISC Instructions
(CHERI) ISA microprocessor extensions with a CHERI
pure-capability compliant Ada runtime. We present case
studies showing how combining memory-safe hardware
with memory-safe software results in a mutualistic lay-
ered approach to security and increases assurance of
embedded real-time systems. We argue that this satis-
fies regulatory security verification objectives outlined
in standards like the "Airworthiness Security Process
Specification" (DO-326A/ED-202A [1] [2]).

Keywords: Cyber-security, CHERI, Ada, Airworthiness
Security, Memory-safety, embedded real-time systems

1 Introduction
As the UK’s National Cyber Security Centre (NCSC) aptly
states, "Secure by Default" is defined as "technology which
has the best security it can without you even knowing it’s
there or having to turn it on." [3]. This principle served as the
guiding philosophy of our research as we set out to evaluate
the security assurance claims being made over the adoption
of a CHERI compliant microprocessor and a CHERI pure
capability runtime environment that understands how best to
benefit from the CHERI extended instruction set architecture
(ISA). More specifically, this paper describes the develop-
ment steps and subsequent evaluation of a security-hardened
Ada runtime executing on Arm’s Morello CHERI extended
ISA microprocessor [4]. The goal of the research was to
demonstrate and evaluate a layered approach to security that
avoids common failure modes and provides security with
significantly reduced effort.

Whilst at first glance it may seem unnecessary to implement a
CHERI pure-capability compliant runtime for a memory-safe
programming language [5], our research shows that the two
technologies are complementary, and although there are over-
laps in memory safety checks, the limitations of one approach
are overcome by the feature set of the other. This paper details
why combining a memory-safe programming language and
runtime with a memory-safe microprocessor results in a se-
curity framework upon which developed embedded real-time
systems are resilient to attack and capable of attack recovery.

This paper assesses security claims about CHERI regarding
the benefits of fine-grained memory protection, and the en-
abling of granularity in memory access controls that, while
not entirely novel (other historical solutions have come and
gone), are claimed to elevate security assurance levels of
software executing on CHERI hardware. CHERI offers ex-
ecution security through dynamic fine-grained memory pro-
tection checks, which offer a different approach than other
microprocessor security features like trust zones and secure
boot [6]. This paper documents our research findings around
the security assurance impact when systems utilize CHERI
to precisely define which portions of memory are accessible
and which are off-limits. This evaluation includes measuring
the potential reduction of a system’s attack surface, CHERI’s
overall ability to minimize memory-based vulnerabilities (for
example, buffer overflows and data injection attacks), and the
impact reduction following unauthorized electronic interac-
tion.

Moreover, this paper quantifies the reduction in risk of privi-
lege escalation and unauthorized data access. CHERI’s object
capabilities grant programs the ability to manage and control
access to their data structures and resources with precision.
This level of control can be utilized by systems to enact robust
isolation between components.

Our research shows that CHERI adoption can not only provide
a security layer to applications written in a memory-unsafe
language like C but also provide a benefit to the adoption of
applications written in a memory-safe language like Ada or
Rust [5]. Thus CHERI can enhance critical systems, offering
high resilience against security threats. This paper explores
the integration of CHERI ISA extensions into high-integrity
embedded systems and answers the question: Can CHERI
bring extended memory protection and isolation, thereby en-
hancing the security posture of high-integrity, real-time em-
bedded systems?

Ada, as a high-integrity programming language, is focused on
supporting high-assurance, safety-critical, and embedded real-
time systems. Over the years, Ada has demonstrated its value
in various domains, including aerospace [7], defense [8], rail
[9], space [10] and multiple other safety-critical applications.
Its success is attributable to several key attributes, including
its robust type system, rigorous runtime checking, a history
of reliability and the availability of qualifiable freely licensed
open source tooling. Historically, these characteristics have
made Ada a valuable language for critical systems where
maintainability and safety are paramount.

EMBEDDED REAL TIME SYSTEMS (ERTS) 2024 Volume 24, Number 30, 11-06-2024
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This paper introduces and evaluates a security-enhanced Ada
runtime that extends the freely licensed open source GNAT
Pro Ada runtime environment [11] with a tailored set of se-
curity features that align with the CHERI architecture. To
assess the security benefits of coupling CHERI hardware with
the Ada programming language, we have developed spatially
safe and CHERI pure-capability compliant memory allocators
within the GNAT Pro Ada runtime. Spatial safety ensures
that out-of-bounds memory accesses beyond the bounds of
the allocated memory are detected. In addition, by leveraging
Ada’s runtime exception handling, we have implemented a
mechanism to propagate CHERI-hardware-detected memory
vulnerabilities into software exception handlers. We have
also assessed the different approaches the Ada language and
CHERI have taken to bounds checking, and we argue that
joint adoption provides a defense-in-depth approach.
1.1 Introduction to CHERI
CHERI is an extension of the RISC (Reduced Instruction Set
Computer) architecture to enhance memory safety and secu-
rity in computing systems. CHERI is a joint research project
of SRI International and the University of Cambridge [12],
CHERI introduces new instructions and architectural features
to enable fine-grained memory protection and mitigate com-
mon security vulnerabilities.

CHERI aims to improve memory safety by providing fine-
grained protection mechanisms, reducing the risk of memory-
related vulnerabilities such as buffer overflows and dangling
pointers. CHERI is a microprocessor ISA hardware secu-
rity toolkit for developing high-assurance software runtime
environments to secure application execution.

The CHERI instruction set architecture introduces security
extensions to standard memory addresses (i.e. pointers) via
the concept of capabilities. More specifically, CHERI capa-
bilities extend standard pointers with: a capability tag used
to define the validity of the capability, a specification of the
bounds of the accessible memory region within the address
space, a set of permissible actions related to the memory and
an object type field used for sealing capabilities (making them
immutable and non-dereferenceable).

CHERI enforces access control policies that could be missed
at the software level by directly incorporating processing
checks of capabilities into the hardware architecture, reduc-
ing the attack surface for malicious exploits. In addition,
CHERI was designed to be compatible with existing software,
allowing for gradual adoption and integration into existing
computing systems without requiring significant changes to
software development practices [12].

The CHERI Tag extension is a 1-bit value that defines the
validity of the memory address. Any attempt to dereference
invalid capabilities will result in a CHERI processor excep-
tion.

The hardware will raise a capability bounds fault hardware
exception if an instruction attempts to dereference a capa-
bility when the associated virtual address is outside the con-
figured capability bounds. In addition, the capability tag is
automatically cleared by the CPU architecture when instruc-
tions attempt to change the configuration of a capability in

Figure 1: General Purpose Register Integer Pointer vs CHERI
Capability

an invalid way (for example, when trying to increase a ca-
pability’s bounds). In addition, CHERI supports the concept
of fine-grained memory protection by enforcing capability
inheritance. Capability inheritance ensures that capabilities
cannot be created out of thin air; instead, capabilities are
derived from other valid capabilities and inherit the parent
capability’s bounds and permissions. Capability inheritance
is also monotonic; capabilities cannot increase their bounds or
permissions beyond those inherited from the parent capability.
This policy allowed us to build an Ada runtime fine-grained
memory protection model that adheres to the principle of least
privilege. Figure 1 shows the memory layout and some of the
enforcement policies made available via capabilities.

CHERI introduces new instructions for working with capa-
bilities, such as loading and storing capabilities in memory,
restricting the bounds and permissions of capabilities, and
sealing and unsealing capabilities. These instructions allow
for the creation, manipulation, and enforcement of capabili-
ties within the hardware architecture. Additionally, CHERI
includes instructions for performing capability-based memory
accesses, bounds checking, and permission checks to ensure
secure and authorized access to memory regions.

Furthermore, CHERI introduces new registers dedicated to
storing capabilities, such as the capability register file. These
registers hold capabilities that represent specific memory re-
gions and include metadata such as base address, bounds, and
permissions. The capability register file provides a means for
managing and manipulating capabilities within the hardware,
enabling efficient enforcement of memory protection policies
and access control mechanisms.

1.2 Introduction to the Ada Runtime
The Ada language provides a significant set of features includ-
ing multitasking, exception handling and memory manage-
ment. To provide these features it requires a runtime library.
The runtime library is similar but not identical to a standard
library seen in other languages. It provides both interfaces
for the compiler and the programmer to use. Some parts of
the library are intended to be used by programmers, such
as I/O interfaces while others are used indirectly like the
multitasking interface.
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The runtime library and the compiler work together to provide
the complete set of Ada features to the programmer. Features
like tasking or returning variable sized objects from functions
are defined in the language itself but require runtime support.
If one of these features is used, the source code itself will
not contain any direct reference to the runtime. Instead the
compiler will generate the required code to call the runtime
library transparently to the user. The following paragraphs
will go through the major features in more detail.

The Ada language and its runtime, support a feature called
elaboration. It is used to ensure the initialization of all global
objects in the proper order. It also takes care of initializing the
runtime itself before starting the program execution. This fea-
ture is implemented as an additional step in the compilation
process. After compilation, the compiler will call the binder.
The binder evaluates the dependencies of both the program
and the runtime features it uses and creates the proper ini-
tialization code. It will also detect dependency issues in the
initialization such as circular dependencies. After the code
generation the compilation process will continue similar to
other languages.

The runtime also handles a part of the memory management
that is typically not present in other languages. Ada supports
returning variable sized objects from functions without requir-
ing a heap. In a compiled language the compiler in part takes
care of managing the stack. While code can use the stack
for objects whose size is known only at runtime it can only
do so on the top of the stack. When a function is called the
memory for its return value is stored on the stack before the
new stack frame is created. This requires knowledge about
the size of the returned data. Otherwise the return value may
overflow its allocated memory. Ada solves that by having a
secondary stack. This secondary stack is not used for stack
frames and therefore can be used for dynamically sized ob-
jects at runtime. If a function returns a variable sized object
the compiler will emit code that uses the secondary stack to
allocate memory for this object when returning the object.
The stack implementation itself is part of the runtime library
as this allows it to be adapted to the underlying system.

Tasking, or threading, in Ada is supported at the language
level with the language providing a specific syntax and se-
mantics for easy use by the programmer. It also allows an
abstraction away from the underlying platform. Furthermore
the language allows different tasking profiles providing differ-
ent feature sets depending on the application. The compiler
will generate expanded code specific to the chosen tasking
profile and feature set which will call the runtime library pro-
viding the implementation specific to the underlying platform.

While the list of features highlighted here is not exhaustive it
provides an overview of the specific features the Ada runtime
library provides to the language, different from a typical
standard library. The runtime provides the interface between
the expanded code and the underlying system.

GNAT Pro provides a diverse set of runtime libraries for dif-
ferent targets and use cases. These range from the native
runtime on native targets, which supports a wide selection
of features, such as networking and file handling, to bare

metal runtimes for resource-limited targets, which still en-
able the use of features like tasking and the secondary stack
without the need for an underlying operating system. Bare
metal runtimes are typically deployed on embedded real-time
systems.

1.3 Introduction to the Edge Avionics Project
The research described in this paper is funded by the Rapid
Capabilities Office (RCO) of the UK Royal Air Force (UK
RAF) via the Edge Avionics project (‘Edge Avionics’). Edge
Avionics is a consortium led on behalf of the RCO by the
Defence Science and Technology Laboratory (Dstl, an execu-
tive agency of the UK Ministry of Defence (MOD) [13]) and
delivered by GE Aerospace [14] (the prime), Wind River [15]
and AdaCore [16]. The project aims to demonstrate a network
of secure units running a distributed application at scale and
capable of demonstrating resilience at the network level. A
Dstl-owned and modified air platform mission system will
be used to check the impact of the new security controls.
Through Edge Avionics, the Edge Avionics consortium can
substantiate CHERI security claims within a defense environ-
ment whilst investigating legacy software rework overheads.

2 GNAT Pro for Morello Ada: Security by
Default for Embedded Real Time Sys-
tems

This paper presents the architectural details of multiple
toolchains for GCC [17] and LLVM-targeted [18] bare-metal
Morello systems. In all cases, we have focused on Ada cross-
compiler configurations, basing them on the freely licensed
open source GNAT Pro for the bare-metal product line, aug-
mented to support an Ada application benefiting from CHERI
features.

The toolchain focuses on using CHERI to enforce spatial
memory safety between objects in memory. For each object in
memory (whether on the stack, heap or statically allocated), a
capability is created at runtime whose bounds are restricted
to the size of the allocated object. Restricting the bounds
prevents out-of-bounds access via a pointer to one object
from being able to access another object. The compiler and
runtime work together to ensure that all memory allocations
are correctly bound and with the correct permissions. The
compiler manages the allocation of objects on the primary
stack, and the runtime manages heap and secondary stack
allocations.

The compiler is also responsible for making sure that the
bounds and permissions, obtained when an object is allocated,
are subsequently used for all accesses made to the object or
parts of it. That is a relatively easy task in Ada because the
language maintains a strict separation between addresses (of
objects) and offsets that may be added to these addresses
during regular operations. In cases where this separation
is broken, which can happen only by using very low-level
devices, the compiler gives an explicit warning.

For objects on the primary stack, the compiler sets up a ca-
pability for each object on entry to the stack frame. Each
capability is set up to point to the portion of the stack frame
that is allocated for the object, with the bounds set to the
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Figure 2: Memory allocation without spatial safety. The al-
located pointer (capability) inherits the bounds to the entire
heap/stack and can access other allocated objects

Figure 3: Memory allocation with spatial safety. The allocated
pointer’s (capability) bounds are limited to the size of the allo-
cated block. The pointer cannot be used to access other allocated
objects

allocated region. These capabilities are inherited from the
capability stack pointer (CSP) which prevents out-of-bounds
access in case of a stack overflow.

The heap and secondary stack memory allocators in the run-
time have been augmented to take advantage of CHERI and
provide spatial safety between memory allocations. Each
allocator has a capability to the entire block of memory as-
signed to the allocator, which is used to derive capabilities to
fulfill allocation requests. For each allocation, the allocator
returns a pointer to the allocated memory with the bounds
limited to the size of the allocation to enforce spatial safety.
The difference between the enforced bounding of the memory
allocation is shown in figures 2 and 3.

For runtimes built with exception propagation enabled, the
runtime implements a mechanism to catch CHERI processor
exceptions and convert them into Ada exceptions that can
be propagated, caught, and handled by user code. This is
discussed further in section 3.2.1.

3 Security Assessment Evaluation
Fine-grained memory allocation is a foundational element of
the developed security-enhanced Ada runtime. By implement-
ing tightly bounded memory allocation, stringent memory
safety checks can be performed by the CHERI hardware. Our
research shows that fine-grained memory allocation prevents
common vulnerabilities related to memory manipulation, such
as buffer overflows and data corruption. These checks ensure
that memory accesses remain within predefined bounds, min-
imizing the potential attack surface and acting as countermea-
sures to attacks that exploit memory vulnerabilities. Whilst a
regular Ada runtime comes with protection over the safe us-
age of the Ada language, the security-enhanced Ada runtime
also protects the parts of the language that are considered
unsafe, like memory overlays.

3.1 CHERI Limitations
Overall, CHERI provides the means to increase security as-
surance. However, it does not guarantee it, furthermore, the
benefits can only be realized with the correct usage of the

instructions and registers. More specifically, CHERI is mean-
ingless without a CHERI-compliant software runtime. How-
ever, by integrating capabilities directly into the hardware
architecture CHERI provides a solid foundation for develop-
ing demonstrably more secure software runtimes for building
more secure and resilient computing systems.

In addition, the protection offered by CHERI is highly depen-
dent on compiler configuration, and multiple factors must be
considered when assessing the security assurance offered by
adopting a CHERI-based CPU [19]. One major factor is pure-
capability vs hybrid mode. The code uses CHERI capabilities
for all pointers when configured in pure-capability mode. In
comparison, hybrid mode allows a mix of standard RISC
pointers and CHERI capabilities (typically configured via
source-code annotation). Whilst hybrid mode has the benefit
of integrating legacy systems with greenfield CHERI-enabled
development, the downside is that we can no longer guarantee
all pointers are capabilities, making security arguments harder
to write.

Furthermore, our research has found that Ada code often
requires low effort to port to CHERI, and in many cases,
we have found that the codebases worked with no changes.
Therefore, to focus our work on the highest levels of security
assurance we developed bare-metal Ada CHERI compilers
that only support pure-capability mode and enforce that all
pointers (programmer or compiler generated) benefit from
CHERI capability protections. As discussed later in this
paper, this required extensive changes to the GNAT Pro Ada
runtime [11].

By only supporting pure-capability CHERI, we enforce that
all pointers are represented in memory as CHERI capabilities
and that manipulation of a capability, and therefore the asso-
ciated Ada object, can only be performed through capability
instructions. Furthermore, the developed runtime must adhere
to the strict CHERI rules around pointer integrity and mono-
tonicity, specifically that valid capabilities cannot be created
out of thin air; they must be derived from other, valid capa-
bilities and the inherited bounds and permissions cannot be
broadened. This results in the following list of unsupported
Ada features which would require the creation of pointers
(capabilities) to arbitrary memory addresses at runtime:

• Ada.Tags.Internal_Tag (used for Ada tagged
types to convert an external tag - a string representa-
tion of an address - to an Ada tag, which is implemented
as a pointer in GNAT)

• Ada.Tags.Descendant_Tag (depends on
Ada.Tags.Internal_Tag)

• Reading Ada tagged objects from streams
(via S’Class’Input, as this depends on
Ada.Tags.Descendant_Tag)

• Reading addresses/pointers from streams (more specifi-
cally, Ada access types can be streamed to media, but we
can not support streaming the data back into an access
type)
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This prerequisite would unlikely pose a significant issue for
developing an Ada application on the presented solution. Fur-
thermore, a high-integrity system, as often found in an embed-
ded real-time system, would likely have been developed under
strict guidelines prohibiting using these Ada features. In ad-
dition, for the Ada.Tags.Internal_Tag limitation, this
is not a limitation of the Ada language, but rather reflects the
way GNAT currently implements this feature. There are al-
ternative implementations of Ada.Tags.Internal_Tag
that would not need to create capabilities out of thin air.
3.2 Regular Ada software runtime constraint

checks Vs CHERI runtime hardware checks
Ada provides various language-defined run-time checks to
protect against detectable bugs such as out-of-bounds array
accesses, range violations, integer overflow, and null pointer
dereferences. Run-time check failures raise exceptions, which
can be caught and handled by user-defined exception handlers
to gracefully recover from the error whilst ensuring unsafe
instructions are not executed. During the work to port the
GNAT Pro to bare-metal Morello architecture, we evaluated
the possibility of replacing these software run-time checks
with the CHERI hardware run-time checks to reduce the
overhead of the checks at run-time. We identified two kinds
of run-time checks for consideration: null pointer checks and
array bounds checks.

CHERI performs more robust pointer validity checks than
Ada. CHERI verifies the validity of a pointer by inspecting
the "tag bit" and ensures the control flow cannot dereference
pointers with an invalid tag. By contrast, Ada’s checks can
only detect null pointers; non-null pointers that refer to an
invalid memory location can still be dereferenced.

We evaluated using CHERI’s bounds checking to implement
Ada’s semantics for array index checking. However, we
found two issues that prevented CHERI from being able to
implement the semantics required by Ada’s language-defined
checks [20]. The rules of the Ada programming language
require raising a Constraint_Error exception before
accessing an array with an index value that is not within
the bounds of the array index type. This requires the bounds
check to be precise, even for very large bounds. The first issue
is that Morello architecture uses a compressed bounds format,
ensuring the bounds are precise for objects up to 4 KB [21].
For objects larger than 4 KB, however, the bounds must be
aligned to increasingly more significant powers of 2 address
boundaries. This prevents the bounds for large objects from
being represented precisely and thus requires padding in the
memory allocation to align the capability bounds, meaning
that CHERI will not detect minor accesses past the end of the
array in the padding area. The second issue is that array types
in Ada can be unconstrained where the array bounds are not
known at compile time. This requires the array’s bounds to
be stored and passed alongside the array object at runtime,
and this additional data must be within the bounds of the
underlying CHERI capability. These two issues mean the
CHERI bounds can be larger than the bounds checks enforced
by the Ada language.

While Ada’s compile-time and run-time checks ensure the cor-
rect usage of many parts of the language, some "unsafe" parts

do not have associated run-time checks and instead rely on the
programmer to ensure correct usage. The term "unchecked"
generally indicates Ada language features not covered by lan-
guage checks, such as Unchecked_Conversion, which
is used to cast between unrelated types. One particular fea-
ture considered unsafe is memory overlays, where an object is
allocated (overlaid) at the same address as another object, in-
troducing aliasing. There are no Ada language-defined checks
associated with memory overlays, so it is up to the program-
mer to ensure that the two objects have compatible sizes and
alignments and to avoid causing invalid data representations.

CHERI’s hardware run-time checks cover this gap and pro-
vide memory safety for these unsafe parts of the language.
For example, in the case of a memory overlay, the overlaid
object inherits the capability of the target object. This ensures
that any attempt to access beyond the bounds of the target
object will be prevented at run-time.

3.2.1 Beyond Language-defined Run-time Checks
CHERI’s hardware-level run-time checking provides addi-
tional memory safety assurances beyond language-defined
run-time checks. The hardware checks apply to all code, in-
cluding compiler-generated code that is not otherwise subject
to run-time checks. This can reveal errors and defects in parts
of the code that would otherwise go unnoticed and could
potentially lead to exploitable security vulnerabilities.

While porting the GNAT Pro Ada compilers to Morello, we
discovered a regression introduced in an unreleased develop-
ment version of the compiler front-end that led to an out-of-
bounds memory access. The regression occurred in a specific
case where a function returns a variable-sized object whose
size is known only at run-time. In this case, the compiler
allocates memory on the secondary stack to store the returned
object. The error was that the compiler used the wrong object
size in the call to the secondary stack allocator, resulting in
the allocation being too small to store the object. Subsequent
memory accesses to the returned object could then access
memory beyond the end of the allocation, potentially access-
ing other adjacent objects on the secondary stack which could
have led to an exploitable vulnerability.

This regression was found only by running our existing test
suites on Morello with our spatially safe secondary stack
allocator. Running the same test suites on conventional ar-
chitectures did not detect the regression. We also ran the test
suites with Valgrind [22] and AddressSanitizer [23] which
were also unable to detect the regression as all memory ac-
cesses were still within the bounds of the underlying buffer
used for the secondary stack.

3.3 Enhanced Security over Language Bindings
Static checks completed by the compiler ensure a significant
part of code correctness. While the programmer must define
types and function signatures properly, the compiler can check
for violations of these constructs. In C, this includes the
const modifier. If used in a function signature, the caller
can be sure that the passed value will remain unmodified
throughout the call. While there are ways to circumvent this
check, it has to be done explicitly. Without this circumvention,
the compiler verifies the value remains unmodified inside the
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function. Utilising the const modifier is a design decision
that improves the understandability of the code and reduces
the risk of wrong assumptions.

Ada employs a similar mechanism where function arguments
can be specified with the modifiers in, out, and in out.
Parameter mode in is the default and enforces that a value
is only passed into the function and must not be modified. It
is similar to the const modifier in C. Parameter mode out
requires the callee to set the value, allowing the caller to
assume initialization after the call. The modifier in out
specifies that the caller must pass an initialized value, which
the callee may modify. Additionally, when passing arrays
into a function, the array value contains information about
its bounds, allowing the compiler to insert runtime checks if
required.

While the compiler can do many checks and prevent many
problems, its scope is limited to the constructs of the language.
However, the compiler only creates machine code from source
code and does not connect the built parts of code, typically
object files. The linker does this task. The linker, having
only access to object files and symbols, cannot check types
or even function signatures when linking object files into an
application. It resolves symbols in object files with addresses,
ensuring the correct place in the final binary is executed when
the corresponding function is called.

This limitation is acceptable if the compiler can check types
and signatures. Still, it stops working when multiple lan-
guages are used in the same project and foreign function
interfaces are invoked for calls between languages. A foreign
function interface is a feature that allows the programmer to
tell the compiler that a particular function is imported and not
defined in the same language. Imported means that the com-
piler will keep references to the imported function unresolved
and instead expect the linker to resolve them. For these inter-
faces to be used, the programmer must declare the imported
function to have the same arguments, argument types, argu-
ment modes and a calling convention as defined in the other
language. It cannot check whether the imported declaration in
one language conforms to the exported definition in another.

Consider the following C and Ada code:

void print_string (const char *s, size_t len){
for(size_t i = 0; i < len; i++){

putchar(s[ i ]);
}

}

This C function prints a string by iterating over its characters
and printing each of them. The input string S is passed by
pointer and is declared const, forbidding the function from
modifying it. The following Ada program will import the
function and use it to print a string:

with Interfaces .C; use Interfaces.C

procedure Main is
procedure Print_String (S : char_array; Len : size_t ) with

Import,
Convention => C,
External_Name => "print_string";

Some_String : constant char_array := "Hello World!";

Backup_String : constant char_array := Some_String;
begin

Print_String (Some_String, Some_String’Length);
pragma Assert (Some_String = Backup_String);

end;

The Ada program imports the C function using a
matching function signature. By telling the compiler
Convention => C, it will know that the string is passed
by a pointer and will prepare the arguments accordingly. To
ensure that both Ada and C use compatible function signatures
the Ada code uses C types defined in the Interfaces.C
package. The assertion checks that both strings are equal after
the call (i.e., that they have the same contents). The assertion
check should never equate to false, as both strings are equal
on creation and constant.

But what happens when Print_String is modified to
change the string it writes to the console? If it was imple-
mented in Ada the new declaration would be:

procedure Print_String (S
: in out char_array; Len : size_t );

With this change, the compiler will complain when
Some_String is passed as it cannot be modified due to
being a constant. However, this function is implemented in C,
likely in a separate library. Its new implementation looks as
follows

void print_string (char *s, size_t len){
for(size_t i = 0; i < len, i++){

putchar(s[ i ]);
s[ i ] = 0;

}
}

If the change is not identified during development, the Ada
compiler will continue to assume that the string is not modi-
fied and base its checks on that assumption. Identification of
the C code change is manual and error-prone; the Ada com-
piler cannot distinguish between the different C code bases as
it does not parse and incorporate the C code. By design, the
linker, responsible for connecting the compiled Ada and C
code, does not understand types and calling conventions and
will, therefore, also miss this inconsistency. The result is a
program that does not behave according to the programmer’s
intention, even though it should be according to the code and
compiler. Furthermore, if the implementation is erroneous,
the C function may overflow the buffer provided, corrupting
the caller’s stack.

While CHERI does not solve the problem statically, it can
introduce runtime checks beyond what the compiler can typi-
cally do. The caller of a function creates capabilities matching
the permissions required by the arguments the caller is ex-
pecting to call the callee with. In this example, the string is
passed as a capability using the bounds of the string without
write permission. The modified or erroneous C implemen-
tation may still try to violate these permissions. However,
this now results in a CHERI exception. This approach can
be employed for all data passed by reference. It does not
cause the erroneous program to fail to compile, but it allows
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Figure 4: Converting a CHERI exception (raised in func3) to an
Ada exception and propagating it up the call stack to the handler
in func1

the problematic condition to be detected early through veri-
fication testing. Furthermore, it will enable the program to
abort in a defined state or even recover from the error. As
with many other improvements CHERI enables, this feature
requires thoroughly applying the principle of least privilege
in all pointers/capabilities passed to functions.

CHERI improves the situation; however, it does not solve the
problem of foreign function interfaces in general. Calling
conventions, type sizes, valid values, or even the number
of arguments are still unchecked by the compiler. It does,
however, apply to the bounds and permissions of data passed
by reference, avoiding hard-to-debug memory corruptions or
broken assumptions about the immutability of passed data.

3.4 Hardware detected Capability Fault Propaga-
tion and Recovery

One feature of the Morello bare-metal Ada runtime is its
ability to convert CHERI hardware exceptions into Ada ex-
ceptions that can be propagated, caught, and handled by appli-
cation exception handlers. In traditional bare-metal runtimes,
hardware exceptions are handled by a top-level trap handler
which typically aborts the entire program. By contrast, the
Ada Morello bare-metal runtime implements a trap handler
that first determines which kind of CHERI exception has
occurred, then returns control back to the call stack that trig-
gered the trap but with the return address altered to call a
subprogram that raises an Ada exception. This effectively
causes an Ada exception to be raised from the point in the
call stack that triggered the CHERI exception. When the Ada
exception is raised, the runtime unwinds the call stack until
it finds a handler for the exception, at which point control is
passed to the handler. This is illustrated in Figure 4 which
shows the conversion and propagation of a CHERI exception
across function calls.

This mechanism allows the software application to use con-
ventional Ada exception handlers to detect, isolate, and re-
cover from any CHERI exceptions that occur within that code
block. In a multitasking environment, this also isolates the
exception to the individual task that triggered it, allowing
other tasks to continue execution unaffected. The ability to
actively detect and respond to memory safety breaches allows
the system to isolate compromised elements and initiate re-
covery procedures, enhancing fault-resilience. The affected
system can fail in a “secure but degraded” manner, resulting
in unaffected areas of the program being allowed to continue.

This form of fault-detection and recovery is useful when a
denial of service attack could trigger a safety hazard or have
implications over the availability of mission-critical systems.

3.5 Reduction in Exploitability
CHERI significantly improves application memory safety by
checking for violations of memory boundaries. Many exploit
techniques require such a violation to work, be it by inserting
code directly into the attacked application or modifying the
application’s state. These techniques typically require a good
knowledge of the application’s internal memory, especially
the used address ranges.

In order to counter memory corruption-based attacks, many
mitigation mechanisms have been created both on the system
and the application level. In applications, memory protection
is often improved by inserting runtime checks to detect over-
flows and abort execution in case of detection. While this
improves the application’s security and often allows recovery
from the error, it also incurs a performance penalty. Addi-
tionally, the protection is limited to the code written in that
language. Other system parts, sometimes even the runtime
required to execute the application, are not protected.

At the system level, memory protection consists of mecha-
nisms that increase the difficulty of successfully executing an
attack. This approach may not prevent memory corruption;
however, it makes it harder to take control and manipulate
the application behavior. Address Space Layout Random-
ization (ASLR) is a technique that assigns random parts of
the address space to the application. While an attack may
still overflow a buffer, it is much harder to guess the correct
address for the overflow. For example, triggering the applica-
tion to jump to a specific address requires knowledge of the
address space.

Another approach is to restrict the privileges of different mem-
ory regions. More specifically, the Write XOR Execute (WˆX)
principle. The assumption is that code is never modified by
the program in its regular state and that modifiable memory,
such as the stack and heap, are never used to execute code.
While this also does not prevent memory corruption, it pre-
vents placing and executing the attack payload. Even if the
payload can be placed through memory corruption, it will
likely be placed on the stack or in the heap where it cannot be
executed. It also cannot be moved into executable memory as
this region is not writable.

A technique to defeat this restriction is Return Oriented Pro-
gramming. It uses the fact that some relevant metadata for
the program execution is still placed on the stack and, there-
fore, in modifiable memory. This includes the return address,
which controls the program’s execution when the current func-
tion returns. An exploit using this technique will overwrite
the stack, especially the return addresses, with values that
cause the CPU to jump to parts of the code that contain the
functionality needed by the attacker. These parts, often called
gadgets, can be only parts of functions. They can be chained
together by writing multiple return addresses into the stack,
and after a jump into a gadget has happened, the next jump
will be executed once the gadget tries to return.
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We have analyzed CHERI’s resistance against Return Ori-
ented Programming. While this approach still often includes
an initial memory corruption, we assume that the attacker
is able to manipulate the stack once at the beginning of the
attack. While CHERI would typically prevent this initial con-
dition from happening we wanted to know whether Return
Oriented Programming could leverage an initial vulnerability
to further exploit the system.

At first, we validated the WˆX property of CHERI by cre-
ating examples that violate this principle while otherwise
keeping all capabilities valid. Our tests have been executed
and validated on an unprotected AArch64 platform. CHERI
successfully rejected executing the stack by raising a capabil-
ity permission fault. It also detected the code modification
and raised a capability-sealed fault. A capability sealed fault
is raised if a sealed capability is either dereferenced or has
been modified before use. Sealed capabilities are used for
capabilities referencing code. They cannot be modified or
dereferenced but can be used as a jump target for the program
counter.

Furthermore, we created two test cases to modify jump tar-
gets. The first test executed a common approach in ROP by
overflowing a buffer on the stack and thereby overwriting the
return address of the calling function. As all examples are
written in Ada, the language caught that attack with a runtime
check. Disabling runtime checks made the attack work on an
AArch64 target. As expected on CHERI, this attack caused a
capability-bound fault as soon as the program tried to write
outside the allocated buffer on the stack.

The second test tried to manipulate the control flow more
directly. It consists of a routine that takes a function pointer,
adds an offset and calls the resulting function pointer. Adding
an offset of zero should yield the same result as calling it
without an offset while adding an offset greater than zero
will cause the call to jump somewhere into the middle of
the function or behind it. We generated the base function
pointer from an existing function to ensure we start from a
valid capability. On a non-CHERI target, this worked even
with runtime checks enabled. Our CHERI solution detected
the violation and raised a capability tag fault. While the
created capability was valid, modifying it with an offset, even
if it was zero, invalidated it. The reason is that CHERI uses
sealed capabilities to represent function pointers, and sealed
capabilities are immutable.

For an attacker that has access to all the information about
the program but cannot modify its code directly, we conclude
that a successful Return Oriented Programming attack is very
unlikely, if not impossible. Even if many assumptions about
CHERI, such as the bounds checks for capabilities, are invali-
dated, it still has additional layers of defense that prevent the
unintended execution of the program’s code. Even with the
ability to manipulate the stack without triggering an excep-
tion, an attacker must replace the return address with a valid
sealed capability.

Generally we notice that CHERI provides more than just
resistance against memory corruptions. It also restricts the
control flow into a narrow path, preventing deviations from

the programmer’s intended functionality. Even if some of
CHERI’s fundamental properties are violated, the remaining
constraints still prevent or at least increase the difficulty of an
effective attack.

3.6 Performance
The Edge Avionics project aims to produce a demonstra-
tor Avionics system that showcases the security benefits of
CHERI. The final prototype is not intended for flight. There-
fore, Arm’s Morello development board is a good choice for
the final target demonstrator platform. The Morello board
microprocessor is a CHERI-enabled prototype CPU based on
Arm’s Neoverse N1, as found in the N1SDP evaluation board.
As stated by Arm, "This is a high-performance superscalar,
out-of-order pipeline design. The existing 64-bit Armv8.2-A
support in the CPU was retained and support for the new
Morello architecture was added" [24]. Performance metrics
are essential to understanding the feasibility and impact of
adopting a CHERI microprocessor architecture, particularly
for high-integrity and safety/security-critical avionics. Our re-
search through the Edge Avionics programme will contribute
towards the final demonstrator platform and should the work
be taken into commercial production, the Morello develop-
ment board would not be selected as the final target hardware.
An extensive performance analysis is only needed for the fi-
nal target platform intended for flight, which is outside of the
project’s scope. CHERI microprocessors have yet to achieve
airworthiness certification at the time of writing. However,
the University of Cambridge Computer Laboratory has al-
ready completed extensive performance studies around the
prototype Morello microarchitecture, and the results provide
a strong argument that future, commercially available and
fit-for-flight CHERI microprocessor solutions will be able to
cope with modern-day demands of defence-related avionics.
Cambridge writes, "results to date give us strong confidence
that CHERI support can be tightly and cleanly integrated into
future Arm architectures" [25]. The report stipulates that
"the dynamic performance aims for Morello were to create
a hardware design able to enable the evaluation of the usage
of capabilities within rich established software ecosystems
and to demonstrate their practical viability and security bene-
fit." [25] Therefore, whilst the performance was a factor in the
design of the Morello CPU, it is expected there is room for
significant optimizations and that second and third-generation
CHERI microprocessor architectures and subsequent hard-
ware implementations will be higher performing in terms of
execution speed, memory footprint and energy consumption.
Cambridge backs up this claim by stating: "It is reasonable
to project that the goal of 2%-3% overhead for determinis-
tic spatial and referential memory safety is achievable with
an optimized instruction-set architecture on a performance-
optimized microarchitecture." [25]. The performance penalty
predicted with future CHERI microprocessor architectures
and subsequent compiler designs is acceptable, adding to the
viability of the Edge Avionics project.

4 Airworthiness Security Methods and
Considerations

Airworthiness is the discipline of ensuring air vehicles are
safe. Airworthiness Security forms part of that same dis-
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cipline, focusing on security aspects that, should they fail,
would lead to safety hazards. More specifically, a security
case is argued that claims system security risks do not lead
to unacceptable safety risks. Regulatory organizations like
the Federal Aviation Administration (FAA) in the U.S. and
the European Union Aviation Safety Agency (EASA) have
circulated advisories around the need to detect and prevent
unauthorized electronic interactions within air vehicles, pri-
marily to ensure existing and future air vehicles remain safe.
Satisfying advisory circular requirements around unautho-
rized electronic interactions is required before the awarding
of airworthiness certifications. At the time of writing, the FAA
or EASA are not mandating a particular solution; however,
industrial consortium working groups within the European
Organisation for Civil Aviation Equipment (EUROCAE) and
RTCA (previously known as the Radio Technical Commis-
sion for Aeronautics) have put considerable effort into two
jointly developed sets of Airworthiness Security publications.
Our research has focused on how the described "Security by
Default" approach can help meet the objectives stated within
the EUROCAE and RTCA "Airworthiness Security Methods
and Considerations".

The European Organisation for Civil Aviation Equipment
(EUROCAE) ED-203A "Airworthiness Security Methods
and Considerations" [26] foreword states that ED-203A is
technically identical to RTCA DO-356A [27], and this is also
true of ED-202A [2] and RTCA DO-326A [1]. Furthermore,
these standards and guidelines are equally applicable to the
defense industry as well as the civilian aerospace industry.
For example, first published in May 2023, the UK Ministry of
Defence (MOD) announced new regulations for the Military
Aviation Authority (MAA) [28]. The report includes refer-
ence to Regulatory Articles (RA) 5890 [29], which states:
"The MAA recognises the risk assessment and mitigation pro-
cess detailed in RTCA DO-326A / EUROCAE ED-202A and
associated standards RTCA DO-356A / EUROCAE ED-203A
as an acceptable means of compliance.".

Our work has indicated three promising areas where our pro-
posed solution to "Security by Default" can help satisfy Air-
worthiness Security objectives: Security Measures, Vulnera-
bility logging and Refutation testing.

4.1 DO-326A/ED-202A Security Measure
To produce a convincing argument over the safe management
of avionics security risk, we must show evidence that iden-
tifies all threat conditions and scenarios that could lead to
loss of privacy, integrity or availability of identified security
assets. Second, all attack paths must be understood and ad-
dressed. Applying risk treatment to an attack path amounts
to allocating and assessing the effectiveness of one or more
security measures and their ability to satisfy allocated security
requirements. Where an attack vector involves memory safety
vulnerabilities like a buffer overflow, we can argue a CHERI
microprocessor architecture is a security measure that can
reduce or stop the damage caused by the attack. Suppose the
attack intends to expose a security asset within the system, i.e.,
violate a security requirement regarding asset privacy. In that
case, correctly using CHERI’s fine-grain memory protection
will result in a high-assurance security measure; the attacker

may be able to trigger an exploit, but the hardware trap will
detect the violation and guard against unauthorized memory
reads/writes. The same feature provides a security measure
that enforces the security asset’s integrity; by bounding a
memory address we ensure neighboring data is not overwrit-
ten and corrupted. In addition, whilst the security measure
must still detect the event even if the attack only intends to
cause disruption or loss of availability (for example, a denial
of service attack), it must also satisfy security requirements
that minimize or eradicate the loss of service, for example,
recovery, isolation, or damage limitation. Our proposition
described within this paper argues that the propagation of
CHERI capability faults into Ada runtime exception handlers
provides detection and countermeasure options to respond to
the loss of service attack and, therefore, acts as an additional
high assurance security measure.

4.2 Security Verification Objectives
The aim of refutation in the context of the Airworthiness
Security Process is to refute the allegation of exploitable vul-
nerabilities [30]. The Airworthiness Security Process [2] [1]
describes refutation as: "an independent set of assurance ac-
tivities beyond analysis and requirements. As an alternative
to exhaustive testing, refutation can be used to provide evi-
dence that an unwanted behavior has been precluded to an
acceptable level of confidence. NOTE: Refutation is also
known as Security Evaluation in some contexts." [26] [27].
The refutation activities aim to identify any unexpected situa-
tions where the system would unexpectedly transition into a
non-secure state (or, more generally, violate a minimal invari-
ant guaranteeing the system’s security) [30]. The difficulty
with refutation testing is in the consistent and repeatable de-
tection of the transition. Consistency and repeatability make
it feasible to argue for an elevation in security assurance and,
for Airworthiness Security, this must be adequately described
within the Plan for Security Aspects of Certification (PsecAC).
The PsecAC is the initial phase within the Airworthiness Se-
curity Process, and it is here that we set our security goals
and how we intend to security test our application. Much
like a "Plan for Safety Aspects of Certification" within the
parent process "Software Considerations in Airborne Systems
and Equipment Certification" (ED-12C and DO-178C [31]),
integrators need to ensure regulatory authority accepts the
plan before commencing with development and test phases.

Our approach enforces anomaly detection through regular
Ada runtime constraint checks [20] and through the devel-
oped CHERI-hardware-enforced pure-capability Ada runtime.
This dynamic verification feature captures unsafe memory
instructions that would otherwise result in memory violations,
such as out-of-bounds reads/writes. Not only can we isolate
security assets in deployed systems, but we greatly enhance
security verification testing as more anomalies can be de-
tected. To understand why this is important, consider the
resultant behavior of a standard (non-CHERI) CPU execut-
ing an application not using Ada runtime constraint checks.
When a triggered software bug results in an out-of-bounds
memory read or write instruction, the system could exhibit be-
havior that can be detected, for example, a segmentation fault
may get signaled; however, it could equally go undetected
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such that the system continues to operate but also transitions
into a state where the security can no longer be guaranteed.
The combination of an Ada pure-capability runtime execut-
ing on a CHERI microprocessor architecture eliminates this
possibility; all out-of-bounds reads/writes will be captured
by either the Ada runtime or the CHERI hardware. In both
cases, the transition into a non-secure state will be visible to
the verification suite so that the bug can be identified, logged
and mitigated at a higher level in the safety plan or fixed and
retested. It is also important to recognise the symbiosis of
the pure-capability Ada runtime and the CHERI hardware
capability checks; without the combination the guaranteed
detection is lost and the quality of the refutation degraded.

The Airworthiness Security Process Guidelines in ED-203A
and DO-326A [26] [1] state that refutation encompasses mul-
tiple disciplines, including "Dynamic Code Analysis". This
specific refutation testing technique analyzes the system’s be-
havior whilst the system is executing. An example of dynamic
code analysis would be monitoring a non-safe or non-secure
sequence of instruction calls made to the processor (i.e., de-
tection of buffer overflows). Dynamic code analysis can be
enforced within the semantics of programming languages via
run time constraint checks or tools that detect memory corrup-
tion bugs via code instrumentation added during additional
compilation passes [30]. Our research has shown that exist-
ing memory detection tools like Address Sanitizer [23] and
Valgrind [22] can’t detect the complete set of memory viola-
tions that our approach can (see section 3.4). In both cases,
anomalies can only be detected when a test case triggers the
scenario that exhibits the unwanted behavior. However, our
research has uncovered sequences where Address Sanitizer
and Valgrind fail to detect the transitions that our solution
captures. Vulnerability identification is a critical aspect of
any security process. As it is widely recognised that non-safe
memory instruction calls form the basis of the majority of
exploitable software bugs, being able to dynamically and con-
sistently detect and guard against memory violations provides
a security safety net should all other measures fail.

4.3 Vulnerability Logging / Fault-Recovery / Fail-
Secure

In addition, our "Security by Default" research argues that
propagating CHERI hardware detected faults into Ada soft-
ware handlers makes it feasible to isolate system components
such that fail-secure-but-degraded is possible. Without this
feature, CHERI-based systems can still protect security assets.
However, fault-recovery is only possible through intervention
from a third-party monitoring system, such as a hypervisor.
However, the main difference between this approach and the
one proposed is that by dynamically detecting the impending
violation at the point just before the failure condition, the
state of the system, the triggering conditions and any other
relevant information can be recorded within a security log
file. Regulatory Article 1202 describes a framework approach
for In-Service Air System Cyber Compliance. It is noted that
this method is based on the requirements of the US National
Institute of Standards and Technology (NIST) Cybersecu-
rity Framework, which advocates the phases of "Identify",
"Protect", "Detect", "Respond" and "Recover", note that the

National Cyber Security Centre (NCSC) also provides a Cy-
ber Assessment Framework (CAF) that shares the principles
of the NIST Framework. Two aspects of this methodology
where the proposed solution plays a role are "Detect" and
"Respond". "Detect" is described as being "introduced to
enable timely detection of cyber security Incidents that may
impact Air Safety, such as continuous monitoring and security
log files" [29]. Therefore, capturing and isolating attacks is
essential to satisfying the Detection requirements. In addition,
the "Respond" phase is described as "once a cyber incident
affecting Air Safety has occurred, the level of response is key
in supporting the ability to contain the impact". This require-
ment is aimed at "business continuity plans" and "associated
response plans" and having the ability to detect, capture, iso-
late and report the attack directly within the affected system
is clearly beneficial.

4.4 Software Supply Chain Security
Modern-day large-scale systems often require collaborative
efforts spanning large geographical regions that exacerbate
the complexity around software supply chain security. The
software supply chain is made up of all aspects of software
development across all phases of the software development
lifecycle. This includes development tools that have direct
access to the source code and pose a risk to security assurance.
A compiler’s primary responsibility is to translate source code
into machine code. Assuring that this translation is correct
amounts to traceability studies that include binary-to-source
code analysis [32]. Our work included porting a developed
CHERI pure capability Ada runtime with different compiler
back-ends, namely GCC [17] and LLVM [18]. Having more
than one compiler solution is beneficial as it allows for novel
software supply chain security verification techniques, like
differential testing. Here, we argue that the integrity of the
development tool is maintained by comparing it to the behav-
ior of the alternative simply by feeding the same inputs into
both, verifying the output, and observing the state. Voting
algorithms are frequently used in high-integrity systems to
increase the assurance of processed data. For example, flight
control systems may sample data from multiple sensors and
use algorithms to check the consistency and decide which
value to use. The same argument can be applied to the se-
curity assurance of software development tools. However,
this approach requires multiple independent solutions that,
whilst the sampled data will be identical (i.e. the source code,
in the case of a compiler), perform the same functionality
and generate output that satisfies the translation requirements
(the generated CPU instructions perform the functionality de-
fined by the source code) with differing algorithmic designs.
Developing both GCC [17] and LLVM [18] Ada Morello
bare-metal compilers allows this argument to be made.

5 Further work
To further extend the approach described, we propose de-
veloping additional software runtime components that en-
hance the capabilities of CHERI hardware extensions. Se-
curity assurance can be further elevated by integrating fea-
tures such as Temporal Memory Protection and Compart-
mentalization. Beyond spatial memory protection, software
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can extend CHERI’s capabilities to include temporal mem-
ory protection. Temporal Memory Protection helps prevent
vulnerabilities like use-after-free errors, which is achieved
through careful memory management and the use of capa-
bilities to track and control memory lifecycles. Examples
include tools like CHERIvoke [33] and Cornucopia [34]
that characterize pointer revocation using CHERI Capabili-
ties for Temporal Memory Safety. Compartmentalization is
concerned with adding protection around untrusted libraries
such that separate heap allocations are used and compart-
mentalized code can only access code or data in another
compartment through a well-defined interface. Examples in-
clude CHERIoT [35]. In addition, support could be added
for Ada.Tags.Internal_Tag in Morello GNAT which
would remove the limitation on streaming Ada tagged types.
Finally, future work will focus on the latest microprocessor ar-
chitectures supporting CHERI. While the research conducted
within this paper used Arm’s Morello platform, the next phase
of work will likely be on a CHERI-RISC-V CPU.

6 Conclusions
The paper summarizes research and development into a "Se-
curity by Default" approach to real-time embedded systems
by leveraging the Arm Morello CHERI ISA extensions and a
bare-metal security-enhanced Ada runtime. More specifically,
a layered approach to security is described that demonstrates
the benefits of memory-safe programming languages exe-
cuting on memory-safe microprocessors. This combination
allows Ada developers to benefit from an enhanced secu-
rity toolchain and execution environment for high-integrity
real-time systems. In addition, the paper proposes a fault
resilience approach to bare-metal software security design by
propagating CHERI hardware capability bounds exceptions
into bare-metal application code exception handlers. Fur-
thermore, our experience with CHERI has shown that it is
an excellent verification target due to the advanced anomaly
detection features of hardware capabilities and that porting
Ada code to CHERI is often no effort. In addition, had it
not been for this work, a security vulnerability could have
made its way into deployed software, and our continuous in-
tegration suite now benefits from executing our Ada runtime
regression tests on CHERI. Our work included analyzing the
benefits of a CHERI pure-capability runtime and a CHERI-
compliant microprocessor to airworthiness certification. As
described in section 4, our developed solution could satisfy
multiple security objectives; more specifically, it can be used
as a deployed security measure guarding against high-security
assurance level vulnerabilities and a dynamic analysis secu-
rity verification tool for refutation testing. The results and
insights presented in this research open additional avenues for
strengthening the security of embedded real-time systems, ul-
timately contributing to safer, more reliable and more secure
technology.
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Abstract—In recent years, cybersecurity has also become rel-
evant for Operational Technology (OT). Critical systems like in-
dustrial automation systems or transportation systems are faced
with new threats, and therefore require the implementation of
thorough security measures. Regulations further mandate the
deployment and regular verification of these security measures.
However, OT systems differ from well-known systems of classic
Information Technology (IT), such as mission times spanning
decades, infrequent updates only during on-site maintenance,
or diverse devices with varying support for security measures.

The growing field of crypto-agility examines approaches to
integrate security measures in an agile and flexible way, making
updates easier and, therefore, encouraging a more frequent
deployment of them. This paper contributes to this research
field in the context of secure communication in two ways. We
first examine the current state of crypto-agility by providing
an overview of existing measures for OT systems. Then, we
propose a new architecture concept with different deployment
approaches to integrate security measures in a crypto-agile
way. Based on a security library with a generic interface and
a flexible proxy application, our architecture is capable of
securing both new OT systems and existing ones via retrofit.

Keywords—Security, Crypto-Agility, Automation, Industrial
Control Systems, SCADA, Transportation, Real Time, Commu-
nication Systems, Cryptography, Proxy, Gateway, Retrofit

I. INTRODUCTION

Cybersecurity is an emerging topic in the field of Opera-
tional Technology (OT). Nowadays, automation and control
systems like Industrial Control Systems (ICS) are threatened
by cyberattacks just like enterprise systems. This is especially
important for automation systems within industrial processes
or critical infrastructures, such as transportation or supply
systems. Due to these increasing threats, various new regula-
tions have been passed [1], [2] to improve resilience against
cyber threats. Among various topics, operators of critical
infrastructures in Germany have to prove the effectiveness
of the implemented security measures to the Federal Office
for Information Security (BSI) on a periodic basis. Due to
the limited expected lifetime of cryptographic algorithms
published by regulation bodies, e. g. by the BSI [3], and
the vast amount of potential vulnerabilities [4] within these
systems, deployed security measures have to be updated and
maintained continuously.

Compared to IT enterprise systems, however, OT systems
differ greatly in terms of updates and maintenance operations.
Typical OT systems are designed with a mission time of up
to 25 years, until the equipment is replaced on schedule.
Software updates are installed only when strictly necessary
during infrequent on-site maintenance (based on the common

”never change a running system“ mentality). Hence, security
measures can barely be updated or newly integrated after
initial deployment. This inertial technological enhancement is
aggravated by the systems consisting of devices from numer-
ous manufacturers with vastly differing security capabilities.

As a result, the effort to create a secure system based on a
common set of state-of-the-art measures and best-practices is
complicated and expensive, if at all possible.

To overcome this problem, the arising research field of
crypto-agility examines solutions to simplify the maintain-
ability of security measures. Especially for the considered
OT systems with their long service life, thorough measures
of crypto-agility are key to future-proof the systems against
cyberattacks and to increase the expected lifetime of the se-
curity features, and, hence, of the overall systems. In the first
part of this work, we provide an overview of the current state-
of-the-art regarding crypto-agility in OT systems, focusing
on secure communication within OT systems. We analyze
existing security measures for OT communication and then
identify problems and limitations thereof, which could be
improved by thorough crypto-agility capabilities. Based on
the identified state-of-the-art, we propose a new solution
concept to increase the level of crypto-agility in OT systems.
A key aspect of our concept is to create a fast migration
path for existing systems to retrofit security features with
agility capabilities to counteract the described inertia. Lastly,
we verify the viability of our concept in a case study to
examine the impact on overall system performance metrics.

In summary, the paper makes the following contributions:
1) We give an overview of the current state of security

measures within OT communication systems, elabo-
rating on problems and limitations regarding crypto-
agility capabilities.

2) Then, we present our concept to add crypto-agility
capabilities into both existing and new OT systems with
its various deployment approaches.

3) In a case study, we verify the viability of the concept
and compare the different deployment approaches, with
a focus on retrofitting existing systems.

The remaining paper is structured as follows. In Section II,
the current state-of-the-art regarding crypto-agility in OT
communication systems is presented. Based on a general
overview of OT security and a definition of crypto-agility,
current problems from both a software and a hardware
perspective are discussed. Section III presents related work
that already approaches the identified problems of current
systems, and introduces approaches to improve crypto-agility
comparable to ours. In Section IV, we present our concept
and explore different approaches to actually deploy the
concept within real OT systems. To verify the concept, the
results of our case study are discussed in Section V. Finally,
Section VI draws a conclusion and hints at future work.

II. CURRENT STATE-OF-THE-ART

In this chapter, we give an overview of security measures
in OT communication systems and elaborate on problems



and limitations regarding crypto-agility. Initially, we briefly
introduce OT communication systems (Part II-A) and present
currently available security measures (Part II-B). Thereafter,
we provide a definition of crypto-agility and elaborate the
different branches of this research field for our work in
Part II-C. Lastly, we analyze the identified problems and
limitations of current measures from a software (Part II-D)
and hardware perspective (Part II-E).

A. OT Communication Systems

Before we dive into the research field of crypto-agility,
an overview of current OT communication systems is given.
In general, an enterprise system can be split into multiple
layers based on the Purdue Enterprise Reference Archi-
tecture (PERA) model [5], covering both its IT and OT
domain. Makrakis et al. presented a modern adaptation of
this model [6], depicted in Figure 1.

Enterprise Network

Business/Planning Logistics Systems

Process

Intelligent Devices

Manufacturing/Site Operations

DMZ

Control Systems

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5 IT Domain

OT Domain

Figure 1. Modern adaptation of the Purdue Enterprise Reference Archi-
tecture (PERA) model, based on [6]. The layers are divided into IT and
OT domain, separated by the DMZ (demilitarized zone) to secure the
communication between the two domains.

Figure 1 shows the separation of IT and OT domains
with their respective layers. Each layer implements a specific
functionality of the overall system and further abstracts
the underlying layers (e. g., a manufacturing process, or a
complex transportation system). As the IT layers typically
contain functionality that requires external communication
(e. g. customer access or cloud services over the public inter-
net), there is a strict isolation of the IT from the OT domain
to protect the OT from malicious actors. Only absolutely
necessary connections between IT and OT are allowed for the
overall system to work, which are supervised and controlled
by a special DMZ layer that integrates thorough security
measures (indicated by the two firewall icons in Figure 1).

This separation and isolation of the OT domain with only
very limited access from the IT is a key security aspect
of current systems, as cyberattackers have to gain access
to the OT before they can attack it. However, current de-
velopments regarding IT/OT-Convergence weaken this strict
separation, and more connections are allowed to enable new
and innovative functionality within the overall system (e. g.
live monitoring of a process from the IT domain, predictive
maintenance). Furthermore, OT systems grow more and more
complex, resulting in a larger potential for configuration
errors that ultimately lead to an increased number of entry
points for attackers. On top of this, in many systems, cellular
connections over public networks are used nowadays in
addition to the wired network, breaking the isolation between
the IT and OT domain. In total, the attack surface for the
OT domain is growing. As a result, more thorough security
measures have been created and deployed in OT systems,
primarily derived from established IT security solutions.

Within the OT domain, each layer consists of different
components connected by a communication system, au-
tonomously handling a part of the system or process to
abstract it to the next higher layer. This leads to a tree-
like structure, with each layer being connected to the one
above and below. Communication happens both vertically
and horizontally. Vertical communication is primarily used
by an upper layer for supervising and managing tasks of
a lower layer. For tasks that are split onto multiple com-
ponents, horizontal communication enables coordination and
synchronization. Typically, the lower the layer, the greater
the requirements for real-time behavior and reliability.

Within the OT layers, there exist both unicast point-to-
point and multipoint communication flows, using various
application protocols. Point-to-point connections are typically
based on the client-server model, whereas the multipoint
flows use a publish-subscribe model over a multicast system
(also often referred to as producer-consumer). In both cat-
egories, application protocols building upon different layers
of the OSI reference model can be found. Protocols building
directly upon layer 2 (“L2” in the following) are used for
time-critical communication, typically using Ethernet links.
Application protocols building upon layer 4 (“L4” in the
following) are rather used for less demanding connections
regarding timing requirements. Among the most common
point-to-point protocols are (non-exhaustive):

• OPC UA Client-Server (L4: TCP/IP)
• IEC 61850 MMS (L4: TCP/IP)
• Modbus TCP (L4: TCP/IP)
• Siemens S7 Comm (L4: TCP/IP)
• PROFINET RT (L2: Ethernet)

In the multipoint category, widely used protocols are (non-
exhaustive):

• OPC UA Publish-Subscribe (L4: UDP/IP)
• MQTT (L4: TCP/IP)
• IEC 61850 GOOSE (L2: Ethernet)

Many of the application protocol specifications consist
of multiple actual protocols with different characteristics
for different use cases (e. g., an L2-based publish-subscribe
protocol for real-time traffic together with an L4-based client-
server protocol for supervisory functionality).

B. OT Security

A key security aspect of OT systems is the strict separation
from the IT domain, with only very limited flows in between.
The approach of separating subsystems where possible is
further adapted within the OT domain by thoroughly utilizing
network segmentation. Both within a layer of the PERA
model and also across multiple layers, separated functional
islands are formed with only very limited and properly
secured connections between them. This approach is often
further improved by adding virtual private network (VPN)
technologies into the systems. These segmented system ar-
chitectures limit the attack surface to a minimum, as lateral
movement of a malicious actor is considerably restricted.

From a cryptographic perspective, most protocols have
been adapted to support security measures to protect commu-
nication flows from malicious actors. Within the OT domain,
common security goals to be achieved are:

• Availability (no malicious actor can prevent access to a
system service for a legitimate entity)

• Integrity (transmitted data is protected against malicious
modification)



• Entity Authenticity (a malicious actor cannot imperson-
ate a legitimate entity)

• Data Authenticity (transmitted data originates from an
authentic source)

• Confidentiality (a malicious actor is unable to eavesdrop
sensitive information from the system)

Most of the protocols build upon well-established stan-
dards to achieve these goals. For example, L4-based protocols
typically recommend using the Transport Layer Security
(TLS) protocol to integrate security measures without a direct
modification of the actual application protocol (e. g., for
IEC 61850 MMS [7], for Modbus TCP [8], and also for the
multipoint protocol MQTT for connections to a central mes-
sage broker [9]). One notable L4-based exception is OPC UA,
which does not build upon TLS, but rather integrates security
measures directly into the application protocol [10]. Con-
ceptually, however, the integrated cryptographic measures
are very similar to the ones in TLS (same cryptographic
algorithms, similar authentication mechanisms using digital
certificates).

Multipoint protocols, however, cannot integrate typical
security protocols like TLS, as those are designed for ex-
actly two peers that perform a handshake during connection
establishment. Within a multipoint group, however, there
are typically more than two peers (one or more publishers,
various subscribers), which all require the same cryptographic
keys to apply the security measures. Hence, a key distri-
bution mechanism is required, typically implemented using
an additional node in the system. Each participating node
in a specific multipoint group first contacts this key server
to obtain the current group keys. This initial point-to-point
connection between the node and the key server is secured
using mechanisms already described above, both protecting
the exchanged group keys and properly verifying the peer’s
legitimacy to join the group. For example, such mecha-
nisms are specified for OPC UA [10] and for IEC 61850
GOOSE [7].

For L2-based protocols with real-time requirements, how-
ever, security measures are only cautiously specified and
recommended, as the overhead of cryptographic operations
may break the strict timing requirements. For instance, no
cryptographic measures are officially specified or recom-
mended for the PROFINET RT protocol by standard bodies
due to this reason. However, research in this direction already
proposed technically viable solutions to achieve both security
and real-time behavior (e. g. in [11]).

In general, there are standardized security measures for
various protocols available. Together with a properly de-
signed, segmented system architecture, secure OT systems
can be created and deployed today. However, to properly
integrate the described security measures, all participating
devices have to support the specific features. As already
indicated in the introduction, OT systems and their devices
are typically designed for mission times of up to a few
decades, resulting in a slow deployment and adoption of
new (security) features in existing systems. Furthermore,
even if a completely secure OT system is newly deployed
today, the ongoing development in the area of crypto-analysis
and the increasing number and capabilities of cyberattackers
necessitate ongoing effort to keep the initially achieved level
of security over the long mission time. Hence, update capa-
bilities and fast migration concepts are required to change
and adapt security measures easily within deployed systems.

C. Crypto-agility Definition

Based on the literature works by Alnahawi et al. [12]
and Mehrez & Omri [13], the following general definition
of the term crypto-agility is derived: crypto-agility describes
the capability of updating and replacing security measures
during the lifetime of a component. Specifically, this means:

• Update the implementation of existing security measures
(e. g. to fix a vulnerability)

• Update the list of supported cryptographic algorithms
and their security parameters (e. g., add new algorithms,
remove old ones, increase the key size)

• Incorporate and adapt to new functionality transparently
(e. g. use hardware acceleration instead of a software
implementation)

• Incorporate regional security regulations and comply
with regional peculiarities (e. g. ShangMi ciphers for the
Chinese market)

• Create transition mechanisms to enable safe and secure
migrations to new security measures

The research field of crypto-agility is boosted by the
ongoing effort to define and integrate new, quantum-resistant
cryptographic algorithms into systems to protect them against
the threat of quantum computers, known as Post-Quantum
Cryptography (PQC) [14]. As elaborated, for example, by
Ott & Peikert [15] or Paul [16], the migration to PQC
demonstrates the necessity of crypto-agility, especially for OT
systems. However, it is also a perfect opportunity to create
and implement appropriate capabilities to achieve long-term
security. Furthermore, proper transition mechanisms are a
key aspect for OT systems, as the long mission times and
the scarce update capabilities of equipment complicate the
deployment of new security functionality on a system-wide
level. Hence, crypto-agility must also consider retrofit options
for already deployed systems.

Another important aspect of crypto-agility is further elab-
orated on by Sikeridis et al. [17]. They state that crypto-
agility should not only be considered as a capability of a
single instance within a system (e. g., a software library, a
used protocol, or a single device), but also as an attribute
of a complete enterprise system. Hence, all layers of the
PERA model (see Figure 1) have to be considered. Their

”enterprise-level“ view of crypto-agility considers the overall
system and infrastructure, with all devices and the integrated
security measures. Furthermore, they added key aspects like
central control and maintenance, and overall documentation
of deployed measures to their view. Paul and Niethammer
also identified that an expanded view of crypto-agility is
required in automation systems to provide a real benefit for
long-term security [18].

For the remainder of our work, we define two dimensions
of crypto-agility, between which we differentiate in the
following analysis parts and in the presentation of our con-
cept. On the one hand, there is Implementation-Agility. This
dimension considers ways to easily update, extend or replace
the implementation of security measures without adapting or
changing the higher-level application using it. Hence, this
dimension covers the list of supported security measures of
equipment within a system, as well as the retrofit of security
measures into devices and systems without prior support of
those. On the other hand, we define Configuration-Agility,
which encompasses all aspects regarding the configuration of
the currently used set of security measures within a device
or system from the list of supported ones. This covers the



maintenance and coordination of events like migrating a
system to a new algorithm once all nodes support it.

In the next two parts, we take a more detailed look
at the current state of crypto-agility capabilities within the
presented security measures for OT communication systems
and identify problems from both a software and hardware
perspective.

D. Software-related Problems

Analyzing crypto-agility capabilities of secure OT com-
munication from a software perspective, we identified prob-
lems in both of our defined dimensions. The main problem
regarding implementation-agility is the tight coupling of
security features to specific applications. To integrate security
measures into an application, developers have to use common
software libraries like OpenSSL, Botan, or WolfSSL directly
from within the application itself. Those libraries commonly
offer an extensive Application Programming Interface (API)
for specific features (e. g., to establish TLS connections or
to verify signatures). This setup results in various problems
regarding crypto-agility that are already elaborated on in the
literature, e. g., by Green and Smith [19] or by Georgiev et
al. [20]. Available APIs are commonly very complex, espe-
cially for software developers without profound knowledge
of security. In addition, proper and thorough documentation
of the APIs is oftentimes lacking. Hence, using the libraries is
very error-prone, leading to potential security vulnerabilities.

Furthermore, the resulting tight coupling between applica-
tion and security functionality complicates an update of the
security library (e. g. with support for a new algorithm) or a
configuration adjustment (e. g. key length of an algorithm or
logic to verify a peer). When a library update changes the
API, updating the application is necessary, too. This increases
the effort associated with an update for both the manufacturer
of the component and the operator of the system, resulting in
a slower deployment of fixes and new features. Ultimately,
this leads to many systems being vulnerable to existing at-
tacks and using older, potentially insecure implementations or
measures. To improve implementation-agility, the application
and the security implementation needs to be decoupled to
enable independent changes to the security features without
modifications to the application.

Regarding configuration-agility, the biggest problem is the
static integration of a fixed set of security measures into
the application without a way for external configuration of
important parameters (e. g., algorithm selection, key length).
The application manufacturer is solely responsible for the
selection of supported functionality and its configuration in
their individual product. This means that operators have
no means of adapting the security measures running on
their equipment to their needs without the manufacturer’s
support. Furthermore, the user-facing interfaces to configure
security measures typically offer only limited options, and
are typically integrated into the general maintenance interface
of the application. Hence, each individual device must be
configured individually in case of a security configuration
change, drastically increasing effort and also coupling se-
curity maintenance to application maintenance. In typical
systems with equipment from multiple manufacturers and of
different releases (i. e. older and newer devices), this ends up
in a ”best-possible“ security configuration using the common
set of supported measures. The result is unlikely to follow
the current state-of-the-art, considering the slow deployment
of new equipment within OT systems and the dependency on

all manufacturers of used equipment to provide updates with
new features for their products.

To improve configuration-agility, a centralized and easy
way for operators to configure and manage the used security
measures is necessary, independent of the application and
with a manufacture-independent interface. This allows for a
uniform, system-wide selection and an easier-to-coordinate
migration process.

E. Hardware-related Problems

The hardware capabilities of deployed equipment also
influences the achievable level of crypto-agility. This is
especially important in OT systems, as the devices are of-
tentimes based on resource-constrained embedded hardware
rather than powerful enterprise hardware. Furthermore, de-
pendability and functional safety regulations, and the possibly
rough environmental conditions of these systems further limit
the options regarding hardware designs. We identified two
hardware-related problems, both within the dimension of
implementation-agility.

Firstly, the constrained processing resources of the de-
vices limit the possibilities of software updates with newer
cryptographic algorithms. This is especially relevant in the
context of PQC, as the new algorithms have significantly
greater requirements regarding CPU processing power and
memory usage. For example, on a medium-sized microcon-
troller with 192 kB of available RAM, a TLS handshake
using PQC algorithms alone occupies around 35 % of RAM,
compared to around 1 % using classical elliptic-curve-based
algorithms [21]. Even if a software update is possible to inte-
grate these algorithms into deployed devices, the remaining
available resources could be insufficient to make the new
setup work properly. Hence, available hardware resources can
impose restrictions on software-based implementation-agility.

Secondly, next to the hardware implications on software,
there also arise problems due to hardware-assisted cryptog-
raphy. In more recent microcontrollers and microprocessors,
hardware peripherals are available to accelerate the calcula-
tions of cryptographic algorithms. This hardware acceleration
greatly improves performance and sometimes enables the in-
tegration of security into these kinds of resource-constrained
devices in the first place, as timing requirements could be
achieved that are otherwise infeasible. Those peripherals,
however, only support a defined static set of algorithms
without a way to update them once a newer algorithm should
be deployed. Furthermore, in case a vulnerability within the
hardware implementation is identified, deployed chips cannot
be upgraded, and fixing the flaw in the chip design is also
very costly for the manufacturer. Hence, once the algorithms
supported by an accelerator within a device are considered
insecure or outdated, the device loses the hardware accelera-
tion and has to fall back to software implementations, which
suffer from the earlier described resource limitations.

Therefore, hardware-assisted cryptography needs to be
upgradable after deployment. This enables integrating hard-
ware acceleration of new cryptographic algorithms or fixing
identified vulnerabilities in the design.

Next to the processor-internal hardware acceleration, there
also exist external hardware modules that can be integrated
into a device to add security measures with hardware assis-
tance. These modules are commonly referred to as Secure
Elements or Trusted Platform Modules (TPM) and are com-
monly available as either solder-down chips, small pluggable
PCBs, or exchangeable plastic chip cards. Generally, those
modules are used to store long-term keys related to the



cryptographic identity of the connected host device. The
viability of this approach for OT systems has already been
verified in different experimental investigations [22]–[24].
When soldered on the devices’ PCB, those modules, however,
suffer from the same problem as the internal peripherals
because their fixed functionality cannot be upgraded once
deployed. The exchangeable modules, on the other hand, sig-
nificantly improve crypto-agility, as both hardware capabil-
ities (implementation-agility) and also stored cryptographic
keys with different parameters (configuration-agility) could
be upgraded after deployment. Depending on the flexibility
of the API that is used on the host application to access
the module’s functionality, crypto-agility could be further
improved, as it is possible to swap the pluggable module
without the need for updating the host application.

Such architectures, however, posses their own specific at-
tack surface. As the communication interface between such a
module and the host using it is typically not cryptographically
secured, a malicious actor could tamper with the transmitted
data and bypass the security features. Furthermore, as there is
no cryptographic coupling between the module and the host,
theft of a module results in a malicious actor taking over
the valid cryptographic identity stored on the module. This
opens the door for impersonation attacks. There are measures
available for some types of external modules to protect
the setups from the threats described above (e. g. [25]).
However, to the best of our knowledge, there is currently no
adaption of such protective measures that is suitable for OT
systems, as these are typically based on human interaction
with the setup when the module is used. In OT systems with
no on-site human presence besides infrequent maintenance
work, those measures are, therefore, not feasible. With those
shortcomings addressed in the future, however, such modular
setups would greatly benefit crypto-agility, as they would
enable easy upgrades of hardware-based cryptography.

Based on the identified problems of current security
measures for OT communication regarding both software-
and hardware-based crypto-agility, the next section presents
related work that already addresses those shortcomings.

III. RELATED WORK

Before we introduce our concept to improve crypto-agility
within OT systems, related work regarding the identified
problems is presented. We split the presentation into solutions
for the development of new equipment (Part III-A) and
solutions for retrofitting existing systems (Part III-B).

A. Proposed Solutions for New Developments

To address the tight coupling between an application and
security features, there are publications to provide simpler
and more generic interfaces between the two to achieve better
separation. For example, O’Neill et al. have two publications
to outsource security functionality from applications to the
operating system. In [26], they introduce the Secure Sockets
API that enables applications to establish TLS connections
using the common POSIX socket API. All configuration of
the TLS connections is done on the device-level using a
configuration file independent of the individual application.
In [27], they propose the same idea for authentication func-
tionality as an operating system service. Hence, applications
pass certificates to the OS via a generic API to verify them.
Both presented separation approaches simplify updating the
underlying security functionality independent of the applica-
tion (implementation-agility) and enable central management

of the actual used cryptographic algorithms (configuration-
agility).

The already mentioned architecture by Sikeridis et al. [17]
also features a novel Crypto Provider software component
that provides a flexible and abstract API for the application
to isolate security from it, thereby facilitating independent
updates (implementation-agility). Another central aspect of
their presented software module is an additional control-plane
interface for service and management that enables an operator
to centrally configure all Crypto Providers within a system
at once (configuration-agility).

Regarding improvements to implementation-agility from
a hardware perspective, there is literature on integrating
Field Programmable Gate Arrays (FPGAs) into devices and
synthesize security functionality on them (e. g. for VPN
functionality [28]). This would enable both fast hardware
acceleration of algorithms and future update capabilities, as
the FPGA could be reprogrammed in the field through a
software update of the device. Furthermore, work within
the enterprise context currently moves security functionality
away from a server onto an attached programmable network
interface card (NIC), so-called SmartNICs (e. g., [29], [30]).
This modularization improves crypto-agility, as the Smart-
NICs are independent hardware modules connected to the
server via generic hardware and software interfaces, enabling
partial hardware upgrades in case of a new security measure
that requires an updated SmartNIC, without affecting the
main server.

B. Retrofitting Existing Deployments

All presented approaches to address the problems of cur-
rent systems require substantial modifications of the applica-
tions or even of the whole device to integrate the proposed
Crypto-agile security measures. In many currently deployed
systems, however, it is not possible to update the applica-
tions or devices in such a fundamental way. Hence, retrofit
approaches are necessary to provide a fast migration path for
existing systems. This means that crypto-agility capabilities
have to be integrated transparent to the application.

In the context of secure communication, a very promising
approach for this integration is a design based on proxies
that are integrated into the existing communication paths.
They then intercept the traffic from the existing devices and
apply the desired security measures. Such proxy designs
have already been demonstrated in the OT context within the
literature [31]–[34]. The traffic is typically intercepted either
on the underlying transport layer (OSI layer 4) or directly
on the application layer (OSI layer 7). The proxy is either
deployed within the existing device as a software service
(if that is possible, for example within an Embedded Linux
system) or within an additional Bump-in-the-Wire (BitW) de-
vice that is integrated into the physical communication path.
This integration of security measures, which is completely
independent of the existing application or device, enables
a retrofit of existing systems, but also generally achieves
independence of the manufacturers of actual OT equipment.
This final advantage of the proxy approach is a key aspect
of our concept, as it results in a faster deployment of crypto-
agility compared to the dependency on various manufacturers
to integrate said features into their devices.

Each presented related work addresses some identified
problems and limitations of security measures for OT com-
munication regarding their crypto-agility capabilities and,
thus, creating a solid foundation for our concept to build
upon.



IV. PROPOSED ARCHITECTURE

In this section, we present our architecture concept to
improve crypto-agility within OT systems. Our concept is
similar to the work of Sikeridis et al. [17], however, adapted
to meet the requirements of OT systems not considered in
their enterprise-focused work. Our design-goal is to create
a solution that improves crypto-agility both for new devices
and also existing ones via a retrofit approach. The retrofit
aspect is a key feature, as already deployed OT systems and
devices need agile security measures to create a fast migra-
tion path to long-term security. For this process, however,
new developments have to be considered simultaneously to
create a reusable solution that can be widely adopted. We
have designed various software modules to provide security
measures for OT devices, which contain capabilities for both
implementation-agility and configuration-agility to improve
the achieved level of crypto-agility. In the following, we first
present the detailed integration into actual devices, separated
into deployment in new applications (Part IV-A) and retrofit
for existing ones (Part IV-B). Afterwards, Part IV-C contains
a discussion of the concept and its various approaches.

A. Deployment in new Applications

We created the Agile Security Library (ASL) to provide
common features for secure communication behind a small,
generic API for applications to use, similar to the Crypto
Provider in [17]. The deployment approach is depicted in
Figure 2. Newly developed applications simply use the
generic interface to communicate with external peers. All
functionality of the library is based on well-established stan-
dards and protocols to guarantee interoperability with other
implementations. The small, generic API is the key feature to
improve implementation-agility, as more functionality can be
changed and upgraded within the library without modifying
the interface for the application. Hence, it is easier to update
the library independent of the application.
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Figure 2. Deployment of agile security measures as a software library that
can be used by applications. This approach requires the application to use
the new small, generic API.

Along the interfaces for actual data processing, the library
contains an additional management interface for the configu-
ration of all security related functionalities. On the one hand,
this moves security configuration away from the application
onto the device-level, further improving their mutual indepen-
dence. On the other hand, a distinct management interface
simplifies the configuration for an operator as well as the
implementation of a centralized control and management
platform (i. e. fleet management). Those measures improve
configuration-agility for devices incorporating the ASL.

The actual configuration of endpoints for applications is
based on profiles. A profile contains all relevant parameters
for an endpoint related to secure communication. For ex-
ample, an endpoint profile describes the configuration of a
TLS server with its supported cipher suites and its certificate
chain. Via the management interface, profiles can be created

and modified. The profiles and their associated data (e. g.
certificates or private keys) are stored in an isolated and
secured location within the device. On application startup, a
specific profile is loaded with an API call to get an endpoint
context. If no profile is specified, a default profile is used.
This behavior makes sure that safe defaults are implemented.
Using the obtained context, secure sessions can be created
within the application for connections with peers.

Due to the generic API of the library, security functionality
can be provided for communication systems on different OSI
layers. Depending on the profile configuration, the desired
security features are applied transparently to the application
data without considering other OSI layers. The library further
supports both synchronous and asynchronous program flows
to provide flexibility for application developers.

Finally, the library is optimized for deployment in OT de-
vices by focusing on aspects like minimal resource footprints
and minimal dependencies on other libraries. Furthermore, it
is designed to be used within various operating systems to
offer flexibility and increase deployment possibilities.

B. Retrofit Deployment

To retrofit the crypto-agility capabilities of the ASL
into already deployed OT systems without modifications to
applications, we created an architecture design using the
aforementioned transparent proxies. The proxies are placed
within the communication path to intercept the application
traffic and integrate security measures transparently for the
existing peers. Within a proxy, the ASL is used to incor-
porate the improvements regarding implementation-agility
and configuration-agility. Due to the transparent deployment
of the proxy next to the application without any direct
coupling, both dimensions of crypto-agility are even further
improved compared to the direct integration of the ASL into
applications. We elaborated on two integration approaches
for the proxy, as described below.

The first approach is to deploy the proxy within the existing
device as an additional software service. Depending on the
particular device, this integration may require assistance from
the manufacturer (for the installation of the supplementary
application) or may be accomplished by the operator them-
selves, provided that the device is not locked down (i. e.
the operator can install the supplementary services indepen-
dently). As the proxy is a standalone service running besides
the application, independent updates and configuration are
straightforward.

The internal design of the proxy within the device is
shown in Figure 3. The proxy application uses the ASL
to incorporate both implementation-agility and configuration-
agility. To manage the proxy itself, an additional management
interface is present.
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Figure 3. Deployment of the agile security measures within a proxy
application deployed on the device itself. In this setup, the application does
not need any modifications, but the proxy must be deployed on the device
and be transparently integrated into the network path.



To implement the transparent integration into the commu-
nication path, the proxy intercepts the network traffic on the
desired OSI layer from within the networking infrastructure
of the operating system. This deployment results in the mes-
sages already wrapped within a suitable transport protocol
(e. g., TCP, UDP, or a Layer 2 Ethernet frame). There are then
two strategies for the proxy to handle the messages received
from the application.

The first strategy is to extract the upper layer payload
from these messages, secure them with the configured cryp-
tographic measures, and finally pack them in a new message
of a transport protocol. This results in the proxy terminating
the connection with the application, requiring it to simulta-
neously establish a second connection with the remote peer.
This setup breaks the end-to-end connection between the two
applications and, therefore, influences protocol functionality
like flow control. However, this strategy is otherwise fully
transparent for both existing peers, providing maximum com-
patibility.

The alternative strategy is to wrap the complete received
message including the metadata of the transport protocol
within a secure message and send it to the peer. This mode of
operation does not influence the end-to-end flow control of
the existing connection between the peers, as each message is
tunneled over the secure connection. Such tunnel behavior is
default in regular VPN systems. However, both peers have to
support the tunnel functionality (either by deploying a proxy
or by processing the tunnel messages themselves), limiting
interoperability and increasing the deployment effort.

Adding proxies to a system to intercept network traffic
and add functionality this way is well-established within
the cloud infrastructure domain. There exist various proxy
applications for cloud servers to act as load-balancers or
as security endpoints (e. g. NGINX or Envoy). However,
those applications are optimized for cloud environments
with their specific protocols and are built upon various
technologies common for these systems (e. g. containerized
applications and powerful enterprise hardware). Hence, using
these available proxy applications in OT systems is not
viable, especially considering the retrofit of existing devices.

Consequently, we created our own proxy application
specifically for OT systems. This application can work both
as a forward proxy (actively establishing connections to a
peer) and as a reverse proxy (waiting for incoming connec-
tions). Furthermore, it has minimal software dependencies
and its memory footprint is optimized to be as small as
possible to maximize portability onto existing devices while
simultaneously delivering the highest possible performance
to limit interference with the communication flow.

Some available, more powerful commercial devices for OT
systems nowadays also already feature application designs
based on containers (e. g. using Docker) to increase the
flexibility of application development and deployment. For
such systems, the proxy could also be deployed as a container
to be integrated into the containerized application complex.

For cases where an existing device is locked down or
has not enough resources available to deploy the proxy as
a service directly, we created an alternative approach based
on a Bump-in-the-Wire device. In this scenario, depicted in
Figure 4, the BitW device is integrated into a communication
path as an interceptor. On this additional device, our proxy
application is deployed to provide the same overall function-
ality for the system as the approach above.

This deployment approach further increases the achieved
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Figure 4. Deployment of the agile security measures within a standalone
BitW device within the network path. In this setup, the legacy does not
need any modifications. Only the additional device must be transparently
integrated into the network path.

level of crypto-agility, as both hardware and software are
independent of the existing device. Furthermore, basically
any system can be retrofitted by deploying BitW devices.
In one of our previous work, a BitW security gateway has
already been presented for a very specific use case within
energy supply systems [34], which served as the foundation
for the more general and flexible BitW proxy approach in
this work.

Besides using a standalone external device to deploy the
proxy application, other already existing devices within the
OT systems could also be considered to host the proxy.
For example, modern network equipment like switches or
firewalls feature powerful processors and are typically based
on common operating systems. Hence, it would also be pos-
sible to deploy the proxy on those devices. This setup would
result in equal crypto-agility capabilities, while avoiding the
additional BitW devices within the system.

C. Discussion

The presented concept to integrate crypto-agility capabili-
ties for both new and existing devices with its different de-
ployment approaches covers all use cases within OT systems.
However, each approach has its individual advantages and
disadvantages. For that reason, we present a discussion of
the three approaches in the following.

1) Achieved level of crypto-agility: Comparing the three
deployment approaches regarding the achieved level of
implementation-agility, the BitW proxy deployment wins. It
offers the most extensive separation of security measures
from an application and enables both independent hardware
and software updates without any modification of the ap-
plication. Deploying the proxy within an existing device,
we achieve a high degree of software independence, but
the proxy is still bound to the available hardware resources
on the device. Finally, the direct integration of the ASL
within a newly created application offers the least amount
of implementation-agility, as we still have a direct coupling
between application and security functionality via the small,
generic API. Considering configuration-agility, all three ap-
proaches feature the same management interface, resulting in
the same capabilities.

2) Impact on Communication behavior: When consider-
ing the impact of the deployment approaches on the commu-
nication behavior of a single device and of the overall system,
the sole usage of the ASL is to be preferred. Due to the direct
integration into an application, the overhead for each message
is kept minimal, resulting in the smallest latency increase and
the smallest bandwidth reduction. Comparing the two proxy
deployments, the resulting system influence depends on the
hardware and software environment. In case the existing
device has enough resources available to deploy the proxy
directly, the resulting influence can be small (however, still



larger than the direct library integration due to networking
overhead). When resources are limited, the influence can
grow larger, negatively impacting the communication be-
havior. The same applies to the BitW deployment: when
powerful hardware is used, the influence can be quite low.
With less resources available, the negative impact on system
performance increases.

3) Costs and Deployment Effort: In this category, we have
to clearly differentiate between new developments and retrofit
deployments. For newly developed devices, the integration
of the ASL directly into the application is the most viable
approach, as it limits costs and effort for the manufacturer and
also requires no additional integration steps or maintenance
overhead for the operator after installing a new device with
these capabilities. Considering the retrofit of existing devices,
the two proxy approaches score differently, depending on
the perspective of the manufacturer or the operator. For the
manufacturer, the BitW deployment is more attractive, as it
involves no work regarding existing devices. Furthermore,
new devices can be sold to customers, even in case they use
existing devices from other manufacturers. For operators, on
the other hand, the direct integration into existing devices
is better suited, as additional hardware costs are avoided.
The deployment effort for both proxy approaches from a
maintenance-perspective of the operator is comparable.

4) Safety and Reliability: Finally, the influence of the
three deployment approaches regarding the overall safety and
reliability of the system is considered. Assuming that all
newly created devices incorporate measures for secure com-
munication and, hence, a software library to implement those,
anyway, the direct integration of the ASL performs best of all
three approaches. The small, generic API for the application
decreases the effort for developers to safely and securely
integrate the security measures into their applications and
devices. For an operator, a common management interface for
various devices also decreases the effort to properly configure
the security measures, resulting in less errors.

Both proxy deployment approaches for retrofit add addi-
tional software and possibly also additional hardware (BitW
approach) directly into the main communication paths within
the OT systems. As a result, both the hardware and software
of the proxy have to be developed with a high level of
assurance regarding safety and reliability to not negatively
influence the overall system (e. g. a significant increase of the
Mean-Time-to-Failure). Due to the limited scope and com-
plexity of the proxy application and the possibly dedicated
hardware development for exactly the desired use case, those
requirements could be met with moderate effort, however.

In summary, the presented concept with its three deploy-
ment approaches enables the integration of agile security
capabilities into both existing and new devices. With the
key focus on the retrofit aspect of existing systems, a fast
migration path is created until all deployed devices are
capable of crypto-agility themselves. Using the dedicated
management interface, an operator can configure the system
based on the individual threat model and security goals,
independent of the actual OT application.

V. CASE STUDY: SECURING IEC 61850 MMS
COMMUNICATION

To demonstrate the viability of our concept, we created
reference implementations for both the ASL and the proxy
application. Using these, we conducted a case study securing
a test environment based on the IEC 61850 MMS protocol to
evaluate the performance and system influence of our designs.

In the following, we first present more details about the
reference implementations in Part V-A. As indicated in the
discussion above (see Part IV-C), the direct integration of the
ASL into new applications should behave very similarly to an
integration of a ”classical“ security library, as only the API
differs. Hence, we use the performance of this integration as a
reference for the comparison of our proxy approaches within
the case study. At first, we focus on the proxy application
and measure its resource consumption (Part V-B) as well as
the achievable bandwidth (Part V-C). Thereafter, we present
various measurements to validate the timing influence of the
proxy integration on system behavior compared to the ASL
in Part V-D.

A. Reference Implementations

To maximize compatibility and portability of our approach,
and also to demonstrate the viability in a broad device
spectrum, we created our reference implementations for both
Embedded Linux and the bare-metal Zephyr RTOS. Thus,
we can demonstrate our approaches for both microcontroller-
based and also more powerful microprocessor-based systems.
For the underlying cryptographic library, we use WolfSSL,
as this library supports a broad spectrum of different archi-
tectures and scales well from small microcontrollers up to
powerful processors. For our agile security library, we created
a wrapper around WolfSSL with our small, generic API and
the additional management interface. Currently, the profiles
with the endpoint configuration are implemented as JSON
files which are loaded during initialization. A thorough user-
facing interface with remote access is not yet implemented,
however.

Our proxy application is implemented in C and runs on
both Linux and Zephyr. It is currently limited to TCP/TLS
functionality, acting as both a TLS forward and a reverse
proxy. Thus, TCP connections can be intercepted and up-
graded to TLS. The forward proxy waits for incoming TCP
connections and upgrades them to TLS. The reverse proxy,
on the other hand, waits for incoming TLS connections and
forwards all traffic to a TCP connection. We only allow TLS
in version 1.3 and only support mutual authentication, so
both server and client have to authenticate using a valid
certificate chain. Once all connections are established, data
transmission is possible in both directions. The proxy can
handle multiple parallel connections to multiple different
hosts. The configuration is also done using a JSON file,
with a proper management interface on the roadmap for
future extension. Furthermore, other protocols are planned
to be integrated in the future, e. g. UDP/DTLS or support for
OPC UA Secure Channels.

For our case study, we created a setup using the IEC 61850
MMS protocol, as it is based on TCP and its security
recommendations are built upon TLS (see Part II-B). The
complete setup is depicted in Figure 5. We created both
an MMS server and client using the open-source library
libiec61850. The server contains a data model with various
variables. After connection establishment (TCP handshake
and MMS handshake), the client periodically reads single
data objects to track value changes. The IEC 61850 library
also offers optional support for TLS encryption directly
integrated into the code, based on the library mbedTLS. This
existing interface has been the basis for our integration of the
ASL directly into the application.

To represent a realistic and reproducible test system in the
laboratory, we deployed both the MMS server and client on
two Raspberry Pi 4 with the Raspberry Pi OS lite, as this
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Figure 5. Test setup for our case study based on the IEC 61850 MMS
protocol. Dashed lines indicate that the device or software module is only
present in a subset of the performed tests.

hardware should roughly be on an equal performance level
as typical commercial devices for OT systems and is widely
available for validation of our measurements. The network
between the devices is based on a single Gigabit Ethernet
switch to minimize the influence of network latency.

For deployment of our proxy application on an external
device, we limit the case study to a BitW proxy only for
the server side in front of the Raspberry Pi to minimize
the number of test cases. The BitW device in the test
setup is based on either another Raspberry Pi 4 running
Raspberry Pi OS lite or a microcontroller system based on
the STM32H573i evaluation board from STMicroelectronics
(Cortex-M33 with 250 MHz) running Zephyr RTOS.

B. Resource Consumption

The resource consumption of the proxy application is
measured to estimate the overhead that is loaded onto a
device when the proxy is deployed as an additional service
besides the application. As this deployment approach is much
more likely for Embedded Linux systems due to their better
extensibility, we focus our measurements on this OS. To
obtain the size of the executable, we compiled the proxy
with statically linked dependencies. The resulting executable
is roughly 2.3 MB in size. The proxy application for the
Zephyr RTOS could not be measured in isolation, as it is
embedded into a complete firmware image for the microcon-
troller. But the current firmware, containing the proxy and all
supplementary code, fits onto a microcontroller with 1 MB of
flash space.

To obtain the RAM footprint of the proxy during execution,
the tool Valgrind with its heap profiler massif has been
used. As stack space of Linux processes is also dynamically
allocated, this measurement can obtain both Heap and Stack
usage of a process. The peak memory usage of the proxy
occurs during the TLS handshake, when the peer certificate
chain is parsed. When only a single TLS handshake is
performed using certificates based on the ECC secp521r1
algorithm, the peak memory usage reaches 117.6 kB. In
a synthetic scenario with 10 simultaneous handshakes, the
setup peaks at 389.6 kB. This footprint is considered to be
small enough to make the proxy deployable on a typical
Embedded Linux device. For microcontroller-based systems,
the footprint is approximately the same, as the same code
is used. On those systems, however, the number of parallel
connections must probably be constrained to sustain viable
RAM footprints.

Regarding CPU resources, the proxy application follows
the best-effort principle. Hence, in case of limited free
processing resources, the data processing performance of
the proxy simply decreases. This effect, however, has to be
validated on a per-device basis.

C. Bandwidth

To measure the achievable bandwidth, we used the well-
known tool iPerf. Each of the two Raspberry Pi 4 run one
instance of the tool, either as a client or as a server. We
tested both the setup with the proxy deployed on the Pi itself
and the one with the proxy on another Pi acting as a BitW
device. Two test cases have been defined, one with a single
connection for the bandwidth measurement and one with four
parallel connections to use all CPU cores of the Raspberry
Pis.

For both deployment approaches, we achieved nearly iden-
tical measurements. In the test case with only a single con-
nection and transmission in one direction, both approaches
achieve a bandwidth of around 180 MBit/s. When looking at
the CPU resource consumption, only a single CPU core of
the Pis is used, running at 100 %. The test case with four
parallel connections utilizes all four CPU cores to 100 %
each, as the proxy application creates a new thread for each
connection, achieving a bandwidth of around 620 MBit/s (in
both deployment approaches). Based on these results for
both deployment approaches, we conclude that the AES
implementation within the TLS library is the limiting factor
regarding bandwidth. In the case of a test setup with full-
duplex data transmission over the same connections, the
achievable bandwidth per thread of around 180 MBit/s is split
onto the two directions, cutting the total bandwidth roughly
in half for each direction.

We also measured the setup with the STM32 microcon-
troller as BitW device. However, we identified the network
stack on Zephyr to be a limiting factor regarding net-
work bandwidth, achieving poor performance of only around
13 MBit/s in total using iPerf. Hence, those numbers are only
a limited indication of the proxy performance running on the
microcontroller.

In summary, the achieved bandwidth values show that the
proxy approach is generally viable and reaches acceptable
data rates. When deployed on a hardware platform with
hardware acceleration for AES, the bandwidth should also
reach the Ethernet link limit of 1 GBit/s.

D. Timing Influence

Finally, we measured the influence of the proxy integration
on key timing parameters within the test setup compared
to the direct integration of the ASL. The test setup from
above leads to multiple test cases in which we obtained the
timing parameters: insecure TCP connection between client
and server, direct integration of the ASL into the application,
proxy deployment directly on both devices as a software
service and server-side BitW proxy deployment (Raspberry
Pi and STM32 microcontroller). All TLS implementations
use ECC secp384r1 certificate chains with one intermediate
certificate, and only mutual authentication is enabled. For
each timing parameter and test case, we took 10000 measure-
ments and calculated the mean value and the 99th percentile.

The first measurement is the time to establish an IEC 61850
MMS connection. This includes TCP connection establish-
ment, TLS handshake (if present in the test case) and
MMS handshake. The results are depicted in Figure 6.
The microcontroller-based values are omitted, as the TLS
handshake takes around 300 ms on average, which would
impede the visualization in the violin plot.

As can be seen, the integration of TLS into the handshake
massively increases the connection establishment time in
general, compared to the plain TCP setup. Considering the
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amount of data that is exchanged, and the cryptographic
calculations performed during a TLS handshake with mu-
tual authentication, however, such an increase is expected.
Surprisingly, the measurements show that the two proxy
deployments are even a bit faster than the direct integration
of the ASL into the MMS application. This worse result of
the direct integration is probably due to unoptimized data
flows and worse event handling within the MMS application
compared to the optimized proxy application, as the crypto-
graphic code and the TLS configuration are identical in all
deployments. The two proxy deployments show no noticeable
difference, indicating that both approaches are viable. In total,
the achieved handshake times with both proxies demonstrate
that the proxy approach in general is a viable alternative
to a direct integration. The much larger values from the
microcontroller-based setup generally are not ideal. However,
within OT systems, the connection is typically kept open for
a long period, decreasing the negative impact of the longer
connection establishment time. Hence, we also consider the
proxy deployment on a microcontroller a viable approach
regarding the connection establishment time.

The second measurement captures the time to read a single
data object from the server. In this test, the connections are
already fully established. Hence, we only measure the time
overhead of the data processing and the resulting latency
caused by the proxy. Figure 7 shows the results as violin
plots.

The direct integration of the ASL only marginally increases
the measured time to read a singe data object compared to
the plain TCP setup. This results from the minor overhead
of the TLS record protocol, mainly the AES encryption and
decryption, running on a powerful processor of the Rasp-
berry Pi. The two Raspberry Pi-based proxy deployments
add only a minor latency overhead of 0.15 ms and 0.2 ms,
showing that a proxy on a powerful hardware platform only
marginally influences timing parameters. The minor latency
increase in the case of an external deployment compared to
a software deployment is probably caused by the additional
physical network transmission over Ethernet compared to the
in-memory-transmission over localhost within the software
deployment.

The hardware of the STM32 microcontroller features a
hardware accelerator for the AES algorithm. Hence, we cre-
ated two versions of the Zephyr-based BitW proxy firmware:
one with and one without utilizing this accelerator. As
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can be seen in the two right-most plots of Figure 7, both
measurements add a noticeable amount of additional latency
compared to the Raspberry Pi-based proxies. However, the
measured values are still small compared to typical values of
real-world network latency in Ethernet networks without hard
real-time requirements, hence not causing a large additional
delay. The hardware acceleration of the AES algorithm
decreases the latency by around 0.2 ms. However, the value
is still more than double the value of the Raspberry Pi
based BitW proxy. This indicates that the software processing
overhead of the TLS protocol is bigger than the required time
to actually encrypt and decrypt the messages. Considering the
much lower price and the much simpler hardware design of
a microcontroller-based system compared to a Raspberry Pi,
the deployment of the proxy on a microcontroller is definitely
a viable approach in case the timing requirements of the
system allow it.

To conclude, the results of the presented case study show
the general viability of our proxy approach to retrofit agile
security measures into existing systems, both within an
existing device as a software service as well as within a BitW
device with various hardware capabilities.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented an analysis of the current state
of crypto-agility in OT systems regarding secure communi-
cation and identified problems and possible improvements.
Furthermore, we proposed a new architecture concept to in-
tegrate security measures into both current and future systems
while improving crypto-agility. Finally, we demonstrated the
viability of our concept with its deployment approaches and
conducted a thorough analysis of the influence of the new
setup onto system behavior.

In the future, we plan to further improve our reference
implementations with support for more protocols (e. g. UDP
and DTLS, OPC UA, IPsec, MACsec) and use cases (e. g.
multicast communication). Furthermore, we want to examine
the influence of the concept on systems with real-time
requirements. Finally, we want to elaborate on further en-
hancements to our agile security library, both in terms of the
coupling to the application (e. g. integration into the secure
sockets API) and more thorough internal implementation
agility (e. g. internal modularization).
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Abstract—Dual (DMR) and Triple Modular Redundancy
(TMR), often with some form of diversity, are used in safety-
critical systems to realize those functionalities at the highest
integrity level providing fault detection and/or tolerance capa-
bilities. Redundant executions are intended to provide bit-level
identical results and, upon any mismatch, an error is assumed
and recovery actions taken as needed.

In this paper, we note that many emerging AI-based func-
tionalities are intrinsically stochastic (e.g., camera-based object
detection), and hence, their correctness must be judged se-
mantically, with room for variations across correct outcomes
(e.g., confidence must be above a given threshold). Building
on this observation, we propose strategies to create DMR and
TMR implementations of AI-based functionalities that bring not
only fault tolerance against random hardware faults, but also
against AI model inaccuracies. Those strategies, which can be
realized with software-only means and ported to virtually any
computing platform, build on input data modifications affecting
the inference computations, but not the expected semantic output
(e.g., introducing some limited random noise in the input data).

Index Terms—Diversity, Redundancy, Safety, DNN, AI

I. INTRODUCTION

Artificial Intelligence (AI) is increasingly used in safety-
critical systems as an enabler for autonomous operation. For
instance, camera-based object detection implemented with
Deep Neural Networks (DNN) is used across a wide variety of
applications and domains such as autonomous driving cars [1],
rendezvous and docking operations in space [2], and in-cabin
pilot monitoring in avionics [3] among others.

AI has been used so far mostly in fail-safe systems [4],
where AI software has been generally relieved from inher-
iting safety requirements by incorporating appropriate non-
AI monitors. However, autonomous operation, often related
to fail-operational systems, does not generally allow keeping
AI software without safety requirements. In fact, since AI
software is in charge of high-integrity operations, such as
steering and braking in automotive, or docking in space,
integrity requirements can easily be the highest ones (e.g.,
DAL-A in avionics, ASIL-D in automotive). Therefore, it is
common that the corresponding safety guidelines impose the
use of diverse redundancy as a mandatory safety measure.

So far, diverse redundancy has been built with bit-level
correctness in mind. For instance, lockstep processors use 2
or 3 identical cores running the same software with just some
time staggering so that their internal state differs at any point
in time and, upon a fault affecting all of them simultaneously,
the errors generated (if any) are expected to differ and, at
least, be detected. In this case, any discrepancy in the results
is regarded as an error even if it is semantically innocuous for
a specific application, since it is hard to tell whether it is or
not a priori. However, in the context of AI software, such as
DNNs, many applications do not require bit-level correctness
and, instead, perform stochastic processes where bit-level

different outcomes can be regarded as semantically identical.
For instance, two object detectors identifying the same object
class as the most likely one, with confidence values above
a detection threshold, and with highly overlapping bounding
boxes, can be regarded as providing identical outputs even if
confidence values and bounding boxes differ.

This paper exploits this observation, i.e., redundant AI
software may afford bit-level differences across semantically
identical outcomes, to realize diverse redundancy in more
efficient ways. In particular, we consider solutions where
diverse redundancy can be used not only to deal with random
hardware faults, but also to mitigate inaccuracies brought
by AI models themselves (e.g., false positives and false
negatives). Moreover, we do so containing system design
and operation costs by preserving the original AI model.
Otherwise, the cost of designing, training, and verifying two
models could be prohibitive, as well as the cost of fetching
twice the amount of AI model parameters, which may be in the
order of several GBs in the case of some DNNs for camera-
based object detection [5].

Our solution builds upon applying semantically-neutral
transformations to the input data of the AI model (e.g.,
images for camera-based object detection) that alter inference
computations so that random hardware faults are mitigated due
to physical redundancy, but also small AI model inaccuracies
can be mitigated due to input data diversity. In particular, we
realize our transformations in the input images used by the You
Only Look Once (YOLO) [6] object detector and show that
a variety of image transformations yield comparable results
to the original case, and they can be combined with different
schemes to form a TMR system.

The rest of the paper is organized as follows. Section II
provides some background and related work on diverse redun-
dancy. Section III presents our proposal. Section IV evaluates
it. Finally, Section V concludes this work.

II. BACKGROUND AND RELATED WORK

High-integrity systems and components require the use of
some form of redundancy for, at least, error detection, and
possibly correction. Data storage and communication often
build on some form of error correction codes. For instance,
single error correction double error detection (SECDED) codes
for data storage are a popular solution for large memories,
and can also be used to protect end-to-end communications
by forwarding those codes along with the data.

However, combinatorial logic, and computing components
in general, often need to resort to full redundancy. Dual (DMR)
and Triple Modular Redundancy (TMR) are effective solutions
for error detection and correction respectively if faults affect
one of the redundant components only. However, some types
of faults, such as those affecting clock signals and power



networks, can lead to simultaneous errors in all redundant
components. Hence, some form of diversity is wanted across
redundant instances to avoid scenarios where errors are iden-
tical and cannot be detected by comparing outputs.

The usual solution to realize DMR and TMR with diversity
in CPUs consists of operating redundant cores with some
time staggering so that, despite redundant cores are identical
and execute identical software, their state at any time instant
differs, and the simultaneous impact of a fault is expected to
cause different errors – if any. The most popular case of such
scheme is known as Dual Core LockStep (DCLS for short),
and realized in some commercial microcontrollers, such as
the Infineon AURIX processor family [7]. Similar schemes
have been devised for GPUs [8], as well as software-only
alternatives for cores [9]. However, all those solutions build
upon bit-level accuracy so, while they could be applied directly
for DNNs (either in CPU, GPU, or ad-hoc accelerators), they
cannot be used to mitigate DNN model inaccuracies.

Some solutions exploit semantic redundancy for data vary-
ing little over time (e.g., camera-based object detection at
high frames per second rates) [10], [11]. However, differently
to our proposal, those solutions only provide error detection
capabilities and can only be applied to problems with some
(high) degree of timing redundancy. Our approach, instead,
provides intrinsic error correction capabilities and poses no
requirements on the timing relations across input data.

In our previous work [12], we presented TRUST, a scheme
combining temporal redundancy, such as the previous works,
as well as spatial redundancy to provide a DCLS-like solution,
but with the secondary accelerator operating with lower-
precision arithmetic to reduce complexity and power. While
TRUST provides error correction capabilities, such as ITLS,
it does not increase the model accuracy, and is still bound to
problems where temporal redundancy exists. Moreover, ITLS
could be realized with software support only, as opposed to
TRUST.

Ensemble methods have previously been adopted to enhance
the accuracy of DNNs [13], [14]. However, those works
introduce substantial memory and computational overheads
since weights change across models. To address this challenge,
Gao et al. [15] introduced an ensemble approach that combines
the outputs of three or four lower-complexity models (e.g., an
ensemble of ResNet22, ResNet32, and ResNet44) to replace
the original model (e.g., ResNet110). In their study, Gao et
al. compare their ensemble technique with a Triple Modular
Redundancy (TMR) method, and show that it incurs smaller
overheads. However, their ensemble approach requires three
different models with different weights, while we rely on the
use of a single model. Therefore, their approach increases the
cost of designing, training, and verifying several models which
may be prohibitive. Furthermore, their evaluation focuses
on object classification, which is an easier task than object
detection.

Jon’s et al. recent work [16] bears the closest resemblance
to ours. Authors propose the use of image transformations
to detect – but not correct – anomalous situations that could
cause a potential faulty situation in an autonomous system. In
particular, authors use a DNN to calculate the steering angle
of a robot while driving between two lines, which is a much
simpler task than the object detection task considered in our
work. Their approach consists in executing the DNN with
the original image and then performing a follow-up execution

with a very slightly modified image, such that the steering
angles calculated for both images are expected to be identical,
i.e. within a calculated uncertainty threshold. However, in our
work, we allow a higher degree of modification to be able
to increase the overall system robustness through detecting a
larger number of objects between the different components of
the TMR system. We attempted to apply such approach to our
problem, but the results were not promising, since the output
of a DNN for object detection is composed of millions of
values, and we found that the calculated uncertainty threshold,
with the image modifications used in our work, is too large in
fault-free cases, such that it cannot detect faulty operations.

III. SOFTWARE-ONLY SEMANTIC DIVERSE REDUNDANCY

Our approach builds on realizing a redundant scheme for
the inference with a given AI model by altering the inputs
across redundant instances in a way that outputs are expected
to remain identical semantically speaking, and merging them
conveniently, as illustrated in Figure 1. Note that to achieve
maximum performance, a hardware solution comprising three
parallel physical compute units must be made available. How-
ever, if developing a hardware solution is not an option, our
solution could be implemented solely through software means.
This can be achieved by executing the three input images in
parallel on a single GPU, following the work from S. Alcaide
et al. [17] which demonstrates how to implement a software-
only TMR scheme using a single GPU.

For the sake of easing the explanation, we focus on a
TMR scheme applied on the popular You Only Look Once
v4 (YOLOv4) [6] object detection software for images, which
is used in a plethora of applications, including commercial
automotive systems, such as Apollo [18]. In particular, the
task at hand is object detection, where, for each object present
within an image, the model has to classify it (i.e., determine
the class of the object, such as, a vehicle or a person), and
determine its position and size by creating a bounding box
(i.e., a rectangle surrounding the object).

A. Efficient Diverse Redundancy

As shown in some recent work, DNNs such as the one
in YOLOv4 may require fetching some GBs of weights to
process each image [5], whereas images occupy up to few
MBs. Hence, memory bandwidth is often saturated to fetch
the DNN weights. Based on this fact, our redundancy scheme
aims at preserving the same DNN model for all redundant
inference processes with the aim of enabling appropriate
execution approaches that allow sharing weights fetched across
the redundant processes.

Therefore, if weights are fixed, the simplest way to intro-
duce diversity with software-only means consists of altering
the input data. Our goal is applying modifications to the input
data so that it differs across the redundant processes, but they
are semantically equivalent so that inference should lead to
the same object detections. In particular, we have considered
some of the image transformations provided by the CLoDSA
open library [19], which would map to F (x), G(x) and H(x)
in the figure:

• Applying histogram equalization (EQ).
• Image sharpening (SH).
• Dropout (DR) by setting some pixels to zero.
• Applying Gamma correction (GC).
• Blurring the image applying a Gaussian filter (GB).



Fig. 1: Overview of our proposed TMR diverse redundancy
scheme.

• Applying Gaussian noise (GN).
• Blurring the image applying the median filter (MB).
• Adding salt and pepper pixels (SP).
• Raising pixel values by a set amount (RV).
• Shifting the image some pixels to the right (RS).
• Shifting the image some pixels to the left (LS).
• Shifting the image some pixels to the top (TS).
• Shifting the image some pixels to the bottom (BS).
• Rotating the image clockwise at a certain angle (CR).
• Rotating the image anticlockwise at a certain angle (AR).
• Horizontally flipping the image (HF).
• Vertically flipping the image (VF).
To realize the TMR scheme, we select three different

choices between the image transformations above and the
original image, and perform inference for the three of them
using the identical YOLOv4 DNN model. With this, we obtain
three potentially different object detection outputs that need
being combined properly.

B. Combining Predictions

Rather than attempting to identify wrong predictions – if
any – across the diverse and redundant predictions, we merge
those predictions with the aim of making correct predictions
supersede erroneous ones (see Figure 1). We build on the
fact that predictions, even if correct, may not be identical
at bit level. Hence, we opt for combining predictions whose
detection class matches (e.g., a pedestrian is detected), and
whose bounding box overlaps enough (e.g., bounding boxes
have an intersection over union higher than 50%). However, it
remains open how to set the final bounding box and confidence
for the detection. Regarding the bounding box, note that model
A can provide a bounding box overlapping above the threshold
with the one from model B and the one from model C, but the
ones from models B and C may overlap below the threshold.
In this case, we still regard detections as the same detection
and attempt to combine them.

Confidence. To set the confidence of the detection, we
explore different schemes as follows:

• Voting: a detection is regarded as true if 2 out of 3 DNN
models provide a confidence level above the detection
threshold (e.g., using the default confidence threshold of
50% to determine that a detection should be correct).

• Averaging: a detection is regarded as true if the average
of the confidence values for the three models is above
the detection threshold.

• Maximum: a detection is regarded as true if at least one
model indicates a confidence level above the detection
threshold.

Bounding box. To set the bounding box of the detection,
we perform it as follows:

• Voting: we retain the bounding box of the detection with
the highest confidence among those being combined.

• Averaging: the bounding boxes of the 3 DNN models are
averaged to obtain a final bounding box.

• Maximum: note that in this case, there may be over-
lapping bounding boxes that represent the same object.
Therefore, a Non-Maximum Suppression (NMS) post-
processing is applied to filter out repetitions. The NMS
consists in filtering out the detections that represent the
same object by comparing the bounding boxes of the
detections of the same class, and if the bounding boxes
have sufficient overlap (i.e., Intersection Over Union
> 0.5), the bounding box with the highest confidence
is kept, and the other overlapping bounding boxes are
discarded.

Note that other approaches to determine the resulting bound-
ing box are possible, such as selecting the largest bounding
box among those being combined instead of considering the
confidence level. However, using a bounding box not provided
by any of the DNNs explicitly brings additional uncertainty.
Hence, we stick to using a method that selects one of the
relevant bounding boxes.

C. Application to Safety-Relevant Systems

Deploying safety-relevant systems based on AI, with AI
software inhering safety requirements, is still an open chal-
lenge [4]. Some relevant standards have seen the light very
recently, such as ISO 5469 and ISO 21448 (aka SOTIF), but
their practical application is not yet solved. Moreover, they do
not provide specific guidance to tailor diverse redundancy. For
instance, it is unclear how many levels and degrees of diverse
redundancy are needed to make risk residual and system
accuracy high enough. In our view, as part of the system
architecture, diverse redundancy must exist at different levels,
e.g., with multiple sensors, and with redundant and diverse
processing for the data of each sensor. Our proposal aims at
providing an efficient realization for the latter, hence enabling
system designers with appropriate solutions to architect their
AI-based safety-critical systems.

IV. EVALUATION

In this section, we introduce the evaluation setup (YOLO
implementation, dataset, evaluation metrics, and fault injection
framework), we discuss the results obtained with each image
transformation when executing a single model, and we discuss
the results obtained with our scheme, considering the different
image transformations and results merging schemes in fault-
free and faulty scenarios.

A. Setup

We use a 32-bit floating point Tensorflow Keras implemen-
tation of YOLOv4 [20] with the publicly available pre-trained
YOLOv4 parameters with the training subset of the Common
Objects in Context (COCO) dataset [21]. We evaluate our
proposal using the default 608x608 (image width x image
height) network size of YOLOv4 and a reduced version using
a 320x320 network size which roughly gives a 2x inference
speed up at the cost of a slight accuracy drop [22], hence
showing the effectiveness of our scheme regardless of the cho-
sen network size. We evaluate our proposal with COCO [21],



using the validation subset, and keeping only those images
that contain objects such as vehicles and pedestrians, which
delves 870 images for evaluation.

However, the COCO dataset is not specific to AD, hence
we have also evaluated our scheme with the KITTI dataset,
designed specifically for AD applications. We have also con-
sidered using other AD datasets such as Udacity [23], Berkeley
DeepDrive [24], and Waymo [25], but KITTI was the only one
delivering relevant results for the pretrained YOLOv4 model
due to using a comparable object labelling policies to the
COCO dataset used for training. The KITTI dataset contains
7481 images captured from onboard vehicle cameras, and also
includes three temporally preceding frames of each image, but
captured at a very low FPS, which makes detections across
images highly independent. Hence, we resorted to evaluating
each image independently. The main limitation when using
the KITTI dataset with the pretrained YOLOv4 model is that
some classes (e.g., bus) are not labelled, and some classes (e.g.,
person, and motorbike) have significantly different labelling
policies to those of COCO. Therefore, we have restricted our
evaluation with the KITTI dataset to those classes with fewer
discrepancies to obtain accurate results (i.e., car, van, and truck
object classes). Another difference w.r.t. the COCO dataset is
that the KITTI dataset includes some regions of the image
– mostly background regions – that have not been labelled.
Therefore, predictions made within these unlabelled zones are
ignored during the evaluation process.

As evaluation metrics, we use the Accuracy (ACC) and
Mean Average Precision (mAP). To obtain those, first we
have to compute the Intersection over Union (IoU), i.e., the
fraction of the intersection of the bounding boxes w.r.t. the
union of those bounding boxes. In particular, we do so for the
final objects detected by our proposal and the groundtruths.
Since the detection process is stochastic and subject to some
variation, whether an object is regarded as detected or not is
done with a threshold, which in our case is 0.5, as set in other
works [26]. This leads to true positives (TP) if the IoU is
above the threshold, false positives (FP) if the IoU is below
the threshold for a predicted object, and false negatives (FN)
if the IoU of a groundtruth is below the threshold.

The accuracy (ACC) is obtained as follows:

ACC =
TP

TP + FP + FN
(1)

The mAP is a more complex metric that is often the reference
for object detection evaluation. The mAP leverages the TP, FP,
and FN counts across the existing object classes to obtain an
accuracy assessment for each object class, and then averages
the individual accuracies to obtain an overall accuracy assess-
ment. Given the complexity to introduce the details of this
metric, and due to space constraints, we refer the interested
reader to other publications for detailed explanations of this
metric [27].

Regarding our fault injection campaign, we focus on random
hardware faults impacting the computation (i.e., transient
faults). We have injected transient faults in the result generated
by multiplication or addition operations of the convolutional
layers, as these layers account for over 99.5% of the total
number of operations to process an image. Furthermore,
random faults have only been considered to affect the sign
or exponent of the floating-point number representation (i.e.,
9 highest order bits), since random bit flips in the mantissa

TABLE I: Results of each Image Transformation analysed
independently with the COCO dataset (320x320 network size).

TABLE II: Results of each Image Transformation analysed
independently with the KITTI dataset (320x320 network size).

are mostly masked and do not lead to semantic changes in the
outputs of the model [28], [29].

Tensorflow Keras poses difficulties to inject faults in the
intermediate results of a layer, since layers operate as black
boxes. To overcome this limitation, we have implemented
a custom convolutional layer (same functionality but less
efficient implementation). We choose an operation (addition
or multiplication) randomly across all those operations in all
convolutional layers. To inject a fault in a specific result of a
specific layer, we execute the Keras model until the previous
layer, replace the target layer with our custom one, inject the
fault as needed (flipping a random bit in the sign or exponent),
and resume the execution of the Keras implementation from
the following layer onwards passing the result of our custom
layer as needed.

B. Results of Independent Configurations

Tables I, II, III, and IV show the TP, FP, and FN counts, as
well as the ACC and mAP for each image transformation with



TABLE III: Results of each Image Transformation analysed
independently with the COCO dataset (608x608 network size).

TABLE IV: Results of each Image Transformation analysed
independently with the KITTI dataset (608x608 network size).

the COCO and KITTI datasets using 320x320 and 608x608
network sizes.

First, note that the VF image transformation produces very
low ACC and mAP results for all the datasets and network
sizes evaluated, since the pretrained model has not been
trained with vertically flipped objects. However, we keep this
transformation for completeness.

In the case of COCO with 320x320 network size, the Base-
line configuration provides the highest ACC and mAP, but with
a network size of 608x608 there are 4 image transformations
(TS, RV, HF, LS) providing up to 0.25% higher mAP than
the baseline. For KITTI and 320x320 network size, there are
8 image transformations providing up to 2.2% higher mAP
than the baseline, and with a 608x608 network size there are
3 image transformations (EQ, GC, BS) providing up to 0.73%
higher mAP than the baseline.

Note that the pretrained YOLO model used COCO’s training
subset. Hence, the baseline model was expected to obtain
high accuracy when evaluating similar images (e.g., COCO

Fig. 2: Sorted mAP for all TMR F(x), G(X), and H(x) per-
mutations for all merging algorithms using COCO (320x320
network size).

Fig. 3: Sorted mAP for all TMR F(x), G(X), and H(x) per-
mutations for all merging algorithms using KITTI (320x320
network size).

Fig. 4: Sorted mAP for all TMR F(x), G(X), and H(x) per-
mutations for all merging algorithms using COCO (608x608
network size).

validation subset), but for different datasets, such as KITTI, it
was indeed expected that some image transformations could
surpass the accuracy of the baseline model.

C. Results of the Merging Algorithms

We have obtained the TP, FP, and FN counts, as well as the
ACC and mAP values for all TMR configurations and merging
algorithms, namely Voting, Averaging and Maximum. Since
the number of combinations is too large to allow reporting
data for all those configurations (817 per merging algorithm),
we show the mAP for all configurations in Figures 2, 3, 4,



Fig. 5: Sorted mAP for all TMR F(x), G(X), and H(x) per-
mutations for all merging algorithms using KITTI (608x608
network size).

TABLE V: TMR results for the top-5 configurations of each
merging algorithm using COCO (320x320 network size).

and 5, and the detailed results for the top-5 (in terms of mAP)
for each algorithm in Tables V, VI, VII, and VIII.

Results in the figure are sorted independently for each
merging algorithm, meaning that the nth best configuration
for one algorithm may differ for the other algorithms despite
being aligned w.r.t. the X-axis. Hence, the X-axis is not
labelled. However, showing the data this way allows us to get
several conclusions: (1) Maximum provides consistently the
best results in terms of mAP across all merging algorithms;
(2) Averaging is consistently worse, in terms of mAP, than the
baseline when using the COCO dataset, but it is slightly better
than the baseline in very few cases when evaluating the KITTI
dataset; (3) Voting is slightly better than the baseline in some
cases; and (4) all merging algorithms provide a smooth degra-
dation of the mAP across image transformation combinations,
hence meaning that, while some transformations may delve
better results than others, there is not a strong dependence
on very few combinations, so the approach provides robust

TABLE VI: TMR results for the top-5 configurations of each
merging algorithm using KITTI (320x320 network size).

TABLE VII: TMR results for the top-5 configurations of each
merging algorithm using COCO (608x608 network size).

results.
Results in the tables offer a different angle to our analysis.

For the COCO 320x320 configurations, in the case of Voting,
we note that the bottom shift (BS), left shift (LS), and raise
value (RV) transformations, as well as the baseline (BL), are
the most popular ones since they appear in 4, 3, 3, and 3 of
the top-5 TMR combinations respectively, and only Gamma
correction (GC) appears once. In the case of Averaging, the
best combination, despite not providing diversity, consists of



TABLE VIII: TMR results for the top-5 configurations of each
merging algorithm using KITTI (608x608 network size).

using 3 times the BL. RV, GC, and Gaussian Noise (GN) are
also quite frequent, and appear 3 times each one. Finally, in the
case of Maximum merging, we observe that slightly shifting
the original image in one direction is a frequent choice since
10 out of the 15 choices correspond to top, bottom, left or right
shift. Hflip (HF) is also a frequent choice with 4 appearances,
and Equalization (EQ) appears once.

For the COCO 608x608 configurations, in the case of
Voting, we note that slightly shifting the original image in one
direction is a frequent choice since 9 out of the 15 choices
correspond to top, bottom, left or right shift, HF appears 3
times, RV appears twice, and GC appears once. In the case
of Averaging, the best combination, despite not providing
diversity, consists of using 3 times the BL. RV and GC appear
three times, HF appears twice, and GN appears once. Finally,
in the case of Maximum merging, we observe that slightly
shifting the original image in one direction is a frequent choice
since 11 out of the 15 choices correspond to top, bottom, left
or right shift. HF is the second most frequent choice with 4
appearances.

For the KITTI 320x320 configurations, in the case of
Voting, EQ and GC appear 5 times, shifting transformations
appear 3 times, and HF appears once. In the case of Averaging
the best configuration is no longer the baseline. EQ appears 5
times, GC appears 4 times, GB appears twice, and RV, HF, and
BL appear once. Finally, in the case of Maximum merging,
shifting appears 8 times, EQ 5 times, and GB appears twice.

For the KITTI 608x608 configurations, in the case of
Voting, EQ and shifting appear 5 times each, GC appears 4
times, and HF appears once. In the case of Averaging, EQ
appears 5 times, HF and GC appear 3 times, RV and BL appear
twice. In the case of Averaging, EQ appears 5 times, and HF
and GC appear 3 times. Finally, in the case of Maximum
merging, shifting appears 7 times, EQ appears 5 times, and
HF appears 3 times.

In summary, for the KITTI dataset, EQ is a particularly good
option since it appears in all the TOP-5 configurations for all
merging algorithms. The shifting image transformations works
particularly well for both COCO and KITTI datasets when
using a Voting or Maximum merging algorithm. The BL works
particularly well for the COCO dataset when performing an
Average merging, and the HF and GC are also noteworthy
configurations for the KITTI dataset with an Average merging.

For the COCO dataset with both 320x320 and 608x608
network sizes, we note that Voting may increase a bit TPs
and decrease a bit FPs. Hence, despite not providing the
best mAP values, it provides an interesting tradeoff since it
outperforms the baseline in all fronts. Averaging, instead, tends
to decrease TPs while failing to decrease FPs sufficiently,
and it is systematically worse than the baseline case. Finally,
Maximum tends to increase TPs and FPs, which is expected
since any object being detected by at least one of the three
redundant inferences is regarded as a detection, and hence, a
TP or a FP. Still, the combined effect clearly increases ACC
and mAP values w.r.t. the baseline. Overall, looking at the
results from the COCO dataset, if we care only about mAP
or ACC, Maximum is clearly the best choice. If, instead, FPs
are particularly problematic, Voting is the best solution.

For the KITTI dataset with both 320x320 and 608x608
network sizes, looking at the mAP values, Voting is clearly
superior than Averaging for all configurations. However, look-
ing at the ACC values, these approaches have closer results.
Finally, Maximum tends to increase TPs and FPs, but the
combined effect provides the highest mAP values. However,
the ACC of the Maximum merging algorithm is slightly
lower than the baseline for the KITTI dataset with a 608x608
network size. We ascribe this effect to the fact that the KITTI
dataset does not properly label all background objects, which
are mostly small. When increasing the network size, the model
can detect more smaller objects, hence we observe a FP
increase. We validated this observation in a subset of images
by means of visual inspection, yet could not properly label the
full dataset manually to fully fix this issue.

Overall, if we care only about mAP, Maximum merging is
clearly the best choice for all the datasets analysed. If, instead,
FPs are particularly problematic, Voting is the best solution.

D. Results of Fault Injection Configurations

We have selected the top-mAP and top-ACC configurations
for each merging algorithm, network size, and dataset, and
analysed the impact of random fault injections on this subset of
configurations. In the case of a single configuration providing
both the top-mAP and top-ACC, this configuration with both
the top-mAP and top-ACC, and the second highest mAP
configuration have been selected instead.

First, we analyse the individual image transformations used
in any of the top-mAP and top-ACC combinations indicated
above. Tables IX, X, XI, and XII, present the fault-free results
as well as the results after fault injection for those image
transformations for the COCO 320x320, KITTI 320x320,
COCO 608x608, and KITTI 608x608 setups, respectively. The
tables provide the FP, FN, and TP count, as well as the ACC
and mAP. Since some combinations (e.g., COCO 320x320
Averaging) use an ensemble of up to three baselines, we
perform 3 different fault injections in such baseline, which
we refer to as BL 1 AF, BL 2 AF, and BL 3 AF. For the



TABLE IX: Results of the Fault Injection of the individual
image transformations part of the combinations with the best
mAP and ACC for the COCO dataset (320x320 network size).

TABLE X: Results of the Fault Injection of the individual
image transformations part of the combinations with the best
mAP and ACC for the KITTI dataset (320x320 network size).

remaining cases we report the fault-free (e.g., LS) and fault-
injected cases (e.g., LS AF).

We observe that, in general, fault-injected configurations
have lower TP counts, and except in COCO 320x320, also
lower FP counts. ACC and mAP drop similarly for all configu-
rations, with a 2.90% and 3.56% drop on average, respectively.

Tables XIII, XIV, XV, and XVI show the results of our
proposal in the non-faulty TMR case, as well as in two
faulty TMR cases; (i) with independents faults where for a
given image only one of the three configurations is affected
by a fault, and (ii) with faults in the same image for all
three configurations. In the fault-free scenarios, which would
correspond to virtually 100% of the time given that faults occur

TABLE XI: Results of the Fault Injection of the individual
image transformations part of the combinations with the best
mAP and ACC for the COCO dataset (608x608 network size).

TABLE XII: Results of the Fault Injection of the individual
image transformations part of the combinations with the best
mAP and ACC for the KITTI dataset (608x608 network size).

seldom, we obtain the following conclusion: (1) Voting and
Maximum merging algorithms provide higher mAP and ACC
than the Baseline, except for the HF, EQ, LS configuration
for the KITTI dataset with a 608x608 network size, where
we observe a slight ACC drop w.r.t. the baseline (for reasons
previously discussed in Section IV-C), (2) Averaging only
produces better results than the baseline with the KITTI dataset
since the model was trained with the COCO training subset.
Therefore, it is expected that some image transformations
could surpass the accuracy of the baseline when using other
datasets.

When faults occur independently, we obtain the follow-
ing conclusions: (1) Voting provides higher mAP and ACC
than the Baseline with both datasets and both network sizes



TABLE XIII: TMR results for the best mAP and ACC config-
urations of each merging algorithm using the COCO dataset
(320x320 network size).

TABLE XIV: TMR results for the best mAP and ACC
configurations of each merging algorithm using the KITTI
dataset (320x320 network size).

analysed. (2) Maximum provides higher mAP and ACC than
the Baseline for the COCO dataset with both network sizes,
and for the KITTI dataset with a 320x320 network size.
However, for the KITTI dataset with a 608x608 network size,
we observe that the HF, EQ, LS (indep. faults) configuration
provides higher mAP but lower ACC (for reasons previously
discussed in Section IV-C), and the GB, CR, AR (indep. faults)

TABLE XV: TMR results for the best mAP and ACC config-
urations of each merging algorithm using the COCO dataset
(608x608 network size).

TABLE XVI: TMR results for the best mAP and ACC
configurations of each merging algorithm using the KITTI
dataset (608x608 network size).

configuration provides higher ACC but lower mAP, since this
configuration provides the highest ACC in fault-free cases, but
does not deliver as high mAP as the top-mAP configuration.
(3) Averaging produces worse results than the baseline with
all configurations.

When faults occur in the same image for all three con-
figurations, we obtain the following conclusions: (1) for the



COCO dataset, all merging algorithms provide lower accuracy
than the baseline, (2) Voting produces the closest accuracy
to the baseline, both in terms of ACC and mAP, (3) for the
KITTI dataset, both Voting and Maximum have at least one
configuration producing higher accuracy (either both ACC and
mAP or only one of the metrics) than the baseline.

Overall, we can conclude the following (1) Averaging is
consistently worse than Voting and Maximum in all cases,
(2) Maximum produces the highest ACC and mAP results
in the fault-free scenarios, as well as when faults occur
independently, except for the KITTI dataset with a 608x608
network size, where the ACC of Voting is slightly higher,
(3) Voting produces the highest mAP results with the COCO
dataset when faults occur simultaneously, but regarding the
ACC, two configurations produce higher ACC with Voting,
while the other two produce higher ACC with Maximum.
(4) When faults occur simultaneously for the KITTI dataset,
Maximum provides higher ACC and mAP than Voting with a
320x320 network size, but Voting provides higher ACC with
a 608x608 network size.

Overall, we can conclude that the Maximum merging
algorithm produces the best mAP results, but it provides
significantly higher FPs than Voting. Therefore, if FPs are a
major concern, Voting is the best solution overall, while if
the objective is to obtain the maximum mAP, the Maximum
algorithm is the best solution since the fault-free scenario
equals to virtually 100% of time, and typically faults will not
affect all redundant components at the same time.

V. CONCLUSIONS

AI software is increasingly used in safety-critical systems
for functionalities where such software inherits safety require-
ments. Whenever those requirements relate to the highest
integrity levels, AI software must be realized with diverse
redundancy, such as, for instance, TMR. Existing solutions
based on lockstep processors provide such diverse redundancy
with bit-level error detection and correction. In this paper,
we note that abundant AI functionalities do not need bit-
level correctness and, instead, semantic correctness suffices
due to the stochastic nature of the AI-based functionalities
implemented. We leverage this observation to present a diverse
redundancy scheme for AI models based on applying minor
transformations to the input data with the aim of creating
diverse, yet semantically identical, predictions, which we use
to mitigate, apart from hardware random errors, also AI model
errors.

As future work, we plan to extend our work evaluating
the different image transformations and merging algorithms
in DMR scenarios, which are particularly relevant for some
domains, such as automotive.
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Formal description of ML models for unambiguous
implementation

Adrien Gauffriau Airbus, France Iryna De Albuquerque Silva ONERA, France Claire Pagetti ONERA, France

I. INTRODUCTION

Machine learning (ML) applications have been gaining
considerable attention in the field of transportation. However,
their use in real-life operational safety-critical products, in
particular in the aeronautical domain subject to stringent
certification, raises several issues regarding functional cor-
rectness, compliance with requirements, formal verification,
safety or implementation. In order to tackle those issues, new
guidelines – named ED 324/ ARP 6983 standard [EUR21]
– are currently drafted by the EUROCAE WG-114/SAE G-
34 joint working group that cover the whole spectrum of the
system development including the data sets composition, the
ML model design and its implementation. In this paper, we
focus only on the implementation of the ML model.

A. Context

In the ML current practices, a training framework is used
to design an ML model and the resulting ML model is then
deployed on the target with a deployment framework. It is
up to the training framework or a designer to export the
trained model description in an exchange format and up to the
deployment framework to import the ML model description.
The left part of figure 1 shows those practices. The deployment
framework is most of the time an ML model interpreter, that
can accommodate any type of ML model architecture, and that
allocates at runtime the execution on the different available
accelerators (e.g. GPU, FPGA) of the target. These ML frame-
works have been designed 1) to ease as much as possible the
deployment of models for the users and 2) to optimize as much
as possible the execution performance (usually expressed in
trillion operations per second – TeraOp/s). As a result, they
are very impressive and allow for complex deployments and
optimizations. Those are hard, if not impossible, to reproduce
for a programmer without using ML libraries (e.g. CUDNN on
NVIDIA).

The counterpart of such an approach is 1) the absence or
limited information of internal computation and allocation; 2)
small modifications and adaptations of the ML model (e.g.
when exporting the ML model description or when quantizing
on the fly some matrix multiplication to execute on deep
learning accelerator – DLA). If this grey/black box approach
is acceptable and suitable for mainstream applications, it
is a blocking point for highly safety-critical applications.
As a result, the main objective of the ARP 6983 standard
with respect to the implementation process is the semantics
preservation of the off-line trained model on the final hardware
platform. This means that the execution of the ML model in

Training framework

ML model description
in intermediate format

Runtime ML model
interpretor

CPU CPU DDR

GPU FPGA DLA

Training framework

ML model description
in formal format

i1 desc. i2 desc. i3 desc.

code code code

CPU CPU DDR

GPU FPGA DLA

Figure 1. Left part: current ML deployment practice and right part: proposed
aeronautical practice.

the training framework should be exactly reproduced on the
embedded target during execution. To reach that objective, an
alternative development process is proposed as illustrated in
the right hand part of figure 1.

B. Assurance development process

The principle of this trustable development process (figure
1) is to ensure the semantic preservation at each step of
the development cycle (e.g. between training framework and
description, between description and code, between code and
executable). This is guaranteed thanks to a series of require-
ments provided in the ARP 6983.

Requirement 1. First, the trained model must be formally
and unambiguously defined in what we call an adequate
format. Such a format must come with a formal syntax and
semantic, and should be agnostic of any (training and/or
deployment) framework.

Requirement 2. Second, the implementation process should
allow several deployments on hardware platforms and it must
be known beforehand how the ML model will be mapped
on the accelerators and when. This entails in particular that
the format should allow several types of deployment such as
distribution, parallelization or pipelining. Thus, there is a step
that consists in splitting the ML model description (in the
chosen format) as a series of item descriptions. Indeed, in the
avionics domain, a target processor is decomposed as a set of
software (SW) and/or hardware (HW) items. Let us consider
for instance an ULTRASCALE+ (ZCU102) platform [Xil19]:
it is composed of several ARM cores, a GPU and an FPGA.
If the ML model is spread over the different components, in
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particular on one ARM and the FPGA, there will necessarily
be several items. Indeed, the ARM associated code will be
considered as one SW item and will go through the ED-
12C/DO-178C [RTC11] development process. Whereas the
hardware design of the FPGA will be considered as another
item (HW) and will go through the ED-80/DO-254 [RTC00]
development process.

Requirement 3. Third, the implementation has to follow the
usual aeronautical development standards (e.g. ED-12C/DO-
178C [RTC11] for software). Thus, the description of a model
within the format must be compliant with a certified imple-
mentation process. This last objective concerns the capability
to implement an item description following standards such
as ED-12C/DO-178C [RTC11] or ED-80/DO-254 [RTC00].
Among the requirements from those standards, two are related
to the format. First, it must offer full traceability: looking at
the generated code (e.g. C or CUDA), it is humanly possible
to trace back to the original exported model. Second, the
execution must be predictable, meaning that it is possible to
assess a WCET (Worst Case Execution Time) [WEE+08]. This
entails that the code is expected to be allocated statically on
the resources, all the memory allocations are static and the
schedule (here the sequence of operations) is also static.

C. Contributions

Our general objective is to define an approach compatible
with the ARP 6983 requirements presented in the prior section.
We focus on a representative subset of deep neural networks
(DNNs) that is feed-forward neural networks trained off-line.
Our main goal is the definition of an adequate format, with a
formal syntax and semantics, able to describe both 1) a global
ML model, and 2) any parallelized allocation on several items,
the behaviour of which is equivalent to the global model.

For requirement 1. There are several initiatives to propose
an intermediate format between trained models and their im-
plementation such as ONNX [BLZ+19] (Open Neural Network
Exchange). After a thorough evaluation of different existing
formats, we identified NNEF (Neural Network Exchange For-
mat) [The22] as the most suited for our purpose: syntax and
semantics are public and moreover the authors made a strong
effort to provide a formal specification.

Since NNEF provided a potential candidate, we decided to
construct our format on top of it. As it is now, NNEF describes
formally the global ML model. Indeed, the semantics of NNEF
is almost fully defined (see section II). What is however
missing in NNEF is the clear formalization of the execution
model, that is the formal behaviour behind a series of NNEF
instructions. To fix this missing element, we rely on Petri nets,
a usual representation of program behaviours [Pet77]. This
choice is also consistent with the need to express distributed
behaviour on items, as Petri nets also allow to model all
combinations of execution: sequence, pipeline, recursion or
parallel [Old86].

For requirement 2. We illustrate in section III why de-
composing ML model into items is of interest. To that end,
we extend the syntax and semantics of NNEF. We rely in
particular on logical data exchange among items to distribute
the computation and express the semantics with coloured Petri

nets. We formally show that the synchronization of the Petri
nets behaves as the original non distributed Petri net.

For requirement 3. We do not propose a complete DO-
178C compatible approach but instead show a reasonable
implementation approach on the XAVIER platform [NVI19a]
that we believe could be with some effort compliant with the
ED-12C/DO-178C [RTC11].

II. FORMAT OF DESCRIPTION – NNEF

KHRONOS standardization group1 has defined the NNEF
(Neural Network Exchange format) format with a specification
that provides a syntax and a semantic. We focus on the NNEF
syntax and semantics elements needed for our purpose. The
reader can refer to [The22] for a complete description of NNEF.

A. Brief Reminder on Neural Network

The field of artificial intelligence has gained much research
attention in the past years. The power of AI resides in
the capacity of solving highly complex problems [GBC16].
Machine learning domain describes the study and development
of statistical algorithms that are able to efficiently generalize
on unknown input data after the extraction of patterns from
a similar, and representative, data set. Neural networks are
a class of ML algorithms. A neural network implements
a mathematical function FN that aims at approximating a
continuous real-valued function [HSW89], [SZ06]. FN is
composed of different mathematical functions called layers.

There are two types of deep neural networks: feed-forward
neural networks and recurrent neural networks. Recurrent
neural networks (RNN) feature layers that take as input some
of their output (or the output of a successor layer), thus
creating cycles. In feed-forward variants it is not true. We are
not addressing RNN in this paper. A common representation
of a feed-forward deep neural network (FDNN) is in the form
of a directed acyclic graph (DAG) defining how its layers are
connected together.

Definition 1 (Feed-forward Deep Neural Network): A feed-
forward deep neural network N = (V,E) is a directed acyclic
graph, wherein:
• V is the finite set of vertices of the graph, which represent

its layers l ∈ V ;
• E ⊆ V ×V is the set of edges of the graph, representing

the data flow within the neural network.
In order to construct the possible flows of data within the

feed-forward deep neural network, it is necessary to define
what are the predecessors and successors of a vertex, or layer.

Definition 2 (Predecessors / successors of a layer): The
direct predecessors (resp. successors) of a layer l are defined
as the layers of the set Pre(l) = {l′ ∈ V | (l′, l) ∈ E}
(resp. Succ(l) = {l′ ∈ V | (l, l′) ∈ E}). The predecessor
transitive closure of l is the set of all its predecessors layers
noted Pre∗(l) =

⋃k
n=1 Pren(l), wherein:

Pren(l) =

{
Pre(l), if n = 1⋃
l′∈Pren−1(l)(Pre(l′)∪{l′}), otherwise

1https://www.khronos.org/



3

A layer can be classified into input, output and intermediate,
or hidden. An input layer l only consumes input data, i.e.,
Pre(l) = ∅. Similarly, a final layer l only produces output
data, i.e., Succ(l) = ∅. We represent VI ⊆ V as the set of
input layers and VO ⊆ V as the set of output layers. Note that
VI ∩ VO = ∅. The remaining layers, l 6∈ VI ∪ VO, are the
hidden layers. Finally, as a straight consequence of directed
acyclic graphs properties, l 6∈ Pre∗(l).

The function performed by a layer is of the form fl : Rm →
Rn, wherein m and n represent respectively the input and
output dimensions of the given layer’s function.

Definition 3 (Function associated to a FDNN): Let N =
(V,E) be a feed-forward deep neural network and VO ⊆ V be
the set of output layers. Let us denote the function associated
to a set of layers such that:

∀U ⊆ V, FU =

{
(Fl1 , . . . , Fln), if U = {l1, ..., ln}
F∅, if U = ∅. (1)

wherein:
∀l ∈ V, Fl = fl(FPre(l)) (2)

We note FN = FVO
the function associated to a feed-

forward deep neural network.
Example 1 (Single-path feed-forward deep neural network):

It corresponds to the particular case of a feed-forward deep
neural network, wherein: V = {l1, . . . , ln} and ∀i ≥ 2,
Pre(li) = {li−1}. Therefore, VI = {l1}, VF = {ln}. Such
an example is the LENET-5 shown in figure 2.

conv1

1x32x32
6

pool1

6x28x28
6

conv2

6x14x14
16

16x10x10

pool2

16

16x5x5 400

flat

120 84

dense1 2 3

10

Figure 2. LENET-5 neural network

According to Definition 3 the function associated to a single-
path DNN is the composition function: FN (x) = ◦fln−1 ◦ . . .◦
fl1(x) wherein ml1 in the input dimension of fl1 and pln is
the output dimension of fln .

B. Neural Network Description in NNEF

Our first goal concerns the definition of a format, with a
formal syntax and semantics, able to describe any ML model
such as the LENET-5 of example 1. Let us explain why NNEF
fulfils this goal. An NNEF description is composed of two
parts: 1) A computation graph described in a human readable
text file; and 2) the parameters provided in multiple raw data
file. The fact that the description is textual is important for the
traceability between the specification (output of the training
framework) and the embedded code.

The computation graph file describes all parameters needed
and operations to be done. More precisely, each line of
the computation graph is an elementary instruction (NNEF
compound fragment) that may be split into several atomic
operations (NNEF primitives). The result of each instruction is
stored in a named variable, that represents a tensor, and which
can be used as input for other instruction(s). To compute an
operation all its inputs variables shall be available.

Remark 1: NNEF description follows a SSA (static single
assignment) form [CFR+89] which helps the implementation
process. It is usual to translate a program in its SSA form
before compilation or optimization passes [BBD+17].

Example 2: Let us illustrate how to specify a neural
network with an example. The NNEF textual specification of
the LENET-5 detailed in example 1 is given in the listing 1.
First, all parameters are declared and stored as variables. e1
is the input tensor of size 1×32×32, v1 contains the 6 kernels
of size 1 × 5 × 5 of the first convolution and v2 is the bias
applied at the end of the first convolution. The parameters
needed by the layers should all be defined as variables in the
description file.

graph torch_jit_export(e1) -> (out)
{

e1 = external<scalar>(shape = [1, 1, 32, 32]);
v1 = variable<scalar>(shape = [6, 1, 5, 5],

label = ’v1’);
v2 = variable<scalar>(shape = [1, 6], label = ’

v2’);
v3 = variable<scalar>(shape = [16, 6, 5, 5],

label = ’v3’);
v4 = ...; v5 = ...; v6 = ...; v7 = ...;
v8 = ...; v9 = ...; v10 = ...;

o1 = conv(e1, v1, v2, stride = [1, 1], dilation
= [1, 1], padding = [(0, 0), (0, 0)], groups
= 1);

o2 = relu(o1);
o3 = max_pool(o2, size = [1, 1, 2, 2], stride =

[1, 1, 2, 2], dilation = [1, 1, 1, 1],
padding = [(0, 0), (0, 0), (0, 0), (0, 0)],
border = ’ignore’);

o4 = conv(o3, v3, v4, ...; o5 = relu(o4);
o6 = max_pool(o5, ...; o7 = reshape(o6, shape =

[0, -1]);
o8 = linear(o7, v5, v6); o9 = relu(o8);
o10 = linear(o9, v7, v8); o11 = relu(o10);
o12 = linear(o11, v9, v10);
out = softmax(o12, axes = [1]);

}

Listing 1. LENET-5 with NNEF syntax

After the variables declaration, comes the computation
graph itself. The output of the first convolution is stored in the
variable o1. When calling the function / compound fragment
conv, the user must instantiate the full set of parameters for
this type of layer: input tensor, kernels, bias, stride, dilation,
padding and groups. Every parameter appears explicitly in
the definition and there is no ambiguity. For instance, the
way to declare the padding explicitly states how the padding
applies on top / bottom / right / left. After the convolution, the
activation function has to be explicitly applied to o1 and thus is
not hidden in the convolution, ensuring again an unambiguous
description. The first pooling layer results in variable o3.
Reading the description, we recognize the LENET-5 detailed
before. The flat layer is encoded with a more expressive
function reshape that allows several reshaping. The dense
layer is called linear. The post-processing softmax is also
explicit.

The NNEF specification also provides the link between
instructions (e.g. conv) appearing in the file and their asso-
ciated mathematical functions. Subsequently, we will not use
NNEF terms, because the NNEF standard uses the generic term
fragment for both. We illustrate this with the max pooling
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layer only.

C. Max Pooling Layer Semantics

Let us illustrate issues that may arise without a formal
description. Let us first remind the functional semantics of
a max pooling layer where a padding (and no dilatation) is
applied. Thus, the function is defined by Poolk,s ◦Pp,v where
each function is defined below.

Definition 4 (Padding associated function – Pp,v): Let p =
(pt, pb, pl, pr) be a 4-tuple of integers representing the padding
to be applied on each border of a 3D-tensor and v the float
value to be used for the padding. The padding function Pp,v
applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-
tensor O = Pp,v(I) of size (oh, ow, oc) with oh = nh+pt+pb,
ow = nw + pl + pr and oc = nc such that

Ox,y,z =





v if (x ≤ pt) or (x > nh + pt) or
(y ≤ pl) or (y > nw + pl)

Ix−pt,y−pl,z otherwise
Definition 5 (Pooling layer associated function – Poolk,s):

Let s = (sh, sw) be the stride parameters and k = (kh, kw)
be the height and width of the window. The pooling applied
on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor
O = Poolk,s(I) of size (oh, ow, oc) with oh =

⌊
nh−kh
sh

+ 1
⌋

,

ow =
⌊
nw−kw
sw

+ 1
⌋

and oc = nc with Ox,y,z = max(I[sh ·
(x− 1)+ 1 : sh · (x− 1)+ kh+1][sw · (y− 1)+ 1 : sw · (y−
1)+kw+1][z]). Here, I[s11 : s21, ..., s1k : s2k] represents the
slice of I of all the values Is11+x1,...,s1k+xk

with i ∈ [1, k]
and xi ∈ [1, s2i − s1i].

The NNEF syntax of a max pooling layer describes the
padding values with an enumerate string. Ignoring the border
for a max pooling layer is equivalent to pad with the minimum
float value (MIN F). This corresponds to the neutral operator
of the max function. Looking now at the max pool elementary
instruction according to NNEF documentation [The22], it is de-
fined in the pseudo-code by 2 atomic operations. 1) argmax -
pool that computes an array of index (corresponding to the
max in each pool); 2) sample that returns for an array of index,
an array with corresponding values. This pseudo-code indeed
encodes the expected function Poolk,s ◦ Pp,v .

Of the importance of unambiguous description. We
propose to highlight the importance of making unambiguous
textual descriptions of ML models by comparing two state-of-
the-art training frameworks, namely PYTORCH and KERAS
(with TENSORFLOW).
• In KERAS, a padding inside a max pooling layer can

only be declared by a string ∈ {”valid”, ”same”}. ”valid”
means no elements to add, while ”same” means that
padding is added on the right and on the bottom borders
only to fit the size of the pool.

# KERAS SYNTAX for pool1
MaxPool = tf.keras.layers.MaxPooling2D(

pool_size=(2,2),strides=(2,2),padding
= ’same’)

# NNEF for KERAS SYNTAX
max_pool_keras = max_pool(input, size =

[1, 1, 2, 2], stride = [1, 1, 2, 2],
dilation = [1, 1, 1, 1], padding =

[(0, 0), (0, 0), (0, 1), (0, 1)],
border = ’ignore’);

This corresponds to Pool[2,2],[2,2] ◦ P[0,1,0,1],MIN F.
• In PYTORCH, a padding inside a max pooling layer can

only be declared by one or two integers. In case of one
integer, this defines the number of elements to add to
each border (top, bottom, left and right). In presence of 2
integers, the first gives the number of elements to add at
the top and bottom, and the second at the left and right.

#PYTORCH SYNTAX for pool1
MaxPool = NN.MaxPool2d(2, 2,

1)
# Kernel Size, Stride,

Padding

#NNEF for PYTORCH SYNTAX
max_pool_torch = max_pool(input, size = [1,

1, 2, 2], stride = [1, 1, 2, 2],
dilation = [1, 1, 1, 1], padding = [(0,
0), (0, 0), (1, 1), (1, 1)], border =
’ignore’);

This corresponds to Pool[2,2],[2,2] ◦ P[1,1,1,1],MIN F

The semantics of KERAS and PYTORCH are not equivalent,
and there is no possibility to convert one into another at once.
The only way to make a valid conversion is to explicitly add
a padding layer before the max pooling.

D. NNEF Execution Model Semantics

The semantics of the execution model, that is the formal be-
haviour behind a series of NNEF instructions, is not explicitly
given by the standard. It assumes that one instruction can be
executed when all its inputs are computed and available. Thus,
executing the instructions in sequence following the order of
the NNEF guarantees a correct execution. There are two types
of instructions: those reading parameters from binary files or
input tensors and layer-associated instructions based on one
or several atomic operations. An instruction is always of the
form

var = operation(v1, . . . , vk, cst1, . . . , cstj);

where var is a variable computed by the operation (any
NNEF fragment), vi are either variables computed beforehand,
the input tensor or fixed parameters (e.g. kernels), and csti
are constant (e.g. stride). The NNEF execution model can be
formally expressed using the Petri net formalism [Pet77].

Translation 1: A NNEF description, composed of n instruc-
tions, generates a Petri net (P, T, V ) where:
• the set of places P corresponds to all variables appearing

in the NNEF description (i.e. n places for a description
of n instructions);
– a token in a place means that the associated variable

is available for computation;
– initially there are as many tokens in each parameter-

associated place as the parameter is needed in the
instructions and as many tokens in the input tensor
place as the input tensor is used by the instructions;

– there is a unique final place corresponding to the last
variable computed in the NNEF file;
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• the set of transition names T corresponds to all instruc-
tions appearing in the NNEF description;

• V ⊆ 2P × T × N × P defines the set of transitions.
A transition can be fired if there is a token in all input
places. When it fires, the transition removes a token from
each of these places and generates as many tokens as
defined on the edge in the unique output place.
– each instruction var = op(v1, . . . , vk, cst1, . . . , cstj)

generates the transition given in figure 3 where p is
the number of time var will be consumed by other
instructions;

– when only one token is produced by a transition, we
omit the integer.

v2

v1

vk

. . . op

var
p

Figure 3. Translation
of one
instruction
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v2

ReLU

o2

MaxPool
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o4

v3

v4

ReLU

o5

MaxPool

o6

Flat

o7Denseo8

v5

v6

ReLU

o9

Dense

o10

ReLU

o11

Dense

o12

SoftMax

out

v7

v8

v9

v10

Figure 4. NNEF semantics of the LENET-5 express
with Petri net. Initial marking

The semantic of the Petri net clarifies the execution order
that is unclear in the NNEF formalism. Especially, the order of
the textual file should not impose a unique order when several
valid ones may exist.

Example 3: The LENET-5 model of figure 2 with its asso-
ciated NNEF description in listing 1 has the associated Petri
net given in figure 4. We recognize the instructions sequence
that describes the computation of the neural network graph.
There is a unique possible schedule for this NNEF description,
but we will see later other NNEF models that accept several
schedules (see section III).

Remark 2: The Petri net of figure 4 only defines the
semantics of a single inference pass. It is usual to repeat
the inference pass in order to process new inputs (e.g. in
a periodic manner). This can also be represented using the
Petri formalism by sending back tokens to e1 and vk places.
For demonstration and clarity, subsequently in the paper, we
always consider the semantics of a single inference.

A way to define the semantics of Petri nets is to compute
the set of reachable markings, where a marking defines the
number of tokens in each place at a given instant.

Definition 6 (Marking): Considering a Petri net with n
places, a marking is defined as a vector v ∈ Nn giving the
number of tokens v[i] in the i-th place. This initial location of
tokens is called the initial marking, this represents the starting
state of the system. A final marking is a marking such that
there is one token only in each final place and from which no
transition can be fired any more.

Example 4: In the Petri net of figure 4, there are 24 states.
There are 11 tokens in the initial making and there is a single
token in the unique final marking (in the place out).

Property 1 (Initial marking and unique final marking): The
unique initial marking is defined by the translation and consists
of token(s) in the input tensor variable place and parameters-
associated places. Because we consider feed-forward neural
networks, there is unique final marking.

Definition 7 (Paths and semantics): A valid path starts from
the initial marking mi, lists a series of fireable transitions and
ends in a final marking mf , i.e. mi −→t1 m1 −→t2 . . . −→tl

mf . The semantics of a Petri net is the set of valid paths.
Property 2 (Possible executions of an NNEF description):

Because we consider feed forward neural networks, the num-
ber of valid paths is finite and the valid paths correspond to
all possible execution orders respecting the semantics of the
ML model.
Semantics preserving code generation could lead to any im-
plementation the path of which is valid. Full sequential code
following the order of instructions of the NNEF file is one of
them.

III. IS DISTRIBUTION NEEDED?

Because we consider highly distributed platforms, a de-
signer may choose to split the ML model into several parts
in order to accelerate the execution and reduce the execution
time. In particular, it could lead to developing parts inde-
pendently and on different items following the aeronautics
standards [SAE10]. In such a case, there should be a formal
description for each item that becomes the input specification
for HW/SW item implementation. We identified 3 different
needs for distribution to be addressed that we illustrate on the
LENET-5 example.

Remark 3: Note that if the designer considers its platform as
a unique item, the NNEF description will be the specification.
Off-loading computation. Let us consider for instance
the implementation of the LENET-5 on an ULTRASCALE+
(ZCU102) platform [Xil19] composed of several ARM cores,
a GPU and an FPGA. Let us assume that we choose to execute
the convolution on the FPGA and all other layers on one ARM.
The idea will be to offload the input tensor of each convolution
on the FPGA and retrieve the feature maps from the FPGA (see
figure below).
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pool1

6x28x28
6
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6x14x14
16

16x10x10

pool2

16

16x5x5 400

flat
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item1
FPGA

item2
ARM

Parallelizing the layers. A second type of distribution could
be to refine the layers and exhibit more parallelism by dis-
tributing the computation of a layer across several items. It
will be up to the designer to show the semantic preservation
at this refinement level. Looking again at the LENET-5, we can
split the computation of the first two layers on two different
items. Each item will do the convolution+maxpool on a part
of the input image. To do so, the input image is split along
the height and two sub-parts are executed on two different
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items (see figure below). In order to keep the semantics for the
convolution, some overlap exists between the two sub-images.
Pipelining the computation. A third type of distribution is
the pipelining of the DNN execution. In this case, each item
is in charge of computing a specific layer (or a group of
layers). The first item computes the first layer(s) on the first
tensor input and sends its output to the second item that will
compute the second group of layer(s) while the first item starts
processing the second input tensor. This classical mechanism
enables to reduce (e.g. for video processing) the frame rate
while degrading the latency. The depth of the pipeline is the
number of inputs that can be handled at the same time among
the pipeline.
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IV. NNEF EXTENSION FOR MULTIPLE ITEMS

The purpose of this section is to propose a manner to
separate the specification of each item so that any execution
of the items respecting the specification properly encode the
global ML model. To that extent, we propose first to extend
the syntax of NNEF to allow explicit parallelization and then
to express the associated semantics with colored Petri nets.

A. Extension for item splitting

We first need to specify the item on which the description
will be implemented. To that end, we enrich the graph defini-
tion with the keyword graphitem to provide the logical id of
the HW or SW item.

Syntax1 GraphItem

<graph-definition> ::= <graph-declaration>
<graph-declaration-item> <body>

<graph-declaration-item> ::= "graphitem"
<identifier> <identifier>"("<identifier-list>")"
"-$>$" "("<identifier-list>")"

Semantics 1: The first <identifier> refers to the item id,
the second <identifier> is the name of the local node and
elements of the <identifier-list> will be input or output of the
graphitem. The semantic of the <graph-declaration-item> is
such that all instructions within the <body> are executed by
the item.

We also need to exchange data between several items
and ensure that those exchanged data are available before
computation. To that end, we introduce a new type of variable,

namely variablesync. This references a variable that could be
read from or write to another graphitem. We use a fragment
to define this new type.

Syntax2 VariableSync

fragment variablesync<? = scalar>
(shape: integer[]) -> ( output: tensor<?> )

Semantics 2: Each variablesync is a shared variable with
a unique writer and possibly multiple readers. Writer is in
charge to transmit the variable via the instruction send var
and each reader can access this data via get var instruction.

We then define new NNEF instructions to send or get data
between several graphitem.

Syntax3 get var

fragment get_var<? = scalar>(source : graphitem,
data : variablesync) -> ( output: tensor<?> )

Semantics 3: get var appears in each reader description.
The output of this instruction is a local variable that gets the
content of the shared variable and which is available for the
caller item. Source is the item that writes and provides the
shared variable the name of which is given by data.

Similarly, the writer must define the instruction to send a
shared variable to other items.

Syntax4 send var

fragment send_var<? = scalar>
( dest : graphitem[], data : scalar)
-> ( output: variablesync )

Semantics 4: send var appears in the writer description
only. It takes as input the list of reader items and the name
of the tensor that shall be sent. The output tensor is a global
variablesync that will support the synchronization.

The rest of the NNEF syntax remains unchanged.

B. Splitting an NNEF description into multi-item descriptions

Initially, the DNN is described in a unique NNEF description
as shown in section II. Such a description contains 3 types of
instructions:
• definition of input tensor(s);
• definition of fixed parameters;
• variables computed by each layer.

A splitting consists in partitioning the last type of instructions
among the items, adding the adequate definition(s) of tensors
/ fixed parameters and adding the adequate send var / get -
var. The composition of item descriptions shall respect the
semantics of the full NNEF description.

Example 5: Let us consider the DNN of listing 2 with its
associated Petri net (figure 5). Let us assume that the DNN is
allocated on 3 items such that o1, o6, o7 and out are computed
on item 1; o2, o3 are computed on item 2 and o4, o5 are
computed on item 3. Thus, the description on the items is
given in Listing 3.

The union of the instructions of each item corresponds to the
complete NNEF description with the additional variablesync
and the communication instructions. Locally in the item, the
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graph DNN(e1) -> (out)
{

e1 = external..
v1 = variable... ’variable1’); v2 = ...; v3 =

...; v4 = ...;
v5 = ...; v6 = ...; v7 = ...; v8 = ...; v9 = ...;

v10 = ...;
o1 = conv(e1,v1,v2,... ;
o2 = conv(o1,v3,v4,...; o3 = conv(o2,v5,v6,...;
o4 = conv(o1,v7,v8,...; o5 = conv(o4,v5,v6,...;
o6 = concat (o3, o5); o7 = flatten(o6,...;
out = gemm(o7, v9, v10...;

}

Listing 2. Complete DNN NNEF

e1
Conv

o1

v1

v2

2

Conv
o2

v3

v4

Conv
o3

v5 v6

Conv
o4v7

v8

Conv
o5

concat o6 flat
o7 gemm

v9

v10

out

Figure 5. Petri associated to DNN of listing 2. Initial marking

pointers to the input tensor and fixed parameters must also be
declared.

graphitem ITEM1 DNN1([e1, vsync2, vsync3]) -> ([
vsync1, out])

{
e1 = external...;
v1 = variable... ’variable1’); v2 = ...; v9 =

...; v10 = ...;
vsync1 = variablesync<scalar> (shape ...;
vsync2 = variablesync ...; vsync3 =

variablesync ...;
o1 = conv(e1,v1,v2,...;
vsync1 = send_var ([ITEM2, ITEM3], o1);
o3 = get_var(ITEM2, vsync2);
o4 = get_var(ITEM3, vsync3);
o6 = concat (o3, o4); o7 = flatten(o4,...;
out = gemm(o7, v9, v10...;

}

graphitem ITEM2 DNN2([vsync1]) -> ([vsync2])
{

v3 = variable... ’variable3’); v4 = ...; v5 =
...; v6 = ...;

vsync1 = variablesync ...; vsync2 = variablesync
...;

o1 = get_var(ITEM1, vsync1)
o2 = conv(e1,v3,v4,...; o3 = conv(o2,v5,v6,...
vsync2 = send_var ([ITEM1], o3);

}

graphitem ITEM3 DNN3([vsync1]) -> ([vsync3])
{

v5 = ...; v6 = ...; v7 = ...; v8 = ...
vsync1 = variablesync...; vsync3 = variablesync

...;
o1 = get_var(ITEM1, vsync1)
o4 = conv(o1,v7,v8,...; o5 = conv(o1,v5,v6,...
vsync3 = send_var ([ITEM1], o5);

}

Listing 3. NNEF for all items

C. Petri-based semantic

We define the execution model semantics of multi-item
descriptions using coloured Petri nets [JK09]. We associate
a colour to each item where the colour is set to the tokens and
edges (on which the coloured tokens transit).

Translation 2: Let assume there are N items. We first apply
the translation 1 for each item leading to N independent Petri

nets (Pi, Ti, Vi), each with a unique and distinct colour. For
the new instruction, the translation is extended as follows:
• a varsync does not generate any place;
• a get var does not generate any transition;
• a send var produces a transition sync with an incoming

edge from the variable the content of which is transmitted.
The set of NNEF item descriptions generates a Petri net

(P, T, V ) which is roughly speaking the union of the N Petri
nets (Pi, Ti, Vi). More precisely,
• any input tensor or fixed parameter that is duplicated in

the NNEF files appears in the Petri net of the item. Those
duplicated places are merged. Because we use the same
naming convention, P = ∪Pi;

• the initial tokens in the places are also merged leading to
places with possibly multiple tokens and multiple colours;

• T = ∪Ti ∪ T ′ where T ′ are the transitions connecting
places of one item to other items thanks to the sync
transition. More precisely,
– for each writer, there are k edges back from the sync

label where k is the number of readers. The colour
of the each arrow is the one of the reader and the
number of tokens sent back corresponds to the number
of time the shared variable appears in the reader item
instructions;

– for each reader, there is an edge from the writer place
before sync to each transition requiring the shared data;

• As before, when a coloured token is present in a place, it
means that the associated variable is available for the item
identified by the colour and can be used by transition.

Example 6: The Petri net associated to the example 5 is
given in figure 6. We present the initial marking with colored
tokens. Each color represents the state of one item. Compare
to the figure 4, we express here the multi items semantics with
synchronizations.

e1
Conv

o1

v1

v2

sync1

Conv
o2

v3

v4

Conv
o3

v5 v6

sync2

concat o6

Conv
o4v7

v8

Conv
o5 sync3

flat
o7 gemm

v9

v10

out

Figure 6. Semantic of the items synchronization

Property 3 (Equivalence between Petri nets): The semantics
of the multi-items behaviour is equivalent to the complete
original ML model.

Remark 4: It is important to explicitly describe the send -
var and get var either in the NNEF files but also in the
Petri net because items are supposed to be independent and
segregated. In particular, an item X is not allowed to access the
memory space of an item Y and interfere with its execution.
This is classical in aeronautics, see Arinc 653 specification.
The XTRATUM hypervisor [CRM+09] is an example of time
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and space partitioning hypervisor that provides communica-
tion with sampling and queuing ports (close to Arinc 653
requirements).

V. IMPLEMENTATION AND EXPERIMENTS

The previous sections showed how to fulfill the require-
ments 1 and 2 of the introduction. The purpose of this
section is to give some hint of how a DO-178C compatible
implementation process, as required per requirement 3, could
be defined taking as input an extended NNEF specification.
The considered target, a Jetson XAVIER TX system-on-chip,
is composed of 6 Carmel ARM cores, a GPU, 2 deep learning
accelerators (NVDLA) and other dedicated circuits. The use
of a NVIDIA platform is mainly motivated by its availability
and the ease to quickly deploy neural networks application.
We will not discuss the adequation of GPU and CUDA im-
plementation with DO-178C objectives because it is an open
problem.

The sync implementation relies on barrier mechanism and
each item NNEF description is manually coded. In order to
validate the semantic preservation, we made some instrumen-
tation to show that: (i) the execution trace is included in all
possible execution traces defined by the Petri net; (ii) the
numerical precision is kept; (iii) the measured execution time
does not vary. We will use the multi-items example presented
in example 5 as the specification. For our experiments, each
item is allocated to one CPU and all the CUDA cores of
the GPU (grouped in a CUDA stream). As a consequence, we
do not guarantee a segregation between items (as they share
the GPU) we instead focus on a way to implement parallel
operations of neural networks with a static code scheduling
while preserving the semantics. As for the Petri semantics, we
only developed a code for a single inference. Nevertheless, it
is easy to slightly modify the code by adding loops to handle
several input tensors.

A. Get/Send specification

We chose to implement get var and send var with 1)
global variables stored in the SRAM of the XAVIER and 2)
the POSIX barrier mechanism of the pthread library. A barrier
b, shared among several processes, will block them as long as
not all of them reach b. Such a behavior is strictly included
in the semantics of the sync transition within the Petri net.
However, it is not the most efficient as it prevents the sending
item to proceed until all the receiving items reach b, whereas
the semantics of sync transition only requires a receiver to
wait for the sender (not the sender to wait for all receivers).
Nonetheless, the barrier mechanism is optimal for our example
because no sender has to process any instruction before a
further get var or stop execution.

B. Manual code generation

There are C and PYTHON interpreters of the NNEF format
[NNE18] but only for traditional CPU target. Consequently, no
existing tool supports our syntax extension nor state-of-the-art
GPU. Thus we developed the code for each item using C++

and CUDA using the CUDNN library. Basically the C++ code
is executed by the ARM processor whereas CUDA allows the
definition of kernels that are executed synchronously by all
CUDA cores. The CUDNN library is built on top of CUDA for
executing common neural networks layers.

1) Software architecture: Practically, each type of layer is
implemented using a dedicated C++ class that inherits from
the abstract Layer class that defines common attributes and
methods to be implemented (init() and forward()) by child
classes. In effect, init statically allocates tensors and CUDNN
descriptors while forward launches the layer computation
based on CUDNN for Convolution and max pooling layers.
Each item contains one object implementing a static scheduler.
More precisely, during the init phase, each item creates an
object for each layer which are stored in ordered lists. Thus,
items 2 and 3 need one single ordered list whereas item 1
needs two ordered lists (one for the first part and one for the
second part). During forward, the scheduler calls in order the
forward of objects stored in ordered lists.

2) Scheduling: We define one separate thread for each item
allocated to one CPU + CUDA cores. More precisely, synchro-
nizations between threads use pthread barrier t and
associated APIs (barrier init and barrier wait).
Barriers synchronize accesses to shared variables.

tT1

T2

T3 init Item 3
create

init Item 2
create

init
create

head tail

barrier1 barrier2 barrier3 join

The execution sequence starts with the 3 threads creation
on the CPUs and then reaches the first synchronization barrier.
Then Item1 thread calls the forward method of layers of the
head (until send var) while Items 2 and 3 threads wait for the
second synchronization barrier. After, the second synchroniza-
tion barrier, Items 2 and 3 threads call forward method of their
layers while Item1 thread waits for the third synchronization
barrier. After the third synchronization barrier, Item 1 thread
calls forward method of layers of the tail. At last, threads join
and exit.

C. Semantic preservation of the Petri net

The first analysis aims at verifying that all observed schedul-
ing of layers on the XAVIER respects the Petri net semantics.
Because we use a static scheduler, all schedules should behave
as shown in section V-C which is included in the semantics
of coloured Petri net of figure 6. For that, we logged each
start/end of branches and layers and we stressed the robustness
of the implementation by addind some temporal noises (sleep
in the code).

All observed traces respected the schedule of section V-C
with some timing variations. When observing the implemen-
tation with no noise, execution traces of Item 2 and 3 are
interleaved on the GPU. When adding a wait of 1s at the
beginning of Item 2 (just after barrier1), all layers of Item
3 were executed before those of Item 2.
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D. Semantics preservation of the function

The second instrumentation mechanism aims at checking
that the functional semantics of the DNN is preserved. We
achieve this by re-implementing the NNEF specification in
PYTORCH. Then we define 100 random vectors that we
run both on the PYTORCH implementation and on the C++
implementation on the NVIDIA target. Finally, we compute
the overall average error mean between both executions for
the 100 runs.

We were not able to find the exact convolution algorithm
of PYTORCH. We think that it exists a non documented
heuristic that calls the best algorithm (considering execution
time) depending of the convolution parameters and available
hardware. According to the CUDNN documentation [NVI19b],
it is possible to select the convolution algorithm among a
list, but details of the implementation are not given. Thus,
there may be a discrepancy between convolutions that we
cannot fix. The average error mean is extremely small 1.10−7

for FLOAT32 using 3 CUDNN algorithms (namely gemm,
Winograd and direct). Nevertheless numeric precision results
for this experiment are in an acceptable range that is very
close to the available numeric precision of floating point
representation and this also is observed by other frameworks
[SCGP22].

E. Measured Execution Time (MET)

One objective of the DO-178C that we did not mention until
now is the capacity to estimate the Worst Case Execution Time
(WCET). Due to the complexity of NVIDIA target, a formal
demonstration using static analysis may be difficult. But at
least, a good property is a low variation of the measured
execution time among several executions. In our case, the
generated code does not contain any IF-THEN-ELSE patterns
or dynamic loop conditions. Thus, the variability is only linked
to the hardware behavior. We measured the MET of the
complete DNN and of the first convolution of Item 1 over
10 runs. We rely on the nsys tool from NVIDIA to get timing
measurements.

Mean(MET) MIN(MET) (MAX(MET)) STD(MET)
First Conv 324 2976 ns 322 688 ns 326 656 ns 1.45 ns
DNN 24 257 µs 16 285 µs 53 950 µs 13 526 µs

The MET of the first convolution is very stable with a very
low jitter. The MET distribution of the DNN is large and to un-
derstand why, we need to investigate the low level behaviour.
NVIDIA GPUs are black-boxes processors on which we cannot
guarantee worst-case execution time [AA21], [ACR22].

VI. RELATED WORK

There are plenty of different formats but no consensus
within the community. State-of-the-art frameworks like PY-
TORCH, or TENSORFLOW rely on custom black-box formats
built on top of protocol buffers [Goo01] developed by Google.
A protocol buffer is a structured binary format that is not
human readable and requires conversion tools and template
files to be interpreted. Thus, the syntax is not formally
defined and specification of layers are only available through
documentation website. For example, TENSORFLOW proposes

the .h5 [HDF01] format and KERAS format [Ten15] builds on
top of protocol buffer. Moreover the way to save a neural
network is not unified among frameworks and may evolve ev-
ery updated version with poor backward compatibility. When
moving from caffe to caffe2 (known today as PYTORCH), the
caffe [JSD+14] format was not supported anymore.

All previous formats were developed specifically for train-
ing frameworks (open source or proprietary) without any
objective for sharing models. Their main purpose was to allow
saving and reloading previous trained models without too
much consideration on syntax and semantics. ONNX [BLZ+19]
and NNEF [The22] were developed with the objective to
be independent from frameworks. ONNX is still based on
binary protocol buffers [Goo01] (so without a textual syntax)
but is proposing a functional semantics through its github
site. On the contrary NNEF is proposing a textual format
with a syntax and a semantics that is formally defined in a
specification. Unfortunately, the NNEF format suffers from a
small community and tools supporting the format.

NNet [The22] format is an example of ad-hoc format.
RELUPLEX neural networks examples [KBD+17] are in NNet.
It is based on textual files but without definition of syntax
and semantics. Import and export tools are provided, but its
utilization for sharing neural networks between teams remains
supremely painful.

Some other formats like [CE-17], [Apa18], [LAB+21a]
tackle the need for intermediate representation between a
neural network description and an implementation on a target.
Especially this supports different optimizations passes like
layers folding or low level tensor manipulation description
like in LLVM [Lat02]. We consider that we are closest to
programming language than from a neural network description
format. Most of the time ONNX or NNEF are used as input like
in [LAB+21b], [PBCPB20], [JBL+20].

Because DNN are data-flow, it is natural to translate them
into synchronous languages. There are some works such
as [LFG20] that proposed to encode them as Synchronous
Dataflow Graphs or SCADE tool suite [CPPP18] which is
currently developing a DNN libraries. Once the translation
is done, it is then possible to reuse all the qualified code
generation tools. This is complementary to our work as we
could use the NNEF description to generate the SCADE pro-
gram for instance. To the best of our knowledge, none of actual
available neural network description formats propose solution
for describing multi items implementation with concerns on
sharing variables among them.

VII. CONCLUSION

We have proposed a formal extension of NNEF that takes
into account the execution model of a description and allows
for the modification of a description of a trained model to
define traceable distribution and parallelisation optimizations
that preserves the semantics while improving the execution
time compared to a pure sequential aproach. We have also
proposed a code generation strategy based on barriers for
exchanging data between items. As a future work, a working
group has been set up to propose an ONNX aeronautics
profile.
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[ACR22] Michaël Adalbert, Thomas Carle, and Christine Rochange.
PasTiS: building an NVIDIA Pascal GPU simulator for embed-
ded AI applications. In 11th European Congress on Embedded
Real-Time Systems (ERTS 2022), 2022.

[Apa18] Apache. TVM, 2018. https://tvm.apache.org/.
[BBD+17] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier
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[Old86] Ernst-Rüdiger Olderog. Operational petri net semantics for ccsp.
In European Workshop on Applications and Theory in Petri Nets,
pages 196–223. Springer, 1986.

[PBCPB20] Hugo Pompougnac, Ulysse Beaugnon, Albert Cohen, and Du-
mitru Potop-Butucaru. From SSA to Synchronous Concurrency
and Back. Research Report RR-9380, INRIA Sophia Antipolis
- Méditerranée (France), December 2020.

[Pet77] James L Peterson. Petri nets. ACM Computing Surveys (CSUR),
9(3):223–252, 1977.

[RTC00] RTCA/EUROCAE. DO-254/ED-80 - Design Assurance Guid-
ance For Airborne Electronic Hardware, 2000.

[RTC11] RTCA/EUROCAE. DO-178C/ED-12C - Software Considera-
tions in Airborne Systems and Equipment Certification, 2011.

[SAE10] SAE/EUROCAE. Aerospace Recommended Practices
ARP4754a/ed-79a- development of civil aircraft and systems,
2010.

[SCGP22] Iryna De Albuquerque Silva, Thomas Carle, Adrien Gauffriau,
and Claire Pagetti. ACETONE: predictable programming frame-
work for ML applications in safety-critical systems. In 34th
Euromicro Conference on Real-Time Systems ECRTS 2022,
pages 3:1–3:19, 2022.
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Abstract—Temporal interference may occur in multicore proces-
sor systems due to tasks running in parallel competing for shared
resources such as buses or memories. This paper presents a model-
based interference analysis based on the PHYLOG framework that
intends to help in the certification process of multicore aeronautical
systems. As PHYLOG does not define a clear modeling method,
a refinement approach is proposed to model the system using the
PHYLOG Modeling Language (PML). Our objective is to define
a process that enables to build a model that is both precise and
reliable so that analysis results are sound. The approach is finally
validated on an industrial use case from the aerospace domain.

I. INTRODUCTION

In the last decade, multicore processors have become the
norm in the general market. However, their use in critical real-
time systems still represents a challenge since those systems
have to meet strong temporal requirements with a high level of
confidence and have to comply with regulatory requirements.

In order to demonstrate compliance with temporal require-
ments, upper bounds on execution times accounting for all
contributions at hardware and software levels must be esti-
mated. In the avionics domain, for instance, the AMC 20-
193 [1] standard requires that temporal interferences which
may occur when tasks running in parallel access shared re-
sources (e.g., caches, memories, buses) are addressed. For
example, the MCP_Ressource_Usage_3 (RU3) demands that:
“the applicant has identified the interference channels that could
permit interference to affect the software applications hosted on
the multicore processor cores, and has verified the applicant’s
chosen means of mitigation of the interference”.

Towards that goal, model-based approaches can be used to
help in the certification process of aeronautical systems that
use multicore processors. These solutions build on a language
that allows to describe the system and an analyzer to infer
properties about it: one can e.g. combine the AADL language
to describe the architecture of the system and Prolog to identify
interferences [2], or use the LNT formal specification language
to capture the system’s behavior and the CADP toolchain to
detect interferences [3]. However, methodological aspects to
use these tools remain mostly unaddressed and must be further
defined in order to be used in an industrial context: How to
build a relevant model of the system? What to learn from it?
How to use it in a certification process?

In this paper, we focus on interference analysis using the
PHYLOG approach [4]. In PHYLOG, the system architecture
is to be described using the PHYLOG Modeling Language
(PML), which model is then analyzed in order to identify
interferences. Hence, the construction of the PML model is a
critical point when applying the approach: How to build the
PML model? In this paper, we propose to apply a refinement
process in order to build an accurate and reliable model of the
system. This process implements different types of refinements:
structural (i.e., improving the description of the components of
the architecture such as memories and buses), temporal (e.g.,
integrating data from the scheduling plan), etc. Our method
is applied to an industrial use case from Liebherr, which is
deployed on the AURIX TC399XE platform.

This paper is organized as follows: Section II deals with
related work. We briefly introduce the use case in Section III.
The refinement method is presented in Section IV with PML
views implementing the method in Section V and application
to the use case in Section VI. Finally, we discuss our approach
(Section VII) and conclude with possible perspectives (Sec-
tion VIII).

II. RELATED WORK

The interference problem is identified e.g. in [5] as “alter-
ations of the processor’s behavior seen by software running on
one core due to activities ordered by software running on other
cores.”. Thus, certification authorities such as EASA and FAA
notably set interference-related objectives for the certification
of multicore systems [6], [1]. Focusing on the argumentation to
reach these objectives, [4] propose to organize an argumentation
strategy into a series of evidences (or sub-claim) towards the
claim (the objective to demonstrate). They show in particular
that the aforementioned RU3 objective involves identifying all
interferences (sub-objective 1) and to classify their effects (sub-
objective 2). We review some related work on these topics.

a) Evaluation of interference effects: A first class of works
aims to evaluate the impact of contentions occurring within
shared hardware resources on the applications execution times.
For instance, [7] considers a multicore processor architecture
composed of a single bus providing access to a shared memory,
and it proposes a method to determine an upper bound on
the number of bus requests that software tasks can generate



in a given time interval. Both [8] and [9] focus on mea-
surement techniques based on dedicated stressing benchmarks
and hardware monitors to characterize the architecture and the
shared resources that can cause interferences between software
applications.

b) Identification of interferences: Another class of works
relies on a formal model of the architecture and a formal
analysis method to explore the set of interference channels.
A previous work by Brindejonc et al. [10] proposes a way to
characterize the interference behavior and to identify interfer-
ence channels on a multicore processor. Their approach consists
in identifying a set of test classes that completely covers the
interferences that could occur in the architecture. However, they
consider multicore architectures as black boxes, thus ignoring
internal components of the architecture. In [2], the authors
propose a tool ("Strange") that identifies interferences using an
AADL structural model of the SoC that is first translated into a
set of (Prolog) facts that is queried using a Prolog program.
Several works have tried to circumvent the limitations of a
pure structural representation of the SoC. In [3], for instance,
the authors use LNT to capture the behavior of the Infineon
TC275’s crossbar arbiter and exploited the CADP toolchain to
detect interferences. Two approaches have been investigated:
PATCHECK, based on the detection of predefined patterns
showing the manifestation of interference (i.e., the interleaving
of a request concerning core Y in the sequence of transaction
concerning core X), and SYNCHECK, based on the comparison
of traces obtained in isolation and in contention. These two
methods have been applied on a small part of the SoC, and
their scalability has not been demonstrated.

Finally, note that the previous works either address sub-
objective 1 (identification of interferences) or sub-objective
2 (evaluation of interference effects). In other words, both
objectives are addressed separately, without stating whether they
are related and how. In our approach both activities act in a
complementary way: the PML model is used to identify the
set of interference scenarios that must be evaluated; evaluation,
in turn, enables to estimate the impact of the scenarios on the
software and if this impact is compliant with the constraints
defined by the applicant. Thus, the construction of the PML
model is driven by the evaluation: the PML model must be
refined until interference effects fulfill the constraints (see
Section IV).

III. USE CASE

Hereafter, we successively present the software and hardware
parts and the execution environment of the industrial use case
developed by Liebherr Aerospace (referred to as LTS use case
in the following).

a) Application: The software parts consist of two distinct
legacy applications as well as a common board support package
(BSP) software:

• the Integrated Air Management System (IAMS) that man-
ages air bleed, air conditioning and cabin pressure control,

• the Power Electronics (PE) system that controls electrical
motors,

• the common BSP software that deals with Inputs/Outputs
(I/Os), e.g., GPIO, PWM, etc.

The IAMS and PE sub-systems do not coexist on the same
hardware platform in the actual system. However, we deploy
them on the same hardware target in order to (i) address different
typologies of timing constraints (20 Hz for the IAMS, 20 kHz
for the PE), (ii) increase the pressure on the use of shared
resources provided by the platform, and (iii) investigate the
integration of multiple heterogeneous applications on the same
computation platform.

b) Hardware platform: The application software is in-
tegrated in a 6-cores Infineon AURIX TC399XE processor
[11], which simplified architecture is depicted in Figure 1.
The AURIX has been designed in order to minimize possible
hardware interferences: each core has dedicated program (PSPR,
PFLASH) and data (DSPR, DLMU) memories, 3 shared memo-
ries (LMUs) can be used by the cores through a crossbar (SRI),
and a shared bus (FPI) is provided to access I/Os.

LMU0

Core0

PFLASH0 DLMU0

FP
I

I/Os

…

SRI

PSPR DSPR

Fig. 1: AURIX TC399XE platform (simplified view).
c) ASTERIOS: The ASTERIOS toolchain and execution

environment, provided by ASTERIOS Technologies [12], is
used to integrate both applications and the common BSP on
the AURIX platform and enforce the timing constraints.

Applications are developed using PsyC [13], a software archi-
tecture description language based on the synchronous Logical
Execution Time (sLET) paradigm [14]. In this model, each new
activation of a task is constrained by an earliest start date and a
deadline specified by the user based on logical clock ticks. The
IAMS application is implemented with two PsyC tasks (ag_iams
and ag_cpcs), the PE application includes two tasks (ag_fast and
ag_slow) and the BSP three tasks (worker_gpio, worker_adc and
worker_pwm).

The PsyC design is then compiled, together with the user
application code, into an executable binary that is executed
by the ASTERIOS’s real-time micro-kernel. At run time, the
kernel relies on a static schedule generated by the ASTERIOS
toolchain, called Repetitive Sequences of Frames (RSF), to en-
force the tasks timing constraints and determinism (in multicore
architectures, one RSF is generated per core). An RSF is divided
into intervals, and each task may be given at most a frame within
each interval for its execution (Figure 2). A frame corresponds
to the CPU time allocated to a task, and is computed from the
time budget provided by the user.
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Fig. 2: Repetitive Sequences of Frames (RSF) in ASTERIOS.

IV. APPROACH

This section presents the refinement approach that is based
on the PML language.

A. PHYLOG Modeling Language

The PHYLOG Modeling Language (PML) provides a set of
constructs capturing the concepts identified in the AMC 20-193
and supporting interference analysis. Here, we briefly introduce
the main elements of the language, further details can be found
e.g. in [4].

a) PML model: A system can be described in PML in two
main views: structural and behavioral.

The structural view describes the system architecture with:
• platform, i.e., the set of hardware components (cores,

memories, communication resources, etc.) and physical
connections between them,

• software, i.e., the software applications and their data,
• the allocation of the software on the platform : applications

are allocated on cores and data on memories,
• routing aspects, e.g., paths from sources to targets.
The behavioral view details transactions (core accesses to

shared resources, e.g. memory read/write) occurring on the
platform and provides additional interference specifications.

b) Semantics of a PML model: Following [15], the plat-
form in a PML model describes initiators (e.g., a core), targets
(e.g., a memory component), and transporter (e.g., a bus).
Applications are allocated to initiators and data to targets.
Hardware components provide one or several services (e.g.,
store or load). When an application requests to access or write
a data, it will trigger a single transaction, i.e., a sequence of
components’ services used to fulfill the request. For instance,
to load a data from the LMU0, an application running on the
Core0 will trigger the single transaction: Coreld0 ·SRI ld·LMU ld

0

where Cld stands for load service of component C. Several
single transactions can be triggered by the applications executed
by the initiators. A set of concurrent single transactions is
called a multi-transaction. For instance, the multi-transaction
τ = (Coreld0 ·SRI ld ·LMU ld

0 ∥Coreld1 ·SRI ld ·LMU ld
0 ) is the

concurrent access by Core0 and Core1 to the LMU0 through the
SRI. The set of all possible multi-transactions, denoted T , of a
given PML model M is then all the possible concurrent single
transactions that can be triggered by the applications executed
by the initiators. An interference occurs when the simultaneous
usage of a set of services may impact timing behavior. A typical

case is the simultaneous use of a single service by several single
transactions in the multi-transaction. For instance, in the multi-
transaction τ , the load services of the SRI and LMU0 are used
concurrently by the two cores. The purpose of the PML analyzer
is then to identify efficiently the multi-transactions that may
produce an interference.

B. Refinement Approach

In our approach, following AMC 20-193 objectives, a PML
model is used as an appropriate abstraction of the system to (1)
identify a set of interferences, and then (2) evaluate the effects
of interferences.

a) Interference identification: Let M a PML model, in-
terference identification is the analysis applied over the PML
model Id(M) that classifies multi-transactions T described in
M into I, interfering multi-transactions, and F , non-interfering
multi-transactions.

As explained in Section IV-A, an interference in PML comes
from the concurrent use of a service (or exclusive services)
provided by a hardware component within a multi-transaction.
An interference involves n (≥ 2) transactions, so we talk
about n-ary interference (itf-n for short). The PML analyzer
identifies the multi-transactions which may compete for ser-
vices provided by the components of the platform (interference
scenarios) and the components where those conflicts occur
(interference channels). Complementary, non-interfering scenar-
ios (non-interfering multi-transactions) are also provided. The
PML analyzer relies on MONOSAT solver [16] to compute
interferences.

b) Evaluation: Once interference scenarios have been
identified, their effects on the software is evaluated in order to
check compliance with the constraints defined by the applicant.
For instance, the constraints may relate to real-time, requiring
to evaluate response times in order to check that the tasks meet
their deadlines (see Section VI-B for an example of evaluation).

c) Refinement process: The PML model being the main
source of information to perform interference analysis, it shall
satisfy the following properties:

• Coverage: the model enables to identify all interferences,
• Precision: the model enables to identify only interferences.

Coverage impacts safety, so it is explicitly required by
the AMC 20-193. Precision impacts cost, as it may lead to
unnecessary verification activities and over-design.

Assuming an initial model that would satisfy coverage and a
refinement process that would preserve coverage, the approach
consists in refining the model in order to increase precision
in order to meet the constraints. In practice, and due to the
difficulty to ensure coverage by design, additional verification
and validation activities are also required. One way to ensure
coverage is for example (i) to make reasonably conservative
modeling assumptions and (ii) to verify these assumptions
experimentally (see Section VI-C for an example of validation).

Let us define more precisely what is meant here by refinement
and what are the objectives of the refinement process.



False-positives and false-negatives: A PML model is an
abstraction – thus imperfect representation – of the system that
may lead to identify false-positives and false-negatives. Let I
(resp. F ) the set of actual interfering (resp. non-interfering)
multi-transactions that would be observed on the target, false-
positives FP = I ∩ F are multi-transactions that are erro-
neously classified as interfering and, conversely, false-negatives
FN = F ∩ I are multi-transactions that are erroneously
classified as non-interfering. The presence of false-positives
means that the model is imprecise, whereas the presence of
false-negatives means that the coverage objective is not fulfilled.

Refinement (and validation): Refinement is a function
R(Mi) =Mi+1 that adds details on the model, thus restricting
the set of the possible behaviors and increasing the accuracy
of analysis. Applied to the PML model, the consequence of re-
finement is that reported false-positives are reduced: Ii+1 ⊂ Ii
and, consequently, FPi+1 ⊂ FPi.

The objective is therefore to apply refinement so that the
number of false-positives FP is minimized (precision objective)
in order to meet the constraints. In addition, validation of the
model must ensure that all interferences are identified (coverage
objective), i.e., FN = ∅.

The refinement process is illustrated in Figure 3. Refinement
of the PML model is represented on the horizontal axis: Mi is
the model at phase i of the process (represented with a white
circle in Figure 3). Interference identification is shown on the
vertical axis: Id inputs the PML model Mi and outputs the set
of interfering multi-transactions Ii and non-interfering multi-
transactions Fi. Evaluation is illustrated in the gray rectangle
in the bottom left-hand corner of Figure 3: the evaluation func-
tion Ev inputs identified interfering multi-transactions Ii and
enables to conclude whether the constraint is met (acceptable
state) or not (failure state). If effects are not acceptable, the
PML model can be refined in order to reduce I and make the
evaluation more precise: in Figure 3, if Ev(Ii) is not acceptable,
Mi is refined into Mi+n and evaluation is applied on the refined
Ii+n set (Ii+n ⊂ Ii). The refinement process finishes when
either (1) evaluated interference effects are acceptable or (2)
the PML model cannot be refined anymore (in which case the
system must be redesigned in order to mitigate interferences).

We explain in the following sections how the PML views can
be refined (Section V) and show an application of our approach
to the case study (Section VI).

V. REFINEMENT AND PML VIEWS

This section explains how refinement can be applied to the
different PML views. Taking the LTS use case for instance, we
describe the initial, coarse-grained, model and illustrate different
refinements applied to the structural and behavioral views.

A. Baseline Model

A PML model is a Scala application in which each file
describes an aspect of the architecture through a dedicated
class/interface. A PML model is thus modular, making it pos-
sible to easily analyze variants of the system, e.g., models at
different refinement stages.

Evaluation

Mi

Interferences 
identified by the
tool at phase i

PML model 
at phase i

R(Mi )

Model refinement

Id(Mi )

Interference
identification

Mi+n

Id(Mi+n )

Refinement process

acceptable

failure

Evaluation

Fig. 3: Refinement process.

Modeling starts with the baseline model (M0) that applies
the most conservative modeling assumptions with information
that can be easily found in the datasheet (e.g., block diagram
of the platform). The initial model is as simple as possible
with very little information on the parallelization capabilities of
the system: no (or few) assumptions are made on the internal
structure of the components, e.g., we make the assumption that
the applications all execute at the same time, that transactions
all take the same path, etc.

The initial model thus only describes basic structural views
(platform, software and allocation) and transactions.

class core_unit (name: Symbol) extends Composite(name) {

// core
val core : Smart = Smart()

// internal memories
val pspr : Target = Target ()
val dspr : Target = Target ()

// connections ( the core accesses its private memories)
core link pspr
core link dspr

}

Listing 1: Composite structure of a core unit.
a) Platform: The TC399XE platform used in the LTS use

case embeds several core units (see Figure 1), which composite
structure is described in Listing 1: a core unit includes a core
(defined as an initiator with the "smart" keyword), internal
memories (defined as targets), and connections between them.
The full platform is described via the "AURIXPlatform" class
(Listing 2) that enumerates the hardware components (core
units, memories, buses, I/Os) and sets the physical links between
them. The excerpt provided in Listing 2 shows the declaration
of core_unit1 connected to DLMU1 (direct connection) and
LMU0 (via the SRI). In the following, coreX will denote the
core component in core_unitX (core_unitX .core), the same



class AURIXPlatform(name: Symbol) extends Platform(name) {

// core units
val core_unit1 = new core_unit ()
// memories
val dlmu1: Target = Target ()
val lmu0: Target = Target ()
// buses
val sri : SimpleTransporter = SimpleTransporter ()

// connections of the cores
core_unit1 . core link dlmu1 // direct connection to the dlmu
core_unit1 . core link sri // connection to the sri

// connection of the lmu to the sri
sri link lmu0
[...]

}

Listing 2: Platform model of the AURIX TC399XE (excerpt).

trait AURIXCoarseSoftwareAllocation extends Configuration {
self : AURIXCoarsePlatform =>

// Tasks
val ag_fast : Application = Application ()

// Data
val code_ag_fast : Data = Data() // code
val data_ag_fast : Data = Data() // data

// Tasks allocation
ag_fast use core_unit2 . core

// Data allocation
code_ag_fast in core_unit2 . pspr
data_ag_fast in lmu0

[...]

}

Listing 3: Software model of the LTS use case (excerpt).

notation will apply to designate core_unitX .pspr (PSPRX) and
core_unitX .dspr (DSPRX).

b) Software and allocation: The software comprises appli-
cations (running on cores) and their data (stored in memories).
The "AURIXSoftwareAllocation" class (Listing 3) first declares
the tasks and the various ASTERIOS components (real-time
kernel, etc.) together with their data (tasks code and data,
communication data, etc.). The allocation of both applications
(on cores) and their data (on memories and I/Os) is then
provided. For instance, Listing 3 shows the declaration of one
application ag_fast, executed on core2, and its data, stored in
PSPR2 (for its code) and LMU0 (for its data).

c) Transactions and configuration: With the platform
components and pieces of software defined, it is then possible
to provide more information on the usage of resources. The
transaction library lists transactions that can be performed by
the tasks. A transaction declaration involves a task, a data and a
type (e.g., read or write). For instance, Listing 4 shows different
examples of transactions initiated by ag_fast: code loading and
data read/write. One or more configurations to analyze can then
be defined, a configuration being a particular set of transactions

trait AURIXTransactionLibrary extends TransactionLibrary {
self : AURIXCoarsePlatform with AURIXCoarseSoftwareAllocation =>

// tasks load code
val ld_code_ag_fast : Transaction = Transaction ( ag_fast read

code_ag_fast )

// tasks read / write data
val wr_data_ag_fast : Transaction = Transaction ( ag_fast write

data_ag_fast )
val rd_data_ag_fast : Transaction = Transaction ( ag_fast read

data_ag_fast )
[...]

}

Listing 4: Transaction library (excerpt).

within the transaction library.

B. Refinement

Model refinement will consist in adding precision on both
structural and behavioral views. Each refinement stage aims to
reduce the set of interferences by removing false-positives.

We identify several types of refinements:
• Structural refinement is to improve the description of the

components of the architecture (e.g., memories, buses),
• Routing refinement is to specify the paths from initiators

to targets when several paths are possible,
• Temporal refinement is to provide temporal exclusions,
• Quantitative refinement is to describe resource usage.

a) Structural refinement: Structural refinement seeks to
improve the description of the components of the architecture
(e.g., memories, buses).

As seen in the baseline model, the SRI is modeled as a "black
box", i.e., it is specified as a simple "transporter" (Listing 2).
Observing that the SRI is a main contributor to interferences,
we may "open" the black box and model the internal structure
of the component. For example, in Listing 5, the SRI crossbar
network is modeled as a composite: the SRI is made up of a
set of input and output ports (modeled as transporters) where
all inputs are connected to all outputs. Therefore, every input
port is intended to serve a particular core and every output port
is connected to a distinct memory.

b) Routing: Specifying routes may be useful, e.g., when
multiple paths to a target are possible. For example, in the
AURIX platform each core (coren) uses a local PFLASH
memory (PFLASH n) that can be accessed through a direct link.
Meanwhile, all PFLASHs can be accessed by all cores via the
SRI. Thus, there exists 2 paths between coren and PFLASH n:
(1) one that uses the direct link, and (2) one through the SRI.
As in fact transactions from coren to PFLASH n use the direct
link, it is necessary to specify a route in order not to count them
in the SRI. For this, the configuration is extended with routing
constraints, e.g., to specify that the route for transactions issued
by core0 targeting PFLASH0 uses the direct link between core0
and PFLASH0.

c) Temporal refinement: Timing aspects such as tasks
parameters (periods, time budgets, etc.) or scheduling affect
interferences. Therefore, it would be interesting to integrate



class xbar(name: Symbol) extends Composite(name) {

// input ports
val i1 : SimpleTransporter = SimpleTransporter ()
val i2 : SimpleTransporter = SimpleTransporter ()
[...]

// output ports
val o1: SimpleTransporter = SimpleTransporter ()
val o2: SimpleTransporter = SimpleTransporter ()
[...]

// connections ( all inputs connected to all outputs )
for {

input <− Set(i1 , i2 , i3 , i4 )
}{

for {
output <− Set(o1, o2, o3, o4, o5, o6, o7, o8, o9)

}{
input link output

}
}

[...]
}

Listing 5: Structural refinement: composite structure of the SRI
(excerpt).

temporal information, specified in the PsyC design or in the
generated RSF, in the PML representation. While PML does
not directly support such description of timing aspects, we
can capture temporal information with two means: slices or
exclusivity clauses.

In the first method, a temporal "slice" represents a re-
markable execution unit whose transactions are encoded as a
configuration. Each configuration is intended to be analyzed
separately before the results from the different configurations
are aggregated (duplicated interferences are counted once). The
second way, which is the chosen solution in the current model,
is to express (temporal) exclusions in the model. For example,
by analyzing the RSF of the LTS use case, we can specify in
PML that worker_adc, worker_gpio, worker_pwm (core1) and
ag_fast (core2) are never executed at the same time.

d) Quantification: In some cases, a transaction can have
a negligible impact on a service. In that case, one can assume
that the concurrent usage of this service by other transactions
will not result in a significant impact (e.g., in terms of execution
times) on the application. This assumption can be specified in
the PML model by identifying the transactions that do not affect
specific services.

VI. APPLICATION ON THE USE CASE

This section shows an application of our approach (Sec-
tion IV) and proposed refinements (Section V) to the LTS Use
Case (Section III).

We illustrate the main activities – identification of inter-
ferences, evaluation and validation – with, for example, the
schedulability constraint that tasks execution times (ET ) must
comply with time budgets (B) defined in the ASTERIOS
application architecture (see Section III, Figure 2), i.e.,

∀t, ET (t) ≤ B(t) (1)

A. Identification of Interferences

We build the baseline model and then apply structural, routing
and temporal refinements as explained in Section V. The next
paragraphs discuss the mains results (interference scenarios and
interference channels) for each refinement stage and, finally,
summarize results for the overall process.

a) Baseline model: The PML analyzer enables to
identify n-ary interference scenarios (i.e., interference sce-
narios involving n transactions). Interference channels are
also identified. For instance, <rd_data_ag_fast ||
wr_data_worker_adc> denotes a 2-ary interference (or
itf-2) that involves rd_data_ag_fast and wr_data_worker_adc
transactions. Such interference occurs when tasks ag_fast and
worker_adc attempt to load (resp. store) data at the same time
in LMU0 accessed via the SRI, denoted by the interference
channel { lmu0_load, lmu0_store, sri_load, sri_store }. As the
platform includes 6 cores, it is possible to compute up to 6-ary
interferences: e.g., we count 8024 itf-2, 205142 itf-3, 3053207
itf-4 (see Baseline in Figure 4). LMU0 and PFLASH0, which
are two of the main shared memories, and the SRI bus to access
them are the main hardware components causing interferences,
e.g., SRI is implicated in 6904 itf-2, LMU0 in 2589 itf-2 and
PFLASH0 in 479 itf-2. I/Os and the FPI bus to access them
are other components causing interferences (e.g., 1120 itf-2 for
FPI, 480 itf-2 for I/Os).

b) Structural refinement: With the SRI description (Struc-
tural refinement in Figure 4), we observe that the number of
interferences significantly decreases: -46% for itf-2, -66% for
itf-3, -75% for itf-4, etc. Most of the interferences found in the
SRI are eliminated, as it turns out that most of the memories
serve a single core. Thus, only the SRI’s ports that are used
to access shared memories still experience interferences: o9
connected to LMU0 (2589 itf-2) and o2 connected to PFLASH0
(479 itf-2).

c) Routing: Routing has been specified for both the base-
line model and the structural refinement model, i.e., with-
out/with refinement of the SRI. In the first case (BaselineRouting
in Figure 4), where SRI is described as a bus, we see that
interference is reduced significantly: e.g., -19% for itf-2, -26%
for itf-3 and -32% for itf-4. Many interferences are avoided due
to transactions that are not counted in the SRI, e.g., we count
-33% of itf-4 in the SRI. In the second case (StructuralRouting
in Figure 4), we do not observe a reduction in the number of
interferences itself, as the number of interferences is already
reduced due to the description of the internal structure of the
SRI. However, we can see the effect of routing on interference
channels: conflicts now concentrate on PFLASH0 whereas in-
terferences are reduced in the SRI, e.g., -26% of itf-4 in o2
connected to PFLASH0.

d) Temporal refinement: As compared with structural re-
finement, we can see in Figure 4 (StructuralRoutingTiming)
that temporal refinement discards e.g. 379 itf-2 (-9%), 17142
itf-3 (-25%) and 321775 itf-4 (-42%). For these scenarios,
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exclusion of ag_fast and "workers" (worker_gpio, worker_adc
and worker_pwm) transactions represents 52% of the total
decrease, and exclusion of transactions between ag_iams and
ag_cpcs 33%.

e) Summary: In total, 8976029 interference scenarios are
found from the refined model: 3933 itf-2, 52272 itf-3, 451728
itf-4, 2460544 itf-5 and 6007552 itf-6. As compared to the
baseline model, which displayed 109075037 interference sce-
narios, refinement enabled us to eliminate 92% (100099008)
of interference scenarios : 51% of itf-2, 75% of itf-3, 85% of
itf-4, 90% of itf-5, and 93% of itf-6. In terms of refinement
steps, structural refinement, through the description of the
internal structure of the SRI, has the greatest impact (83% of
100099008) before temporal refinement (17%), which specifies
temporal exclusions.

We find different sources of interference (see e.g. Figure 5a
for itf-2 scenarios) : memories with LMU0 and PFLASH0,
inputs/outputs with STM and IR, and the buses to access
them (SRI for memories and FPI for inputs/outputs). In terms
of interference channels (Figure 5b for itf-2 scenarios), the
SRI/LMU0 channel that is used by the cores to access the LMU0
shared memory is the main interference channel (e.g., 2246 itf-2
scenarios over 3933 itf-2 overall, that is to say 57% interference
scenarios).

B. Execution Time Evaluation

After identifying the interference scenarios, we estimate exe-
cution times in order to check compliance with time budgets
specified in the ASTERIOS application architecture (Equa-
tion (1)). Estimation of the execution time of a task is built
on an analytical formulation of execution time that we compute
with measures obtained on the target.

1) Analytical formulation of execution time: The evaluation
of the execution time of a task must take into account all the
interferences that the task may experience.

The execution time ET of a task t is given by:

ET (t) = ET iso(t) +Ditf (t) (2)

with ET iso is the execution time in isolation (i.e., the execution
time without contentions) and Ditf is the interference delay
(i.e., the extra-time due to interferences). More precisely, the
interference delay of task t is the time spent to access resources
belonging to interference channels, which depends on the num-
ber of interfering accesses to every resource R in interference
channels (NAitf (t, R)) and the interfering time for each access
(DAitf (t, R)):

Ditf (t) =
∑

R∈itf_channel(t)
NAitf (t,R)

DAitf (t, R) (3)

The worst-case execution time can therefore be expressed as
the combination of the worst-case execution time in isolation



WCET iso and the worst-case interference delay WCD itf :

WCET (t) = WCET iso(t) +
∑

R ∈ itf_channel(t)

WCD itf (t, R)

︸ ︷︷ ︸
WCDitf (t)

(4)

with the worst-case interference delay due to a shared resource
R encompasses the worst-case number of interfering accesses
to the resource WCNAitf and each access suffers a worst-case
interference delay WCDAitf :

WCD itf (t, R) = WCNAitf (t, R)×WCDAitf (t, R) (5)

2) Application: For example, we apply Equation (4) in
order to calculate worst-case execution times of ag_fast and
ag_slow (parameters and results are summarized in Table I).

To do so, we first measure the execution time in isolation
for each task using RVS1 tool. For instance, Figure 6 describes
the relative frequency of observed ag_fast execution times:
observed BCET is 124 µs, and observed WCET is 134.9 µs.
Therefore, we have WCET iso(ag_fast) = 134.9 µs

We then calculate the interference delay according to Equa-
tion (5). Access numbers (NA) are extracted from execu-
tion traces collected using TRACE322 tool. Figure 7 de-
scribes, for example, the frequency of accesses to LMU0
of ag_fast and ag_slow: the worst-case number of ac-
cesses (WCNA) is WCNA(ag_fast,LMU0 ) = 1559 and
WCNA(ag_slow,LMU0 ) = 4559. In addition, hardware
characterization allowed us to over-approximate access times,
e.g., the maximum measured access time in contention was
WCDAitf (ag_fast,LMU0 ) = 23.48 ns (versus 7.53 ns in
isolation).

The worst-case execution time is finally calculated according
to Equation (4). The evaluation can be refined gradually, and
the process stops when the calculated WCET meets the budgets
(Equation (1)).

For example, as a first approximation (level 1), we may
assume that each access to LMU0 results in an interference,
i.e., for a task t, WCNAitf (t,LMU0 )=WCNA(t,LMU0 ) with
WCNAitf is the worst-case number of interfering accesses
and WCNA is the worst-case number of accesses. Otherwise
(level 2), we may calculate the worst-case number of inter-
fering accesses to LMU0, i.e., for two tasks ti, tj accessing
LMU0, WCNAitf (ti,LMU0 ) = WCNAitf (tj ,LMU0 ) =
minWCNA(ti,LMU0 ),WCNA(tj ,LMU0 ).

Evaluated WCETs are given in Table I together with the
remaining margin to the budget. The stopping criterion is
reached when the margin is positive (shown through green filled
cells in the table) and unsuccessful when negative (orange filled
cells). Therefore, we see that the stopping criteria is achieved
by the first level of analysis for ag_fast and by the second
level of analysis for ag_slow.

1from Rapita Systems: https://www.rapitasystems.com/products/rvs
2from Lauterbach: https://www.lauterbach.com/

ag_fast ag_slow

Period (us) 500 2000
Budget (us) 250.56 300
BCET iso (us) 124 221.5
WCET iso (us) 134.9 224.7

level 1:
WCNAitf 1559 4559
WCDitf (us) 36.6 107.0
WCET (us) 171.5 331.7
Margin with budget (us) 79.1 -31.7
Margin with budget (%) 31.6% -10.6%

level 2:
WCNAitf 1559 1559
WCDitf (us) 36.6 36.6
WCET (us) 171.5 261.3
Margin with budget (us) 79.1 38.7
Margin with budget (%) 31.6% 12.9%

TABLE I: Tasks parameters and estimation of execution times.

C. Validation

Validation of the model can be reached through tests per-
formed on the real system. As the model is aimed at identifying
interferences, validation can be achieved by checking that (i)
when an interference is identified from the PML model, an
interference can be observed on the real system, and (ii) when
an absence of interference is identified no interference can be
observed on the real system. Therefore, each interfering (resp.
non-interfering) scenario is associated with a test scenario.

Remind that an interfering scenario involves transactions, ini-
tiated by tasks executing on different cores, contending for one
or several (exclusive) service(s) provided by a same hardware
component. Conversely, a non-interfering scenario is a scenario
where transactions do not contend for services provided by
hardware components.

In the following, we discuss the validation of scenarios with
2 transactions, this approach can be generalized to deal with
scenarios with n transactions.

a) Interference validation: Let < trA||trB > an interfer-
ence scenario, trA is initiated by taskA hosted by coreX and
trB is initiated by taskB hosted by coreY (X ̸= Y ), Res
is the resource used to serve both trA and trB . To show that
the interference scenario is valid, we can show that taskA is
sensitive to the service of trB by Res and that taskB is sensitive
to the service of trA by Res.

Consider for example interference scenarios in LMU0 involv-
ing ag_fast, executed on core 2, and ag_slow, executed
on core 3. These interference scenarios can be validated by
running ag_fast (resp. ag_slow) against co-runners on core
3 (resp. core 2) issuing transactions to LMU0. The objective
of the co-runner is to act as the contending task, thus stressing
the shared resource to maximize the bandwidth use and produce
interferences. The expected outcome, if the interference scenario
is valid, is an increase in the task execution time compared to
the task behavior in isolation, as we can see for ag_fast in
Figure 8 (ag_fast vs 1 contender lmu0).

b) Non-interference validation: Let < trA||trB > an
interference scenario, trA is initiated by taskA hosted by coreX



Fig. 6: Relative frequency of execution times of ag_fast (snapshot from RVS tool).
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Fig. 7: Frequency of accesses to LMU0.

and trB is initiated by taskB hosted by coreY (X ̸= Y ), ResA
is the resource that serves trA and ResB is the resource that
serves trB . To show that the interference scenario does not exist,
we can show that taskA is not sensitive to the service of trB
by resB and that taskB is not sensitive to the service of trA
by resA.

Let us take the example of a non-interfering sce-
nario < rd_data_ag_fast || wr_data_ag_cpcs >,
rd_data_ag_fast is initiated by ag_fast (hosted by core
2) and targets LM0 while wr_data_ag_cpcs is initiated
by ag_cpcs (hosted by core 4) and targets LMU1. The
absence of interference can be shown by running ag_fast
(resp. ag_cpcs) against co-runners on core 4 (resp. core 2)
targeting LMU1 (resp. LMU0). The expected outcome, if the
non-interfering scenario is valid, is no variation in the task
execution time compared to the task behavior in isolation,
as shown for ag_fast in Figure 8 (ag_fast vs 1 contender
lmu1, the slight variation is due to code instrumentation for
measurement).

D. Summary

In this section, we have shown an application of our method
(introduced in Section IV) to build a PML model. Refinement
has been applied on the PML model with the objective to meet
the budget constraint (execution times evaluated from the model
must fulfill the budgets).

The process took place in 2 phases. We firstly applied model
refinement (on the structural, routing and temporal views) in
order to reduce interference scenarios to be later evaluated. In
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the second phase, we evaluated execution times in order to check
compliance with the budget constraint. The evaluation itself can
be refined in order to minimize evaluation cost, e.g., we have
shown two levels of evaluation based on measurement and the
more precise (and costly) evaluation has only been applied when
the first evaluation was not precise enough to conclude about
the constraint. Validation of the model through tests has also
been shown in order to confirm the modeling assumptions.



VII. DISCUSSION

This section provides some discussion on the refinement
method presented in this paper. We also identify some limi-
tations of the method and propose possible solutions.

a) Refinement path(s): In the previous section (Sec-
tion VI), we have seen an example of application of our
method. Note that if model refinement and evaluation were
here performed sequentially, other paths could be possible. For
example, the model could have been partially refined, then
evaluated to check compliance with the constraint, refined again
if necessary, re-evaluated, and so on until an abstraction that
meet the constraint was found. Multiple paths are possible in
practice, and choosing an "optimal" refinement path is based on
practice and experience.

b) Tooling: The PML model captures data from various
sources. Although the models described in this paper were
done "by hand", a PML model could be automatically (or at
least partially) built with the data extracted from design files,
source code, configurations files, etc. For example, a script has
been developed in order to extract temporal exclusions from
the ASTERIOS’s RSF. In a complementary way, the PML
analyzer has also been extended in order to calculate metrics
(e.g., interferences for each component) that can be used to
drive the refinement process.

c) Reachability: When building a PML model, it may
be the case that reaching the solution is not possible (e.g.,
modeling or evaluation effort is too high) or that this solution
does not even exist (because the proposed design does not
meet the constraint). In these cases, it is necessary to mitigate
interferences (re-design the system) and model the system again.
The results provided by the PML analyzer (list of interferences,
interference channels) can be used in this task and the new
design elements can be incorporated in the PML model.

d) Validation: Validation of the model is an important
issue. For example, in Section VI-C, we proposed to ad-
dress validation through tests: tests are used to corroborate
interfering/non-interfering scenarios on the real system. How-
ever, this validation strategy is biased as it only enables to
validate the elements that are captured in the model: it is thus
possible to converge towards an incomplete model. A way to
solve this problem would be to complete the validation strategy
with benchmarks specifically devised to exhibit the common
micro-architectural mechanisms that may be undocumented.

VIII. CONCLUSION

This paper dealt with the interference problem in multicore
processor embedded systems. We extended the PHYLOG ap-
proach with a method to use the PML language. This method
relies on different types of refinements (structural, routing,
temporal, etc.) in order to build a precise and reliable model of
the system and then perform interference analysis (i.e., identify
interferences and evaluate their effects) in a sound way. We
showed an application of this method on an industrial use case
coming from the aerospace domain.

Future work could develop validation and evaluation aspects,
investigate tools to help to build PML models such as Large
Language Models (LLM) to deal with large datasheets, or
integrate PML with ASTERIOS or Prelude [17] development
toolchains to build interference-aware real-time applications.
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Abstract—To address cost and energy constraints, various
embedded system applications are increasingly adopting multi-
core hardware. In applications that require real-time behavior, it
is important to estimate the worst-case interference from other
programs executing on the multi-core platform. Further, reducing
the interference requires the knowledge of program regions
that are most susceptible to interference. Existing solutions tend
to overestimate the interference, while pinpointing interference
hotspots remains an open problem.

In this paper, we present Kryptonite++, a framework to
synthesize an environment for a given program on a multi-
core embedded processor to estimate the worst-case program
interference. Kryptonite++ builds this interfering environment
using small code gadgets that are designed to hammer specific
hardware modules. To arrange these gadgets, we use a greedy
approach followed by a Reinforcement Learning algorithm.
Kryptonite++ finally analyzes the interference patterns and the
executed instructions to pinpoint the hotspots of interference in
programs. We demonstrate Kryptonite++ on the automotive grade
Infineon AURIX TC399 processor with a wide range of programs.

Index Terms—Multi-Core Embedded Systems, Worst-Case
Program Interference, Real-time Safety, Reinforcement Learning.

I. INTRODUCTION

Cyber-physical systems have proliferated to a wide range of
domains such as automotives [8], defense and medicine [1].
In recent years, due to financial and energy constraints,
such systems are increasingly adopting multi-core processors.
However, this transition introduces serious safety and secu-
rity challenges, especially in applications that need real-time
guarantees. For these applications, it is critical to determine
the worst-case execution time (WCET) to ensure that the
execution adheres to deadlines. The knowledge of WCET also
aids in the optimal placement of program data in the presence
of multiple independent memory modules in the hardware.
Existing literature includes several solutions to precisely de-
termine the WCET of programs on single-core processors [21].
However, the precise determination of WCET for a program
executing on a complex multi-core processor remains an open
problem and is provably NP-Hard [11].

The key factors affecting the WCET of a program on multi-
core processors are (a) the inputs to the program and (b) the
interference from other simultaneously executing programs.
The program inputs determine the flow of instructions to be
executed, influencing the execution time. On the other hand, si-
multaneously executing programs contend for shared hardware
resources, resulting in the interference. For example, consider

two programs sharing a cache set. These programs can evict
each other’s cache lines, which increases the occurrences of
cache misses, in turn, increasing the execution time of the
programs.

While single-core WCET tools [21] can be used to evaluate
the effects of the program inputs, the critical challenge lies
in determining the Worst-Case Program Interference (WCPI)
due to simultaneously executing programs. Most contemporary
solutions statically analyze the control flow of the program
under test (PUT) using an abstract model of the hardware to
estimate interference [10, 11, 13, 15, 20]. These approaches,
however, have two major limitations. First, the abstract model
of the micro-architecture is typically restricted to a shared
cache memory and the system bus [10, 11, 13, 15, 20].
However, typical multi-core systems are far more complex.
There could be multiple memories, buses, and peripherals.
Each of these units has different access latencies, which also
depend on which core the program is executing (for example,
Non-Uniform Memory Access [9]). Formally capturing such
complex behavior is difficult. A second limitation of formal
modeling is that analysts would need to completely know
the micro-architectural details. However, not all details are
documented, leading to oversimplified models. Thus most
contemporary works tend to overestimate the worst-case val-
ues [21], resulting in imprecise estimates of interference,
hampering WCPI analysis.

An orthogonal approach for WCPI determination is to
estimate the worst-case interference as presented in Kryptonite
[19]. Unlike existing works that formally model the multi-
core architecture, Kryptonite performs dynamic analysis on
the hardware to identify an environment that estimates the
worst-case interference for a Program Under Test (PUT). Such
an approach has two key advantages. First, Kryptonite can
precisely capture the interactions between micro-architectural
components and the PUT, as there is no abstraction involved.
Second, it does not require tiny details of the hardware, which
are often proprietary.

In a typical application, the access to resources need not
be uniform [18]. Thus, some regions of code in the PUT
can be more susceptible to interference than others. However,
the WCPI estimated by Kryptonite is for the entire PUT and
does not provide any fine-grained information about specific
regions of high interference. Pinpointing these hotspots would
provide deep insights about the causes of inference and
help application development and testing. In this paper, we
extend Kryptonite to provide (a) the currently synthesized



Fig. 1: The access pattern of a program performing matrix multiplication with shared modules SM1 and SM2, and private
modules PR1 PR2. To aid in pinpointing the interference hotspots, Kryptonite++ segments the executions into different epochs.

Fig. 2: The Kryptonite++ framework. It works in three phases, namely, offline, online, and localization. The offline phase uses
the hardware specifications to design gadgets that can hammer different shared modules. The online phase uses these gadgets as
the building blocks to synthesize the maximally interfering environment by performing runtime measurements for the program
under test (PUT). First, the Gadget Selector designs interfering gadget sequences which are then fine-tuned to generate the
final output using Reinforcement Learning by the WCPI Shaper. In the localization phase, the Interference Analyzer segments
the interference patterns into small time periods called epochs, while the PUT Scanner segments the PUT instructions in the
corresponding epochs. Finally, the Interference Mapper collates the per-epoch observations to output the hotspots of interference
in the PUT in the presence of the maximally interfering environment.

WCPI environment for a given PUT, and (b) the localized
information about the interference behavior during the runtime
of the PUT. Further, we map the regions of high interference to
the source code, which can be used by the development team to
introduce modifications reducing susceptibility to interference.
Following are our major contributions.

• We present Kryptonite++, a dynamic analysis framework
to estimate the Worst-Case Program Interference (WCPI),
and further locate the hotspots of interference for PUT
executing on multi-core hardware.

• Kryptonite++ works by building an environment that
induces an estimation of the worst-case interference on
the PUT using specialized code snippets, called gadgets,
that hammer specific hardware modules.

• The gadgets are selected and organized using a greedy
algorithm and Reinforcement Learning (RL). Further, the
PUT execution and the maximally interfering environ-
ment are segmented into epochs. Kryptonite++ maps
the instructions executed by the PUT to interference
patterns observed in the corresponding epoch to identify
the hotspots of interference in different regions of the
PUT.

• We demonstrate the working of Kryptonite++ on popular

automotive hardware, TriBoard v2.0 hardware with a 6-
core Infineon AURIX TC399 microcontroller on a wide
range of applications including AES and the Mälardalen
benchmark suite [5].

II. BACKGROUND

Multi-core processors are composed of hardware modules
that are either private to each CPU core or shared across cores.
Programs executing on a CPU core access private and shared
modules at different time instances during their run time. For
example, Fig. 1 describes the run time access patterns for a
matrix multiplication program where the input matrices are
stored in shared memory unit SM1 while the result is stored
in another shared memory unit SM2. During execution, the
program uses private hardware resources PR1 and PR2 to store
intermediate results and perform ALU operations. The access
patterns to the shared and private hardware resources are
different and are characteristic of the program. The WCET for
such a program is influenced by the (a) program inputs and (b)
the interference that occurs due to other programs executing on
the multi-core processor. Of the two factors that decide WCET,
estimating the Worst-Case Program Interference (WCPI) is a
challenge. The interference can only occur due to the shared
modules that are present (i.e. SM1 and SM2), and not the



Fig. 3: The Gadget Selector. On every CPU core, each iteration evaluates all the gadgets and adds the gadget that results in
the highest execution time of the PUT to the interfering environment. After each addition, the Gadget Selector starts the next
iteration, ultimately crafting a gadget sequence.

Fig. 4: The hardware-in-the-loop setup used by Kryptonite++ to
train the Reinforcement Learning agent in the WCPI Shaper.

private modules (i.e. PR1 and PR2). The rest of the paper
discusses Kryptonite++ , which is designed to estimate the
WCPI of a program and identify the hotspots of interference.

III. THE Kryptonite++ FRAMEWORK

In this section, we discuss different components of
the Kryptonite++ framework, as shown in Fig. 2, used to
design the maximally interfering environment on the free
CPU cores and locate the interference hotspots. Consider
a multi-core system with a set of n processors executing
the Program Under Test (PUT). During execution, the PUT
accesses different shared and private hardware modules in the
system at different instances during its execution (Fig. 1). If
the PUT executes on (n −m) CPU cores, such that n > m,
then assuming no preemption, interference can be caused by

the programs that execute on the remaining m CPU cores and
utilize the shared hardware modules. We denote these free
CPU cores by the set C = {c0, c1, c2, c3, · · · cm−1}. In our
experiments, we primarily use PUTs that execute on one CPU
core (m = (n− 1)).

A. Gadget Set Design

Listing 1: A generic structure of a gadget.
void a_generic_gadget(int iterations){

for(i=0; i< iterations; i++){
operation #1;
operation #2;
...
operation #n;

}
}

We define a unit as the smallest entity within a shared
module in a multi-core processor that can independently cause
contention. Each unit in the hardware can support multiple
operations. For instance, a cache set can be defined as a unit
with load and store as the possible operations. Fundamental
to Kryptonite++ are small pieces of code called gadgets,
designed to hammer one or more such units that are within
a shared module or across modules. The hammering is done
for a configurable duration represented by the iterations pa-
rameter. For example, in a shared cache memory, the smallest
unit that can cause contention is a cache set. Thus, we design
gadgets to hammer one or more cache sets using different
combinations of the load and store applications. Listing 1
describes the generic structure of a gadget with n operations.

Similarly, Listing 2 describes an example of a gadget
targeting the load operation in the 15-th (0xe) cache set in a 4-
way set associative cache. The four load instructions executed
in a loop hammer the cache set, creating contention with other
programs that share the same cache set. In our evaluation, we
typically begin with iterations set to 64 for each gadget. This
empirically selected value ensures that the overheads due to



Fig. 5: (a) Introducing timestamps in PUT execution using interrupts at the end of each epoch. At the end of the r-th epoch,
interrupts are triggered to all the CPU cores, pausing the PUT as well as the gadget execution. The Interrupt Service Routine
(ISR) then collects the program counter (PCr) value from the CPU core executing the PUT and sends it to the host machine.
Finally, the execution of the PUT and the gadgets resumes in synchronization for the next epoch. (b) Different gadgets in the
sequence on a CPU core with their corresponding interference on the PUT. The Interference Mapper converts the duration of
each gadget’s execution into epochs to map the interference behavior with different sections of the PUT.

non-interfering instructions (such as loop updates or function
calls) are kept to a minimum while ensuring that the fine-
grained execution phases of the PUT are captured.

Listing 2: An example gadget targetting the cache set mapped
by the 4 set bits 0xe (bits 9-12 from LSB) looping for
iterations times.

void cache_set_gadget(int iterations){
for(i=0; i< iterations; i++){

// the set bits are 0xe
load 0xdeafbeef;
load 0x00ff0ead;
load 0xfffffe00;
load 0x12345eba;

}
}

B. Gadget Selector

Given a Gadget Set G determined using the techniques in
the previous section and a set of free CPU cores C in the
hardware, the goal of the Gadget Selector is to design an
environment that maximizes the interference with the PUT.
This environment comprises the set of gadget sequences L(ci)
for each CPU core ci ∈ C so as to maximize the PUT
execution time. We construct such a sequence of gadgets on
each core using an iterative greedy approach, as shown in
Fig. 3. Initially, all gadget sequences, L(ci), ci ∈ C, are empty.
For the addition of the j-th gadget on a CPU core, all other
cores must have at least (j − 1) gadgets. Upon ensuring this,
the order of CPU cores in which the j-th gadget is added
to the corresponding gadget sequence is selected randomly.
This approach ensures an independent distribution of gadgets
on each CPU core. To add the j-th gadget in the gadget
sequence L(ci), Kryptonite++ identifies the gadget that, when
added to the j-th position in the gadget sequence, results

in the maximum execution time of the PUT with a given
environment.

The final interfering environment from the Gadget Selector
has two major limitations. First, in this step, the duration of
execution for each gadget is not optimized. This is done to
reduce the search space for the greedy algorithm. Instead, we
empirically fix a value for the number of iterations and use
it for every gadget in G. Thus, the duration of a gadget can
exceed or fall short of the ideal duration, preventing the max-
imization of interference. Second, the interfering environment
is limited to a finite set of gadgets, which can be inadequate for
some execution patterns of a PUT. We address these limitations
in the next component, called the WCPI Shaper.

C. WCPI Shaper
The WCPI Shaper addresses the limitations of the Gadget

Selector and fine-tunes the interfering gadget sequence to
provide the maximally interfering (WCPI) environment using
a Reinforcement Learning (RL) algorithm. The algorithm uses
an agent that learns the optimal series of modifications to
the interfering environment over several timesteps so as to
maximize the interference.

At timestep t the RL agent observes the interference envi-
ronment formed by gadget sequences, represented as state St.
The agent performs an action at = (ci, j, move) at timestep
t, which performs a modification move on the j-th gadget
on core ci. Thus, the action at changes the state of the agent
from state St to St+1, by either changing a gadget in the
sequence or the duration of execution of the gadget. The PUT
is executed with the modified environment, and based on its
execution time, the agent accrues a scalar value called reward
that quantifies feedback about the action at when in state St.
Over several steps, as shown in Fig. 4, the agent learns the
optimal sequence of actions that maximize the rewards, and
in turn, the interference.



D. Interference Analyzer

The maximally interfering environment from the WCPI
Shaper applies to the entire PUT and does not provide fine-
grained information about hotspots of interference in the
PUT. The identification of these hotspots requires two key
pieces of information: (a) the interference patterns during the
runtime of the PUT, and (b) the instructions executed by
the PUT corresponding to those interference patterns. First,
the Interference Analyzer executes the maximally interfering
gadget sequence with the PUT to determine the variations in
interference during the runtime of the PUT. To this end, we
divide the PUT runtime into epochs, which can be defined as
a minimum time period for observation. In each epoch, the
rate of increase in the execution time of the PUT represents
the effective interference incurred by the PUT. An epoch
with a larger increase in the execution time implies that the
instructions executing during the epoch are more susceptible
to interference.

Once the interference pattern is determined, the next chal-
lenge is to identify the specific instructions of the PUT
executing during each epoch. We address this by designing
periodic interrupts that are configured to trigger at the end of
every epoch, as shown in Fig. 5. These timer-based interrupts
get triggered on all CPU cores, pausing the execution of the
PUT as well as the gadgets. On the CPU core running the PUT,
the interrupt service routine (ISR) logs the program counter
(PC) value, which is the address of the last instruction in
the PUT before the interrupt. This address is transmitted to
the host machine from the hardware board. The ISR on all
the other CPU cores wait until the transmission is complete,
and thus the resumption of the execution of the PUT and
the gadgets is synchronized. Similarly, the PC is logged for
each subsequent epoch, and as a result, we get a timestamped
execution trace of the PUT along with timestamped variations
in the interference.

E. PUT Scanner and Interference Mapper

The goal of the PUT Scanner is to trace the logged
instruction addresses of the PUT back to code regions. We
achieve this by parsing the disassembly of the given PUT and
dividing it based on the logged addresses. The final challenge
in Kryptonite++ is mapping the interference patterns with
these code regions of the PUT. While the trace of the PUT is
uniformly divided into the duration of an epoch, the duration of
each interference pattern depends on the corresponding gadget
and the associated number of iterations, as shown in Fig. 5.
The Interference Mapper resolves this issue by measuring the
execution time of all the gadgets in the sequence. We use
these timing measurements to identify the gadgets executing
in each epoch. This enables the mapping of the interference
patterns to corresponding epochs and, in turn, to the PUT’s
code region. Thus, along with the WCPI estimate of the PUT
and a realizable interfering environment, Kryptonite++ also
identifies the hotspots of interference in the PUT.

IV. IMPLEMENTATION

We perform the evaluation of Kryptonite++ on a setup
including a host machine (Windows 10, Intel i7-7700) running
different components of Kryptonite++. The host is connected
to the TriBoard v2.0 with an Infineon AURIX TC399 micro-
controller through a UART port. Fig. 6 presents an overview of
the relevant units present in the Infineon AURIX TC399 board.
Prior to the start of the online phase, we build all the gadgets in
G using the HighTec Free Entry toolchain that uses the tricore-
gcc v4.9.3.0 compiler. We flash the PUT and all the gadgets
on the evaluation board using the Miniwiggler debugger. Each
core has a dedicated CCNT register that records the elapsed
CPU clock cycles. The register can be accessed at specific
addresses in the memory. We read the value of the CCNT
register at the start and the end of the PUT’s execution to
determine its execution time.

We also establish a UART-based communication protocol
between the Infineon AURIX TC399 microcontroller board
and the host machine. After initialization, the Gadget Selector
or the WCPI Shaper can specify a sequence of gadgets to
execute on each of the CPU cores along with the PUT.
Fig. 4, for example, describes the protocol for communication
between the WCPI shaper and the Triboard through UART.
The execution time for the PUT is measured at the board
and transmitted to the host machine. The RL agent in the
WCPI Shaper is implemented based on the Proximal Policy
Optimization (PPO) [17], which is a model-free algorithm,
i.e., it does not make any assumptions about the underlying
hardware or the PUT.

The interrupts on the Infineon TC399 board are imple-
mented using the drivers in AURIX Development Studio. The
Infineon board maintains different stacks for the ISR and the
regular program execution. The Interference Analyzer collects
the program counter values from the PUT executing core using
the PCXI register, which contains the address of the previous
execution stack. The collected addresses are transmitted to the
host machine using the UART communication channel. The
duration of each epoch to trigger an interrupt is 5µs which is
1500 clock cycles on the Infineon AURIX TC399 board.

V. EVALUATION AND RESULTS

Listing 3: An example PUT that performs AES encryption
with T-tables present in different memory units of the Infineon
AURIX TC399 board.

Ifx_Cpu_Setup();// set the required data;
AES_Exp_Key_LMU0(); // key expansion, with

T-tables in LMU0
AES_Exp_Key_dLMU0();
AES_Exp_Key_dLMU1();
AES_Exp_Key_LMU1();
AES_perform_LMU0(); // Encryption and

Decryption, with T-tables in LMU0
AES_perform_dLMU0();
AES_perform_dLMU1();
AES_perform_LMU1();



Fig. 6: Relevant layout section of Infineon AURIX TC399 microcontroller on the TriBoard hardware used for evaluation
in Kryptonite++. The shared modules consist of six data Local Memory Units (dLMU), three Local Memory Units (LMU),
and six Program Flash (PF) modules. Considering one operation in the gadget loop (Listing 1), we have 24 gadgets: read/write
gadgets for each dLMU (6 × 2), read/write gadgets for each LMU (3 × 2), and read gadgets for each PF (6 × 1). Similarly,
considering a read operation followed by a write in the gadget loop, we have 135 gadgets: 15 possibilities for the read operation
(6 dLMUs, 3 LMUs, and 6 PFs) and 9 possibilities for the write operation (6 dLMUs and 3 LMUs).

Fig. 7: The execution time (in clock cycles) of a PUT running AES encryption with different locations of the T-tables on
the Infineon AURIX TC399 microcontroller. The bars compare the execution time in four cases: no interference to the PUT,
interference with an environment handcrafted with the knowledge of the PUT, interference with the Gadget Selector output
in Kryptonite++, and interference with final output from WCPI Shaper in Kryptonite++. The numbers on the top of the bars
represent the percentage increase in PUT’s execution time with the maximally interfering environment given by Kryptonite++.

Fig. 7 shows the maximal interference for different imple-
mentations of AES using the Gadget Selector and the WCPI
Shaper. The implementations vary in their placement of AES
T-tables across different memory units shown in Fig. 6. To
benchmark the WCPI estimates, we design handcrafted gadget
sequences, with complete knowledge of the AES program
and its data access patterns. We observe that Kryptonite++
consistently outperforms a handcrafted arrangement of gadgets
which assumes the knowledge of the PUT internals. We
observe that the LMUs have a higher interference compared

to other memory units. Further, the interference when the T-
tables are in the dLMU (dLMU0) associated with the CPU
core executing the PUT (CPU0) is minimal, as such requests
are serviced via a dedicated bus (Fig. 6).

To discuss the localization of interference, let us consider
the PUT described in Listing 3. This PUT consists of an AES
implementation with various locations of the T-tables. The
Ifx_Cpu_Setup() function ensures the placement of data
in associated memory units and sets up the UART communica-
tion channel. This is followed by the key expansion functions



Fig. 8: The execution of the PUT with respect to gadgets in the WCPI gadget sequence. For example, the PUT execution
time corresponding to the i-th value on the X-axis represents the interference to the PUT with the first i gadgets in the WCPI
gadget sequence. We observe that the general trend of the curve is monotonically increasing, but there are variations in the
slope when observed closely. This is because, though the interference to the PUT generally increases with more gadgets, the
distribution of the interference is not uniform across the PUT’s execution. This observation implies that some sections of the
PUT are more susceptible to interference than others. Further, there can be mild disturbances due to the inherent noise in
execution time measurements.

Fig. 9: A closer look at the distribution of interference shown in Fig. 8. The exponential moving average of the change in the
execution time of the PUT with runtime (in clock cycles). Timer interrupts are triggered by the Interference Analyzer every
epoch (1500 clock cycles), and the program counter associated with the PUT is logged. The output of the PUT scanner maps
the logged instruction addresses to functions in the PUT.

for different implementations of AES with the T-tables present
in LMU0, dLMU0, dLMU1, and LMU1, respectively. Finally,
the PUT performs a set of AES encryption and decryption
instances using T-tables present in the given memory units.

Without any interference, this PUT takes 16305 clock
cycles. With the WCPI environment from Kryptonite++, the
execution time increases by 18.4% to 19298. However, the
distribution of interference is not uniform during the execution
of the PUT, as shown in Fig. 8. For instance, till the 23rd
gadget, the addition of each gadget increases the PUT’s
execution time at a constant rate to 17652 clock cycles. After
this, the execution time of the PUT increases quite slowly
with the addition of newer gadgets for a while and then again
increases sharply (shaded red in Fig. 8).

With the interference pattern of the PUT derived from
Fig. 8, the Interference Analyzer now executes the PUT with

the WCPI environment with interrupts to log the program
counter values at every epoch of 1500 clock cycles. Fig. 9
presents the exponential moving average (EMA) of the change
in the execution time of PUT with runtime, given as

EMAp = (1− α)EMAp−1 + αδp ,

where α is a smoothing factor (α = 0.5) and δp is the
increase in PUT execution time due to the p-th gadget in
Fig. 8. We represent the runtime in clock cycles elapsed in
place of the number of gadgets in the sequence executing
simultaneously with the PUT. After an epoch, an increase in
this moving average implies that the PUT section executing
during the epoch incurs a high interference. On the other
hand, a decrease in the moving average indicates a lower
susceptibility of the associated PUT region to interference.



The top axis of Fig. 9 gives the program counter value for
the CPU core executing the PUT as the timer interrupts occur
every epoch. These values are instruction addresses in the PUT
executable. The PUT Scanner parses the PUT disassembly and
outputs the associated function within which the instruction
with the given address is located. Thus, the interference
behavior during an epoch can be mapped to a function in
the PUT. We observe that the functions utilizing LMUs are
the hotspots of interference for the given PUT. In contrast, the
functions associated with dLMUs, and in particular dLMU0,
have minimal susceptibility to interference. With access to the
source code, the Interference Mapper can further provide the
exact lines in the source code with high interference. For
example, in the given PUT, line number 871-1094, which
coincides with the function AES_perform_LMU1(), are
deemed as hotspots of interference by Kryptonite++.

To ensure adaptability, we also test Kryptonite++ with the
Mälardalen [5] benchmark suite, which consists of popular
benchmarking applications in the real-time safety community.
Table I presents the WCPI estimate for several benchmarks
using the LMUs for data along with the functions identified
as hotspots of interference by Kryptonite++. We observe that
programs such as bbsort and compress, which are memory
intensive, face more than 50% increase in the execution time.
The interference hotspots are functions such as BubbleSort(),
which performs bubble sort on arrays in LMUs, and write-
bytes(), which writes to arrays in the LMUs involved with data
compression. On the other hand, programs such as fft1 (Fast
Fourier Transform) are compute-heavy, resulting in minimal
interference and no hotspot functions.

VI. RELATED WORK

Existing works attempt to determine WCPI by statically
modeling the PUT and the interference in the multi-core
platform [15, 10, 11, 13, 20] or estimating WCPI by creating
interfering environments [2, 3, 4, 6, 12, 16]. While these
solutions provide different techniques to determine WCPI,
none of them can pinpoint the different regions in the PUT
resulting in interference. Table II compares these state-of-the-
art solutions with Kryptonite++.

Static approaches determine upper bounds for interference
using statistical methods [13, 20], algebraic techniques [15, 10,
11] and machine learning [2, 4]. These bounds provide formal
guarantees and can be tuned for different access patterns.
However, statically determined WCPI bounds are low in
precision as they are prone to overestimation [15, 21, 12].
Further, these solutions are limited in scale as they consider
an abstract representation of the hardware, which is difficult to
model for multi-core systems. It also requires complete micro-
architectural details, which are not always available.

An orthogonal approach is to estimate WCPI by executing
the PUT with other interfering programs [3, 6, 12, 16]. Each
free CPU core in the processor executes a program that stresses
a targeted shared module potentially increasing interference
with the PUT. While such approaches result in more precise
WCPI estimates compared to static techniques, they have the

following limitations. First, since each CPU core stresses a
single shared module, these techniques do not scale well
with an increase in the number of shared hardware modules.
Second, the stress programs are pre-determined and cannot
be easily adapted to different execution phases of the PUT
(Fig. 1).

In a recent work, Li et al. [7] present PolyRhythm, which at-
tempts to maximize interference using similar stress programs.
Unlike [6, 16], which stress different components from each
available CPU core, the PolyRhythm tool periodically selects
the program with the highest interference using Reinforcement
Learning and executes it on all the cores for a fixed duration.
This enhances the scalability of the solution as compared to
[6, 16], since PolyRhythm is not constrained by the number
of free CPU cores available. However, it has the following
limitations. (a) Since an interfering program is executed for
a pre-determined duration, there is no further fine-tuning
possible. (b) Executing the same stress program on each CPU
core need not result in optimal interference, especially for a
real-time PUT with heterogeneous and non-uniform accesses
to different hardware modules. (c) At the end of each duration,
a context switch needs to be performed on all the CPU cores
causing short periods of no interference. (d) Finally, to perform
the switching, PolyRhythm relies on an underlying Operating
System (OS), which might not be present in many real-time
deployments. Kryptonite [19] addresses these limitations by
providing a function-level granularity for interference without
the requirement of an OS to perform context-switching. While
this approach provides safe and precise WCPI estimates,
similar to prior work, the output of Kryptonite does not
provide any information about the interference behavior within
different regions of the PUT.

Unlike existing techniques, Kryptonite++ automatically
creates an interference environment that is fine-tuned to match
the execution phases of the PUT. Further, it provides a
region-wise distribution of interference for the PUT to aid
software development teams in iterative improvements. Since
the interference environment in Kryptonite++ is independent
of the number of shared hardware modules, it can scale to
complex hardware designs and PUTs.

VII. DISCUSSION

Explainability of results in Kryptonite++. For a given PUT
on multi-core hardware, we provide the WCPI estimate and
environment along with hotspots of interference. However,
the explainability of the interference, as presented in the
description of the hotspots in Table I requires manual efforts.
We can further extend Kryptonite++ with program analysis
techniques to also provide explanations about the observed
interference in terms of the PUT’s operations.

Empirical dependence on gadgets. The WCPI environment
determined by Kryptonite++ depends on the gadgets synthe-
sized for the hardware. It is challenging to formally guarantee
the completeness of the gadget set as the determination of
the actual worst-case interference in a multi-core system is



TABLE I: The WCPI estimate of different programs in the Mälardalen [5] benchmark suite along with the functions that
are hotspots of interference as marked by Kryptonite++. We also provide a description of the operations performed in these
hotspot functions.

Program WCPI
estimate Hotspot Functions Description of hotspot functions

bbsort 58.7% BubbleSort() Bubble sort on an array in LMU0.
binary search 18% binary search() Binary search on an array in LMU0.

cnt 18% Initialize(), Sum() Read/Write to a matrix in LMU0.
compress 50.2% initbuffer(), writebytes() Read/Write to a buffer in LMU0 and LMU1.

crc 22.8% icrc() Read/Write to a buffer for arithmetic operations.
edn 32.6% jpegdct(), iir1(), latsynth() Vector (of size 200) multiplications (read/write) and array handling in LMU0.
fdct 28.1% fdct() read/write on integer array elements.
fft1 5.7% None All arithmetic operations, limited data handling form LMU0.
fir 30.8% fir filter int() Read/Write on two arrays length 700 in LMU0 and LMU1.

insertsort 17.2% main() Insert sort algorithm on an array in LMU0.
matmult 26.7% Multiply() Matrix multiplication (read/write) in LMU0.
minver 9.4% mmul() Multiplication of scalar and a matrix (read/write) in LMU0.

TABLE II: An overview of different existing approaches for WCPI determination on multi-core systems (IS-WCET: Interference-
Sensitive Worst-Case Execution Time, WCPI: Worst-Case Program Interference).
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Nagar and Srikant [10] Static Low ✗ ✓ ✗ IS-WCET bounds
Nagar and Srikant [11] Static Low ✗ ✓ ✗ IS-WCET bounds

Pellizzoni et al. [14] Static Low ✗ ✓ ✗ WCPI bounds
Skalisitis [20] Static Low ✗ ✓ ✗ IS-WCET bounds

Potop-Butucaru [15] Static Low ✗ ✓ ✗ IS-WCET bounds
Nowotsch [13] Static Low ✗ ✓ ✗ IS-WCET bounds
Courtaud [2] Dynamic High ✗ ✓ ✗ WCPI predictions

Griffin et al. [4] Dynamic High ✗ ✓ ✗ WCPI predictions
Nowotsch and Paulitsch [12] Dynamic High ✗ ✗ ✗ WCPI estimates

Fernandez et al. [3] Dynamic High ✗ ✗ ✗ WCPI estimates
Radojkovic et al. [16] Dynamic High ✗ ✗ ✗ WCPI estimates

Iorga et al. [6] Dynamic High ✗ ✗ ✗ WCPI estimates
Li et al. [7] Dynamic High ✓ ✗ ✗ WCPI estimates

Kryptonite [19] Dynamic High ✓ ✓ ✗ WCPI estimates and environment

Kryptonite++ (this paper) Dynamic High ✓ ✓ ✓
WCPI estimates, environment and localized

regions of interference

an NP-Hard problem [11]. We empirically observe that the
135 gadgets designed for Infineon AURIX TC399 (Fig. 6)
consistently provide safe and precise WCPI estimates as
compared to existing works.

Dependence on interrupt frequency. The Interference Ana-
lyzer in Kryptonite++ triggers timer interrupts every epoch
to log the program counter associated with the PUT. The
epoch duration and, thus, the granularity of scanning the PUT
is dependent upon the frequency of interrupts. However, the
maximum frequency of timer interrupts is dependent on the
hardware, which can limit the granularity of sections of PUT
that are mapped with given interference patterns.

VIII. CONCLUSION

Kryptonite++ provides a dynamic mechanism to first esti-
mate the Worst-Case Program Interference (WCPI) and then

identify the hotspots of interference for a program on multi-
core hardware. To this end, it selects gadgets targeting different
modules and arranges them to form interfering sequences. It
then performs a fine-tuning of these sequences using a Rein-
forcement Learning algorithm to output the Worst-Case Pro-
gram Interference (WCPI) environment for a given program.
In subsequent phases, it analyzes the maximally interfering
environment along with the program under test (PUT) to pin-
point the instruction sequences that predominantly influence
interference. This information is critical to application devel-
opers in improving the isolation of programs sharing the same
hardware resources. Beyond WCPI estimation and localization
for embedded real-time systems, such a framework opens up
multiple avenues of research, such as the analysis of isolation
across virtual machines on hypervisors or the identification of
security vulnerabilities via shared hardware.
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Hamidreza Ahmadian, and Imanol Allende. Multi-Core
Devices for Safety-Critical Systems: A Survey. ACM
Comput. Surv., 53(4), Aug 2020.

[2] Cédric Courtaud, Julien Sopena, Gilles Muller, and
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Abstract—Finding the most efficient deployment of a Machine
Learning (ML) model requires setting up multiple combinations
of ML tools and hardware targets, running series of experiments,
and evaluating relevant parameters (latency, memory usage, etc.).
All these operations are complex, sometimes tedious, and always
time consuming. Therefore, in order to facilitate this Design
Space Exploration process, we propose an evaluation bench that
(i) integrates the necessary software and hardware resources
(tools, boards) to deploy a variety of ML models, and (ii) provides
a uniform and abstract API to exercise and evaluate multiple
deployment solutions. This paper defines more precisely the end-
users needs, describes the architecture of the bench and illustrates
its application on a use case.

Index Terms—Machine learning, edge computing, deployment

I. INTRODUCTION

A typical embedded system has to comply with a set of
strict requirements about size, weight and power (SWaP),
response times, reliability, certification, and – eventually –
cost. Satisfying all of these constraints presents a significant
challenge when deploying complex Machine Learning (ML)
algorithms. Finding the combination of ML framework, back-
end, and hardware target that satisfies all of these constraints
at an acceptable cost is a complex optimization problem that is
currently solved by combining return of experience, analysis,
and, essentially, experimental exploration. Considering that the
approach is essentially empirical, being able to evaluate a large
set of solutions in a fast and reproducible way is crucial.

In this context, our work aims to facilitate and partially
automate the process of exploring the design space. The central
challenge is to reconcile a high level of automation [7], a wide
diversity of hardware targets and toolchains, and the need for
repeatability, controllability, observability, and mastery of the
hardware and software components involved in the deployment
process

This work is done in the frame of the Confiance.ai program1

led by IRT SystemX whose objective is to foster the adoption
of Artificial Intelligence by providing methods, environments,

1See www.confiance.ai.

tools, and components to design and industrialize trustworthy
AI-based critical systems. The evaluation bench presented
hereafter is one component of a larger environment devel-
oped in the program that includes in particular Model-based
engineering methods for the development, verification and
validation of those systems, software libraries to address some
crucial issues such as robustness or explicability, etc.

To achieve the objectives of efficient Design Space Ex-
ploration, we propose an environment integrating (i) a set
of preinstalled and configured Machine Learning (ML) im-
plementation tool chains, (ii) a set of hardware targets in-
cluding low-end microcontrollers, high-end System-on-Chip
(SoC) fitted with multiple cores, GPUs, ASIC ML accelerators
or FPGAs, (iii) an API to setup and run experiments and
collect results, (iv) means to generate automatically candidate
deployment workflows, (v) means to predict performances of
hardware targets not present in the bench or not available,
(v) documentation.

The paper is organized as follows: Section II presents the
typical use cases and operational needs of the evaluation
bench. Related work is detailed in Section III. The architecture
of the bench is presented in Section IV and its usage is
illustrated on a typical use case in Section V. Section VI
concludes the paper and presents perspectives for further
developments.

II. USE CASES AND OPERATIONAL NEEDS

The typical use case for the evaluation bench is the situation
where (i) the ML model has been designed and its ML
performance assessed on a development platform (e.g., a PC
running TensorFlow), and (ii) the hardware target and associ-
ated deployment workflow remains to be chosen considering
all the other constraints than ML performance. Finding the
optimal deployment of a ML model is then an optimisation
problem with multiple degrees of freedom. Often, the set of
possible solutions to this problem is strongly reduced due
to domain-specific constraints such as the compliance with
certification objectives, the compatibility with specific environ-
mental conditions, etc., or company-specific constraints such
as the prescription or prohibition of specific ML frameworks



or hardware targets. Nevertheless, the set of potential solutions
remains usually large.

For each solution, the user has to select a toolchain com-
patible with his/her input model, install and configure it for
a given hardware target, implement and deploy the model on
the target, execute it and perform measurements. Developers
are usually familiar with these activities for a limited set of
software and hardware combinations. Difficulties arise when
new tools or new platforms are to be evaluated since, then, the
user will have to tackle the usual issues of model/toolchain
and toolchain/OS compatibility, toolchain configuration, etc.
In addition, if it makes sense to maintain 3, 4 or 5 different
tools or targets on a local setup, installing, maintaining and
analyzing 10 or 20 or more tools and targets becomes a real
issue.

To address this general use case, the evaluation bench shall
have capability to

• Give access to a large variety of hardware targets covering
a wide range of CPU and GPU architectures, FPGA, AI
ASIC accelerators, execution environments, ML deploy-
ment tool chains

• Carry out evaluation experiments in as many configura-
tion as necessary without having to setup the relevant
environments, deal with dependencies, etc.

• Leverage results from past experiments.
Those capabilities rely on several main features:
• A set of hardware boards with their execution environ-

ment
• A set of preinstalled ML deployment tool chains (e.g.

TensorFlow, TensorFlow lite, TIDL, Vitis AI, finn, etc.)
• A set of ML models (aka ”model zoo”) to be used for

evaluation purposes
• detailed information about the transformations performed

by the tool chains
• Means to generate implementation and deployment work-

flows for the available hardware targets and toolchains
according to user-defined constraints

• Means to execute selected workflows in an automatic
manner

• Means to replace a hardware target by a surrogate model
for inference time and memory usage estimations

• Means to control the state of the target boards (i.e.,
power-on/off, reset).

III. RELATED WORK

With the ever growing use of ML models in operations, a
lot of work has been done to industrialize the ML deploy-
ment workflow in order to guarantee consistent, reliable and
repeatable results. This practice, referred to as MLOps, is
based on the DevOps practices used for the development and
maintenance of non ML software systems, and extended to
cover the development of the data necessary to the training
phase. Note that in the context of this study, focus is placed
strictly on the inference phase.

MLOps is already supported by dedicated services and
frameworks provided by the major Cloud providers, such as

Amazon with SageMaker2, Google with TFX3, or Microsoft
with Azure4, etc. All these services are dedicated to a specific
cloud-hosted execution platforms and do not target embedded
systems. For those systems with limited memory, processing,
and energy resources, specific practices have been developed
under the name of Tiny-MLOps [1] (from tiny-ML [11] and
MLOps).

Tiny-MLOps faces several main challenges. First, the ca-
pabilities of the target hardware are extremely large, ranging
from small microcontrollers with low processing capabilities
(e.g., one core at a few hundred MHz), limited communication
capabilities (e.g, buses such as USB, SPI, I2C, etc.), limited
flash and RAM memory, and no operating system, to high-end
SoCs with multi-core CPUs, GPUs, AI accelerators, Ethernet
connectivity, megabytes of RAM and flash, and running Linux.
Second, those targets are supported by a very large range of
ML frameworks including the usual ones based on Python
(e.g., TensorFlow, PyTorch, etc.), and the proprietary ones
tuned for some specific hardware (e.g., Vitis-AI for AMD’s
MPSoCs, STM32 CubeAI for STMicro STM32 chips, etc.).
The crux lies in establishing the appropriate pairing between
the implementation chain and the hardware target, as this syn-
ergy is essential to satisfy all performance objectives, including
functional (e.g., object detection and classification capability)
and non-functional (e.g., response time) requirements.

MLOPS TinyMLops Model Serving Benchmarking
Amazon
SageMaker
■

Edge Impulse
■

Tensorflow
Serving
■ ■

MLPerf Infer-
ence Tiny/Edge
■

Activeeon
ProActive
AI Orches-
tration
■ ■

Amazon
SageMaker
Edge
■ ■

BentoML
■

MLBench
■

Google
Vertex AI
■

MicroEJ
■

Nvidia Triton
Inference
Server
■ ■ ■

Our evaluation
bench
■ ■ ■ ■ ■

■ Optimization control (compilation/inference)
■ Methodology/Benchmarks
■ Support of high-end devices
■ Support of low-end devices
■ Extensibility/customization

TABLE I
COMPARISON OF OUR EVALUATION BENCH WITH SOLUTIONS ALLOWING

TO DEPLOY OR BENCHMARK ML MODELS ON HARDWARE.

Table I presents four categories of solutions to de-
ploy/benchmark ML models on hardware targets:

1) MLOps solutions provide a fully managed service for
building, training, and deploying machine learning mod-
els at scale. They offer a wide range of built-in algo-
rithms and frameworks for model training, as well as
features for automatic model tuning, monitoring, and
scaling.

2https://aws.amazon.com/fr/sagemaker/
3https://www.tensorflow.org/tfx
4azure.microsoft.com



2) Tiny-MLops solutions are designed for deploying ML
models to tiny/edge devices by providing optimized in-
ference runtimes for resource-constrained environments,
and provide a service for building, training, and deploy-
ing ML models on tiny/edge devices.

3) Model serving solutions provide a flexible and scalable
architecture for serving models via gRPC or REST APIs.
They support model versioning, model management, and
monitoring capabilities, simplifies the deployment pro-
cess by containerizing models along with their depen-
dencies and various ML frameworks and cloud platforms

4) Benchmarking solutions provide standardized bench-
marks and metrics for evaluating inference performance
on edge devices. They help comparing the efficiency of
different hardware platforms and software frameworks,
includes benchmarks for training and inference tasks
across various hardware and software configurations,
and offers a comprehensive set of metrics and tools for
performance analysis.

As shown on the previous table, several frameworks target
MLOps/TinyMLOps for low-end (MCU) and high-end devices
(CPU, GPU, FPGA) by providing automate pipelines, but they
lack the capability to fine control the optimization process
thus limiting the transparency in the implementation. Bench-
marking solutions such as the MLPerf Tiny Benchmark [2]
leave to each user the choice of deployment pipeline, thus
limiting automation and reproducibility. Our environment tries
to reconcile the objectives of automation and fine-grained
control. In addition, it also integrate predictive models making
it possible to estimate performance metrics without requiring
the actual deployment and execution of the model on the
hardware target.

Since the beginning of this project, several solutions have
been proposed that target a similar objective, i.e., provide
an environment to evaluate easily different implementation
configurations. For instance, ST Micro’s STM32Cube.AI De-
veloper Cloud5 allows a user to upload a model, select
optimizations, generate the implementation model, upload it
on an actual target board in the STM32 family, and get
the performance results. This is partially similar to what we
propose, but this solution is strictly restricted to STM products.

Finally, it is worth noting that our work is different to that
of Hardware Network Architectural Search (HW-NAS), which
is focused on finding the best neural network architecture for
one or multiple hardware targets, considering multiple criteria
such as latency, memory footprint, or energy consumption.
Research on HW-NAS are very large [3] and increasing. We
can mention for instance MCUNet [8] that proposes addresses
the system-algorithm co-design for microcontroller targets.
Our work starts when the model has been designed, but
integrating HW-NAS capabilities is actually one perspective
for the development of the bench.

5See https://stm32ai-cs.st.com.

IV. TEST BENCH ARCHITECTURE

In this section, we present the main components of the
evaluation bench: (i) the bench infrastructure component,
(ii) the performance prediction component, (iii) the workflow
generation component, (iv) the hardware targets component,
(v) the documentation component.

A. Bench infrastructure component

The evaluation bench is composed of a set of components
encapsulated in docker containers6 providing services acces-
sible via gRPC7 remote procedure calls.

Services concern (i) the management of the ML experiments
lifecycle (e.g., set up experiments, implement and deploy
model, run inferences, collect experimental results, etc.) and
(ii) the management of the state of the hardware infrastructure
(e.g., power-up/down of boards, monitor voltage or temper-
ature, etc.). They are accessible using a Python API that
masks the heterogeneity of the execution platforms (from high-
performance targets running Linux, possibly with Android, to
bare metal microcontrollers).

In order to leverage existing standards for ML deployment,
we integrate the open-source Nvidia Triton Inference Server8

that implements the Predict Protocol9), a gRPC inference
API independent of any specific ML framework and model
server that is optimized for CPUs and GPUs. We plan to
extend this inference server to handle unsupported hardware or
execution provider implementation (also called backends such
as PyTorch, TensorFlow, TensorRT, etc.). In a way similar to
the Predict Protocol, we provide an independent API for each
class of services used in a ML pipeline (e.g “Deployment
Protocol”, “Conversion Protocol”, “Quantization Protocol”,
etc.), but without being restricted to a limited set of hardware
targets and their associated software tools.

Fig.1 gives an overview of the main components of the
evaluation bench architecture. (Fig. 1):

1) Front-end (Python/Jupyter notebook): a user-level
Python API used to create or reuse a workflow. A
workflow is represented by a DAG (Directed Acyclic
Graph) in which nodes are calls to the services provided
by “Executors” (see below).

2) Orchestrator (Airflow10): a component in charge of
executing a DAGs. It relies on two sub-components: a
Configurator providing the configuration data required
by the Executors and a Controller managing the state
of components (init, config, start, stop, etc.)

3) Request Interpreter: an Airflow service relying on
the gRPC remote procedure call protocol, which build
dynamically the grpc operator corresponding to services
interfaces (i.e. Python abstract class) in accordance with
the serialization/deserialization protobuf11 schemas.

6www.docker.com
7https://grpc.io/
8github.com/triton-inference-server/server
9github.com/kserve/kserve/blob/master/docs/predict-api/v2/
10https://airflow.apache.org/
11https://protobuf.dev
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Fig. 1. Evaluation bench software architecture

4) Executors (Docker): containers embedding implement-
ing the elementary services used in a workflow (e.g.,
model conversion, model quantization, model implemen-
tation, etc.). Executors are grouped into clusters provid-
ing isolation and managed by the Container Orchestrator
(K3s12, a lightweight Kubernetes13) under control of the
main Orchestrator

5) Hardware devices: target HW boards on which models
are deployed and run

6) Monitoring (Prometheus14): a component that collects
and stores experiment hardware/ML metrics), and mon-
itors the platform (system health, behavior, and perfor-
mance). It uses Prometheus HTTP endpoint or raw text
files for low-end targets

7) Visualization (Grafana15): a component that provides a
dashboard to monitor the environment and the execution
of the experiments.

B. Configuration component

Aged by a dedicated component, the Configurator, which
reads yaml files and supplies all components with the con-
figuration parameters they require, enable dual operation:
function calls with parameters, in line with grpc client-server
architecture, or, for greater flexibility, direct parameter retrieval
by a developer wishing to quickly integrate a new toolchain,
without necessarily having to implement all the necessary
services. In addition, this component, responsible for storing
configuration data in a database, also holds a set of global vari-
ables representing the state of the system (e.g. : flag run ==

12https://k3s.io/
13https://kubernetes.io/
14https://prometheus.io/
15https://grafana.com/

result of(is an experiment running , board 1), flag available
== is available(board 2)) avoiding over-querying, therefore
minimizing interference/sources of variability on hardware
behavior. The configuration files ingested by the Configurator
are in yaml format, as illustrated on Fig. 2, representing the
environment to build and deploy, the target to reach, the ml
application to run, the measurement to perform, or the full
automatized workflow to execute.
The services of the benchmarking environment are imple-
mented by components packaged in the form of Docker
containers. To facilitate their management, and in keeping with
a TinyMLOps approach, the container orchestrator K3s was
chosen, in particular because of the specific nature of our
platform, which has to interact with hardware connected to
physical servers located in different geographical locations.
According to the K3s/Kubernetes terminology, these com-
ponents/dockers are called Pods, a group of one or more
containers with shared storage and network resources, and
a specification for how to run the containers. All the Pods
required to perform an experience, i.e. to execute the actual
services using grpc calls, are inter-connected via a logical sub-
network to mask the complexity of network addressing. For
this purpose, we have superimposed the concept of services
to Kubernetes Service, a method for exposing a network
application that is running as one or more Pods in the
experiment cluster. In our case, this means exposing the grpc
server running in the pod, whose ip address provided by the
bench configuration file is translated into a Kubernetes Service
name.

C. Orchestration component

As mentioned in the previous sub-section, the user-
generated DAG (also called ExpDAG) interacts with the



Fig. 2. Configuration of testbench

Configurator to retrieve the parameters needed to build the
Airflow task to be executed, i.e. a grpc task (Airflow Grpc
Operator). The building of user request, and the full process
leading to the generation of the new grpc request is illustrated
on Fig. 5.

This DAG, which generically applies a sequence of con-
trollable transitions via the application of a schema (init,
config, start, stop, deinit), will eventually be integrated into
the Configurator to generate as much as possible of the
implementation enabling the DAG to be executed under con-
straints, i.e. the preceding schema or extended according to
the desired granularity (e.g. : for all optimization services
of type quantization, apply the following control schema :
call static quantization→ call recalibrate).
Fig.1 illustrates the execution workflow corresponding to con-
figuration file on Fig.2

D. Performance Prediction component

The bench integrates a variety of hardware boards, but
there is usually only one instance of a given reference. So,
once the board is used by some user, it becomes unavailable
for other users during a certain time. To alleviate this limit,
the bench integrates a component to predict performance
indicators (latency, memory usage, etc.) without using the
actual hardware. This feature, based on the work presented
in [4], also allows the evaluation of a deployment solution
when the actual target hardware exists but is not yet installed
in the bench. It could also be useful to get a first estimation
of performance or resource usage when implementing and
deploying the model is time consuming. This could be the
case, for instance, when implementing the model requires
model conversion, code generation and compilation, or gate-
level synthesis (e.g., using FINN [10]). As of today, this
approach has been only used on the NVIDIA Jetson family.

The performance prediction process is depicted on Fig.3: a
set of prediction models is trained using a dataset composed
of (i) feature values extracted from a collection of state-of-
the-art and synthetic models, and (ii) time and memory usage
measured on hardware targets (NVIDIA Jetson Nano and AGX
Orin). The set of features includes the number of FLOPS,
the total number of layers, the number of fully-connected
layers, batch-normalization layers, convolutional layers, etc.
(see [4] for details). In order to obtain the best predictions,
several prediction models have been used including ridge
polynomial regression, support vector regression (SVR), multi-
layer perceptrons, random forest and XGBoost (XGB). The
best prediction results are given below for the two hardware
targets.

Time Mem.
Target Inputs Algo. Acc. Algo. Acc.
Nano 1016 SVR 92.44% SVR 91.12%
AGX
Orin

1159 XGB 88.09% SVR 96.12%

Currently, the inputs of the prediction model are the features
of the model and not the feature of the hardware targets
such as the number of cores, clock frequency, RAM speed,
memory hierarchy, etc. Therefore, it does not allow inferring
the performances of a model for a hardware target that has
not been used during the training phase. This is an extension
to be considered, but obtaining large datasets will be difficult
without resorting to synthetic, simulated architectures.

E. Workflow generation component

In order to automate the exploration of multiple deployment
solutions, our environment provides the ability to generate
workflows automatically from the definition of the workflow
input (a ML model) and outputs (a set of measurements), and
a set of constraints. Constraints may concern the hardware
target (e.g., the country of origin, the number of cores, the
architecture of the cores, etc.) or the toolchain components
(e.g, prevent workflows that use TensorFlow or, conversely,
only use workflows that use TensorFow lite, etc.). In order to
simplify the end-user’s task, the constraints are not expressed
in Prolog, but using a dedicated configuration file (YAML).
This file contains “positive” and “negative” constraints (”or
”obligation” and ”prohibitions”). For instance, the following
excerpt of a constraint definition file states that the input model
is a Tensorflow model (line 2) using three different operators
(line 4-5), and the output metrics are “latency” and “accuracy”
(line 7). In addition, it also indicates some constraints about the
converter components, frameworks, delegates and backends
that may use in the workflow.

1 # Model constraints
2 model_framework : ’tflow’
3 model_ops_list :
4 [’tflow_Conv2D’, ’tflow_DepthWiseConv2D’,
5 ’tflow_Relu6’]
6 # Metric constraints
7 metrics : [’latency’, ’accuracy’]
8 converters : [’tf2tfl’]
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9 frameworks : [’tflite’]
10 delegates : [’xnnpack’, ’gpu_delegate’,
11 ’hexagon_delegate’]
12 backends : [’cpu_kernels’, ’opengl’,
13 ’hexagon_skels’]

The set of candidate workflows is produced automatically
by combining transformations according to compatibility rules
between the outputs of a transformation and the inputs of the
next transformation in the workflow, and the user-defined con-
straints. Combined with the other features of the environment,
this capability allows a user to generate a set of candidate
workflows and iterate automatically on each of its element
using standard Python constructs.

A workflow is a sequence of calls to gRPC services. “Con-
verting a model”, “building the binary file that implements a
model” and “deploying a model” are examples of functions
implemented by services. A service takes a set of inputs and
produces a set of outputs. Each service is described by a
specific Prolog fact, as shown below for the do_convert
service of the “TensorFlow Lite for microcontroller” compo-
nent.

1 is_activity([tflm, do_convert], [pc, linux],
2 [tf2tfl, Method],
3 [[model, [tflow, Opss ]], [pb_file, pc]],
4 [[model, [tflite, Opsd]], [fbs_file, pc]]) :-
5 Quant =
6 [quantize_int8, quantize_int16,
7 quantize_uint8,
8 quantize_uint16,
9 quantize_dynamic_range],

10 member(Method, Quant),
11 are_all_equivalent(tflow, Opss, tflite,
12 Opsd).

In this example, the service is executed on a pc running
linux. This operation has a parameter (Method) that de-
scribes the type of quantization to be done. Quantization
may be quantize_int8, quantize_int16”, etc. The
input is a model of the type tflow (tensorFlow) that uses
a certain set of operators (Ops) denoted by Opss (Ops
Source) that is stored in a protobuf file (pb_file) stored

on a pc. The component outputs a tflite model with
another set of operators denoted by Opsd (Ops Destination).
The relation between Opss and Opsd is expressed by the
are_all_equivalent clause that checks that the set of
operators in Opsd is “compatible” with those of Opss.

Usually, operators realizing the same functions have the
same name in different toolchains. When this is not the
case, correspondence is described globally using “dummy
operators”. For instance, the following predicate states that
a GPU operator is compatible with a dummy macro operator
if the operator belongs to the list of GPU operators.

1 is_equivalent(Gpud_Op, [’opencl_MOp’]) :-
2 are_operators(gpu_delegate, L),
3 member(Gpud_Op, L).

Building a workflow boils down to finding a sequence of
activities accepting a given model as input and producing a
given measure as output. The workflow is a linear graph of
input/output compatible activities, as defined by the following
clause.

1 is_edge([[C1, S1], E_1, P_1, In_1, Out_1],
2 [[C2, S2], E_2, P_2, In_2, Out_2]) :-
3 is_activity([C1, S1], E_1, P_1, In_1, Out_1),
4 is_activity([C2, S2], E_2, P_2, In_2, Out_2),
5 are_IO_compatible(S1, Out_1, S2, In_2).

Example: Fig. 4 gives two examples of workflow generated
automatically for a model mdl and a measure mea. The first
workflow targets the ESP32 micro-controller. In this case, the
model needs first to be converted into a C program that is built
and deployed on the board before inferences can be executed
and results can be obtained. In the second workflow, the model
can directly be deployed without conversion, then executed
and measures be obtained.

F. Hardware infrastructure component

Fig.5 shows a picture of the actual bench with a close
view of a rack. Each rack hosts a set of target boards with
their accompanying monitoring boards. A monitoring board
provides the capability to control the board’s power supply
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(power-on/off), to reset it, and to monitor its power supply
voltage and current. This allows to power on board only
when needed and to reset them to a known state between
experiments. In addition, each rack is fitted with a simple HMI
to display and control the rack state.

Fig. 5. The test bench hardware

G. Documentation component

Providing appropriate information about the software frame-
works and hardware targets is another objective of the eval-
uation bench. To facilitate informed decisions on deployment
strategies, a precise representation of how frameworks interact
with target boards is essential. Towards that goal, the bench
hosts a dedicated Wiki providing documentation about the
hosted hardware boards and toolchains/frameworks. Part of
the Wiki’s content is generated from a database of boards and
tools. This database is also used when setting up experiments
(see Sect.V).

The Wiki serves as a “front-end” to the documentation
publicly available on the Internet, but focus is placed on
documenting the transformations performed by the ML im-
plementation tool chains. For instance, a section of the Wiki
is dedicated to the TDA4VM target. It provides data about
its architecture, the supported ML frameworks, the previous
performance logs, etc. Two deployment solutions, TIDL and
OpenVX, are currently documented. The documentation of the
OpenVX toolchain is structured as follows (the same applies
for the other toolchains):

• Overview: This section provides a general introduction to
both OpenVX and TIOVX frameworks, offering readers
a comprehensive understanding of their functionalities.

• Toolchain analysis: Here, readers gain insight into the
workflow of TIOVX, understanding the steps involved

in implementing a model. A detailed guideline is pro-
vided, offering clear instructions on how to execute the
model implementation process. Following this, a semantic
preservation study is conducted to ensure the imple-
mented model aligns identically with the reference model
(ONNX model).

• Limitations: Here, the limitations of the TIOVX toolchain
are described, offering a transparent view of its potential
challenges.

• A Frequently Asked Questions table (F.A.Q): A table
of frequently asked questions is established to provide
developers with quick and helpful answers to common
issues.

The “Toolchain Analysis” section contains an overview of
its key points. The diagram in Fig.6, extracted from the
Wiki, shows the sequence of steps to implement and exe-
cute the model on the TDA4VM target. The workflow is
divided into a host and a target part. Concerning the host,
for instance, the process includes generating, registering, and
implementing custom kernels, which in the case of ACAS-
Xu model, represent different operators (e.g., QuantizeLinear,
QGEMM, etc.) Additionally, it demonstrates how to develop
the OpenVX application and integrate the kernels onto it.
Lastly, the compilation process is detailed to ensure successful
application compilation.

Fig. 6. TIOVX workflow description

Section “Toolchain Analysis” also addresses the important
question of the preservation of the semantic of the model
during the implementation and deployment process. In this
section, we analyze the impact of the transformations involved
in this process (incl. compilation, optimization, compression,
etc.) on the semantics of the input model. For instance, during
the experiments carried out on the deployment of the ACAS-
XU model [6] on the TD4VM board, some differences were
observed between the outputs of the model executed on the



development environment (the host PC with ONNX runtime)
and on the embedded target (the TDA4VM). To resolve this
issue, the ONNX Runtime implementation of the QGEMM
operator was examined to identify the root causes of the
differences. Based on this study, modifications were made
to our QGEMM code to align it with the ONNX Runtime
implementation. This ReTex is an example of what is collected
in the bench Wiki.

V. THE EVALUATION BENCH AT WORK

A. Use Case scenario

A typical Use Case for the testbench is the following: the
user needs to choose the best (hardware target, toolchain)
combination to deploy a ML model that complies with a set
of requirements about ML, timing and resource usage perfor-
mances, and constraints about acceptable hardware targets and
toolchains.

In order to make this choice, the user needs (i) data pro-
vided by the documentation, retex and analysis and (ii) data
provided perform a series of experiment

1) The user uses the Python API to consult the list of
hardware targets and deployment toolchain available on
the bench.

2) S/he consults the documentation available on the bench
to make a first selection of targets and tools.

3) S/he extracts the list of hardware target compliant with
a certain criterion (e.g., country of manufacturing, core
architecture, memory size, etc.) using the bench database
API.

4) S/he creates the configuration file corresponding to
his/her experiment (e.g., name of the model to be
deployed)

5) S/he uses the workflow generation tool to generate a set
of candidate workflows from the model to the metrics

6) S/he uses Python to loop over all possible workflows
and obtain performance measures for each of them, i.e.,
(i) reserve the hardware resources necessary to execute
the workflow, (ii) setup the hardware resources (power
supply), (iii) execute the workflow, (iv) collect the results

7) S/he uses Python to display the results and select the
most efficient implementation.

8) S/he selects the optimal solution.
This scenario has not been partially exercised on the im-

plementation of the ACAS-XU16 [9] system proposed in [5].
This implementation uses 45 neural fully-connected neural
networks (with identical structures and different parameters)
corresponding to a certain discretization of the input domain.
This case study has been used to validate the implementation
and deployment components for the TDA4VM, GPU and
FPGA targets. In addition, it has also been used as a typical
example of a semantic preservation analysis (see Sec. IV-G).
Hereafter, we consider a generic usage scenario that corre-
spond to the expected usage for the ACAS-XU.

16Airborne Collision Avoidance System (ACAS) for Unmanned Aerial
Systems (UAS).

The design space exploration (DSE) for the ACAS-XU
involved 3 hardware targets and associated toolchains: the
TDA4VM fitted with several DSPs using the TIDL and
TIOVX toolchains, the Xilinx Crya fitted with an UltraScale+
SoC (CPU+FPGA) using the VITIS-AI toolchain, and the
NVIDIA Jetson Nano using the CUDA toolchain. To perform
one experiment “by hand”, one would have to buy each
board, setup each environment. This would take several weeks
and a significant effort struggling with the hardware, with
the configuration of tools, with library dependencies, etc. By
simply providing readily available hardware and tools, the
effort for design space exploration is significantly reduced.
The capability to automate the execution of experiments (so:
to reproduce them easily) also contributes to the reduction
of the DSE effort since several configurations can be easily
described and executed via a simple Python script.

B. Scenario execution

Figs. 7 to 11 show the Jupyter notebook script that im-
plements the scenario. The end-user interacts with the bench
mainly using a simple Python API. This solution, which does
not rely on some fancy GUI, has been chosen because Python
is the language usually used to develop the models and our
bench is to be used right after the model development. In
this context, a unique notebook can cover all phases, from the
development of the model to its implementation, deployment,
and evaluation on different targets. Details about the operations
performed via the API are given hereafter.

Fig. 7 shows how the database provided by the evaluation
bench is used to select a hardware board according to existing
performance data obtained on a “standard” model – here, a
ResNet-50 model. Then, the performance prediction compo-
nent (Sect.3) is used to get a first estimation of performance
data on the actual target model. This phase can be executed
without the cost of deploying and executing the model on the
actual hardware, and without requiring an exclusive access to
this resource (that is currently unique in the bench).

Fig. 7. First platform selection and performance estimation

Fig. 8 shows how the automatic workflow generation com-
ponent is used to propose a set of workflows, i.e., a set of



sequences of service calls translating a specification model to
an executable model.

Fig. 8. Generate workflow associated to user constraints

In order to execute experiments, the test bench must be
configured. This phase is performed by the script of Fig. 9
that loads the configuration from a YAML configuration file.

Fig. 9. Configure the testbench

Fig. 10 shows the script used to execute the series of work-
flows created previously. In the first loop, each experiment
corresponding to a specific workflow is created, associated
with a workflow and appended to a set of experiments. In the
second loop, all experiments are executed by triggering the
execution of the associated DAG. Note that an experiment may
be executed without using the experiment orchestrator (based
on Triton), by simply calling the basic services provided by
the environment components ( 11).

Fig. 10. Automatic execution of an experiment

The last excerpt of the Jupyter notebook, given on Fig. 12,
shows the access to the measures collected during the experi-
ment.

Several levels of visualization of the results associated with
the experiment are available:

1) system level (Fig.13): allow to analyze the performances
of the system, by providing some clues on potential
bottlenecks (e.g. : data transfer time comparing to whole
experiment execution time)

2) target level (Fig.14): allow to analyze the target’s ability
to hold the inference charge

Fig. 11. Manual execution of an experiment

Fig. 12. Collecting of measures

Fig. 13. System performances tracking

Fig. 14. Inference server/engine performances and history

3) ML level (Fig.15): allow to analyze the performances of
ML model execution

Fig. 15. ML inference performances

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an environment aimed at fa-
cilitating the evaluation of ML models deployed on embedded
targets. The environment provides a set of ready-to-use tools



and hardware targets with the accompanying infrastructure to
define and orchestrate experiments using a simple Python API.
We think that this environment can significantly reduce the
effort to perform early design explorations. We also consider
that there is an opportunity to put in common the element
of analysis of the tool chain components, i.e., to expose
and document in a standard way what are the transformation
performed by the tools, what the properties preserved, etc.

Perspectives for future work are numerous. Currently, two
separated benches have been developed on two different sites
(one at IRT Saint Exupery in Toulouse and one at IRT System-
X in Palaiseau). In the future, access to these boards will be
possible transparently, wherever their actual physical location.
We hope this bench to be opened to other partners in order to
share resources and allow any participating members to have
access to any of the software or hardware resources.

Among the other features that could be added to the
bench. First, the capability to implement an actual optimiza-
tion process besides what is done today, which is limited
to generating all possible deployment solutions and evaluate
them successively. In addition, intelligible explanations of the
choice of candidate workflows or the optimal workflow will
be provided to the user in the final version of the generator.
Second, we will consolidate the integration of the evaluation
bench in the ML system development environment built in the
Confiance.ai programme. This environment provides guidance
and components (incl. concept definitions, process models,
argumentation models, ML libraries, etc.) to develop, verify
and validate ML systems. The list of components can be found
on the programme’s web site. Eventually, the user will be able
to design his/her ML system development process according to
the Confiance.ai recommendations, develop his/her ML model
using techniques enforcing important properties related to trust
such as robustness, explainability, etc., and deploy and evaluate
it on actual hardware targets, all these steps being done in a
consistent environment. For the moment, we have considered
that the model to be deployed was either provided by the
user or taken from a “model zoo”, but integrating a HW-NAS
component in the bench to provide an “holistic” optimization
would be an interesting extension.
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Multi-core WCET Analysis Using Non-Intrusive Continuous Observation

Daniel Kästner1, Gernot Gebhard1, Markus Pister1, Simon Wegener1, Christian Ferdinand1,
Albert Schulz2, Martin Sachenbacher2, Martin Leucker3, and Alexander Weiss2*

Abstract
For safety-relevant real-time applications, worst-case execution
time (WCET) bounds have to be determined in order to demon-
strate deadline adherence. For timing predictable microproces-
sors, worst-case execution time guarantees can be computed by
static WCET analysis. Hybrid WCET analysis is a solution
for covering effects from accesses to interference channels of
multi-core processors. In this article we present a seamless ap-
proach for hybrid WCET analysis that tightly couples the tools
TimeWeaver and CEDARtools. We will describe the underly-
ing concepts, illustrate the tool workflow, and discuss the appli-
cation of our approach to meet the timing requirements of the
EASA AMC 20-193 guidance.
Keywords: DO-178C, multi-core, AMC 20-193, static analysis, real-
time tracing, timing predictability, functional safety, certification

1 Introduction
In real-time systems the overall correctness depends on the cor-
rect timing behavior: each real-time task has to finish before its
deadline. All current safety standards require reliable bounds
of the worst-case execution time (WCET) of real-time tasks to
be determined.

Until recently, current industry practice—in particular in the
automotive domain [23]—oftentimes still relied on end-to-end
measurements. However, the timing information obtained with
them is only determined for one concrete input, but due to
caches and pipelines, the timing behavior of an instruction de-
pends on the execution history. Hence, one needs to take each
possible hardware state into account. Therefore, usually no full
test coverage can be achieved and there is no safe test end cri-
terion. Techniques based on code instrumentation modify the
code, which can significantly change the cache and pipeline be-
havior (probe effect): the times measured for the instrumented
software are not necessarily identical to the timing behavior
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dertaking (CHIPS-JU) and its members Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czechia, Germany, Denmark, Estonia, Greece, Spain, Finland, France,
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2Accemic Technologies GmbH, Germany
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3University of Luebeck, Germany
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of the original software. Moreover, the results of end-to-end
measurements are hard to interpret, as they are not related to
particular parts of the code but only to the whole program.

One safe method for timing analysis is static program analy-
sis by Abstract Interpretation which provides guaranteed up-
per bounds for the WCET of a task. Static WCET analyz-
ers are available for complex processors with caches and out-
of-order pipelines, and, in general, support single-core and
multi-core processors. A prerequisite is that reliable models
of the processor/System-on-Chip (SoC) architecture can be de-
termined. However, there are modern high performance SoCs
which contain unpredictable and/or undocumented components
that influence the timing behavior. Analytical results for such
processors are unrealistically pessimistic.

A hybrid WCET analysis integrates static value, loop, and
path analysis with measurements to capture the timing behav-
ior of tasks. Compared to end-to-end measurements, the ad-
vantage of hybrid approaches is that measurements of short
code snippets can be taken. Increasing the number of mea-
surements for each snippet increases the chance to catch the
possible worst-case state for each of them without the need to
trigger the worst-case initial hardware state for the whole task.
When the snippets cover the complete program under analysis,
a worst-case path can be computed. The probe effect can be
avoided by leveraging the embedded trace unit (ETU) of mod-
ern processors, which allows a fine-grained observation of a
core’s program flow. These traces are usually analyzed offline,
but new FPGA-based approaches allow to analyze them online,
enabling continuous non-intrusive runtime monitoring of em-
bedded software.

For multi-core systems, the main challenge for WCET anal-
ysis is the interference generated by other cores running in par-
allel. AMC 20-193 [9] covers means to bound and mitigate
these effects. When static WCET analysis is performed, the
maximum costs of possible interference must be included in
the result, for example with the help of a WCRA (worst-case
resource accesses) analysis that gives safe upper bounds for
shared resource accesses. In a second analysis step, the bounds
are multiplied with the maximal interference delays of these
shared resources, giving the maximal interference costs for a
particular shared resource. For hybrid WCET analysis, the pic-
ture is simpler: all observable interference is already contained
in the measurements, and no extra analysis step is needed.

In this article, we describe TimeWeaver, a hybrid WCET
analysis tool, its coupling with CEDARtools to exploit state-of-
the-art runtime monitoring, and its use in the context of AMC
20-193.

1



2 EASA AMC 20-193 Objectives
EASA Amendment AMC 20-193 [9], published in 2022, dis-
cusses means and defines objectives for the demonstration of
compliance with the applicable airworthiness specifications for
airborne systems and equipment that contains multi-core pro-
cessors (MCPs). In the following we will briefly summarize its
main contents and motivate the methodology outlined in this
article with respect to AMC 20-193 verification obligations.

AMC 20-193 applies to systems with two or more activated
cores not executed in lockstep mode for which the item devel-
opment assurance level (IDAL) of at least one relevant software
application is A, B, or C. One of the basic motivations of the
amendment is to determine and mitigate inter-core interference,
since “interference between the software applications or tasks
executing on an MCP could cause safety-critical software ap-
plications to behave in a non-deterministic or unsafe manner,
or could prevent them from having sufficient time to complete
the execution of their safety-critical functionality”. Indeed, in-
terference delays can have a huge impact on the memory access
latencies. Nowotsch et al. [21] measured maximal write laten-
cies of 39 cycles when only one core of the P4080 [11] was
active, and maximal write latencies of 1007 cycles when all
eight cores were running.

The guidance formulated by AMC 20-193 is structured in six
stages, (i) planning, (ii) setting of MCP resources, (iii) interfer-
ence channels and resource usage, (iv) software verification,
(v) error detection and handling, and safety nets, and (vi) data
to complement the accomplishment summaries.

The planning stage provides guidance to enhance the sys-
tem development and verification processes in a way that will
enable the hardware and the software hosted on the MCP to
satisfy the functional, performance, and timing requirements of
the system. Amongst others, Objective MCP Planning 1 re-
quires that the applicant specifies the MCP they intend to use,
the number of the active cores, and the software architecture
hosted on the MCP. In particular, the applicant has to “iden-
tify whether or not the MCP platform will provide robust re-
source partitioning and/or robust time partitioning”. Objec-
tive MCP Planning 2 demands to describe the planned use of
the shared resources, taking into account the time interference
possibly caused by the usage, as well as the planned means
to verify the usage, e.g., the tools and techniques planned for
WCET analysis / timing verification.

Stage (ii) is concerned with the configuration of the MCP.
According to objective MCP Resource Usage 1, the applicant
has to determine and document any settings that may affect
the system’s ability hosted on the MCP to satisfy the func-
tional and non-functional requirements. In stage (iii), objective
MCP Resource Usage 3 requires identifying and mitigating
interference channels, while objective MCP Resource usage 4
demands to identify and allocate resources and to verify that
the demands for resources of the MCP and the interconnect do
not exceed the available resources.

In the software verification stage, objective MCP Software 1
aims at providing assurance that the time bounds defined for
the system are not violated. If the platform provides robust

resource partitioning and robust time partitioning, the WCET
of software applications may be determined separately. In this
context, tools for computing static WCET guarantees, e.g., aiT
WCET Analyzer [10] are applicable. If no robust resource and
time partitioning can be guaranteed, the WCET has to be de-
termined with all software components on all cores executing
in the intended final configuration. This is the topic on which
this article concentrates: we will present an efficient methodol-
ogy for hybrid WCET analysis that allows interference-aware
WCET bounds to be computed non-intrusively and that pro-
vides feedback on the trace coverage obtained.

Verification goal MCP Software 2 demands to verify that the
data and control coupling between all SW components has been
exerted, and that it is correct. Here, two aspects are needed:
the feasible data and control coupling has to be determined,
and the data and control coupling coverage achieved by the
requirements-based testing has to be determined. An approach
for sound data and control coupling analysis based on the static
analyzer Astrée has been presented in [16]; the coverage infor-
mation needed may be complemented by the trace data of the
hybrid WCET analysis presented in the following sections.

Stage (v) is concerned with error detection and mitigation.
Effects of any failure that may happen inside the MCP needs
to detected and handled according to the safety goals of the
system hosted on the MCP. “Safety nets” may provide a fail-
safe containment for these failures. Finally, stage (vi) requires
the applicant to provide a description of how the objectives of
AMC 20-193 are satisfied.

From a timing analysis point of view, the most crucial fac-
tors addressed by AMC 20-193 are the selection of the MCP;
the identification, documentation, and assessment of interfer-
ence channels; and the availability of robust resource and robust
time partitioning. All these affect the suitability of the applied
methods for timing verification. For example, a MCP provid-
ing timing predictability [5, 7, 30] and timing compositionality
[12] allows for a fully static analysis. The effects of resource
conflicts can then be bounded with a worst-case resource ac-
cesses (WCRA) analysis.

The availability of robust resource partitioning directly in-
fluences the choice of the analysis strategy, as formulated in
objective MCP Software 1. Robust partitioning can either be
achieved via dedicated hardware features, or via a suitable soft-
ware architecture. For example, the privatization of shared re-
sources can prevent resource access conflicts and hence, pro-
vide robust partitioning. Ways to implement privatization of
shared resources include TDMA-based resource scheduling
[24] and runtime resource capacity enforcement [21].

However, robust partitioning may be hard to achieve for un-
predictable or undocumented features of a MCP, as the same
features that prevent the design and implementation of precise
static timing analyses often also make the analysis and miti-
gation of interference channels difficult. Consider for example
a shared cache with pseudo-random replacement: The mitiga-
tion of such an interference channel may need some kind of
software-based cache partitioning [26] which complicates the
software architecture and may conflict with other development
goals, for example the use of specific operating systems or soft-
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ware libraries.
Micro-benchmarks that intentionally drive contention on

shared resources [28] (sometimes called “stressors” or “dae-
mons”) are useful for determining and assessing interference
channels, i.e., for platform characterization. They may uncover
undocumented interference channels and measure the impact
of resource conflicts on the timing behavior, i.e., they may help
to determine the interference cost of a resource conflict for that
specific interference channel. However, their applicability for
measurement-based timing verification is limited. In case ro-
bust partitioning is available for the system hosted on the MCP,
it will by definition prevent any adverse effects of the stressor
on the software tasks for which the timing needs to be veri-
fied. If no robust partitioning is available, it will lead to overly
pessimistic timing behavior being observed that not necessar-
ily reflect the real timing behavior of the system. Moreover,
the use of a stressor during measurement-based timing verifi-
cation contradicts objective MCP Software 1 of AMC 20-193:
the WCET has to be determined with all software components
on all cores executing in the intended final configuration.

Instead, in accordance with AMC 20-193, we propose to ap-
ply hybrid timing analysis for commercial-of-the-shelf (COTS)
multicore processors for which robust partitioning cannot be
guaranteed. The measurements should be performed in the in-
tended final configuration without any artificial generation of
contention. Quite the contrary, the software architecture should
prevent any unneeded interference, if possible.

3 Hybrid WCET Analysis
The goal of non-intrusive trace-based WCET analysis is to ob-
serve execution times of tasks and interrupt service routines
(ISRs) including the timing interference due to concurrent ex-
ecution and multi-core resource conflicts, while avoiding the
probe effect.

The solution which is implemented in the hybrid WCET
analysis tool TimeWeaver [1] combines static context-sensitive
path analysis with non-intrusive real-time instruction-level
tracing to provide worst-case execution time estimates. By its
nature, an analysis using measurements to derive timing infor-
mation is aware of timing interference due to concurrent ex-
ecution and multi-core resource conflicts, because the effects
of asynchronous events (e.g. activity of other running cores
or DRAM refreshes) are directly visible in the measurements.
The probe effect is completely avoided since no code instru-
mentation is needed. The trace information can be provided
out-of-the-box by embedded trace units of modern processors,
like Nexus IEEE-ISTO 5001™ [13], Infineon MCDS™ [14], or
ARM CoreSight™ [3], as used for example in the NXP Layer-
scape LX2xxx. These trace protocols allow the fine-grained ob-
servation of a program execution and assign timestamps to spe-
cific program points during execution. Thus, the traces contain
an execution time measurement for each trace segment stretch-
ing out between two consecutive trace points. The computed
estimates are safe upper bounds with respect to the given input
traces, i.e., TimeWeaver derives an overall upper timing bound
from the execution time observed in the given traces by em-
ploying path extrapolation [18]. Thus, the coverage of the in-

put traces on the analyzed code is an important metric that in-
fluences the quality of the computed WCET estimates. ARM,
PPC, RH850, and TriCore/AURIX are already supported; a
TimeWeaver version targeting RISC-V is currently in develop-
ment, exploiting the open trace interface developed as part of
the European Chips JU TRISTAN [27].

3.1 Structure of TimeWeaver
The main inputs for TimeWeaver are the fully linked exe-
cutable(s), timed traces, and the location of the analyzed code
in the memory (entry point, which usually is the name of a task
or function). The analysis proceeds in several stages: decod-
ing, loop/value analysis, trace analysis, and path analysis (see
Figure 1). Most steps in this tool chain are shared with aiT
WCET Analyzer which provides a fully static analysis target-
ing timing-predictable processors [10].

Figure 1: Structure of TimeWeaver. The analysis proceeds in
four key stages: decoding, loop/value analysis, trace analysis,
and path analysis.

3



In the decoding phase, the instruction decoder reads and dis-
assembles the input executable(s) into its individual instruc-
tions. Architecture specific patterns decide whether an instruc-
tion is a control-flow related instruction (e.g., call, branch, re-
turn) or just an ordinary instruction. This knowledge is used to
reconstruct the basic blocks of the control-flow graph (CFG).
Then, the control flow between the basic blocks is recon-
structed. In most cases, this is done completely automatically.
However, if a target of a call or branch cannot be statically re-
solved, either the user can write some annotations to guide the
control-flow reconstruction, or TimeWeaver can be instructed
to extract the targets of unresolved branches or calls from the
input traces. To this end there is a feedback loop between the
CFG reconstruction and the trace analysis step.

In the next phase, several microarchitectural analyses are per-
formed on the reconstructed CFG starting with the combined
loop and value analysis. It determines possible values of regis-
ters and memory cells, addresses of memory accesses, as well
as loop and recursion bounds. Based on this, statically infeasi-
ble paths are computed, i.e., parts of the program that cannot be
reached by any execution under the given configuration. This
is important because each detected infeasible path increases the
trace coverage. Such paths are pruned from further analysis. If
the value analysis cannot compute a loop bound or if the com-
puted bound is not precise enough, users can specify custom
bounds by means of annotations which are used by the analy-
sis. Loop bounds can also be extracted from the traces.

After value analysis, the analyzer has annotated each instruc-
tion in the control-flow graph with context-sensitive analysis
results. This context-sensitivity is important because the preci-
sion of an analysis can be improved significantly if the execu-
tion environment is considered [25]. For example, if a routine is
called with different register values from two different program
points, the execution time in both situations might be different.
Depending on the context settings, this is taken into account
leading to higher precision in the analysis result.

In the trace analysis step the given traces are analyzed such
that each trace event is mapped to a program point in the
control-flow graph. This mapping defines the trace points and
trace segments between them and is not only necessary for the
whole analysis but also ensures that the input trace matches the
analyzed binary. In case a preemptive system has been traced,
interrupts are detected and reported. The extracted timing in-
formation, i.e., the clock cycles which have been elapsed be-
tween two consecutive trace points are annotated to the CFG in
a context-sensitive manner.

Afterwards, a CFG which combines the results of value anal-
ysis and traced execution timings (both context-sensitive) is
available. This graph is the input for the next step, the path anal-
ysis phase. Here, the trace segment times alongside the control-
flow graph are used to generate an integer linear program (ILP)
formulation to compute the worst-case execution path with re-
spect to the traced timings. At this point, the recorded times
for each pair of trace segment and analysis context get maxi-
mized. The implicit path enumeration technique (IPET) used
by TimeWeaver allows to construct WCET estimates for paths
that have not been observed themselves during measurements

but are only created during path extrapolation. Thus, not ev-
ery path needs to be explicitly observed in the traces, greatly
reducing the number of measurements that need to be taken.

TimeWeaver also computes the timing contributions of each
function and uses debug information to map this information
back to the source code. Thus, TimeWeaver allows to have
an in-depth look where time is spent and helps to uncover
hotspots. These are often unexpected. For example, the ac-
cidental use of 64-bit integer division on a 32-bit architecture
leads to the inclusion of software routines for this arithmetic
operation. Changing the underlying integer type in the source
code reduces this overhead.

3.2 Quality of Measurements
Besides the WCET estimate itself, TimeWeaver also gives
guidance concerning the quality of the measurements by com-
puting several coverage metrics. In principle, path coverage
is the best coverage criterion. Achieving 100 % path cover-
age means that every possible path through a program has been
tested. However, both computing path coverage as well as try-
ing to reach full path coverage is computationally extremely
expensive, as there are exponentially many paths for the num-
ber of branches in a program. Thus, TimeWeaver employs path
extrapolation to reduce the burden of having each path mea-
sured at least once. The traces are cut into segments, i.e., the
path between two consecutive trace points. These segments
may span several basic blocks in the CFG. The ILP formula-
tion of the path analysis allows to construct the longest path in
the CFG based on the trace segments even if this path has not
been observed directly in the traces.

TimeWeaver computes the following coverage metrics:
block/instruction coverage, edge coverage, and flow coverage.
The metrics are computed at the machine code level; a mapping
to the source code level is available. For each basic block in the
CFG, TimeWeaver reports whether it has been covered by mea-
surements and if yes, how often. This information is also used
to compute the instruction coverage. Paths for which infea-
sibility has been proven need no measurements, so associated
blocks are excluded while computing coverage. This makes it
easy to detect missing tests that are needed to trigger specific
execution scenarios.

Checking the number of measurements for each basic block
allows to assess the confidence in the measured timings. To
support this, TimeWeaver also reports for each trace seg-
ment the minimum, maximum, and average observed execution
times, plus the standard deviation. The same information is
also computed for all traces, making outliers easily detectable.
Moreover, loops for which the analyzed worst-case iteration
count has not been measured are also reported.

Some basic blocks are reachable from multiple predecessors,
so full block coverage does not ensure that each way a block
can be reached has been observed. However, this is an impor-
tant metric for timing analysis as many performance-enhancing
features of modern processors take the execution history into
account. Hence, TimeWeaver additionally computes the edge
coverage and the flow coverage for each block. Full edge cov-
erage means that each possible combination of a block and its
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predecessors has been observed. Flow coverage improves on
this metric by taking the successors into account, i.e., each pos-
sible combination of predecessor→ block→ successor needs
to be observed to reach full flow coverage. Flow coverage helps
to uncover hidden dependencies in the measurements.

Most implementations of the various trace protocols do not
emit a trace message for each branch but only if the branch
target has been computed, or if the branch history buffer is
full. The program flow is captured by recording single bits for
taken/not-taken branches. Thus, there might be some control-
flow joins in the CFG for which no trace point exists, prevent-
ing the path extrapolation at these program points. To aid the
path extrapolation, special code patterns can be used to force
the ETU to emit a trace message. For example, the ETU can be
configured to emit a trace message for each branch-and-link in-
struction on the PowerPC architecture. Together with the trace
point at return instructions, this feature ensures that trace seg-
ments do not cross routine boundaries. Another possibility is
the usage of lightweight hardware-supported instrumentation to
enforce trace points at specific locations.

Many performance-enhancing features like branch predic-
tion, caches, pipelining, etc. take the execution history into ac-
count. Thus, the hardware state influences the timing behavior
of a code snippet. The longer the observation period, the greater
the likelihood of capturing the WCET situations for each seg-
ment in the trace. Although it cannot be guaranteed that the
WCET situation for each trace segment occurred during trac-
ing, it is much more likely than trying to trigger the WCET
situation for the whole task or ISR. Moreover, since the path ex-
trapolation combines maximum trace segment times that might
be mutually exclusive in reality, the resulting WCET estimate
is usually larger than the maximum observed execution time of
that path, adding some kind of safety margin. However, long
observation periods result in large trace files. Hence, a bal-
anced approach is favorable. The key here is not to analyze just
any trace sequences, but those with relevant anomalies such
as particularly long execution times or specific execution pre-
fixes (see Figure 2). How exactly these sequences are identi-
fied is explained in Section 4. A virtually unlimited observa-
tion period (typically spanning a few hours to a few days)—
as provided by Accemic’s CEDARtools—can significantly en-
hance the statistical relevance and, as a result, increase confi-
dence in the results of the WCET analysis. Thus, we coupled
TimeWeaver with CEDARtools, see Section 5.

3.3 Qualification Support
AbsInt provides Qualification Support Kits (QSKs) to assist the
automatic qualification of its tools up to the highest criticality
levels. The QSKs aim at demonstrating the correct function-
ing of the tool in the operational context of the tool user with
respect to the relevant tool-influencing parameters like options,
code constructs, provided external information for the analyz-
ers, etc. The QSK consists of the following parts: specifica-
tion of the tool functional requirements, test cases and test case
procedures, requirements trace data (traceability matrix), test
suite and execution framework, and tool lifecycle data. The tool
lifecycle data demonstrate development in accordance to safety
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All trace snippets are stored and

processed. Observation time
depends on trace buffer size. 
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Trace snippets
capturing

a specific edge

Figure 2: Comparison of traditional trace analysis approaches
with the new online analysis implemented by CEDARtools that
allows for a virtually unlimited observation period.

standards. The QSKs enable the qualification of TimeWeaver in
accordance to domain-relevant safety standards like DO-178C
/ DO-330, ISO-26262, IEC-61508, EN-50128 / EN-50657, and
more. More details on the tool qualification strategy of AbsInt
can be found in [17].

4 Embedded Trace
Embedded trace [22] is a method for non-intrusively monitor-
ing processors, providing valuable insights into their program
execution at the machine code level. By leveraging embedded
trace, engineers can gain a deep understanding of processor
operations without disrupting the normal execution of software
or hardware. This technology is implemented through specific
hardware structures that are tightly coupled to the CPU(s) and
are used to capture data about the execution of code. The major
advantage of using embedded trace is that the embedded trace
unit (ETU) does not influence the CPU when monitoring the
program flow, i.e., from the application’s point of view it is not
possible to tell whether the ETU is active or not.

Figure 3 provides an overview of the individual elements and
the trace data flow of a processor equipped with embedded
trace. We refer to these elements by their encircled identifiers
in the following detailed explanation.

There are several options for transferring the trace data gener-
ated by the ETU to an external tool. The trace data can be tem-
porarily stored inside the processor in special embedded trace
buffers (ETB) (A) or in the system memory (B). Trace data can
also be output via dedicated embedded trace interfaces (ETI)
(C1) or via system interfaces (C2) to avoid the limited observa-
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tion time caused by the memory limitations. The direct output
of the trace data via ETI is technically the most elegant solu-
tion, since it does not interfere with the processor. However,
implementing an interface with the required high bandwidth is
expensive, so some processor designs compromise by storing
the trace data in the main memory (B) or outputting it via a
system interface (C2). However, this is also done at the ex-
pense of the desired non-intrusiveness—the required bus oper-
ations interfere with the application (indicated by the yellow
flash symbols in Figure 3). To allow the use of trace informa-
tion outside the SoC, trace data is output either directly using
dedicated trace interfaces (parallel [20] or high-speed serial like
Aurora [31]) (D1), or via fast system interfaces (usually PCIe,
sometimes USB) (D2).

This trace data is then received by an external trace tool.
There exist simple trace buffers and advanced smart trace tools.
Trace buffers (E1) typically contain several GiB of memory
where the received trace data is temporarily stored before the
decoding and further processing in a PC (E2). The disadvan-
tage of this approach is the limited size of the trace buffer,
which limits the observation time and thus contradicts the re-
quirement of being able to observe and analyze a system for as
long as possible. This problem is addressed by a new genera-
tion of smart trace tools, which continuously process incoming
trace data (F1) and perform real-time reconstruction of the con-
trol flow, including timing information. Scalable parallelization
with FPGA-based hardware acceleration enables control-flow
reconstruction for processors with more than 2 GHz operat-
ing clock (for example the Layerscape® LX2160A). Control-
flow reconstruction is also supported for applications running
on multitasking operating systems such as Linux or VxWorks®,
and for applications using dynamically loaded libraries. Based
on the live reconstructed control flow and a set of filters,
the system can now qualify and store relevant trace snippets
in a segmented buffer with a capacity of several GiB (F2).
This smart architecture has been implemented in CEDARtools,
which are presented in Section 5.

A crucial requirement for trace-based WCET analysis is pre-
cise timing information about the observed program execution.
However, a high-frequency output of timestamps could signifi-

cantly inflate the required trace bandwidth. Furthermore, mod-
ern trace protocols like Intel PT, Arm Coresight ETM v4, and
Nexus Branch History Trace focus on bandwidth optimization
and hence, emit trace data not for each executed instruction, but
only for the execution of conditional and computed branches.
In addition, it cannot be relied upon to generate a timestamp for
every jump in every case, but rather to output a timestamp only
after a group of jumps. Some trace protocols support setting
a minimum cycle count (Arm® Cortex®-A53: 4 CPU clock
cycles [4]) at which a new timestamp is sent for a branch com-
mand. For other protocols, the sending of a new timestamp
is linked to the execution of an indirect jump [13]). Depend-
ing on the monitoring requirements (accuracy, acceptable intru-
siveness) and the capabilities of the embedded trace unit imple-
mented in the processor, a suitable trace strategy can be found
for each application. Balancing the capture of sufficient tim-
ing information while optimizing trace bandwidth is a critical
challenge when utilizing embedded trace for WCET analysis.

An enhancement of the embedded trace approach, tackling
the two issues discussed before, is currently being developed
within the TRISTAN project [27]. In a processor-side trace
subsystem for the RISC-V architecture, the application is em-
powered to communicate relevant trigger points to the trace
unit through minimally intrusive instrumentation. Ideally, ded-
icated static analysis tools can automatically identify these trig-
ger points, and the compiler can insert the appropriate instru-
mentation into the binary code as non-functional instructions.
This instrumentation performs deterministic access to special
CPU registers, leaving the registers relevant to the application
unaltered. From the application’s point of view, it is equivalent
to a sequence of nop instructions, which consumes only a few
CPU clock cycles and does not access the system bus. In most
cases, it is therefore justifiable to leave such minimally intru-
sive and deterministic instrumentation in the release code. The
identified trigger points could, for example, involve measuring
the time between instruction A and instruction B, storing the
trace sequence from 1 ms before A to 1 ms after B for every
case where the time between A and B reaches a new maximum
and discarding the previously stored trace sequence. This fore-
knowledge of the code segments relevant for WCET measure-
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ments, known at design time, can also be used for precise and
bandwidth-efficient control of the output of timing information
(CPU clock cycles, wall clock time) by the CPU. Instead of
sending timestamps indiscriminately as it was done previously,
precise timing information can now be embedded into the trace
data stream, ensuring that no redundant information is trans-
mitted while also preventing any gaps in the timing data.

More complex functional tests can be executed on the system
traces going beyond simple code coverage or timing measure-
ments. Runtime verification [19] is a formal dynamic method
that considers actual runs of a system, and checks properties on
streams of events—i.e., system traces—using so-called mon-
itors constructed from high-level specifications. Given such
a specification formulated in an appropriate specification lan-
guage, a monitor is synthesized that runs in parallel to the exe-
cution of the system. It accepts exactly the traces of the system
adhering to the specification. All other executions are identified
as failures. Some level of system resilience can be achieved by
so-called runtime reflection [19], which aims to devise mitiga-
tion actions in the case of failures to restore some of the sys-
tem’s functionality. This is particular useful for safety-critical
systems for which no safe state exists, and thus, being fail-safe
is not sufficient but being fail-operational is necessary. The
same techniques can also be used to implement complex trig-
ger conditions for trace recording.

The smart trace approach has been implemented in the form
of software tools and specialized hardware, and demonstrated
in a number of pilot applications. Theoretical and practical as-
pects of it have been described in several previous publications
[22, 15, 29, 6, 8].

5 TimeWeaver/CEDARtools Coupling
Nowadays, in many recent computing platforms for embedded
systems, trace data of the program execution is provided by the
target system via dedicated, often already existing processing
interfaces. Existing trace tools are logging such trace data in
a file for offline analysis. This allows to analyze the cause of
complex error patterns even after a system has been released.
However, this allows only post-mortem analysis and due to the
sheer data volume of traces (several GiB/s even for medium-
sized processors), the time span that can be observed is limited.

As an alternative, we present with CEDARtools [2] an ap-
proach for dynamic analysis and inspection of embedded sys-
tems that is based on the idea of on-the-fly analysis of trace
data at run-time. We argue that the approach offers several
advantages compared to existing static and dynamic analy-
sis methods. The trace analysis capability can be fully sepa-
rated from the target system; in our case, through specialized
high-performance hardware (FPGAs) that can keep up with the
speed of trace generation. This means that no instrumenta-
tion of the system under scrutiny is necessary, and its original,
unaltered behavior can be observed (non-intrusiveness). This
is especially important for precise timing analysis in real-time
applications, and for analyzing systems with non-deterministic
compute architectures and parallelism. In addition, in our so-
lution the on-the-fly processing of traces obliterates the need

for storing (most or all of) the trace data1, thus enabling long-
term or even continuous monitoring to catch also sporadic rare
events that are otherwise hard to track down. With a capacity of
several GiB, the trace memory of CEDARtools is large enough
to store relevant sequences for evidentiary purposes. Both sim-
ple and complex triggers can be defined in a high-level specifi-
cation language [15] and make it possible to precisely identify
relevant parts of the trace data stream. Hence, only those rele-
vant parts of the trace stream need to be stored in a (partitioned)
ring buffer. For example, each time a new maximum execution
time a task is observed, the corresponding trace data replaces
the old measurements, ensuring that a trace of the currently ob-
served worst-case scenario is stored for later offline analysis.
Furthermore, the efficiency of the analysis is significantly in-
creased by monitoring not only one point of interest, but up to
32 of them simultaneously.

The coupling between TimeWeaver and CEDARtools is de-
picted in Figure 4. It consists of three main components: the
target system on the left, the FPGA-based CEDARtools trace
box in the middle, and the offline hybrid timing analysis on the
right side of the figure.

The binary executable of the software under analysis is
loaded onto the target system. The test engineer decides which
parts of the software system are of particular interest for the
timing analysis, for example tasks or ISRs. As part of a test
campaign, they are executed inside a test harness that generates
the necessary input stimuli to trigger the intended behavior un-
der scrutiny (unit test / integration test). While the target system
is running, trace data is emitted via the trace port of the target
system. Attached to this port is the CEDARtools trace box.

The trace box processes the incoming trace data at runtime.
The highly compressed trace stream is decoded inside a FPGA
to reconstruct the control flow of the software system under ob-
servation. The processing speed matches the execution speed
of the target system to enable the live monitoring of the soft-
ware system. The trace box allows virtually unlimited observa-
tion periods since only those parts of the trace stream are stored
for later offline processing that match predefined criteria. The
criteria a given by the test engineer. One possibility is the col-
lection of bad-case scenarios for the points of interests (i.e., the
tasks and ISRs of the system). Here, the internal ring buffer of
the trace box is partitioned in up to 32 slices. Each slice can
store the trace of one observation of a task/ISR together with
the observed execution time of this instance. If the currently
running instance of the task/ISR exceeds the previous maxi-
mum observed execution time, the currently running instance
replaces the one previously stored in the slice of the ring buffer.
Another possibility is the collection of traces for specific trig-
ger conditions, for example only after a specific combination of
tasks has been executed. The trace data stored in the ring buffer
can be exported for further offline processing or as a witness for
specific execution scenarios.

Finally, the exported trace files are used in a hybrid timing
analysis of the software system. Here, the binary executed on

1Certification of safety-critical systems may, however, sometimes require
evidence that is documented in the form of traces. Hence, CEDARtools allow
to export selected traces.
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Figure 4: Coupling of CEDARtools and TimeWeaver for hybrid WCET estimation of multicore systems.

the target system, the trace files, and the entry points of the
tasks and ISRs that are of particular interest are the input for
TimeWeaver. The inputs are processed as explained in Sec-
tion 3. Path extrapolation during the static path analysis phase
of TimeWeaver constructs a critical path from the trace seg-
ments obtained via the CEDARtools trace box. Thus, the cou-
pling will find the worst possible path through the CFG even
if it has never been observed directly. The result of the hybrid
timing analysis is an estimate of the WCET, together with the
visualisation of the critical path and statistics for the various
trace segments used to compute the estimate. One example for
a timing analysis result is depicted in Figure 5. In case the cov-
erage report of TimeWeaver uncovers code regions that have
less than the required percentage of instruction, edge, or flow
coverage, CEDARtools can be instructed to save exactly those
trace sequences that cover the code region in question.

We argue that the targeted selection of trace snippets within
an arbitrarily long observation period has a higher statistical
relevance than the recording of trace snippets that are randomly
located within a limited observation period. The analysis of
several avionics applications, which we are not allowed to pub-
lish, has confirmed this assumption. To demonstrate how the
method works, a sample application was developed with a ran-
dom Gaussian-distributed execution time. As expected, we ob-
tained a realistic WCET estimate with the presented methodol-
ogy which is 52% higher than when using a randomly selected
full trace sequence within a limited observation period. How-
ever, these results cannot be generalized and are highly depen-
dent on the application under investigation.

6 Conclusion
For multi-core systems, the main challenge for WCET analysis
is the interference generated by other cores running in paral-
lel. If the platform provides no robust resource partitioning and
robust time partitioning, static WCET guarantees are unrealis-

Figure 5: Result visualisation of a WCET analysis using the
TimeWeaver/CEDARtools coupling for the NXP LX2160 pro-
cessor, highlighting the extrapolated critical path that leads
to the WCET estimate in red. The statistics include the ob-
served BCET (”minimum trace time”) and the observed WCET
(”maximum trace time”).

tically pessimistic. In this article we have presented a hybrid
WCET analysis that combines static value, loop, and path anal-
ysis with non-intrusive measurements to compute interference-
aware WCET bounds and provide feedback on the trace cover-
age obtained. Key to reliable hybrid WCET estimation is the
ability to observe a processor in detail over arbitrary time peri-
ods, with no or at most exceedingly minimal instrumentation.
This is achieved by embedded trace units usually already im-
plemented in all processors in combination with new powerful
live control-flow analysis tools. Our approach has been imple-
mented by a coupling and extension of the tools TimeWeaver
and CEDARtools. It is compliant to the software verification
requirements of the EASA AMC 20-193 guidance.
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Abstract — Virtualization is a technology that has evolved 

over the last ten years. The solution reaches a level of feature 

that fits to the new needs of the automotive industry. The paper 
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AMPERE ePowertrain Team by showing the deployment of SIL 
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I. INTRODUCTION 

More and more customer features are involving software 

in so-called mechatronics systems. There are hundreds of 

electronic control units in a transport vehicle. Safety 

regulations are more stringent and lead to more and more tests 

for validation or certification. Distributed architecture with 

several ECUs per domain is moving towards more centralized 

architectures consisting of high-performance computers 

(HPCs), zonal and edge ECUs. Software update over the air, 

embedded & cloud services, add complexity to the system 

and increase embedded software content.  

 

Validations are taking more and more time on such 

complex systems. Being able to make some validation earlier 

in the development is a key point to respect delivery pace and 

quality in the field. 

 

This paper will present the state of art of V-ECU for SIL 

simulation from the point of a tool vendor. While hardware-

in-the-loop (HIL) simulation is a well-established process to 

test and validate ECU functions, the following chapters refer 

to the usage of virtual testing solutions, where a lot of 

dynamic can be observed in the market. Software 

virtualization is a technology that has evolved within more 

than a decade of existence, the latest technical evolutions and 

maturity of the solutions can answer automotive industry 

disruptive challenges. The Powertrain department of Renault, 

now AMPERE ePowertrains, that was one of the pioneers to 

use the virtualization concept, will in a second part of this 

paper focus on how virtualization can be used in software 

development and validation of ePowertrains. After presenting 

the return on experience, the conclusions will propose 

guidelines for further developments.  

II. STATE OF THE ART 

A. Motivation 

Software-in-the-loop (SIL) is a major trend around test and 

validation of mechatronic systems. To accelerate the software 

development, software integration steps and quality 

assurance, a PC-based simulation is used to find errors earlier 

in the development process. Due to the increasing complexity 

of E/E architectures, the System-under-test (SUT) shall 

include distributed and already integrated software functions, 

so that it’s no longer necessary to wait for the integration on 

the real hardware. There are different levels of integration, 

where a SIL simulation can help:  during function 

development or ECU integration, or before integrating a 

system with multiple networked ECUs. 

Another major advantage of PC-based SIL simulation is 
the scalability. Without the need of dedicated hardware 
resources, SIL simulations can run in parallel and especially 
in cloud environments to flexibly cover the demands for test 
execution and allow fast feedback loops to improve the 
software. 

It is important to note, that SIL testing is one of several test 
environments, which shall complement each other, see [1] for 
description of test methods and test environments. Especially 
the Hardware-In-The-Loop (HIL) testing environment is 
going to be extended by SIL testing in requirements-based 
testing, because many steps in the testing process can be 
applied either for SIL or HIL in a similar manner, and artefacts 
can be partly re-used. 

B. V-ECUs and ECU Networking 

This chapter explains a classification of V-ECUs in 

different levels and a Layered standard for V-ECU based on 

FMI to address the challenges for the availability of V-ECUs. 

The creation of V-ECUs means, that the software-under-test 

is prepared for execution in a virtual environment, e.g. by 

replacing the code, which accesses the microcontroller 

hardware or its periphery. 

 

1) V-ECU Levels 
Since the usage of V-ECUs at different stages of 

development is of common interest, different levels have been 
defined by Prostep IVIP, see  [2]. Here are the following levels 
of V-ECUs are defined: 
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• Level 0 V-ECU (Controller Model): 

Can consist of a model, e.g. a MATLAB Simulink 

model, or code generated from it, which is not yet 

on production code level. Used to test control 

algorithms in an early development stage. 

• Level 1 V-ECU (Application Level): 

Production application software can be integrated 

into a Level 1 V-ECU. Only a minimum set of 

BSW is included to execute the code, e.g. in case 

of AUTOSAR the OS and RTE is needed. 

• Level 2 V-ECU (Simulation BSW): 

Before the production BSW integration took place, 

it may be required to add BSW to the V-ECU for 

simulation purposes. Most common use cases are 

adding a COM-stack to the V-ECU for 

communication via an automotive bus system, or 

adding BSW for diagnostics, to prepare and execute 

diagnostics tests. 

• Level 3 V-ECU (Production BSW) 

When the integration of the production BSW is 

done, e.g., by the ECU supplier, a Level 3 V-ECU 

helps testing this integration without the need of 

real hardware and an existing HIL setup. The HW-

dependent parts of the BSW need to be replaced, 

e.g., the AUTOSAR MCAL Layer.  

• Level 4 V-ECU (Target Binary) 

A Level 4 V-ECU contains the production code for 

the real target ECU. An instruction set simulation 

(ISS) is required to execute this type of V-ECU, i.e. 

that the machine code is simulated based on a 

simulation model of the target hardware on register-

level, see [3]. Here no cut in the SW-Stack is 

necessary, and all hardware accesses can remain 

inside the V-ECU. To some extent performance tests 

can be done, but a major trade-off is, that setting up 

an ISS can be expensive, and the simulation speed is 

much slower compared to Level 0-3 V-ECUs, which 

can be cross-compiled for the simulator platform. 

Figure 1 : Prostep ECU’s level definition 

A standard like AUTOSAR helps a lot to create Level 1-3 
V-ECUs, since potential code interfaces are explicitly defined, 
e.g., the micro controller abstraction layer. This way the 
integration of the ECU software can be tested at the ECU 
supplier in an early phase and the OEM can validate, that the 
ECU software is working correctly in a larger scope with 

environment models or further ECUs. Depending on the 
integration target, the appropriate level of V-ECU can be 
selected. The V-ECUs as SIL described in this article are 
fitting to the Level 0, 1 and 2.  

2) FMI-Layered Standard for V-ECUs 
In the future it will be possible, to generate and exchange 

Level 1 to Level 3 V-ECUs in a standardized way, so 
integration costs can be reduced and coordination between 
OEMs and suppliers will be more efficient. The usage of FMI 
for integrating C Code into different testing environments like 
SIL and HIL, has been put into operation, see [4]. The FMI 3 
standard allows the definition of a layered standard, which is 
currently under development, see [5]. With this standard, the 
following functionality will be available: 

• Usage of XCP service inside the V-ECUs 

• Integration of communication stack and simulation 

of the behavior of automotive busses (CAN, LIN, 

Ethernet and FlexRay) 

• Usage of different abstraction levels for network 

communication. A cut on physical signal level 

(“High-cut”; cut below COM module), or on a 

network level (“Low-cut”; cut on Driver-Level) can 

be applied, while a Low-cut enables a more accurate 

bus simulation on a Pdu-level. 

Once the FMI Layered standard for V-ECU is available and 
the tools support the creation as well as the integration of 
standardized V-ECUs, the extensive availability of V-ECUs 
can greatly facilitate the introduction of SIL in future testing 
strategies. 

C. Development Processes 

There is a variety of processes for developing automotive 
software, which can range from typical, traditional V-Cycles 
approaches towards more agile approaches, see [6]. Model-
based development (MBD) is well-established, but also 
C/C++ Code development is done manually. An important 
goal is to find errors as early as possible and be able to 
investigate the behavior of the software in an early phase. 

What is common to all approaches is, that the software is 
tested within its development environment, where module-
tests can be executed by stimulation of the inputs and 
validation of the behavior of the software function.  

The integration of a software module into a larger scope to 
test the interaction with other software parts or how it behaves 
in a closed-loop simulation, is a familiar approach in 
automotive industry, and used more and more frequently. As 
integration tests are executed on SIL, before having the final 
software on real hardware, errors are found and fixed earlier 
before the building of the real software.  

D. Environment Models & Test Environments 

Since the availability of V-ECUs is one important building 
block for establishing SIL testing, the environment models for 
closed-loop SIL testing need to be integrated as well. This 
highly demands an openness of a SIL simulator to be 
connected to any 3rd-party simulators, so that existing models 
and virtual execution platforms can be reused and need not to 
be reimplemented. But if it is possible to implement the 
environment model natively on the simulation platform, this 
has the advantage higher execution speed. 
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A last step towards a complete test environment is the 
connection of experimentation and test execution frameworks 
to the SIL simulation. Here is a high demand for re-using 
established testing environment as well as the tests. This is 
supported by established standards e.g., for test automation or 
measurement and calibration defined by the ASAM 
organization, see [7]. Accessing devices under test with an 
XCP Service by using A2L-Files is defined by the ASAM 
standards MC-1 XCP and MCD2-MC, and executing tests 
based on standardized API is provided by the XIL standard. 
These standards are state-of-the-art in MIL, SIL and HIL, and 
are an important basis for the overall solution to enable SIL 
and the usage of digital twins (software and environment) in 
closed loop. 

III. THE SHIFT TO SDV 

Future ECU networks need to fulfill requirements, which 
are often summarized under the term “software-defined 
vehicle” (SDV), e.g., to enable over-the-air updates (OTA) so 
that the features of a car can be defined and upgraded by 
software. Such architectures are more centralized and 
comprise high-performance computers (HPCs), where the 
applications are executed on POSIX-based operating systems. 
A scalable, cloud-based simulation for such POSIX-based 
applications is also important. 

But the shift towards SDV does not only imply new 
hardware architectures and software platforms; there are 5 
major game changers for the future automotive product-
development, see [8]: 

• From waterfall to agile processes. 

• From distributed, embedded software to a 

centralized electrical and electronics architecture. 

• From start of production to life cycle economics. 

• From product tech to customer experience. 

• From engineering-driven to data-driven 

development. 

Distinguishing features of the cars are already realized by 
software for many years, but with the shift towards SDV this 
becomes even more important. Development cycles of 
software from its specification to the over-the-air update in the 
car need to be heavily increased e.g., to meet future 
requirements for agile development. This requires continuous 
integration (CI) processes, where software developers can 
integrate their code frequently and automatic tests detect 
integration errors promptly. Evolutions of software are 
expected to be available on a daily (weekly) basis to be 
integrated in the vehicle simulation platform and tested using 
automatic tests. 

This leads to the trend to connect development 
environments to the simulation platforms, e.g., by directly and 
automatically integrating the code into a V-ECU or by 
coupling the simulation environment of the software 
developer with a simulator, which integrates further parts of 
the system, e.g., environment / restbus models or further V-
ECUs. 

One of the challenges for SDV is to be able to validate new 
features added at the launch of the car, and allow updating and 
bufixing features during its life cycle, where homologation 
plays an important role.  

Offboard services can be added to the vehicle simulation 
platform and their interactions with inboard service tested. 
There is no need to have the real offboard services available, 
only the data flow model is modelized and faults can be easily 
injected. 

As the development of SDV involves partnership making 
the integration of software using virtual ecu is a key answer to 
the challenges. 

Before creating this simulation platform at the level of the 
car and reflecting the E/E architecture, each individual V-ECU 
must be available and tested in a simulated environment. 

IV. IMPLEMENTATION AT AMPERE EPOWERTRAIN 

A. Context 

Since first implementation, described in [9] AMPERE 
ePowertrain decided to review their objectives. The previous 
requirements are now extended with focus on synergies 
between SIL and HIL, the compatibility with AUTOSAR, the 
usage of production C code, the possibility to extend content 
of basic software, addressing potential users and support of 
ASAM MCD standard for calibration to allow usage of 
existing tool in tuning team. 

The following description of our development process is 
the current one and is not changed with the introduction of SIL 
testing. 

AMPERE buy the ECU hardware and corresponding basic 
software from a supplier. AMPERE team develop the 
applicative software using Model Based Design approach 
(Simulink) and generate the corresponding production C code. 
Generally, one Simulink file (called specification) 
corresponds to one C module. The supplier integrates 
applicative software code to basic software code and deliver a 
binary that is flashed on the ECU. 

Simulink specifications (that are the Level 0 V-ECU 
described by Prostep) are tested individually, this is model-in-
the-loop (MIL) validation. Specifications are assembled to 
compose a full applicative software and tested in a Full MIL 
platform. The main drawbacks are the assembly of 
specifications and not production code and simulation time. 
When coupled to a plant model, the simulation runs 10 to 100 
slower than real time for a hybrid controller. Only automated 
tests can be executed as interactive session is not possible. 

The work of integrating thousands of specifications in Full 
MIL is an additional effort. Signal naming issues are caught, 
and specification need to be updated, when issues are found. 
This integration is done at the level of the specification, not 
production C code. 

Issues related to applicative software, under AMPERE 
responsibility, are discovered by the supplier during the 
integration phase or during testing by OEM on HIL. Several 
loops are needed between OEM and Tier#1 to solve software 
issues. Typical issues are task order in a same scheduling, 
datatype mismatch, task not triggered by the good scheduling 
or naming of signal between codes and bus specification. As 
the integration is done with specifications and not production 
C codes, those issues are not found before shipping the codes 
to the supplier. 

The target software, shipped by the supplier, is tested on 
hardware in the loop bench. The HIL bench needs to have the 
real software and real hardware to finalize the HIL plant 
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model. Test activities cannot start until real software is 
received. 

 

B. Deployment 

We implement a digital twin of the applicative software 
(so called Virtual ECU, V-ECU), which can be used all along 
the development and validation cycle of software to solve 
some of the previously described drawbacks. 

1) Process 
During the framing phase, the content of SIL simulation 

platform is defined to fit the need of validations and the ports 
of plant models to match corresponding ports of V-ECU. 

Two flows can start in parallel: building the plant model 
and the V-ECU. 

As the functional part of the plant model is common for 
SIL and HIL, it must be compatible with real time execution. 
This ensure that SIL is also real-time compatible. 

The build of V-ECU starts with the list of codes, the order 
of execution of the functions and the list of ports. 

When plant model and V-ECU are available, they are 
connected to release the simulation platform. 

After verification tests ensuring the expected behavior, the 
simulation platform is released. 

2) Level of V-ECU 
Using Level 1 V-ECU (100% of applicative software) is 

the first step and already deployed on several AUTOSAR 
projects. Level 2 V-ECU (adding COM stack and Diag stack) 
is planned in the second semester. 

Adding a model of CAN communication (code generated 
by the SIL toolchain, not production code) between the plant 
model and the Level 1 V-ECU is also an alternative to Level 
2 V-ECU with CAN. In this case, this model can be reused for 
HIL plant model. The CAN message can be manipulated on 
SIL in the same manner as on HIL, so the CAN HIL test can 
be prepared on SIL and executed on HIL. If CAN failure and 
diagnostic tests are not yet feasible on SIL, those tests must be 
done with production basic software and hardware. 

3) Tool continuity for SIL and HIL 
Using the same dSPACE building and experiment 

toolchain for SIL and HIL allow to share proprietary artefacts. 
Plant model exported as SIC (Simulink Implementation 
Container) is used for SIL and HIL without modification. 
CAN model exported as BSC (Bus Simulation Container) is 
used for SIL and HIL. Experiment tool (ControlDesk, INCA) 
for manipulating or visualizing V-ECU and plant model data 
are the same, configuration done for SIL are reused on HIL. 
The additional effort for deploying SIL is therefore limited. 
The gains are reduced license cost, manpower by not 
redeveloping similar artefacts and training as using same 
tools. 

4) Plant model 
The preferred format for plant model is FMU. Simulink 

models are exported as SIC (Simulink Interface Container) or 
FMU. AMESim multiphysical models are exported as FMU. 

Simulink or AMESim plant model are validated by 
comparing the results with real data recorded on vehicle or 
benches when available. 

The plant model must be capable of real time execution on 
HIL, with fixed step time. 

The complexity of the model depends on the tests done on 
the simulation platform and on the expected acceleration 
factor. For the moment the target for SIL software validation 
is to be at least real time compatible for the assembly plant 
model plus SIL software. Our experience for HEVC controller 
is that the bottleneck is the plant model not the V-ECU. 

. 

 

Figure 2 : Setup of SIL-Simulation and HIL-Simulation System  

5) Two V-ECU formats  
We provide V-ECU in two formats: dSPACE proprietary 

and FMU. These two formats correspond to two different 
usages, that are explained hereafter. Having a V-ECU 
standard compatible with the two usages would avoid this 
double delivery. 

a) Proprietary dSPACE V-ECU 

VEOS is the simulation platform executing the V-ECU 
and the plant model. ControlDesk is the experimentation tool: 
user changes V-ECU calibrations, plant model parameters, 
visualizes V-ECU internal and plant model variables, records 
signals, defines and runs stimuli. 

The users are software designer and validation engineers 
of AMPERE ePowertrain division. 

The objective is to maximize the synergies with HIL 
validation as one of the objectives is to move some HIL tests 
to SIL. Validation engineers have same user interface and can 
switch easily from HIL to SIL. Measuring tool used on HIL 
are used on SIL. 

HIL automatic tests using ControlDesk and INCA test can 
be used on SIL, so same test can be executed on both SIL and 
HIL. Details on automatic tests toolchain is given in chapter 
6) Test automation. 

Access to internal variables or tunable parameters of V-
ECU is done using XCP server. ControlDesk is the tool to 
interact with software and plant model, using XCP server. 
Record files are using ASAM MCD standard [4]. 
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b) FMU V-ECU 

The targeted audience is simulation platforms using 
ePowertrain software models as Simulink, the V-ECU FMU 
replaces the Simulink models. The users are other divisions of 
AMPERE or Renault Group and the perimeter of simulation 
platforms are either system or full vehicle E/E architecture. 
Tests consist of integration of ECUs and checking driver 
scenario involving several ECUs. 

No license is required for executing the V-ECU FMU. 

V-ECU is exported as FMU 2.0 Co simulation. The FMU 
is provided as compiled FMU without the source code, 
ensuring integrity of content. 

The exposed internal variables, parameters and ports can 
be set by editing one single XML file (modelDescription.xml) 
bringing a first level of ‘black box’. 

An XCP server is embedded, allowing access to internal 
variables and calibration of software. 

FMU 3.0 will be evaluated when the layered standard for 
CAN will be available. 

6) Tests automation 
Current HIL automatic test toolchain is based on Python, 

and Excel. The test is written using ‘keyword’ with parameters 
in an Excel sheet. Each keyword is mapped to ‘Python 
keyword code’ to interact with the experiment or 
measurement tool API. The Excel file is parse line by line and 
the keyword executed, and a result is written back in the Excel 
file. A specific keyword allows analysis of record and send 
back a status. 

Using same experiment tool (ControlDesk), same 
measurement tool (INCA) allows usage of same keyword and 
same ‘Python keyword code’ for SIL. Using same plant 
model, same A2L file makes existing tests for HIL usable on 
SIL in real time without rewrite, when the test is executed on 
SIL. 

Next step will be to develop automatic tests on SIL. 

V. USE-CASES 

1) Using V-ECU during software development phase 
When a set of new specifications is developed and 

validated on MIL, the corresponding production C code is 
integrated in a V-ECU representing the first software loop 
embedding these codes. Objective is to send to the Tiers#1 a 
set of validated and assembled production C codes of 
applicative software. A first set of calibrations is tested and 
published with C codes and ready to be used on HIL. This is 
deployed since 2023 on an EV controller software planned for 
a mass production in 2025. 

Two production software for an EV platform planned to 
be on production in 2025 are using V-ECU for their 
development: EV Controller (non AUTOSAR) and BMS 
Controller (AUTOSAR). A V-ECU is built each time a 
software is requested to the Tier#1. The V-ECU is available 
as proprietary (dSPACE) and FMU format. 

2) Reduce the number of mockups 

Software mockups are sometime created to test new 
features on cars without requesting the integration by the 
Tier#1 on production ECU. 

V-ECU reduces the number of mockups as the new feature 
is tested and verified on V-ECU. The development is very 
short and managed by the software designer if a V-ECU is 
used as basis for integrating the evolution. There is no need of 
a vehicle or engine bench at this first stage. 

When the evolution is mature and calibration available, a 
real mockup is built and tested and validated on bench or 
vehicle. The mocked is delivered when it’s usable by other 
team, they don’t see the iterations. 

3) Evaluate software achitecture 
V-ECUs is used for validating new software architecture. 

Refactoring of specifications, simplification of specification, 
different schedules can be tested and pre-integrated on V-ECU 
without the need to request a full software to Tier#1. The 
benefits or the degradation are evaluated by comparing results 
of two versions. 

The merge of two ECUs is tested by building a joined V-
ECU based on existing production C codes. The software 
components of the two previous ECU are assembled and 
integrated in one new software. The behavior of resulting 
software is evaluated without the real hardware. The 
integration and tests are done in parallel of the development 
of the new hardware platform and corresponding basic 
software. The objective is to get a usable software from the 
first assembly of applicative and basic software. A V-ECU is 
started for a Powertrain Domain Controller composed of EV, 
BMS, OBC controllers with objective to get a first functional 
applicative software when the first basic software and 
hardware will be available. 

4) Replacing Matlab Simulink model by V-ECU 
Simulation platforms at the level of the vehicle need model 

of ECU. When software specifications are available as 
Simulink, they are used as model of the software. There is a 
tradeoff between the fidelity of the software model (number 
of specifications) and simulation time to reach at least real 
time to allow interactive test session as on vehicle or HIL. This 
simplification of the content is an extra activity and needs 
specific skills. 

Replacing Simulink specification by a Level-1 V-ECU 
brings a faster simulation time (around ten to one hundred 
time for an HEVC controller with ~1500 specifications 
running on a PC with Intel(R) Xeon(R) W-2223 CPU @ 
3.60GHz). Internal calibrations and variables are accessible 
the same way as on real ECU using xCP. The simulation time 
is not impacted by the number of internal variables recorder 
as observed in [9]. 

When delivering a V-ECU as FMU, the corresponding 
plant model needed for the integration of the V-ECU in the 
final platform is provided. Records of V-ECU outputs and 
corresponding stimuli on inputs are delivered showing the 
expected behavior of V-ECU. 

A simulation composed of HEVC controller plus plant 
model, for a driving cycle of 100 s taking one hour and half 
can now be run in real time. 

V-ECU as FMU for two software loops (HEVC, Inverter 
controller) have been built and are added to Simulink 
platform. The target is to propose a V-ECU FMU, for each 
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official software loop, for simulation platform needing models 
of ePowertrain software. 

5) Preparing HIL tests 
As now the experiment toolchain is the same for SIL and 

HIL, the validation engineer writes the test sheet on SIL. 
Measurement tool (INCA, ControlDesk) are configured on 
SIL, and same configuration is used on HIL.  

Calibration of new feature software are prepared and 
tested on SIL. A new calibration set is exported as CDFX [10] 
and can be reused in a calibration data lifecycle management 
tool like CRETA or INCA to be reused on HIL or vehicle. 

This allows an earlier start of validation on HIL when the 
real software is received. This phase is a way of showing the 
potential of SIL validation to engineer used to validate on HIL. 

6) Validation synergies 
All functional tests where the ECU hardware or basic 

software is not involved can be done on V-ECU. Propagation 
of signal, state flow, switch are good candidates. Functional 
integration tests are done on V-ECU. 

All validations related to basic software or ECU hardware 
will still be done on HIL, as only the production software will 
include the basic software accessing the production hardware. 
Actual SIL simulation does not support core allocation and is 
not representative of task duration. 

VI. RETURN OF EXPERIENCE / IMPROVEMENT 

1) Skills 
Control engineers using Simulink may not have skill to 

build V-ECU based on C code. 

Basic knowledge of C programming, compilation, 
compiler optimizations are necessary to be efficient during the 
debugging of building the V-ECU. 

Mastering of Microsoft Visual Code, GCC, CMake can 
change drastically the performance when optimizing 
compilation process, execution time or accessing the severity 
of warnings. 

AUTOSAR basic knowledge is an added value as 
documentation or articles often use specific AUTOSAR 
vocabulary or concept. 

2) Continuous integration, continuous delivery 
As the process of building a V-ECU is repetitive, 

developing scripts to automate the tasks is a good investment 
in term of quality and delay. When the scripts are stable, they 
can be included in a pipeline of continuous integration. This 
helps to give autonomy to designer: using an existing and 
working build pipeline, a rebuild can be triggered by just 
sending a new code. 

But scripts will not replace analysis by engineer when the 
build or test fail. 

3) Incremental build 
Using a tool chain compatible with incremental build 

drastically reduces compilation time during the iterative phase 
of the building of V-ECU when integration issue or 
compilation issue are resolved one by one. A rebuild of a V-
ECU of ~1500 specifications with few new specifications is 
taking 15 min compared to 1 hour and half. 

4) FMI standard 

Including simulation of CAN (frames, messages, CRC) in 
the FMU is not available for FMU 2.0. If required, this is done 
using CANoe to modelize the Frame, CRC, … in the 
simulation platform. FMI 3.0 Layered standard for network 
communication could bring easier integration of V-ECU in 
simulation platform with several V-ECU communicating 
through CAN as the network abstraction is included in FMU. 

5) Synergies between SIL and HIL 
Artefacts like plant model, CAN model, automatic tests 

developed for SIL are used on HIL. To take benefit of the 
synergies, the development and experimentation toolchain 
must be the same. One step further is to have a unique team 
for designing the plant model for SIL and HIL and same 
validation engineer using SIL then HIL. 

6) Challenges 
It’s quite easy to build V-ECU if you already have a 

stabilized process to create production C code and to define 
the content of an applicative software. 

Deploying V-ECU is seen in a first time as extra activity 
without added value. After some experimentations, interest 
increased and new usage are identified and deployed. The 
challenge is now to give them tools to rebuild a V-ECU in 
autonomy. 

V-ECU offers the possibility to have access to a software 
several weeks before the real software and this should be 
exploited by tuning teams to prepare their calibration. As this 
is a new process, we must convince them of the gains for their 
activity. 

It takes time to convince validation engineers used to work 
on HIL to migrate a part of their activity on SIL. The tests that 
can be done on SIL must be identified and arguments given. 
All tests not linked to hardware or basic software and focused 
on functionality and no performance tests can be performed 
on SIL. Using same environment plant model for the tests 
mentioned above reduces difference of behavior between SIL 
and HIL. Difference of behavior for the same test executed on 
SIL and HIL must be analyzed, and root cause understood. If 
the behavior on HIL can’t be reproduced on SIL, the test must 
be executed only on HIL. A good starting point is to try to 
reproduce a bug found on HIL on SIL. 

FMU V-ECU is seen as a ‘black box’ for people used to 
integrate model of software as Matlab Simulink as they don’t 
see the content and can’t modify the content. The high number 
of ports compared to simplified Matlab Simulink model is also 
an obstacle. 

A part of integration activity on applicative software is 
done when building the V-ECU, but the part related to the 
hardware or basic software remains for the integrator of the 
full software. 

7) Next steps 
All next ePowertrain software will be ‘AUTOSAR’ 

software. Current V-ECU build toolchain, developed for non 
AUTOSAR software will be adapted. 

The deployment of a CI / CD tool chain is planned to 
increase quality but also to allow more people to build variant 
of existing V-ECU. 

The different scenario of V-ECU rebuilt must be analyzed 
to find the best answer to reduce build time or complexity of 
process with the objective to give more autonomy to the final 
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users. Three scenarios will be examined: change of code 
without changing the code interfaces, change of SWC ports 
and change of ports at the boundary of V-ECU. 

Connecting V-ECU and plant model is time consuming 
and error prone. Port names, plant model architecture must be 
standardized to allow usage of tool features like ‘autoconnect’ 
or development of scripts using tool API.  

 

VII. CONCLUSIONS 

The trends we described in the automotive field at the 
begin of this paper makes the digital twin for embedded 
software an unavoidable technology to reach the challenges, 
all the actors of this industry are facing. 

In the case of AMPERE ePowertrain described in this 
paper, they saw and confirmed several gains and advantages. 

Deployment of SIL for software development can reduce 
development effort and improve quality by finding bugs 
before the delivery of codes to the supplier, preparing HIL test 
environment. Debugging the software can be done on a PC 
without specific tool and by stepping through the code within 
the developers IDE.  

Having a model of the future software is also helpful to 
build system or vehicle simulation platform to test system 
requirement or debug ECU integration connected through 
network.  

In short term AMPERE think that more and more domains 
will use that technology. In mid-term they will integrate all 
their virtual devices into an overall simulation, relying on 
standards (e.g. FMI/FMU, AUTOSAR, XIL API) and co-
simulation capabilities.  

The usage of standards is a key point to ease the 
introduction and usage of SIL and to create digital twins for 
testing new E/E architectures. 

From a tool vendor point view like dSPACE, the 
virtualization technology is used almost by all the automotive 

players. Some of them deployed it to create a whole Virtual 
E/E architecture, while other are using it for testing ECU 
application software. Team responsible of the applicative 
software are working up to level 2 V-ECU, when the team 
producing the full software are focusing on level 3.   

 While software virtualization technology is used 
increasingly in the automotive for industrial project, the other 
industries are seeing it with interest and are starting to explore 
its benefits.      
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Abstract—Similar to autonomous driving on the road, auto-
mated and autonomous train operation also offers many advan-
tages. These include relieving the burden on train drivers, as well
as a possible increase in line capacity or the redevelopment of
previously unprofitable route sections. One of the most important
tasks of an autonomous train control system is to monitor the
surroundings and, above all, the route to be traveled. This must
be continuously monitored for possible obstacles in the train’s
path, just as a human train driver does. In order to perform
this task, sensors are required that record data about the train’s
surroundings. Such sensors in autonomous systems are usually
cameras, radar or lidar sensors. To detect obstacles on the track,
the critical zone must first be identified. For trains, this area
is called the clearance gauge and describes the space that the
train occupies when traveling on a track. In complex scenes with
switches, the section of track that the train travels through –
the ego track – must be determined depending on the status of
the switches. This paper presents an image-based approach for
embedded on-board ego track determination, combining track
and switch information in order to achieve a more robust ego-
track prediction.

Index Terms—On-Board Railway Track Detection, Machine
Learning, Computer Vision, Robustness

I. INTRODUCTION

Rail transportation is considered as a safe and energy-
efficient mode of transport. But the technology needs to
evolve to cope with increasing demands for traffic density and
flexibility. Requests to channel more trains in closer sequence
on the same network infrastructure and the interweaving of
long distance and regional passenger traffic with cargo trans-
portation creates new challenges for control and protection
systems, and for train drivers and other involved personnel.
On-board systems for driver assistance and systems enabling
automated train operation are elements helping to respond to
these challenges.

Funded by the German Federal Ministry of Education and Research
(BMBF) (Grant Number 01IS22029C), within the scope of Project ’Certifiable
machine learning based controls for safety-critical applications (CertML)’ as
part of the program ’KI4KMU - Research, Development and Use of Artificial
Intelligence Methods in SMEs’.

Such systems shall either support the driver in their key
operative duties, or even replace the driver and fully assume
these tasks. One of the key capabilities required for such
systems is the safe and reliable detection of obstacles on the
train path. The obstacle detection performance required must
be at a level similar or better compared to that of human train
drivers. Consequently, the systems must be able to cover a
range of several hundred meters distance (direct line of sight),
operating conditions that include different light conditions
such as shadows, rain and fog, backlight, and dawn. Safety
integrity levels (SIL) for the covered functions can be derived
through the analysis of use cases and associated hazards.

Railway track topology includes switches that connect
individual railway tracks (either merging or splitting), and
crossover points where individual tracks cross each other. In
general, obstacles may be detected on any of the tracks in front
of a vehicle. Taking all these into account would potentially
lead to many ”false positive” detection events, leading to un-
necessary alarm or braking reactions and rendering the system
unusable. Instead, the system should be able to understand
which path the vehicle will actually take considering switch
positions and crossings (the ”ego track”), and to take only
those obstacles into account that are situated on the ego track.

In principle, ego track detection could be based on a com-
bination of train localization information, track topology data,
time table and route planning information. Yet, each of these
information elements may be either not accurate enough or
not up-to-date. E.g., track-exact localization by GNSS (Global
Navigation Satellite System) is extremely difficult to realize
and infrastructure-based localization means are not available
everywhere. Therefore, ego track detection must be either
completely based on or at least substantiated by on-board
means.

In order to perform both, ego path detection and obstacle
detection, sensors are required that observe the railway in-
frastructure in front of the train. On-board perception systems
usually use combinations of daylight and/or infrared cameras,
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and sometimes additional detection means such as LiDAR
or radar sensors. Based on the acquired sensor information,
the ego path is identified taking into account the sensed
track topology (potentially including all visible railway tracks),
switches and crossings, switch positions, and railway signals.
Such ego track then may be considered as region-of-interest
that may be subsequently scanned for obstacles or other
anomalies.

In this paper we present an approach for ego track detection
based on combining deep neural networks (DNNs) for track
detection and switch detection, thereby implementing a two-
step approach involving plausibility checks that enhance its
robustness considering complex track topologies. In the fol-
lowing sections, we first present related work and explain the
need and the challenge of robustly identifying the ego track as
a precondition for safe obstacle detection. In the next section,
we explain our approach that is based on combining two
specialized neural networks to detect tracks and switches, and
to combine the detection results to properly identify the ego
track. Further we present experimental results for the different
approach variants implemented and provide our conclusions.

II. RELATED WORK

Compared to the automotive sector, less research has been
carried out in the field of advanced driver support systems
and autonomous driving in the railway sector. Yet, during the
last years, the subject has started to attract a lot of attention.
Railway operators invest into these topics, state funding is
being made available, and several large research consortia
have been established like ”Railenium” in France and ”Digitale
Schiene” in Germany. Momentum has been established that led
to a considerable number of approaches and initial solutions
in this area.

Several studies that have examined the importance and
necessity of autonomous trains for our society, as well as the
related risks and challenges, e.g. Trentesaux et al. [1]. Hyde
et al. [2] and others worked out that obstacle detection is
necessary for trains with a higher grade of automation (GoA).
Since in those systems the safety-critical monitoring function
of the driver is replaced by a software control system, those
systems need to fulfill safety regulations and requirements.
Safety regulations for automated driving of metros do exist
(EN 62267), whilst the similar regulative framework for main-
line railway – which is a much more diverse and challenging
environment compared to metros – is still under development.
Initial analyses for safety requirements are already available.
One such analysis performed for the German railway authority
focusing on ATO at GoA level 3 determined required safety
integrity levels of SIL0 to SIL2 depending on the task taken
over by the automated system, with SIL3 required in excep-
tional cases [3].

For railway obstacle detection, both classical computer vi-
sion (CV) methods and approaches based on machine learning
(ML) have been presented in the literature. Ristić-Durrant et
al [4] have carried out a comparative literature analysis on
the different approaches. This work and other more recent

work [5] indicate that ML-based methods are better suited
for obstacle detection tasks due to their robustness regarding
complex scenes and diverse operating conditions. On the other
hand, traditional approaches have advantages with respect
to the certifiability for safety-critical applications such as
automated train operation.

In [6]–[10], neural networks are proposed for track detection
as a first task in an obstacle detection pipeline. Semantic
segmentation is used to identify rails or complete tracks, by
assigning each pixel in the image to a semantic class.

Many published obstacle detection approaches do not ex-
plicitly aim to identify the ego track, but rather include
all visible tracks in front of the train as region of interest
for obstacle recognition [11], or compute all possible paths
starting from the track immediately in front of the vehicle
(i.e., excluding all those tracks without a direct connection to
the current train position) [12]. As explained earlier, this may
lead to many ”false positive” identifications of obstacles that
are truly obstacles, but situated on tracks that will actually not
be used by the train.

To identify the ego track in the set of all visible tracks,
switches and switch positions have to be identified. Jahan et
al. [13], e.g., present an object recognition network that can
recognize switches in railroad scenes, including their status.

Identifying the ego track with a single neural network,
extracting the characteristic features for rails and tracks as well
as the features for switches and switch position information is
extremely challenging. Our own experiments in this direction
indicated that the approach works for simple scenarios, but has
difficulties to properly identify the ego track in more complex
rail topologies. Therefore, we propose a different approach
in this paper, combining two specialized neural networks for
the identification of tracks and the detection of switches and
switch positions (see section III-A). However, a paper recently
published by Laurent [14] shows very promising results also
for a single-network ego track detection.

A major challenge for machine learning approaches in the
railroad sector is the availability of annotated training and test
data, as underlined by [4] and many other publications in this
field. Very few datasets in this field are publicly available.
One of the most widely used public datasets is the Railsem19
dataset with 8500 annotated scenes [15]. Other, rather novel
ones are RailSet from the ”Railenium” context with 6600
images [16], and the Open Sensor Data for Rail dataset,
published by the ”Digitale Schiene” initiative and containing
approx. 1500 multi-sensor frames [17].

III. COMBINED EGO TRACK DETECTION APPROACH

A. Approach

As explained in section II, safe and reliable obstacle de-
tection requires a robust approach for the detection of the
ego track. Detecting the ego track with a single network
approach is very challenging and potentially will not achieve
the required detection performance for complex scenes. There-
fore, in this paper we propose to split this task into several
subtasks. The idea behind this is that each of the subtasks
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Fig. 1: Combined Architecture for robust on-board ego track
detection. Blocks with rounded corners represent input and
output data. Rectangular blocks represent architectural ele-
ments.

can be optimally performed with a corresponding specialized
neural network. For detecting the tracks, the widely used
and practice-proven approach of treating rail detection as a
semantic segmentation task is retained. This approach has the
advantage that the image areas in the image that belong to
the track are provided as direct result of such a recognition.
These image areas are also the areas that need to be scanned
for potential obstacles. In typical images containing several
railway tracks, the ego track cannot easily be identified. Only
the operational context of the moving train determines which
of the contained track segments represents the ego track.
Therefore, instead of detecting the ego track, it is convenient
to let the segmentation network detect all tracks contained
in the image. Thus, rail detection is a sub-task of ego track
detection.
In order to be able to decide which of the identified tracks
is the ego track and which tracks are neighboring tracks, it is
necessary to recognize and understand the switches themselves
and their position. By the position of a track we mean the
position of the switch blade, which determines the direction in
which the train will travel at a switch. The second sub-task of
ego track recognition is therefore switch recognition. A switch
can be identified as an object in the image by its characteristic
structure. In this paper, we propose to use a neural network
for object recognition for this sub-task.
Finally, the third sub-task is the extraction of the ego track by
combining the previously generated track and switch recogni-
tion results. In order to better meet existing safety requirements
and objectives, it is advisable to program this task based on
rules and not to solve it with a neural network. This allows
for better testability and thus verifiability of the system’s
safety properties. The resulting architecture of the proposed
combined system for robust on-board ego track detection is
shown in figure 1.

B. Custom Ego Track Detection Dataset

For our work, we used a specifically created dataset that
comprises track data, differentiating ego track and other tracks,
and switch data including switch position data. The images of
the dataset are frames from the ”minute by minute” documen-
tary from the Norwegian Broadcast Corporation, a video from
the driver’s perspective of the railway between Trondheim and
Bodo [18]. An example of a annotated images is displayed in
igure 2, containing track labels and switch labels.
Track labels are segmentation masks which use different labels

Fig. 2: Labelled image. The yellow track is the ego track, red
and green tracks are left and right neighbor tracks. The blue
box is a fork label, the pink box is a merge label.

for ego track, left neighbor track(s) and right neighbor track(s).
Furthermore, rails and trackbed have different labels. These
labels allow for a variety of training scenarios: a neural
network can be trained on the ego track only or include
neighbor tracks as well while taking into account only the
rails or the whole track.
Switch labels are bounding boxes and also provide information
on the type of switch, merge or fork, and the relative direction:
left, right or unknown. The unknown direction is used for
obscured or far off switches, where the direction cannot be
determined.
There are 6802 images with labelled tracks and 2334 images
with labelled switches. The datasets with labelled tracks and
switches have an intersection of 424 images where both, tracks
and switches, are labelled.
To increase the number of images for our experiments, we
additionally used the RailSem19 dataset [15] by adapting
the available labels to our labelling scheme. The resulting
combined dataset contains 15302 images.

C. Neural Networks

a) Rail Detection: We used a MobileNet-SegNet archi-
tecture – which had shown good performance in our earlier
work – as DNN for rail detection It consists of a backbone
network for feature extraction (the encoder) and a decoder
network. The encoder part uses a MobileNet architecture for
extracting features from the input image. The architecture
was described in a paper by Howard et al. [19] and was
developed for computationally efficient image processing in
mobile applications. A SegNet architecture, as described by
Badrinarayanan et al. [20], was used as decoder. Based on the
extracted features, this decoder generates a segmentation mask,
which marks the detected track area. For the implementation
of the network we used the code from Gupta [21].
The described network was trained using stochastic gradient
descent with batch size 8 and learning rate 0.01 for 100 epochs.
For the training process we used the combined dataset of
15302 images described in section III-B which we split into
training (70%), validation (15%), and testing (15%) sets (the
RailSem19 images were used only in the training set).
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We trained the network twice. The first training was done
for direct (single-shot) ego track detection. The network was
trained with the images of the training dataset and masks
marking only the ego track in the image. The resulting DNN is
referred to as MS-ego in the following. For the second training,
the same images were used, but with masks that marked all
tracks in the image. This trained DNN is referred to as MS-all
in the remainder of the paper. In this way, we obtained one
network that tries to detect the ego track directly on the image
and one that tries to detect all the tracks in the image.
Those trained neural networks predict the rails, i.e. the track
area, as a segmentation mask. Such a segmentation mask is
a gray-scale image representing the confidence of the DNN
for every pixel, that it belongs to the track area, which means
black pixels in this image represent background pixels (0%
track) and white pixels (pixel value 255) represent confident
track pixels (100% track). All pixel values in between repre-
sent a respective track confidence. To obtain a binary mask,
which is required for the ego track extraction algorithms, the
segmentation masks need to be preprocessed. In our approach
this included thresholding with threshold 0.5, morphological
closing with kernel size (10,10) and filtering out small contours
with size less than 200 pixels, as those areas are too small to
represent correct track areas.

b) Switch Detection: To detect the switches, we used a
DNN based on the YOLO architecture, which is a well known
architecture for object detection tasks. We used YOLOv8
[22] for object detection. YOLOv8 gives a choice of several
different model sizes (n,s,m,l,x). For our task we used the
largest (i.e., x) of the available models to get more accurate
results.
For training the YOLOv8 switch detection DNN, we used our
previously described switch dataset (see section III-B, split
into training (70%), validation (15%) and testing (15%) set.
We trained the network to recognize the type of the switch
(fork, merge) and also the direction it is set for (left, right,
unknown), resulting in a total of 6 different classes.
To improve the training results, we tuned the training param-
eters using the built-in tuning algorithm from the ultralytics
package. This algorithm automatically mutates the parameters
and tests them to analyse the fitness of the model. This tuning
ran for 300 iterations of 10 epochs each.
We used the patience parameter for the final training. This
parameter allows to set the number of epochs after which the
training will be stopped if there is no significant change in the
training process. For training of the YOLO network, we used
batch size 20 and trained for 600 epochs.
The trained YOLO switch detection DNN predicts switches in
images as a bounding box marking the switch location and a
respective class of the switch describing its attributes.

D. Ego Track Extraction

The task of ego track extraction is to extract the ego track,
i.e., the track that the train will follow, from the prediction
results of the rail and switch detection. For our work, we use
the following characteristics of the ego track:

Fig. 3: Example image with track segments (colored lines with
marked start and endpoint) and ego track (white overlay).

The ego track is always a single track. Consequently, its
mask contains only one contour. For an on-board ego track
detection system with forward-looking sensors, we can
assume that in case multiple track contours are present in the
image, the ego track contour is always the closest one to the
image center at the bottom of the image. This contour covers
the entire area of the track to be traveled. In our approach,
the ego track includes both the rails and the track bed. At
switches, the switch position determines the further course
of the ego track. If a switch position is unknown or if the
switch is set in such a way that the train cannot cross it, the
safely detected ego track ends at this switch. Otherwise, the
ego track continues beyond the switch for the rail section
indicated by the switch position.
The ego track consists of an arbitrary number of track
segments, but at least one. In the following, a track segment
refers to a continuous track section without branches. Such
a segment ends at a switch, i.e. a branching point, and one
or two new segments begin depending on the type of switch.
Figure 3 illustrates these terms in an example picture.

Two different approaches for ego track detection where
implemented during our work. Both algorithms are explained
in detail in the following and compared to each other there
after.

a) Early Fusion Approach: The early fusion approach
aims to extract the ego track directly from the binary
segmentation mask generated by preprocessing of the neural
network output. This approach is based on convexity defects
of the segmentation masks, so only the contours of the
segmentation mask are analyzed. The following steps are
executed:

Step 1 - Determine Contour Containing the Ego Track:
Neighbor tracks without a connection to the ego track may
lead to multiple contours in the image. As described above,
the contour containing the ego track will be the one closest
to center at the bottom of the image. Therefore each contour
close to the bottom of the image is analyzed to determine
the left and right bottom points. The mean of the left and
right bottom points is assumed to be the center bottom point
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Fig. 4: Early fusion: Multiple track segmentation mask with
detected bottom points (center bottom point – blue, left / right
bottom points – red).

4. The contour with the center bottom point closest to the
image contains the ego track.

Step 2 - Find Switches on Ego Track Contour: To find the
switches that are on the ego track contour, the intersection of
the ego track contour and the bounding box of each switch
is calculated. Only if the area of the intersection exceeds a
certain value, the switch is assumed to be on the ego track
contour. If there are no switches on the ego track contour, the
algorithm stops as area of the ego track contour contains only
the ego track. Otherwise the ego track contour is processed
further to separate forking and merging neighbor tracks.

Step 3 - Find Frog Point of the Switch: Usually the contours
of tracks with switches have a significantly deep convexity
defect with the frog point at the farthest point. Curved tracks
also show a convexity defect on the inner side of the curve,
but such defect is relatively shallow compared to its extent.
Therefore only convexity defects with a large depth and a
small extent are considered as frog points. In an ideal case,
were the tracks fork uniformly to the left and right, the frog
point would be at the farthest point of the defect. As this is
not always the case, points with a high curvature within the
convexity defect are added to the possible candidates for the
frog point. From these candidates, the point is selected as the
frog point of the switch, which is closest to

• the top line of the bounding box of the switch, if the
switch is a fork.

• the bottom line of the bounding box of the switch, if the
switch is a merge.

Step 4 - Split Contour at the Switch: To split the contour
at the switch, the other end of the switch – more precisely a
point opposite to the frog point – must be determined. The
other end of a switch is assumed to be at the bottom line of
the fork bounding box or the top line of the merge bounding
box, respectively. Along this line the opposite point is on the
right or left side of the track, depending on the setting of the
switch. The opposite point of the switch is determined by
following the contour until the level of the bottom line of the
fork bounding box or top line of the merge bounding box is
reached while ensuring that the line between the frog point
an the opposite point is completely within the track contour.

Fig. 5: Early fusion: Contour splitting at a left directed fork.

The frog point and opposite point are marked with red and
green dots respectively in Figure 5. The contour is split along
a separation line between the frog point and the opposite point.

These steps are repeated until all neighbor tracks are
separated from the ego track and the algorithm terminates in
step 2 as no more switches can be found on the ego track
contour.

b) Late Fusion Approach: In contrast to the early fusion
approach, the ego track is not determined directly from the
segmentation mask output by the neural network in late
fusion ego track extraction. Instead, the results of the rail
detection are first preprocessed to describe the rail areas as
compactly as possible.
A track is a very simple structure. Its course is determined
exclusively by the two rails. These always have a constant
distance in the real world. This makes it possible to describe
the track along a single centerline. This centerline runs
parallel to the two rails in real world coordinates and has
the same distance to both. In an image, the centerline is not
parallel to the rails anymore due to the perspective of the
camera, but still always is in the middle between both rails.
The idea of the late fusion approach is therefore to determine
the ego track based on the centerlines of the detected track
areas. The procedure for this approach is described below.

Step 1 - Find Centerlines: The first step in this process is to
calculate the centerlines of the segmentation mask. For each
row of the binary images, resulting from the segmentation
mask preprocessing, contiguous sections of white pixels are
determined, and the mean value between the first and last
pixel coordinate of the area is calculated for each of the
sections.
This calculation is performed separately for each contour in
the binary image in order to obtain the centerline for each
track segment individually. If the contour contains a switch,
a Y-shape can be recognized. In this case, the individual
track segments can be separated from each other by splitting
the contour at the point where the number of center points
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Fig. 6: Late fusion: Splitting of segmentation mask into
individual track segments.

changes in between adjacent image rows, i.e. the switch frog
(see Figure 6). If a contour contains multiple switches, this
procedure is applied recursively until all track segments are
separated from each other.

Step 2 -Filter Centerlines: Once the centerlines have been
calculated, they need to be filtered. Due to fuzzy edges
at to top and the bottom in the segmentation masks, very
short centerlines can appear at the beginning and ending of
tracks, as well as outside of the track area. Those erroneous
centerline fragments are filtered out. Furthermore, centerlines
are merged if the upper end of a segment is located very
close to the lower end of another segment. This is done in
order to describe each track segment with only one centerline,
if it was split into multiple individual centerlines due to
irregularities in the contour edges.

Step 3 - Identify Switches in the Rail Detection Results:
Using the centerlines found in this way, it is possible to
identify switches by its characteristic centerline structure
independently of the DNN switch detection results. A switch
is a point, where three centerlines are starting or ending close
to each other. Two centerlines always end at exactly the same
y-level, and a third begins in the adjacent pixel row (see
Figure 7).
The exact arrangement of the centerline ends even allows a
distinction between merging and forking switches. However,
the exact setting of the switch cannot be determined using
the centerlines. This is one of the reasons why the object
detection network is used for switch detection.

Step 4 - Check Plausibility of switches: Since there are now
two switch detection results after step 3, it is obvious to check
their plausibility against each other. Both the switch detection
network and the rail detection network results provide the
position of the switch in the image as well as the switch type.
Therefore, both can be compared with each other. For this
plausibility check, a certain tolerance zone has to be defined
for the switch position based on the detected bounding box
from the object detection, because depending on the position
of the switch in the image, the centerline ends are not always

Fig. 7: Late fusion: Identification of switches in rail detection
results. Colored lines mark detected centerlines. Solid circles
mark segments start and end points. Circles around start/end
points mark a switch detected from rail detection result. Bold
rectangles mark switch detection bounding box results. Narrow
rectangles mark tolerance area around switch bounding box.
The legend below the image shows Element IDs for the
respective colors.

Fig. 8: Late fusion: Track network graph generated from rail
detection and switch detection results for the example image
in fig. 7 .

within the bounding box, but in the immediate vicinity. If
both the position and the type of the switch match, it can be
confidently assumed that the switch is correct. The setting of
the switch can then be taken from the switch detection result.

Step 5 - Create Track Network Graph: Once the rail
segments and switches have been located in the image, the
tracks contained in the image can now be represented in
a network. This is done using a directed graph. The rail
segments are represented as edges and the switches as nodes
of the graph. In addition, start and end nodes are created for
segments that do not start or end at a switch. This graph (see
example in Figure 8) represents the information about the
connection of the track segments.

Step 6 - Find Ego Track Segments: Once a graph of the
track network has been created from the detection results,
it can be used to determine the segments belonging to
the ego track. Using the assumptions on the ego track
position introduced initially in section III-D, the start node
that matches these assumptions best in the graph can be
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determined. Starting from this node, the next node of the
directed graph is searched recursively until an end of the
track is reached. Such an end can either be an end node or
a switch where the track ends. With this procedure, a list of
segments and nodes belonging to the ego track can be created

Step 7 - Determine Spline Points: As can be seen in the
figures for calculating the centerlines (see figures 6 and 7),
the centerline found in the switch area does not describe
the correct course of the two track segments entering or
leaving the switch. For this reason, the centerlines of the
corresponding segments cannot simply be output to create
the ego track centerline. The incorrect centerline is always
located in the section of the switch area that has only one
centerline. This area extends from the switch blade to the
switch frog. Interpolation is required to reconstruct the correct
track centerline there. The entire switch area is defined by the
bounding box that is provided by the switch detection results.
However, in order to keep the interpolated area as small as
possible and thus the interpolation as precise as possible,
not the entire area in the bounding box is interpolated, but
only the area of the single segment from the edge of the
bounding box to the center of the switch. For all other areas,
the centerlines of the segments are assumed to be correct.
For the interpolation, interpolation points are selected at
regular intervals on the y-level from these correct track
segments. For the example image, these interpolation points
are shown in figure 9. This figure also shows the gap between
the interpolation points in the area of the switch.

Step 8 - Interpolate Ego Track Centerline: Finally, spline
interpolation is used to generate the ego track centerline.
With this method, a quadratic function is adapted to the
interpolation points and can then also be evaluated for the
switch areas in order to calculate the correct centerline of
a track. Figure 9 shows the calculated centerline of the ego
track for the example image.

Step 9 - Generate track mask: Based on the centerline,
the mask describing the ego track can be reconstructed
using the track width. In the real world, this track width
is constant. However, since the camera has a perspective
distortion, the track width decreases with increasing distance
from the camera to the back of the image. However, an
examination of the track width for different images has
shown that it decreases linearly over the course of the image.
The corresponding linear function is used to calculate a
corresponding track width for each row in the image. Figure
10 show the reconstructed track area for the example image.

IV. RESULTS

This section presents the experimental results of our
investigation. We compared a direct (single-shot) ego track
detection approach with our proposed combined approach
consisting of rail and switch detection. For both approaches,

Fig. 9: Late fusion: Interpolated centerline using spline inter-
polation shown as red line. For reference spline points used
for the interpolation are shown as well as white dots.

Fig. 10: Late fusion: Generated ego track area. Yellow area
marks track area, red area marks safety area around track
(according to [23] annex 1 to §9). Blue line marks left ego
track edge, red line marks right ego track edge and green line
marks ego track centerline.

a neural network was trained with the presented MobileNet-
SegNet architecture (see section III-C) for rail detection.
For direct ego track detection, this network was trained
with masks containing only the ego track for rail detection.
This approach is referred to as singleshot in the following,
utilizing the MS-ego DNN from section III-C. For the
combined approach, the same network architecture was used,
but trained on masks containing all tracks of the scene
(MS-all from section III-C). For the combined approach,
both proposed ego track extraction algorithms – early and
late fusion described in section III-D – are tested separately.
Table I provides an overview of the individual components
of the approaches described, as well as the test labels which
we use in the following.

For the evaluation of the these approaches, the same test
set of images is used for all variants. This test set consists of
2296 images of the dataset described in section III-B. Since

TABLE I: Approaches to be compared and their characteristics
and labels

Approach Rail Detection
DNN

Switch Detec-
tion DNN

Ego Track Ex-
traction

singleshot MS-ego - -
combined-EF MS-all YOLOv8 Early Fusion

(EF)
combined-LF MS-all YOLOv8 Late Fusion

(LF)
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TABLE II: Fusion algorithm IoU results on ground truth data.

Image set Early Fusion Late Fusion
all scenes 0.972 0.943
switch scenes 0.896 0.921

the proposed combined approach for ego track detection aims
to provide an improvement over the state of the art especially
for complex scenes including switches, such scenes are of
particular interest for the evaluation. In the used dataset, there
are significantly more images without switches than with
switches. As a consequence, also the test set contains rather
few images with switches (only 143). This fact later was
identified as problematic (see the result discussion below).
In order to evaluate and compare the different approaches
investigated in this paper, we performed primarily a
quantitative analysis using the Intersection over Union (IoU)
metric, complemented by a qualitative analysis for selected
images. The IoU metric calculates the ratio of correctly
detected areas of a segmentation mask to incorrectly detected
areas. The prediction is always compared to the ground truth
mask. With GT as the segmentation ground truth mask of
the track area and Pred as the predicted mask of the track
area, the IoU is calculated using the following equation:

IoU =
Area of Intersection

Area of Union
=

|GT ∩ Pred|
|GT ∪ Pred| (1)

First, the two fusion algorithms were tested on the ground truth
data. This data can be considered as ideal recognition results
and should therefore serve to demonstrate how the algorithms
work in the ideal case. Both algorithms perform well on the
ground truth data. The results can be seen in table II.

Looking at all images of the test dataset, i.e. the first row
of the table II, we can see that the early fusion approach
has a significantly higher average IoU, indicating a better
ego track detection performance. However, the test dataset
contains considerably more images without switches than with
switches. On such scenes, the basic functional principle of
this approach performs better than the late fusion approach. In
scenes without switches, the early fusion approach only needs
to select the correct contour belonging to the ego track. This
usually works very reliably, as the test results show. However,
the late fusion approach also shows good overall performance
in ego-track detection across all test data. Reconstruction of
the ego track area from the centerline seems to be generally
feasible. The lower IoU value of the late fusion approach
is mainly due to the use of an approximated track width
to generate the mask from the centerline. As a result, the
predictions are not as accurate as those of the early fusion
approach.
However, the second row of the table shows that the late fusion
approach performs better when only scenes with switches are
considered. Here, the IoU value decreases slightly, but not as
much as with the early fusion approach. The detection of the
convexity defect for the mask splitting seems to be difficult
in some scenes, but the algorithm generally allows a correct

Fig. 11: Late fusion: Incorrect ego track calculation due to
(a) missing spline points (b) partially visible merging switch.
Green areas=True Positive, Yellow areas=False Negative, Red
areas=False Positive. White rectangles represent results of the
switch detection network.

(a) (b)

Fig. 12: Positive Examples of ego track detection for (a) Early
Fusion algorithm (b) Late Fusion algorithm. color meanings
as in Figure 11.

detection of the ego track, as indicated by an IoU of almost
0.9. Also for the late fusion approach, the switch scene IoU is
lower than that for all scenes. This can be explained by scenes
such as the one shown in figure 11. If a merging switch is only
partially shown at the bottom of the image because the train
has already entered the switch area, the rail detection results
will produce a contour that is wider than a single track. In the
late fusion approach, the centerline is found and the ego-track
mask is generated based on the approximated track width. In
this case, however, the centerline no longer runs along the
correct course of one of the two track segments leading into
the switch, but between them. Since these problem areas are
always located at the lower edge of the image, the resulting
incorrect areas are quite large and therefore have a major
impact on the IoU. As indicated in section V, we intend to
improve the late fusion algorithm for handling these specific
scenes.

Still, the average IoUs of both algorithms are quite high
for the ground truth data, i.e., assuming optimal input from
the network predictions. With these positive initial validation
results, we consider both algorithms as being able to detect the
ego track from a fusion of the detection results of the rail and
switch detection and to generate a corresponding mask. Figure
12 shows positive examples for both algorithms for reference.

In the following, we tested the algorithms using the actual
recognition results of the two neural networks.
Unexpectedly, the results of the generated ego track
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(a) (b)

Fig. 13: Negative Examples of MobileNet-SegNet all-tracks
detection results. color meanings as in Figure 11.

predictions indicate that the singleshot approach, which
employs a single network to detect the ego track, yields
the most favorable outcomes (see table III). The singleshot
approach exhibits a remarkably high IoU of approximately
0.94 across the entire test set and across all subsets examined.
Additionally, the network’s predictions are remarkably
consistent, as a comparable average IoU value is achieved for
scenes with and without switches. Investigating the reasons
for this unexpected result, we found three problematic areas
regarding our experiments.

Firstly, the MS-all network results shown in table III
demonstrate that – in comparison to direct ego track detection
– the task of detecting all tracks in the image presents a
considerable challenge for the MobileNet-SegNet DNN. The
image areas to be detected are larger in this case, and as the
neighboring tracks are more likely to be at the edges of the
image, there is also a greater distortion caused by the camera.
Especially high-complexity scenes are challenging for the
MS-all network. For these scenes, it occasionally produces
incomplete or inaccurate predictions, including holes in the
predicted masks and incorrectly recognized contours outside
the actual track area (see figure 13). As both ego track
extraction algorithms are predominantly geometry-based,
their IoU value is considerably impacted by a low IoU of the
MS-all network due to those irregularities.
Secondly, the switch detection DNN performs less well than
expected. In the entire test set, there are 143 images with
switches that were labeled in the ground truth data. Of these,
only 126 images (i.e., 88%) were properly identified by
the switch detection network. The performance gap may be
attributed to the rather small size of the training data set.
As the combined approaches strongly depend on the switch
detection correctly identifying switches and their direction,
the performance gap likely has a strong impact on the results.
Thirdly, it is important to note that the excellent recognition

results achieved by the singleshot approach may be to some
extent attributable to the fact that the test set predominantly
comprises relatively simple scenes. The number of switches
in the scenes is small, with the majority of the ego track
switches leading to a straight continuation of the ego track.
It is therefore possible that the MS-ego network may have
learned this fact as a result of overfitting. This is exemplified
by a qualitative analysis of switch scenes in which the ego

TABLE III: Mean IoU results of the fusion algorithms com-
pared to the ego track detection network. GT switch scenes are
all scenes with labelled switches. Pred. switch scenes are all
scenes with predicted switches from switch detection network.
The results of the MS-all DNN are given for reference in the
last column, since the combined approaches are based on these
results.

Image set singleshot combined-
EF

combined-
LF

MS-all

all scenes 0.945 0.939 0.916 0.937
GT switch
scenes

0.941 0.859 0.833 0.907

Pred.
switch
scenes

0.943 0.867 0.846 0.912

(a) (b) (c)

Fig. 14: Examples of ego track detection errors of the
singleshot approach. a) shows singleshot output, b) shows
combined-EF output and c) shows combined-LF output re-
specitvely for the same input images. color meanings as in
Figure 11.

track takes a turn at a switch (see figure 14). In the second
row of this figure, it can be observed that the singleshot
approach utilizing the MS-ego network selects the incorrect
track segment that emerges from the switch. In the first row,
the singleshot approach fails to detect the ego track shortly
after a merging switch. In contrast, the combined approaches
manage to detect the ego track correctly in both scenes. It
can therefore be assumed that the detection performance of
the singleshot approach would decrease on more complex
scenes than those primarily included in the test data set.

Despite these identified problem areas, both combined
approaches demonstrate a performance on the actual DNN
recognition results that is not significantly below that of the
segmentation ground truth data used for initial algorithm
validation. We found the combined ego track extraction
algorithms being capable of detecting the ego track also on
these non-optimal segmentation masks. On the actual DNN
recognition results, the combined-EF approach is slightly
superior to the combined-LF approach as indicated by the
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slightly higher IoU. From table III it is also evident, that the
detection results of the switch detection play a significant
role in both approaches.

V. CONCLUSION

In this paper, we have proposed two algorithms that are
able to identify the ego track by combining the neural network
detection results for track detection and switch detection.

Our current evaluation of detection performance of these
two approaches in comparison to a direct approach utilizing
a single neural network indicates that the singleshot approach
achieves good results in the analysis of low-complexity scenes.
We assume that for higher complexity scenes, the combined
approaches presented in this paper are more robust. Whilst
qualitative analysis of typical complex scenes supports this
assumption, we were not yet able to quantitatively substantiate
this assumption due to limitations of the dataset (being still
too small and containing primarily low-complexity scenes).

As our analysis has shown, the performance of the two
fusion algorithms depends very much on the quality of the
recognition results of both DNN, for track segmentation and
for switch detection. Therefore, the training of the neural
networks must be improved in the future. Our main task
in this area will be to develop a larger image database for
both training and evaluation. In particular, more images with
labeled tracks (ego track and all tracks) and more complex
scenes need to be obtained. Also the fusion algorithms must be
further amended to counteract their susceptibility to error. With
these future improvements, we expect the combined algorithms
to perform at a similar or better level than the singleshot
approach.

Since – in light of the safety requirements for autonomous
train operation – our ultimate aim is a provably safe approach
towards ego track detection, we consider the use of an
explicitly defined algorithm for detection result combination
as an advantage, as such explicit algorithm can be developed
according to traditional software safety regulations such as EN
50657. In addition, the combined approaches – specifically
the combined-LF approach – offer more possibilities to
check the plausibility of the predictions during operation.
Some of these possibilities have been presented in this paper,
others we will investigate in more detail in the future. Thus,
in our view, the presented combined approaches to ego
track detection are more suitable for use in safety-critical
applications supporting autonomous train operation than
singleshot approaches, provided that comparable ego track
detection performance can be achieved.
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rail 2023,” 2023. [Online]. Available: https://data.fid-move.de/dataset/
3d7e7406-639f-49f6-bbca-caac511b4032

[18] NRK. Nordlandsbanen: minute by minute, season
by season. [Online]. Available: https://nrkbeta.no/2013/01/15/
nordlandsbanen-minute-by-minute-season-by-season/

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications.”

[20] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation.”

[21] D. Gupta, “Image segmentation keras: Implementation of segnet,
fcn, unet, pspnet and other models in keras,” arXiv preprint
arXiv:2307.13215, 2023.

[22] ultralytics, “Yolo v8.” [Online]. Available: https://github.com/ultralytics/
ultralytics

[23] Bundesamt für Jusitz, “Eisenbahn-bau- und betriebsordnung: Ebo,”
1967.

10



Partially trustworthy action planning thanks to an
easily certified plan validator

Jean-Louis Dufour
Safran Electronics & Defense

Massy, France
Email: jean-louis.dufour@safrangroup.com

Abstract—Action planning is the second obstacle (after en-
vironment perception) on the path to trustworthy autonomous
systems. An action planner is so complex that certifying it would
be astronomically expensive. So it will be necessary to associate it
with a plan validator responsible for checking plan correctness,
to whom the full weight of certification will be transferred.
The contribution of this paper is the simple observation of the
unexpected proximity between the PDDL planning language and
the SCADE synchronous language. From the technical point of
view, this proximity allows a simple translation from PDDL to a
SCADE model of this plan validator. From the process point of
view, if PDDL is accepted as a software specification language, it
greatly facilitates validator certification. The two models accept
the same plans when all the variables have finite domains, but
this is no longer true with an integer-valued variable, and we
will sketch a way to deal with this problem.

Index Terms—action planning, certification, PDDL, SCADE,
trustworthy AI.

I. INTRODUCTION

A. Context

One day soon, action planning (also called “goal-oriented”
and “task” planning) will be embedded in a commercial
product, and in our case it may be a safety-critical system
requiring certification. Making plans is considered a sign
of intelligence, and for this reason action planning is part
of what is called Artificial Intelligence (and is therefore
also called “AI” planning). Today, when we talk about em-
bedded AI, we think more about perception functions, like
object detection (vehicles, people, ...) and segmentation (roads,
sidewalks, ...). Intelligence is a nightmare for certification,
but the challenges are highly function-dependent. Perception
functions have firstly a problem of specification (what is a
vehicle? a road?) and secondly, at least in the case of machine
learning, a problem of refinement (usually expressed in terms
of “functional trust”: does this vehicle presence/absence report
actually match a true vehicle presence/absence ?). Action
planning has no specification problem (modeling reality as
a state machine can be subtle, but has never been an issue),
has no “functional trust” problem (does this plan really reach
the goal? just simulate it1), but it has another equally big
refinement problem: algorithmic complexity.

This complexity has a technical name: “PSPACE-
completeness”. PSPACE means that the memory required to

1But of course if it is not ‘trust’ that is needed but ‘explanation’, a
simulation is not an explanation [1].

handle a given problem has a size bounded by a polynomial
of the problem’s size: this is true of all embedded algorithms.
The concern is with complete, which means that among all the
PSPACE problems, it is one of the hardest. This unfortunate
property holds true even if we confine ourselves to the simplest
planning problems: those who have a finite state space2 (no
numeric values, no time). The first symptom of this disease is
the length of a plan as a function of the size of the problem
it addresses: exponential in the worst case! It means that the
search space (the tree of action sequences) is very deep (and
wide): a planner, to be efficient, has to be very clever to
sufficiently prune this search tree. This cleverness has two
consequences: on the one hand software complexity, on the
other hand execution time and space variability. This second
aspect is not the subject of this paper, but we will comment on
it briefly, as it has a significant impact on the architecture of the
autonomy functions. This time and space variability can reach
several orders of magnitude between two problems of the same
size, so there is no hope of getting a reasonable estimate of the
WCET (Worst Case Execution Time) or the WCMU (MU for
Memory Usage: this acronym is still little used, but regarding
critical software the underlying concept is well known and
treated in a radical way: allocated memory is constant!). So no
matter how much time and space the planner is given, there
will inevitably be cases where he’ll be interrupted without
being able to come up with a plan. A phenomenon of this
magnitude does not exist with perception functions (which
can be very consuming, but with a limited variability). A first
in the world of embedded software: a critical function will
sometimes say “I don’t know”. Of course, we would prefer
to have a variant of planning that is both polynomial and
expressive, but it would be a major breakthrough.

Let’s come back to the first consequence of PSPACE-
completeness: software complexity. A planner is in fact a
special kind of constraint solver, such as the Z3 theorem prover
(Microsoft) or the CPLEX optimizer (IBM). Developping Z3
according to DO-178C recommendations at level A would be
astronomically expensive, and quite risky because software
involving symbolic computations has never been developed3 in

2Polynomial and NP-complete variants exist [2], [3], but are not expressive
enough for embedded systems.

3The nearest example is the CompCert compiler developped at Inria, and
clearly it cannot be done by an industrial R&D team, because of the higher-
order logic framework needed.



accordance with these guidelines. Using two different planners
is not an option, because they will give different (but equally
valid) answers to the same question. But we are in a favorable
situation, where the usual workaround is asymmetric redun-
dancy: the planner will be associated with a plan validator,
solely responsible for checking plan correctness, to whom
the full weight of certification will be transferred. And it
turns out that the basic variants of PDDL [4] (Planning
Domain Definition Language, the de-facto standard language
for writing action planning models) have actually a validator
named VAL4[5] and its certification would be much simpler
than that of a planner, since it is just a plan simulator. The
reader who has never heard of PDDL will find a crash course
in the appendix.

Before arriving at our proposal, a remark is in order: this
asymmetrical redundancy strategy does not provide complete
coverage of the potential failures. First of all, when the
planner (mistakenly) says there’s no plan, it’s unverifiable
(more precisely, stated in terms of simulation, a validator
would have to check an exponential number of candidate
plans). Secondly, when the planner (mistakenly) gives a non-
optimal plan, this is also unverifiable (for the same reason: an
exponential number of plans to check). This explains the first
part of the title ”Partially trustworthy action planning . . . ”.
But as a reviewer pointed out, these coverage holes aren’t
necessarily that serious, since plan non-optimality and non-
existence are usually more performance and availability issues
than hazardous events.

B. Contribution

In fact, we don’t plan to embed (let alone certify) VAL,
because it’s still a bit too complex5 (even if it’s much less
complex than a planner). This complexity is due to its ability to
validate plans for any PDDL model. To tackle this complexity,
we will embed a much less generic validator, which is able to
validate plans only for a given PDDL domain.

A bit of PDDL terminology is in order: a PDDL model
contains two separate parts, the “Domain” and the “Problem”.
The domain is the structural or generic part of the model. For
example, in the toy example that will be used in the next
sections, the domain says only that a jug can be emptied
or filled or poured into another one, but it doesn’t give the
capacities of the jugs or their initial state (before the start of
the plan) or their final state (after the end of the plan). These
three informations are the problem, which by the way is an
unfortunate name to speak of a specific configuration: it would
have been better to call him instance. All this to say that in
this paper, we will not make the difference between model and
domain: when you read domain you can understand model.

A PDDL planner is called a “domain-independent”, because
the domain is an input: it is not hard-wired in the planner (this
kind of planner exists also for obvious efficiency reasons and is

4https://github.com/KCL-Planning/VAL
530Kloc of C++ with complex data structures; maybe in the future, a Rust

implementation could be certified.

called “domain-specific”). In the same way, VAL is “domain-
independent”, which means that in order to compute its
OK/KO status it takes two arguments: the plan and the PDDL
model. What we propose is a “domain-specific” validator,
which takes only one argument: the plan.

The PDDL model describes a state machine, an initial state
and a set of acceptable goal states. VAL creates the state
machine, initializes it, executes sequentially each action of
the plan (‘executes’ means dynamically interprets the PDDL
syntax of the action, and the result is a modification of the
current state), and checks that the final state is an acceptable
goal.

Instead, we will use a domain-specific validator, whose
SCADE6 model will be automatically generated offline. The
actions are no more executed by an interpretation of their
PDDL syntax, but directly by the SCADE code resulting
from the translation: the state-machine is hard-coded into the
SCADE model, which has now a single input: the plan. In
DO-178 jargon,

• the High-Level Requirements (HLR) are the PDDL
model (which has to be accepted as a specification model,
with the DO-3317 meaning),

• the Low-Level Requirements (LLR) are the SCADE
model (as usual),

• and the validation of the LLRs against the HLRs is the
correctness of the translation.

Moreover, given the simplicity of the translator, it is quite
possible to qualify it (with the DO-3308 meaning) in order to
further reduce certification activities.

This explains the slightly provocative second part of the title
“. . . thanks to an easily certified plan validator”.

So, to sum up, we propose to split the checking function
performed by VAL into an offline-and-qualified part (the
PDDL to SCADE translator) and a minimalist/specialized
online-and-certified part (the SCADE model given by the
former translator). Our claim is that this split will bring a
gain in development costs of at least an order of magnitude
compared to a naive redevelopment of VAL compliant with
avionics regulations.

C. Related works

Our proposal of a certified plan validator belongs to a
(mostly academic) domain called “Runtime Verification” (RV)
or “Runtime monitoring”. It also belongs to a (mostly engi-
neering) domain called “safety architectures”, which is older,
so we will begin with it. Lastly, the origin of this work,
and specifically of the last section on integer bounding, is
the “planning as model-checking” paradigm, but due to its
different nature, the associated related works are relegated to
this last section.

6https://www.ansys.com/products/embedded-software/ansys-scade-suite
7“Model-Based Development and Verification Supplement to DO-178C and

DO-278A”.
8“Software Tool Qualification Considerations” relates the development

effort of a tool to the trust that can be placed in it. Basically, it is “DO-
178 for tools”.



In the railway sector, the two major safety-critical functions,
Interlocking and Train Control, were provided by software
from the beginning of the 80s. The very first systems based
software correctness on N-version programming [6], [7], but it
was soon realized that the proof of absence of common mode
would not be easy. Hopefully, compared to avionics, railway
systems have two main differences: first emergency stop or
red light lead to a safe state, which means that it is enough
to detect bugs (and stop; if availability is not an issue), and
second, the safety properties are simpler (no overspeed and
sufficient interval). In just a few years, the safety concept
evolved towards asymmetrical redundancy, described in [8]
under the name of Safety bag. The asymmetry comes from
the limitation of diverse programming to the safety-critical
functions, and it also leads to a reduction of the needed
hardware resources: the monitor is overall more frugal than
the control function. That’s the reason why, today, it is the
most widely used safety concept not only in railway, but also
in automotive [9]. On the academic side, we will notice two
references. First, [10] covers a wide scope, composed of de-
tection and recovery; we only deal with detection. And inside
detection, they cover the creation of the planning problem, the
planning itself and the execution of the plan; we only deal with
planning. In order to detect also problem generation bugs, their
“plan analyzer . . . verifies that the produced plan satisfies a
number of constraints and properties . . . [that] can be obtained
from the system specification and from domain expertise but it
must be diverse from the planner model”. The scope is wide,
but the coverage of the planner bugs is not guaranteed. Second,
[11] automatically synthetizes the Safety bag from the hazard
analysis. The analogy with the present proposal is that the plan
validator is a safety bag, and we automatically synthesize this
Safety bag from a PDDL specification. The difference is that
they ensure safety during the execution of the plan, while we
check upstream the correction of the plan.

Concerning Runtime Verification (RV), the first framework
targetting “reactive” (continuous control) programs has been
developped by the Monitoring and Checking (MaC) project
[12], [13]. It was followed by Lola [14], which adopts the
synchronous paradigm and proposes a variant of Lustre ded-
icated to RV: the sub-domain SRV (Stream RV) is launched.
Then NASA introduces the Copilot framework [15], which is
now in version 3 [16]. The main novelty of this version is the
availability of arrays: we will see that they play a significant
role in the PDDL-SCADE proximity. The ROS ecosystem
includes several RV packages, among them ROSRV [17] and
ROSMonitoring [18].

II. THE TOP-LEVEL DIAGRAM

The next three sections will only sketch the translation
from PDDL to SCADE, which is actually quite obvious to
anyone who practices both languages. The aim is to pinpoint
the reason for the proximity between the two languages. The
current section gives a global overview, and because PDDL
is a state-transition formalism (an “action language”), the

next two sections describe respectively the states and the
transitions.

SCADE is known as a visual language, but in fact this
is ‘just’ a “graphical sugar” above a variant of the textual
synchronous language Lustre [19]. The diagrams shown after-
wards are handmade, the PDDL to SCADE translator only
produces text.

The upper-level node for validation and planning is the
diagram in figure 1. It is always the same, whether we deal
with basic, numerical, or multi-agent problems: only the types
of the signals (action and state) are adapted. It contains
the only non-functional operator of the whole model: the FBY
operator (“Followed BY”, drawn upside down), which is the
standard delay operator of the synchronous paradigm (‘1/z’
in Simulink: the output is the input of the previous cycle). The
other operators are pure functions:
init_state outputs the initial state, as specified in the

PDDL problem,
goal checks if its input is a state which complies

to the goal, as specified in the PDDL prob-
lem,

update applies the action to the input state and
outputs the resulting state, as specified in
the PDDL domain,

Fig. 1. diagram of the validator

So, this is a completely standard state machine, driven by
the flow of actions from the initial state to a final goal-
compliant state (at least we hope so). It is not represented
in the usual “circles and arrows” state-transition style, but in
the more general “state-update” style, because the state-space
is usually potentially infinite (as soon as you have an integer
variable). In particular, this is the reason why we have not
used the SCADE automata diagrams.

The ‘true’ goal is the PDDL goal completed by a check of
the error field of the state. This boolean field is asserted
as soon as something illegal happens, typically when the
precondition of an action is false. This is a sticky bit (it
remains at 1 once set to 1), and the state is also frozen as
soon as it is asserted.

The attentive reader may have been surprised to see
not_goal instead of goal on the right of the diagram. It



doesn’t matter in our context, it will be explained in the last
section.

III. BASIC STATE MODELLING

We illustrate the translation with a classic toy example: the
‘buckets’ or ‘jugs’ domain [20]. Before continuing, I advise
the reader to take a very quick look at this (non-standard)
reference. In this example, two buckets are available, a three
gallon one and a five gallon one, near a fountain and initially
empty. The goal is to obtain a bucket with exactly four gallons,
and three actions are possible: to fill a bucket, to empty a
bucket and to pour one bucket into the other one. A subtlety
has to be noted regarding this last action: you cannot start
pouring and stop arbitrarily in the middle (in order to more
directly reach the four gallon goal), because the containers are
not graduated. There are only two possibilities:

• either the source bucket can be entirely poured into the
destination one (and the source will be empty at the end),

• or it cannot (and the the destination will be full at the
end).

Here, instead of two jugs, we manage three jugs:

PDDL

(:types jug)
(:objects jug3 jug5 jug8 - jug) % problem

SCADE

const N_jug: uint8 = 3;
type t_jug = uint8;
function is_jug(x: t_jug) returns(b: bool)

b = x < N_jug;
const

O_jug3: t_jug = 0;
O_jug5: t_jug = 1;
O_jug8: t_jug = 2;

The most natural translation is to a SCADE enumeration,
but it doesn’t work because SCADE arrays cannot be indexed
by enumerated values. So any direct subtype of object is
translated into an integer range 0 .. N-1. In this domain
we have a static fluent, the capacity of each jug, and a
dynamic fluent, the instant content of each jug:

PDDL

(:functions
(amount ?j - jug) - number
(capacity ?j - jug) - number )

(:init % problem
(= (amount jug3) 0)
(= (capacity jug3) 3)
(= (amount jug5) 0)
(= (capacity jug5) 5)
(= (amount jug8) 8)
(= (capacity jug8) 8) )

SCADE

const capacity: int8 ˆN_jug = [3,5,8];
type t_state = {

amount: int8 ˆN_jug,
error : bool };

const null_state: t_state = {
amount: 0 ˆN_jug,
error: false };

function init_state() returns(st: t_state)
st = (((null_state

with .amount[O_jug3] = 0)
with .amount[O_jug5] = 0)
with .amount[O_jug8] = 8) ;

int8 ˆ N_jug is the type of arrays of N_jug signed
bytes, and 0 ˆ N_jug is such an array filled with 0’s. The
type t_state contains the dynamic predicates and fluents,
and an error field that indicates if an error has occurred
since the start of the execution of the plan. The constant
null_state is the object of type t_state with each field
equal to its default value. The example contains no predicate,
but if we also had a dynamic predicate foo with say
three jug parameters, there would have been in t_state
another field foo: bool ˆN_jug ˆN_jug ˆN_jug
and in null_state the corresponding default value
foo: false ˆN_jug ˆN_jug ˆN_jug (and yes,
it is a 3-dimensional boolean array). The function
init_state outputs the state object corresponding
to the PDDL :init clause, and it does this by
creating ‘mutants’ of null_state. There are no side-
effects, Lustre is a functional synchronous language.
(null_state with .amount[1] = 2) doesn’t
change null_state: it is a new object, identical to
null_state except for the .amount[1] field which is
no longer 0 but 2.

Here we find our first modification of PDDL semantics:
numbers are not rationals, but bounded integers as found in the
C language (which is the standard target for critical embedded
systems; uint8 . . . int64). The second modification of
PDDL semantics is that ‘undefined’ doesn’t exist: instead, the
value 0 is used. In case of non-initialisation of a function item,
the translator prints a warning. If nothing is specified to the
translator, number is translated by default as int8.

The translation of the goal is self-explanatory:

PDDL

(:goal (= (amount jug8) 4)) % problem

SCADE

function goal(st: t_state) returns(b:bool)
b = st.amount[O_jug8] = 4;

The two main points of this section are first that the
‘mathematical’ numbers of PDDL are not embeddable and
must be restricted to more ‘computable’ numbers, and second
that SCADE multi-dimensional arrays permit a very readable
translation of the PDDL predicates and functions.



IV. BASIC ACTION MODELLING

The following is a bit technical, and on first reading the
reader can go straight to the summary at the end of the section.

The first thing to be clear about is: what is an action?
In our jug example, we have one action with 2 parameters:
(pour jug1 jug2). So in SCADE , an action will be
an array of 3 unsigned bytes: the first is the code of the
action and – in our example – has to always be 0 (if not, the
validator will set the state error field to true), and the
other bytes are the codes of the jugs and have to always be
in the range 0 .. 2 (if not, same punishment). More generally,
there are often several actions and the array is sized according
to the maximum number of parameters among all actions.

SCADE

const N_action_param: uint8 = 2;
type t_action = uint8 ˆ(1+N_action_param);

Let’s now have a look at the ‘dynamic’ action:

PDDL

(:action pour
:parameters (?jug1 ?jug2 - jug)
:precondition

(> (capacity ?jug2) (amount ?jug2))
:effect (and

(when ; jug1 completely emptied
(>=

(- (capacity ?jug2) (amount ?jug2))
(amount ?jug1))

(and
(increase (amount ?jug2)

(amount ?jug1))
(assign (amount ?jug1) 0) )

)
(when ; jug1 partially emptied

... condition omitted ...

... effects omitted ...
)))

SCADE

type
t_num_set = {

amount: bool ˆN_jug };
t_num_val = {

amount: int8 ˆN_jug };
const

null_num_set: t_num_set = {
amount: false ˆN_jug };

null_num_val: t_num_val = {
amount: 0 ˆN_jug };

function pour(st: t_state;
jug1: t_jug; jug2: t_jug)

returns(b: bool;
num_set: t_num_set; num_val: t_num_val)

var
typing, precond, when1, when2: bool;
num_set1: t_num_set;
num_val1: t_num_val;

let
typing = is_jug(jug1) and is_jug(jug2);
precond = (capacity.[jug2] default 0)

> (st.amount.[jug2] default 0);
b = typing and precond;
when1 =

((capacity.[jug2] default 0): int8)
- (st.amount.[jug2] default 0)

>= (st.amount.[jug1] default 0);
num_set1 = if when1

then ((null_num_set
with .amount[jug2] = false)
with .amount[jug1] = true)

else null_num_set;
num_val1 = if when1

then ((null_num_val
with .amount[jug2] =

(st.amount.[jug1] default 0)
with .amount[jug1] = 0)

else null_num_val;
when2 = ... ;
num_set = if when2 ... else num_set1;
num_val = if when2 ... else num_val1;

tel;

The SCADE translation has been simplified: the detection
of overflows is missing (an overflow sets to false the
boolean output b). But even with overflows, the main point is
that the size of the SCADE translation is only between two
and three times the size of the PDDL source. This is not
completely surprising, because it is a lifted representation (the
alternative is to ground the actions before the translation), but
it’s still remarkable. By comparing line by line the two models,
we arrive at the following explanation: the main ingredient of
the linearity of the transformation is the availability of multi-
dimentional arrays.

To understand the translation, we must explain the transla-
tion of the effects. Boolean effects, not present in this example,
would imply for the function pour two additional outputs,
add and del, which would contain for each predicate a
boolean array of the same shape indicating the items added
(resp. deleted). At this level, the same item could be both
added and deleted, and this will make it possible to conform
to the standard PDDL semantics.

Numeric effects are a bit more subtle, and the associated se-
mantics is not the standard one. The output num_set contains
for each function a boolean array of the same shape, which
says whether an item has been set or increased. The output
num_val contains for each function an integer array of the
same shape, whose interpretation depends on num_set: set-
point or increment. When an item is not updated, num_set
contains false and num_val 0: it is incremented by 0!
num_set and num_val are built sequentially following the
order of declaration of the effects in the PDDL source. It
means that if two effects impact the same item (for example
two assigns), the effective effect will be the last one in the
source, and no error will be raised.

The last domain-specific function is update, which
launches the right action to perform with its parameters:

SCADE

function update(st_in: t_state; a: t_action)
returns(st_out: t_state)



var
precond: bool;
num_set: t_num_set;
num_val: t_num_val;

let
precond,num_set,num_val = (case a[0] of
| 0: pour(st, a[1], a[2])
| _: (false, null_num_set, null_num_val));
st_out =

if precond and not st_in.error
then (st_in

with .amount =
(num_vect_update<<N_jug>>)(

st_in.amount,
num_set.amount,
num_val.amount ))

else (st_in
with .error = true);

tel;

num_vect_update is a generic function which builds a
new function from the old one and the effects to apply. In case
of boolean effects, a similar function implements the PDDL
semantics ‘add takes priority over del’.

Summary of the section: The main point is that the size
of the SCADE translation is only between two and three
times the size of the PDDL source. By comparing line by
line the two models, we arrive at the following explanation:
the main ingredient of the linearity of the transformation is
the availability of multi-dimensional arrays.

V. NUMBERS, INVARIANTS AND VALIDATION

PDDL has unbounded integers (like Python), whereas
SCADE has bounded ones (like C). So, we can only say that
the set of SCADE plans (those that use sufficiently small
numbers) is included in the set of (PDDL) plans. If the
inclusion is strict, we have a double problem:

• The SCADE validator may not be able to validate a plan
because of big numbers. In formal terms, the SCADE
model is not a refinement of the PDDL model, and in
DO-178 terms, you cannot validate the LLRs w.r.t. the
HLRs.

• It is a symptom that the PDDL model is a bit weird,
in that it isn’t a model of an (enough) bounded part of
the real world: in space (the size of the actor movements
grid or graph), in time (the number of actions in order
to reach the goal), and in “stuff” (the number of robots,
jugs, blocks, doors, . . . ). There is no formal counterpart
of this weirdness (because usually, the system level is not
formalized), but in engineering terms, either the system
requirements are not precise enough, or the HLRs are not
a good refinement of them. In any case, we will call this
the problem of the validation of the PDDL model .

Since the beginning of this paper, the word “validation” has
been used with three different meanings, so we will recap them
to avoid any confusion:

• VAL (the genuine one) and the SCADE validator do the
same thing: validate plans,

• the SCADE validator (as a set of LLRs) must be vali-
dated against the PDDL model (as a set of HLRs),

• the PDDL model (as a set of HLRs) must be validated
against the system requirements (if you are a software
engineer; or against the real world if you are a planning
engineer; in fact, it is almost the same problem).

Now, we will deal with the two last bullets in the next two
sections. First for LLR validation, we will prove that in any
reachable state, the integer variables (the amount of water in
each jug) are in fact bounded: this kind of property is called
a (state) invariant. Then for HLR validation, we will . . . in
fact look at the same thing, but with two other points of view:
system and process. This will open a discussion about the
right place of these invariants in the process, and whether
PDDL is such a good candidate for the sought-after status
of specification language.

A. SCADE model validation . . .

The bounding invariants we are interested in are quite
obvious, but they depend on the developer’s point of view.
The software engineer is focused on its execution platform:

each jug always contain an amount of water between
MININT and MAXINT.

An intermediate point of view between software and system
may ask for:

each jug always contain an amount of water between 0 and
MAXINT.

The system engineer will stick to the real world:
each jug always contain an amount of water between 0 and

its capacity.
On the model of the previous section, this last property is

true, and it implies the two previous ones if capacity <=
MAXINT . Moreover, it can be proved by induction. The
two proof obligations are the base case (the property holds on
the initial state) and the induction step:

• if we start from a state satisfying the invariant,
• and we apply any legal action,
• then the resulting state satisfies also the invariant.
Here we must make a small digression to explain what a

model checker does. A model is a transfer function between
inputs and outputs (like figures 1 and 2), intended to be iterated
an arbitrary number of times. One of its outputs is boolean:
let’s call it ‘OK’. The purpose of this output is to say that so
far, nothing unexpected happened from a design point of view
(typically, numeric overflow or functional inconsistency). A
model checker will check that, whatever sequence of inputs
you impose, the output will never become false. If so, it will
simply say: “OK is not falsifiable”. If not so, it will say: “OK
is falsifiable, and here is a sequence of inputs which leads to
false: . . . ”9.

Let’s return to our problem of inductive proof of an invari-
ant. We model the invariant by a SCADE block of the same

9If instead of ‘OK’, you use ‘not goal’, then a falsifying sequence of inputs
satisfies the goal: in other words, it’s a plan. This is the planning as model-
checking paradigm, and it explains ‘not goal’ as an output of figure 1, because
the block can just as easily be used to check a plan or to generate it.



name, and we ask the model checker of the SCADE toolchain
to try to falsify the inv output of the diagram in figure 2: this
will prove impossible, which demonstrates the invariant.

Fig. 2. diagram of the invariant checker

From the process point of view, the tight integration inside
the SCADE toolchain of a model checker is very interesting
(even if it is not qualified), because we are “sure” we are
model-checking the real code and not a more-or-less abstract
model of it. Moreover, this is a generic model-checker10, used
in others contexts than SCADE, which adds to the trust that
can be placed in him.

Therefore the subject of SCADE validation could be con-
sidered to be covered. But in fact we have only seen the
tip of the validation iceberg, and to get to the bottom of
this, a subtle but fundamental point must be addressed. Here,
we are in fact lucky: one the natural invariants (the ‘system’
one) is inductive (i.e. it is provable by induction). This is not
always the case, and sometimes it is first necessary to find
a more complicated inductive invariant, and then prove that
this inductive invariant implies the non-inductive bounding
box [21]. The simplest example is a rotation (which by the
way is just a linear transformation): no box is inductive, so
we must first use an included disk (which is inductive: any
rotation of a disk is itself11). On our PDDL model of the
jugs problem, the ‘software’ invariant amount : int812

is not inductive, because when we pour jug1 into jug2,
(−128,−128, . . .) → (0,−256, . . .) is a legal transition. If
you’re bothered by the fact that a bucket can hold a negative
number of gallons, imagine that it’s actually a bank account
(and a debt has been transferred from account 1 to account 2).
The ‘system-software’ invariant amount : uint8 is induc-
tive, but if we slightly change the PDDL model and suppress
the precondition of the pour action (which is functionally
superfluous), this invariant is no more inductive. So, even if the
invariants depend essentially on the intrinsic problem posed,
the fact that they are inductive also depends on the way we
model. All this shows that if a PDDL model is not predisposed
to be implemented with bounded numbers, the validation of
this implementation can be unintuitive or even difficult. The
next section describes what this predisposition could be.

10https://www.prover.com/products/prover-psl. For example, the very same
model-checker is used in Simulink: https://www.mathworks.com/help/sldv/ug/
acknowledgments.html, of course with a specific integration.

11This is the rationale behind the Ellipsoid abstract domain in the Astrée
static analyzer.

12int8 is the range −128..127, uint8 is 0..255.

B. . . . benefits from PDDL model validation

So far we have seen invariants as means of validating the
SCADE model w.r.t. the PDDL model: it is correct to use
bounded numbers? But they are also important elements of the
PDDL model validation, and we will try to take advantage
of it. Let’s recall that this validation consists of being able
to convince that the formal model is ‘faithful’ to the infor-
mal system specification. For this purpose, it is recognized
that, beyond a certain level of complexity, a simple state-
transition model is insufficiently meaningful, and that it must
be supplemented by other formal properties: they are called
‘safety’ properties when they characterize states (invariants),
and ‘liveness’ properties when they characterize paths (multi-
step transitions). That’s why formal software specification and
development methods, like the B-method [22], set the invariant
as the central element of a specification (at the same level
as the very definition of what a state is), around which the
transitions (named ‘operations’ in B) revolve. A good example
is the invariant we used in the previous section:

each jug always contain an amount of water between 0 and
its capacity.

It is just as relevant as a SCADE validation element or
as a PDDL validation element. We believe that this is not an
isolated fact and that it is not due to chance, and we propose to
generalize it to the planning models used in certified products:

a PDDL model must be accompanied by a ‘bounding’
invariant, which makes it easy to justify the software imple-
mentation of its plan validator.

It is stated and proven at the HLR level by the engineer
in charge of the PDDL model, not at the design level. The
design level has only a simple justification to produce in
order to validate the use of software numeric data types.
This is consistent with what is practiced during a formal
software development: when the B-method is used, invariants
and operations are written and modified by the same person
at the same time, and during design and maintenance the
machine (the B name for a PDDL model) is continuously
kept consistent13:

We have used the expression ‘accompanied’, because in-
variants cannot be included in the PDDL model: this is not
provided for by the standard, in other words invariance is
(unfortunately) not a PDDL concept!

A related concept exists, with which it
should not be confused: the trajectory constraint
(always <constraint>). It restrains the acceptable
plans (and therefore the search space) to those that satisfy
the constraint in each state passed through. It is in fact
syntactic sugar: it can be “compiled away” (planning jargon)
by increasing the state with an additional boolean variable,
which will memorize the respect of the constraint by all
actions performed. The set of reachable states is not modified,
and in each reachable state that is not in a legal plan, the
constraint is not ensured. An invariant of a planning model is

13This is a precursor of Test-Driven Development (TDD).



not a restriction, it is a consequence of the model that holds
in all reachable states.

C. Related works

[23] are the first to propose to use a model-checker (SMV)
as a planner. For the record, it is this interaction between
planning and model-checking that is at the origin of a generic
and successful technique called bounded or SAT-based model
checking, used by the SCADE’s model checker [24]. This
is not necessarily the most efficient approach, but it is often
the easiest and quickest way to obtain a planner for a new
planning language, and it has been used for all areas of
deterministic planning (e.g. linear hybrid planning [25] with
UPPAAL, hierarchical planning [26], full hybrid planning [27])
and some areas of nondeterministic planning [28].

Only one year later, this planning-as-model-checking princi-
ple was diverted from its initial use by NASA to do model de-
bugging, first with classical model-checkers (including SMV
and SPIN) [29] (this is exactly what is done in the former
section), then with UPPAAL for temporal planning [30]14.
[31] propose a new validation concept: the (un)desirable plan.
Usually, a safety property is checked on all reachable states
and a liveness property (e.g. if an image is taken, it is
eventually uploaded) on all legal paths. Here, these properties
are checked only on plans (which must all be desirable).
Again, it must not be confused with trajectory constraints.

From the process point of view, [32] are the first to propose
to prove invariants “for defining consistent axiomatizations of
planning domains”. [33] take up the proposal, and one of the
steps of their modelling method is described as follows: “A set
of state invariants are constructed. These state invariants are
analogous to those used in model based formal specifications
of software (e.g. as in VDM . . . ), The availability of an
invariant for the domain promotes the effectiveness of tools
to support the validation . . . of the domain model”. [34] go
further by modeling a domain directly in a formal software
development language where invariants have a prominent
place: the B language.

But unfortunately, planning languages struggle to keep
up. The first version of PDDL , defined for the AIPS-98
planning competition [35] permits a declaration (:timeless
literal1 .. literaln) that “consists of a list of literals that
are taken to be true at all times . . . it should be impossible for
any action to change them”15. But the next version [36] trims
some ‘unused’ features, so (:timeless . . . ) disappears, and in
fact no invariant has ever been declared in PDDL .

VI. CONCLUSION AND FOLLOW-UP

This approach to trustworthy action planning is well aligned
with the specification (HLR) and design (LLR) steps of
the DO-178 guidelines, therefore it is a priori achievable at

14It can be noted that this first use of UPPAAL as a validation tool precedes
(by more than one year) its first use as a planner.

15This may sound odd, because an invariant usually is more complex than
a literal. But this version of PDDL permits to declare ‘derived’ predicates,
that can capture this complexity.

reasonable (or at least usual) costs. However, considering a
PDDL model alone as HLRs seems questionable, and we
recommend associating it with appropriate invariants, in order
to facilitate LLR validation.

Moreover, the readability of the translations (we have given
a plausible explanation of this) and their modularity (due to
the functional paradigm of Lustre) suggests that the approach
is in fact applicable to more general planning paradigms than
the basic one considered here. The one we are working on
is multi-agent planning, with very promising use-cases (for
example the MAPF [Multi-Agent Path Finding] problem). This
could be demonstrated in a future edition of a robotic challenge
like CoHoma [37], if a fully autonomous mode is activated, in
order to reduce the cognitive load of the supervisors in charge
of safety.

APPENDIX

What follows is a very crash course on PDDL. A PDDL
model is a state-transition view of the real world. Another way
to say this is that PDDL is an “action” language. Here we
modelize a “maintainable light” which counts the number of
cycles, in order for example to trigger predictive maintenance.
The state is a couple of variables light_is_on (boolean)
and counter (integer). There are two actions: switch_on,
enabled when the light is off, and the dual switch_off.

PDDL domain

(define (domain light_with_counter)
(:predicates

(light_is_on) )
(:functions

(counter) )
(:action switch_on

:precondition (not (light_is_on))
:effect (and

(light_is_on)
(increase (counter) 1) ) )

(:action switch_off
:precondition (light_is_on)
:effect (and

(not (light_is_on))
(increase (counter) 1) ) )

)

The preconditions are propositions that must hold before
the action is run. The effects may look like propositions
(post-conditions), but they are not: they are lists of side-effects
on the state. The ‘and’ in :effect (and ... is not a
logical conjonction, it simply says that what follows is a list of
effects. Be careful, (not (light_is_on)) doesn’t mean
that it reverses light_is_on, but that light_is_on
becomes false. Here is now a small problem on this domain:

PDDL problem

(define (problem light_2)
(:domain light_with_counter)
(:init

(light_is_on)
(= (counter) 36) )

(:goal
(not (light_is_on))



(> (counter) 38) )
)

This problem has a solution in three steps:

PDDL plan

(switch_off) ; counter == 37
(switch_on) ; counter == 38
(switch_off) ; counter == 39

If on the other hand we change the goal and we ask for a
light on and a counter at 39, then there is no solution, because
when the light is on, the counter is even (this is an invariant).
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Abstract—Preventing software failures is of high importance
for safety or security related embedded software. Among the
most critical defects are runtime errors such as buffer overflows,
accessing data outside the allocated memory, division by zero
or data races. The ISO 26262 functional safety standard for
road vehicles requires to use static code analysis for unit and
integration verification but this method may be unsound and
cannot always guarantee exhaustiveness i.e., some defects can
still be present in the code. In 2018, ISO 26262 was updated
and introduced a recommendation for static code analysis based
on abstract interpretation. Abstract interpretation is a formal
method which means that it can guarantee mathematically the
absence of runtime errors in an exhaustive manner. To be
exhaustive it uses approximation algorithms that can bring a
substantial number of false alarms. For this reason, this method
is not largely deployed in the automotive industry today.

In this paper, we propose to introduce a design by contract
approach to provide the abstract interpretation static analyzer
additional information for the input variables and the parameters
to increase its precision and significantly reduce the number
of false alarms. For the outputs, we use the analyzer to prove
contracts are compliant to the ranges defined by the specification.
We automated the procurement of contracts from different
sources: a database defining the software architecture, CAN
network signals definition or the AUTOSAR ARXML interface
definition files. Finally, we provide the results obtained for our
production code for analyses with or without contracts and show
how effective is their use.

Keywords-Formal verification · Abstract interpretation · Design
by contract · Safety · Security · AUTOSAR · Embedded software
architecture

I. INTRODUCTION

A. Background on automotive embedded software

Automotive embedded software constitutes a critical com-
ponent within modern vehicles, facilitating the operation of
various systems and enhancing the driving experience. Over
the past few decades, the automotive industry has witnessed
a remarkable transformation driven by advancements in em-
bedded systems technology. We moved from an era where the
car had zero code and the most important was the engine
horsepower to a car that is fully programmable containing
more than 100 million lines of code. This car is named
"Software-Defined Vehicle" or SDV for short [1]. Despite
the increase of complexity, the development of automotive
embedded software presents unique challenges owing to the
stringent requirements for safety, reliability, and real-time
performance. The verification and validation of this software

requires sophisticated methodologies, tools, and best prac-
tices to ensure it is performing exactly as specified and is
compliant with regulatory requirements and industry stan-
dards. One of these methodologies is to use formal methods,
method also recommended by the automotive safety standard
ISO 26262 [2].

B. Importance of formal verification in automotive safety

Ensuring the safety and reliability of automotive embedded
software is paramount, given its direct impact on vehicle
operation and passenger well-being especially for autonomous
driving and battery management systems.

Formal verification techniques enable exhaustive analysis
of software designs and implementations against specified re-
quirements and safety standards. By mathematically modeling
system behaviors and properties, formal verification methods
facilitate the detection of logical inconsistencies, functional
errors, and potential hazards in automotive software systems.
An overview of the formal methods that can be used in the
automotive software development as well as their application
on some industrial use cases is presented in [3].

In the context of automotive safety-critical systems, formal
verification offers a systematic approach to identifying design
flaws and software bugs that could lead to hazardous situ-
ations, such as unintended acceleration, loss of control, or
malfunctioning safety features. By detecting and addressing
potential safety risks early in the development lifecycle, formal
verification contributes to the prevention of costly recalls, acci-
dents, and liabilities associated with software-related failures.

C. Objectives of the paper

The primary objective of this paper is to investigate the
application of Design by Contract (DbC) formal verifica-
tion techniques in the context of safety-critical automotive
embedded software development. We focus on two formal
methods: abstract interpretation and model checking. Abstract
interpretation is used on the code level and model checking
is used on the model level. In our work, a contract represents
essentially assumptions over the inputs of a function and guar-
antees provided by the outputs assuming the input contracts.
These assumptions and guarantees represent a list of values
for an input/output interface or an interval of values. The
assumptions’ role is to reduce the state space, producing more
accurate and fast analyses. The guarantees’ role is to prove



that a given output will always produce the specified values
and nothing else. After positioning this paper with regards to
the state of the art, we propose:

• To investigate the possible sources to find contracts in
an automotive context: ARXML, architecture, network
signals definition

• To formalize the contracts
• An algorithm to calculate automatically the ranges of

possible values and checking the real existence of the
interfaces in the code

• An intermediate format to store the contracts
• Some safety applications of the extracted contracts
We present the practical application of DbC and conclude

for which type of software the contracts helped reduce the
number of false alarms for static analyses based on abstract
interpretation. Finally, the paper identifies key challenges,
opportunities, and future directions.

II. OVERVIEW OF DESIGN BY CONTRACT (DBC)

The Design by Contract (DbC) approach represents a
paradigm shift in software engineering, emphasizing the im-
portance of precise specification, contractual agreements, and
runtime validation of software components.

A. Contracts for Deductive Proof

DbC was first introduced by Bertrand Meyer [4] [5] follow-
ing earlier ideas from Floyd-Hoare logic [6] [7]. Floyd-Hoare
logic assigns meaning to sequential imperative programs in the
form of triples of assertions {P}Q{R} consisting of a precon-
dition on program states and inputs {P}, and a postcondition
{R} on program states and outputs after transformation by the
code Q. The logical meaning of this triple corresponds to: if
P is true, then after executing program Q, R will be true if
Q terminates. The calculus of Hoare’s triples is, in general,
undecidable.

The proving by application of Hoare’s rules is an intellectual
process and is not tool driven. It is up to the author of the
proof to define the correct properties between each instruction
of the program and to establish its demonstration by applying
the different theorems. This activity is not adapted to process
thousands of lines of code in an acceptable time.

An initial automation of the process of proving programs
was brought by the calculation of the WP (Weakest Precondi-
tion) from Dijkstra [8]. The principle consists in automatically
calculating the most general property WP(S,P) holding before
a statement S such that property P holds after the execution
of S:

WP (S, P ) {S} P
The calculus of WP is defined for each instruction. The proof
process consists in calculating WP by going backward from
the end of the program for which we want to prove P, up to
the beginning. For full correctness, S must terminate.

The returned predicate from the WP calculation can rapidly
become rather complex. Efficient (quadratic instead of ex-
ponential) verification condition generation (including WP

generation) were proposed in the following papers [9]–[11].
To automate the process, all modern tools based on WP are
using automatic theorem provers as back-end. We can cite,
for example Alt-Ergo [12], Colibri1, CVC4 [13], Yices2 [14],
Z3 [15].

One application of contracts for automotive embedded soft-
ware using WP and Frama-C [16] was published in [17]. The
authors present the limitations of the approach and propose
some techniques to overcome some of them to succeed with
the automatic proof. Nevertheless, this method has difficulties
to scale with the current size of automotive software modules
and in this paper, we will not focus on it.

B. Contracts for Object-Oriented Programming

Bertrand Meyer originally proposed to use contracts for
Object-Oriented programming. They operate at a higher level
of abstraction, focusing on the program behavior, while the ax-
iomatic semantics used for deductive proof operates at a lower
level, focusing on formal logical assertions and proofs. He
introduced contracts in the Eiffel programming language [18].
They expose the relationships between systems in terms of
preconditions and postconditions on operations and invariants
on states. A contract on an operation asserts that, given a state
and inputs which satisfy the precondition, the operation will
terminate in a state and will return a result that satisfy the
postcondition and respects any required invariant properties.
Meyer’s work was also extended to Java via iContract [19].
Today, the C programming language is the state of the art
for automotive safety-critical software and our work will not
focus on the Meyer’s contracts as they cannot apply on it.

C. Contracts for Service-Oriented Architectures

Beugnard et al. [20], inspired by contracts in real life,
proposed to use four classes of contracts in the software
component world for service-oriented architectures with in-
creasingly negotiable properties: basic or syntactic, behavioral,
synchronization, and quantitative. The basic layer specifies
operations, their inputs, outputs and possible exceptions. The
behavior layer describes the abstract behavior of operations
in terms of their preconditions and postconditions. The third
layer, synchronization, corresponds to real-time scheduling
of component interaction and message passing. The fourth,
quality of service (QoS) level, details non-functional aspects
of operations. This work is rather theoretical and as far as we
know this method is not integrated in the state-of-the-art tools.

D. Contracts for System Design

System design is the process of defining the architecture,
components, modules, interfaces, and data for a system to
satisfy specified requirements. It is used in most of the
industries when designing a new system. In [21], the authors
argue that current methods and practices for verification are not
scaling because of the increasing complexity of the systems.
They present recent approaches for contract-based design like
the "orthogonal" one and propose to have a unified treatment

1Colibri: http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf



of the topic. Contracts are precisely defined and can be
used without ambiguity. They also provide a link between
interfaces and contracts to show similarities. They provide
some examples applied to system requirements engineering
and AUTOSAR. The first one uses Boolean conditions and
a research tool named MICA. The second example can be
applied in the industry by using model checking and the
synchronous observers technique [22].

E. Contracts for Runtime Error Detection

This application of contracts for runtime error detection
is inspired from what is usually called "runtime assertion
check" [23]. For C language the Frama-C plugin E-ACSL [24]
automatically translates an annotated C program into another
program that reports a failure whenever an annotation is
violated at runtime. If no annotation is violated, the behavior
of the new program is the same as that of the original
one. The benefits of this approach are several: monitoring
the execution of the C program and reuse the contracts
provided by annotations in the program with other tools of
the Frama-C framework e.g., WP. Sometimes the formal proof
cannot succeed so transforming the contracts (annotations)
into executable specification can complements the proof for
difficult goals thus establishing a link between static analysis
and monitoring tools.

F. Contracts for Static Code Analysis

Static code analysis is the analysis of computer programs
performed without executing them. Today, it is generally
realized by an automated tool under a wide range of criteria
thus increasing code quality and robustness. Depending on the
depth and exhaustiveness of the analysis, the static analysis
tools can be classified in three categories:

• Syntax checkers or linters are limited to analyze the
program by using pattern matching. A lot of the MISRA
C and C++ rules can be checked at this level. For exam-
ple, MISRA C Rule 17.7 says that "The value returned
by a function having non-void return type shall be used".
Checking only the function call syntax is sufficient to see
if the return value is used by the code.

• Unsound static analyzers report semantic errors in the
code, such as runtime errors (division by zero, buffer
overflow, etc.). They can also report about data races or
stack overflows. These tools use heuristics and reduce
generally the depth of the analysis to shorten the analysis
time and scale. Thus, they produce false negatives (some
true defects are not detected) but they can also bring false
positives (alarms that are not true defects). Examples of
such tools are Coverity, CodeSonar, Klocwork, Parasoft
C/C++test, Polyspace Bug Finder and QAC.

• Sound static analyzers are mostly based on a formal
method called "abstract interpretation" [25]. This method
allows to prove the absence of runtime errors from the
class of defects under consideration without missing any
defect. These tools can report not only software defects
but can also be used to prove functional assertions e.g.,

the output values are always produced in each specified
range. False positives are still possible, but these tools can
be finely tuned to improve their precision by providing
the ranges of the input values thus significantly reducing
their number. Examples are Astrée, CodePeer, Polyspace
Code Prover and TIS Analyzer.

Contracts for static analysis can only be used with sound
static analyzers as they can consider constraints over the inputs
and prove the output values are always within a given range.
These contracts are sometimes called in the literature "as-
sume/guarantee" or "precondition/postcondition). The benefits
are:

• Reduced number of false alarms. Providing ranges for the
input values significantly reduces the explored states.

• Guarantee that the outputs are always produced within
the specified ranges. This can be obtained by additional
assertions provided to the static analyzer and proving the
code is safe.

This article focuses on the topic of generating and using
contracts for static analysis of industrial software and the
benefits for the safety we take from them. As far as we
know there is no such complete experiment published in
the scientific literature. Our approach can be applied in the
industry to adopt sound static analysis and save time for issue
analysis.

III. DESIGN BY CONTRACT FOR SAFETY APPLICATIONS

In this chapter we describe a methodology for the embedded
software to illustrate how abstract interpretation is used to
prove that the software activates the safe state. Subsequently,
an example on the safety function will be presented.

We assume in this example that the safety function is based
on several ECU car systems (ECU1, ECU2 and ECU3) and the
control algorithms are principally made by ECUx. The safety
function is described in Fig. 1.

We can imagine also that this functionality must contain the
ECUx which established a gateway between CAN networks
(ECU1 and ECU2) and LIN network (ECU3).

For example, for this safety function the most important
hazardous event is "unexpected OFF of the safety function in
the driving conditions". At software level, it means that the
output data (Command) of the safety function must not be
set to OFF unexpectedly. The safety goal at the vehicle level
is ASIL B level. The limp-home or safety state associated is
"in case of detected failure that could lead to the violation
of the safety goal, the Command shall be set to ON". We
suppose also for this example that the entire vehicle ECU
for this function (ECUx, ECU1, ECU2 and ECU3) inherit an
ASIL B because they can directly contribute to the loss of the
Command.

In this case, the software safety requirement allocated to
ECUx has an ASIL B associated to the risk "unexpected Com-
mand to OFF in the driving conditions". The implementation
on this safety goal in the software uses partitions, monitoring
principles and ISO 26262 standard. For the safety function in



Fig. 1. Safety function: Software architecture of ECUx based on AUTOSAR

the ECUx, a monitoring based on partitions is used: one QM
partition and one ASIL B partition. All the functionalities of
the safety function, critical and non-critical software modules
are included into the ASIL QM partition. The ASIL B partition
for the safety function contains only the monitoring on the
critical parts. For example, the monitoring may be made by
two functions (see figure 1):

• Authorization function: the main goal for the first func-
tion is to authorize the switch OFF the Command in the
case of the critical part, shown in figure 1.

• Decision function: the aim of the second function is to
apply this authorization on the Command which comes
from the ASIL QM partition (Command_ASIL_QM in
figure 1) to make the Command into the ASIL B partition
(Command_ASIL_B in the figure 1).

A. Authorization function – monitoring

To better understand our approach let’s take an example
for this authorization function described in figure 2. We can

imagine that the Command can switch to OFF in the case of
critical part if the key is in the stop position or if the network
electrical state at a low level only if the speed of the vehicle
is lower than a threshold of 1km/h.

The step 1 of this algorithm is to acquire the software flow
made by other software modules or to decode frames. For our
example:

• SpeedVehicle for the vehicle speed value,
• KeyState for the key state,
• NetworkElecState for the network electrical state.
The step 2 is dedicated to an out-of-range detection (OOR).

The safety mechanisms for error handling is the passage of
the data into a safe state. The step 3 is to determine the
specific situations where the switch to OFF the Command
are authorized. In our example, these specific situations are
protected by the vehicle speed:

• Key state at stop position: for the safety stand situation,
we authorized the switch to OFF the Command only if
the key state is in the stop position and the vehicle speed



Fig. 2. Flowchart diagram of the authorization function

is lower than 1 km/h,
• Network electrical state at low level: for the safety

economic mode situation we authorized the switch to
OFF the Command only if the network electrical state
is at the low level and the vehicle speed is lower than 1
km/h.

The step 3 is the main condition of the algorithm. The
switch to OFF the Command authorization is true only if safety
stand situation or safety economic mode situation.

B. Decision function – monitoring

Let’s also take an example for decision function described
in figure 3.

The step 1 for this algorithm is to acquire the software flow
produced by other software modules:

• Command_ASIL_QM for the request coming from the
ASIL QM partition,

• Authorization from the previous function.
In step 2 we initialize the output, the Command_ASIL_B

as ON – defensive programming. Step 3 is the same as step



Fig. 3. Flowchart diagram of the decision function

2 for authorization function. Step 4 is the main condition of
the algorithm. The output (Command_ASIL_B) is OFF only
if no request from the ASIL QM partition and authorized to
switch OFF by the ASIL B partition (see figure 1).

C. Using Contracts

To prove that the safe state is indeed activated in case of
an error, we have introduced formal methods. The idea is to
provide out-of-range values for the inputs as contracts to a
static analysis tool based on abstract interpretation and prove
that the software will always activate the safe state when it
receives this data. When the software activates the safe state,

we use a specific Boolean output that can be proved to be
always true.

IV. SOURCES FOR CONTRACTS

As presented in the previous chapters, we focus in this paper
on the procurement of contracts that will help a static analyzer
based on abstract interpretation improve its precision but also
increase software robustness and guarantees. These contracts
are of two types: input constraints and output guarantees. With
the constraints, we save time for results analysis by removing
a lot of false alarms. There are two types of inputs:

• Variable inputs: data received that can change over time.



• Constant inputs: used for calibration or configuration.
They cannot change during program execution.

With the guarantees, we prove the outputs will always be
produced within a given set of values. The target for these
contracts is the software component.

It this chapter we discuss, where contracts can be found and
how to extract them automatically. We provide an algorithm to
select the most precise set of values based on multiple sources.

A. System Design Interface Definitions

First, we start by exploring the system design level. Very
often, the system design engineers propose some ranges for
the data used for the system design. It can be formatted as an
Excel table showing minimum and maximum values for each
data flow without further details about concrete types to be
used.

B. Software Architecture Design

When the system engineer has validated its design, it goes
to the software engineer who is responsible for the software
architecture and embedding this design in a car ECU2. At that
stage, all the interfaces are well determined, the system is cut
into software components connected with each other. Different
tools from custom to commercial tools can be used on that
stage to declare all the interfaces and ports of a software
module. The extraction can be done automatically by exporting
the contracts in CSV or JSON formats.

C. AUTOSAR Architecture

AUTOSAR (Automotive Open System Architecture) is a
standardized automotive software architecture jointly devel-
oped by automobile manufacturers, suppliers, and tool devel-
opers. It aims to establish an open and standardized software
architecture for automotive ECUs to ensure compatibility, scal-
ability, and reusability of software components across different
vehicle platforms and manufacturers. ARXML (AUTOSAR
XML) is a file format used within the context of AUTOSAR
as a standardized format for representing and exchanging
AUTOSAR-compliant software descriptions, configurations,
and other relevant data. The interaction between different
components is presented in Fig. 4

In our context we want to verify the Software Compo-
nents as the other services are provided by the operating
system’s provider who is responsible for their verification
and validation. For Software Components (SWCs) ARXML3

files describe their interfaces, and the interactions between
them within the AUTOSAR architecture. We can extract from
them runnables4, input and output interfaces, parameters and
associated data types and subtypes.

First, we want to identify runnable entities which
are functions that can be periodic or based on event as

2ECU: Electronic Control Unit
3All examples are based on "SoftwareComponent Tempate – AUTOSAR

Rel.4.2.2"
4Runnable: In the context of AUTOSAR, a "runnable" refers to a unit of

executable code that performs a specific task or function.

Fig. 4. AUTOSAR architecture

the contracts are defined for each function. Using an
XPath notation, all the runnables are located in “/AR-
PACKAGES/AR-PACKAGE/ELEMENTS/APPLICATION-
SW-COMPONENT-TYPE/INTERNAL-BEHAVIORS/SWC-
INTERNAL-BEHAVIOR/RUNNABLES”. The runnables are
mapped to functions and their real name used by the code
can be found in “PARAMETER-ACCESSS/SYMBOL”.

Then, for each runnable we retrieve its interfaces (inputs and
parameters) in “RUNNABLES/RUNNABLE-ENTITY/DATA-
READ-ACCESSS”. In “RUNNABLES/RUNNABLE-
ENTITY/DATA-READ-ACCESSS/SHORT-NAME”,
we have the name of the variable present in the
code. There are also other types of interfaces
used less frequently that can be found inside the
“RUNNABLES/RUNNABLE-ENTITY/DATA-RECEIVE-
POINT-BY-ARGUMENTS” and “RUNNABLES/RUNNABLE-
ENTITY/DATA-RECEIVE-POINT-BY-VALUES”. For
the outputs, the interfaces are specified inside the
“RUNNABLES/RUNNABLE-ENTITY/DATA-SEND-POINTS”
and “RUNNABLES/RUNNABLE-ENTITY/DATA-WRITE-
ACCESSS” tags. To find the data type of an interface, we
need to extract the last entity from the “TARGET-DATA-
PROTOTYPE-REF” tag.

For each interface of each runnable we can find the types
associated in the “RootP_SR_Data” package.

The types are defined in “/AR-PACKAGES/AR-
PACKAGE/ELEMENTS/IMPLEMENTATION-DATA-TYPE”
which maps each custom type to an AUTOSAR base type
and also provide a range constraint. For example, we may
have a Boolean type based on integer but constrained only
between 0 and 1. The constraints can be found in “/AR-
PACKAGES/AR-PACKAGE/ELEMENTS/DATA-CONSTR”.

For types containing enumerated values, we can find
the definition of their values inside “/AR-PACKAGES/AR-
PACKAGE/ELEMENTS/COMPU-METHOD”.



D. Network Communication Signals

Vehicle communication between different ECUs is generally
supported by a CAN5 network. Software components receiving
or sending data through this network define a mapping of
this data to signals which are grouped into messages. Each
message is generally related to a specific function or subsys-
tem within the vehicle and can be transmitted over multiple
networks. Each signal has different properties. Here are the
primary properties:

• Data Length: specifies the number of bits used to
represent the data within the signal. Generally, we use
the shortest length that can represent the data e.g. 1 bit
for Boolean data.

• Data Type: CAN signals can represent various types of
data, including integers (signed or unsigned), floating-
point numbers, Boolean values, or enumerated types. The
data type defines how the raw binary data within the
signal is interpreted.

• Data Min/Max: specifies the range of values for the data.
• Data Position: specifies the byte number and bit number

where the signal is located inside the message.
• Data Unit: Specifies the physical unit of the data.
• Scaling Factor and Offset: Signals may have scaling

factors and offsets applied to convert raw data values into
engineering units. These parameters define the relation-
ship between the raw data values transmitted over the
CAN bus and the corresponding physical quantities they
represent.

Our idea is to deduce from the network signals the maxi-
mum and minimum value it can take e.g., a signal encoded in 3
signed bits will always be inside the range [-4,3]. Reading such
a signal, we are sure that we will never get a value outside this
interval. On the other hand, writing a data in such a signal,
we must guarantee that the value produced by the software
component will never be outside of the range which cannot
be always true as in the C language it will be at least encoded
in 8 bits.

E. Algorithm for precise contracts determination

In this section, we present an algorithm that takes as input
the architecture specification of a given software component
we want to verify. This specification contains the runnables
and their types, their periodicity, their interfaces. For each
interface we can have its range of possible values: min/max
values may be specified, the type of the interface is always
specified, a list of values may be specified, a mapping to
a communication signal may be specified. We apply our
algorithm to a given component on all runnables that are not
used for initialization of the software component and for each
of their interfaces we try to get the most precise and relevant
interval of values. For example, if a data is encoded in 8
signed bits ranging [-128,127] in the code but is mapped on
3 signed bits ranging [-4,3] on the CAN bus we will consider
the interval [-4,3] as the most precise range even if it is

5CAN: Controller Area Network

encoded in uint8 type. If the data type is an enumeration e.g.
[1,3,5] and encoded in 3 unsigned bits we will consider the
enumerated values as the most precise range. They represent
the intersection of all specified values. After finding min/max
values, we search each interface in the code and keep only
interfaces present in the code. Sometimes the specification
may have more interfaces e.g., when the designer decided to
remove an interface from the code but not in the specification.

The results produced by our algorithm that find the best
min/max value for each interface are stored in a JSON file. It
contains all the interfaces (input, output, parameters) for each
runnable/function that are used by the code.

The JSON file obtained after contract extraction is consid-
ered as an intermediate file which is used as entry data to
create contracts in the format of the static analysis tool. It
contains not only contracts information but all other necessary
information that can permit analyze the software component
especially header and source files. Listing 1 provides an
example of such intermediate JSON file.

{
"module": "ASWC_M001",
"proj_name": "Module ASWC_M001 analysis",
"proj_description": "Project with contracts",
"analysis−entry": "__main__",
"base_dir": "C:/Project1",
"language": "C",
"files": ["Rte_Api.c","Lib_Sim.c","ASWC_M001.c"],
"includes": ["Generated/Rte","headers"],
"defines": [],
"init_runnables": ["RUNI_M001"],
"periodic_runnables": [{

"name": "RUNA_M001",
"consume": [{

"name": "VehicleSpeed",
"min": 0,
"max": 255,
"values": []

},{
"name": "KeyState",
"min": 60,
"max": 150,
"values": [

60,
105,
150 ]}],

"produce": [{
"name": "MIL_LED",
"min": 0,
"max": 1,
"values": []

...}

Listing 1. Intermediate JSON file with contracts

V. INCREMENTAL CONTRACTS APPLICATION

Once the contracts are being extracted from the different
specification sources, they can be applied in an incremental
way depending on the objectives we want to achieve.

A. Contracts for inputs only

When running static analysis without providing any contract
for the inputs, the analyzer will consider the entire range
for each input variable thus significantly increasing the state



space. When we provide contract for the inputs, we reduce
the state space because only possible values for each input are
considered.

B. Contracts for inputs and parameters

To further reduce the state space, we can also provide
contracts for the parameters in addition to the contracts of
the inputs. Each parameter can also have defined a minimum
and maximum value. Parameters or calibrations are used to
configure the software for a specific project. Providing a range
of values for each parameter is useful for the verification of a
software that will be used on multiple projects. We recommend
starting by this method.

C. Contracts for inputs and specific parameter values

In addition to the previous methods, we can fix the values of
the parameters thus reducing further the state space. Providing
a fixed value for each parameter is useful for the verification
of a software that will be used only on one project. It requires
connection with the integration team to obtain these values.

D. Contracts for guaranteeing outputs

With the previous methods we only provided constraints
for the input data to reduce the state space thus reducing the
number of false alarms. With this method we provide contracts
of type guarantee for the outputs and request the static analyzer
to prove they are always valid. For example, if we specify a
Boolean output but in the C code it is represented on 8 bits,
we want to guarantee that it will only take two values: 0 and
1.

VI. EXPERIMENTS AND METHODOLOGY

Our experiment consisted of analyzing 222 application
software modules used in a body ECU and one complex ADAS
module containing generated code. We used the Astrée [26]
static analysis tool version 23.04i in a batch mode to run the
analysis and produce reports. For the body software modules,
we developed a tool extracting automatically contracts from
the Software Architecture Design Database also including
network signals information and runnables. The information
is stored in the JSON format mentioned above and is then
used to setup automatically analysis projects and run them by
batch. We extracted 6728 contracts for inputs, 8058 contracts
for parameters and 6258 contracts for outputs. This JSON file
can also be used as a source to configure other sound static
analyzers such as Polyspace Code Prover.

For the ADAS module we used the System Design Interface
Definitions and extracted them directly from an Excel table.
We obtained 51 contracts for inputs and 104 contracts for
parameters.

We have 3 different scenarios to measure the errors reported
by the static analysis tool:

• Without contracts: we first analyze the modules without
any notion of contract. In this case, the static analyzer
considers the entire ranges of values for each input data.

• Contracts for inputs: we provide contracts for all inputs
present in the code.

• Contracts for inputs and parameters: we provide contracts
for all inputs and parameters present in the code. This
scenario is applied to the 222 application modules.

• Contracts for inputs and specific parameter values: we
provide contracts for all inputs and the parameters are
tuned to a specific value valid for the project. We applied
this scenario to the ADAS module.

VII. RESULTS

In this section, we comment on the results obtained for body
and ADAS software modules.

A. Body software results

Historically, the body ECU software (implementing func-
tions like Lighting, Fuel level, Lane keeping assist, Air con-
ditioning, etc.) was developed using integer numbers and a
fixed-point arithmetic where needed. The advantage of this
method is that the storage types are optimized to the values
encoded e.g., if we need to use the interval [0,10] we declare
an unsigned integer variable over 8 bits. Today, all modern
microcontrollers integrate an FPU6 and software designers
started to use floating-point arithmetic in their code. It is
frequent that a 32 bits floating-point (simple precision) type
that can represent more than 4 billion different numbers is
used for variables that need only a short set of values e.g.
[0.0,10.0]. If we do not provide the static analysis tool the
specified by the designer interval, it will consider the entire
range of 4 billion values for each variable or parameter which
will result in a lot of false positive results.

We observe that our method to generate precise contracts
for static analysis tools based on abstract interpretation provide
better results for modules using floating-point arithmetic or
large integers. Larger is the type used by the software designer
for representing small ranges, better is the efficiency of the
contract. As a consequence, for the body ECU software we
reduced the false alarms by 41.59% when providing contracts
for modules between 10,000 and 20,000 lines of code using
floating-point arithmetic. For the other modules between 1,000
and 10,000 lines of code using integers, only 11.36% of the
alarms were removed by adding the contracts. The explanation
is that the most used type uint8 has a rather small range of
values. We also noted that the analysis time was not influenced
by the contracts as it remained almost constant.

B. ADAS software results

The ADAS module we analyzed is rather complex (10,000
lines of code) and uses massively floating-point arithmetic. For
this module after adding the contracts we removed 84.58% of
the alarms. We think that this reduction is also the result of
using fixed values for parameters instead of a range of values.
It permitted us to identify some potential issues and fix them.

6A floating-point unit (FPU, or a math coprocessor) is a part of a computer
system specially designed to carry out operations on floating-point numbers



VIII. CONCLUSIONS AND FUTURE WORK

The ISO 26262 safety standard recommends using abstract
interpretation for static code analysis of ASIL level software.
If the context of the software component is not provided to the
tool, the results may contain a lot of false alarms especially
for codes containing floating-point calculations.

In this paper, we made an overview of different design by
contract techniques and provided a method to generate and
use contracts of three types: inputs, parameters, and outputs.
Contracts over the Inputs and Parameters provide constraints
for the static analyzer to reduce the state space of the system.
Contracts over the outputs are used to prove that no matter
what happens, the outputs will always be produced in the
specified range. We proposed an algorithm to obtain contracts
automatically by selecting the most appropriate source for each
of them. Our experiment showed a significant reduction of
false alarms especially for large modules using floating-point
arithmetic. Another application of design by contract is in
the reuse of components as we may check if the interfaces
are compatible (same contracts) or not. By using design by
contract, we build reliable reusable components.

As a future work, we would like to investigate how a
contract obtained from an external signal could be propagated
for all components receiving a copy of the same data and
check if the physical dimensions are propagated correctly.
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Abstract—This paper presents a novel approach to 

test suite augmentation using large language models and 

retrieval augmented generation (RAG) techniques. By 

leveraging the power of GPT-4 and a customised RAG 

framework, we show the effectiveness of automating test 

case generation to improve robustness verification in 

safety-critical embedded software systems. Our method 

involves indexing and retrieving relevant information 

from the entire software repository, including design 

documents, requirement specifications, prior test cases, 

and source code. The generated test cases are then 

integrated into the Cantata test framework, targeting 

key areas such as invalid values, overflow scenarios, 

timeout conditions, and improper state transitions. We 

applied our approach to two open-source projects, PX4 

Autopilot and Apollo Auto, and achieved promising 

results in terms of increased test coverage, defect 

detection, and compliance with industry standards like 

DO-178C and ISO 26262. Compared to human-authored 

test suites, our method generated a larger volume of tests, 

exposed a broader array of test scenarios, and unveiled 

additional high-severity defects. The results validate the 

potential of advanced language models and RAG 

techniques in enhancing software reliability and safety 

through automated testing. Future work aims to refine 

these techniques further and expand their applications in 

the software development lifecycle. 

 

I. INTRODUCTION 

Robustness testing is crucial for safety-critical embedded 

software like aviation and medical systems, ensuring they 

manage errors gracefully and recover from unexpected 

situations effectively. This methodical approach validates 

key capabilities such as error detection, fault tolerance, and 

overload handling, elements required to align with 

recognised standards like DO-178C. 

Manual test case authoring, particularly for 

requirements-based testing, demands considerable effort and 

is often fraught with risks of misinterpretations or oversight 

of corner cases. The evolving nature of software further 

complicates this, requiring continual test adaptation across 

versions and functionalities. 

Retrieval augmented generation (RAG) offers a 

promising approach here. It combines language models with 

an information retrieval system, enhancing automatically 

generated content with contextually relevant data extracted 

from documentation and prior tests. This enables an adaptive 

response from the system, producing text or code that is both 

coherent and contextually informed. This approach is driven 

by requirements, ensuring generated tests trace directly to 

specific functional needs. 

In harnessing the generative capabilities of GPT-4 and 

the assistance of automated agents, we employ RAG across 

the software repository, integrating code, existing tests, and 

documentation to autonomously generate test cases. These 

cases scrutinise the software’s robustness across various 

conditions, such as invalid values, overflow scenarios, and 

abnormal conditions, enabling a comprehensive inspection 

that mitigates the risks associated with manual testing. 

Additionally, a human-in-the-loop approach is employed, 

wherein generated tests are manually reviewed to further 

refine their effectiveness and efficiency, ensuring that the 

automation does not inadvertently overlook vulnerabilities. 

This paper will present our methodologies, share the 

preliminary results from applying these methods to real-

world embedded software projects, and discuss forthcoming 

work aimed at further refining and expanding these 

approaches. Our contributions extend beyond the 

application of RAG and language models to robustness 

testing; we also provide insights and data about their 

efficacy, offering a resourceful guide and a benchmark for 

future explorations and enhancements in automated testing 

in embedded software realms. 

II. RELATED WORK 

Our work builds upon the growing body of research on 

retrieval-augmented generation (RAG) and its applications 

in various domains. The seminal paper by Lewis et al. [1] 

introduced the concept of RAG, demonstrating its 

effectiveness in knowledge-intensive NLP tasks such as 

open-domain question answering. They showed that by 

augmenting language models with retrieved information, 

RAG could significantly improve performance compared to 

purely parametric approaches. Our work extends this idea to 

the domain of software testing, leveraging RAG to generate 

high-quality test cases. 

 

GPT-4 and Large Language Models 

 

We leveraged GPT-4, a distinguished multimodal 

language model developed by OpenAI, which excels in 

natural language generation, reasoning, and coding tasks. 

Renowned for its competence in single-shot and few-shot 

tasks, GPT-4, when coupled with refined prompting 

methods, emerges as an ideal model for benchmarking new 

applications of large language models (LLMs) in innovative 

manners. Consequently, GPT-4 was instrumental in 

automating the generation of our test cases, demonstrating 

its applicability and efficiency in novel use-cases. 

 

Retrieval Augmented Generation (RAG) 

 

The paper "Retrieval-Augmented Generation for 

Knowledge-Intensive NLP Tasks" by Lewis et al. [1] 

provides an overview of the RAG process. As they explain, 

"RAG works by adding a step to this basic process. Namely, 

a retrieval step is performed where, based on the user's 

prompt, the relevant information is extracted from an 

external knowledge base and injected into the prompt before 

being passed to the LLM." They note the three key elements 

are Retrieval, Generation, and Augmentation. This aligns 

with the RAG framework we employ in our study. 

Additionally, the survey paper "Retrieval-Augmented 

Generation for Large Language Models: A Survey" by Gao 

et al. [3] categorises RAG research into three types: Naïve 



RAG, Advanced RAG, and Modular RAG. Our approach 

falls under the Advanced RAG paradigm, as we incorporate 

techniques like query rewriting and prompt summarisation 

to enhance the base RAG process. 

 

During our research, we also explored the potential of 

Graph RAG, a recent advancement introduced by Microsoft 

Research [15]. Graph RAG aims to improve upon baseline 

RAG by utilising LLM-generated knowledge graphs to 

enhance retrieval performance, particularly in situations 

involving complex problems on private datasets. However, 

after careful consideration, we determined that Graph RAG 

was not well-suited to our specific use case, which primarily 

involves working with code and documentation fragments. 

The knowledge graph approach employed by Graph RAG 

did not align with the structure and relationships found in 

our software repository. As a result, we opted to develop our 

own custom RAG system that could better handle the unique 

characteristics of our dataset and generate more relevant test 

cases. 

 

Recent advancements in RAG have focused on 

improving retrieval strategies and enhancing the interaction 

between the retriever and generator components. The survey 

by Gao et al. [3] provides a comprehensive overview of these 

developments, categorising RAG approaches into Naïve 

RAG, Advanced RAG, and Modular RAG. Our method 

aligns with the Advanced RAG paradigm, as we incorporate 

techniques such as query rewriting and prompt 

summarisation to optimise the retrieval process. This builds 

upon the work of Wang et al. [6] and Shao et al. [7], who 

showed the benefits of iterative retrieval and generation for 

knowledge-intensive tasks. 

In the context of software engineering, there has been 

growing interest in leveraging large language models 

(LLMs) for various tasks, including code generation, bug 

detection, and test case generation. The work by Chen et al. 

[9] and Nijkamp et al. [10] showcased the potential of LLMs 

for generating high-quality code snippets and assisting 

developers in programming tasks. Our work extends this line 

of research by focusing specifically on test case generation, 

a critical aspect of software verification and validation. 

While existing approaches to test case generation often 

rely on traditional techniques, such as symbolic execution, 

model-based testing, and search-based algorithms, our 

RAG-based approach offers a novel perspective. By 

leveraging the vast knowledge captured in LLMs and 

augmenting it with project-specific information, we can 

generate test cases that are more closely aligned with real-

world requirements and specifications. This complements 

the work of Kang et al. [11] and Li et al. [12], who explored 

the integration of domain-specific knowledge into language 

models for improved performance in specialised tasks. 

Furthermore, our human-in-the-loop approach sets our 

work apart from fully automated (algorithmic) test case 

generation methods. The iterative feedback process, 

involving experienced testers, allows for the refinement and 

optimisation of generated test cases based on domain 

expertise and project-specific considerations. This aligns 

with the findings of Trivedi et al. [13] and Guo et al. [14], 

who emphasised the importance of human involvement in 

guiding and validating the outputs of language models in 

complex tasks. 

There have been noteworthy developments in the 

automation of unit test generation within integrated 

development environments (IDEs) recently. For instance, 

Visual Studio Code (VSCode) offers a built-in solution for 

generating unit tests based on the code under development 

[22]. This feature leverages static analysis techniques and 

predefined templates to create test stubs and assertions, 

streamlining the process of writing unit tests. However, 

these IDE-based solutions often rely on heuristics and lack 

the deep understanding of project-specific requirements and 

domain knowledge that our RAG-based approach 

incorporates. By combining the power of large language 

models with retrieval augmentation and human expertise, 

our method goes beyond the capabilities of IDE-based test 

generation, enabling the creation of more comprehensive 

and context-aware test cases. 

Several other tools and techniques have been developed 

for automatic test case generation across different 

programming languages. EvoSuite [23] is a search-based 

tool that generates unit tests for Java classes using 

evolutionary computation, aiming to maximize code 

coverage. Randoop [24] is another Java-based tool that 

generates tests by randomly selecting method sequences and 

constructing test cases based on the observed behaviour. In 

the .NET ecosystem, Pex [25] employs dynamic symbolic 

execution to generate test inputs that achieve high code 

coverage. For C and C++ programs, KLEE [26] is a 

symbolic execution engine that automatically generates test 

cases by exploring different program paths using constraint 

solving techniques. 

Cantata AutoTest, [16] a feature of the commercial 

testing framework used in our case studies, utilises advanced 

code parsing powered by the EDG parser to generate test 

cases for C/C++ code. The EDG parser provides a deep 

understanding of the code structure and enables Cantata 

AutoTest to create more targeted and effective test cases. 

While these tools have proven effective in their respective 

domains, they often rely on predefined strategies and lack 

the adaptability and context-awareness that our RAG-based 

approach provides. In contrast, our approach leverages the 

power of large language models and retrieval augmentation 

to generate test cases that are more closely aligned with real-

world requirements and project-specific contexts. 

 

Existing Tools for Code Indexing and Retrieval 

 

To effectively index and chunk the various artifacts, we 

leveraged open-source code indexing systems commonly 

used to help IDEs navigate code and documentation. 

Specifically, we employed ctags [19] and cscope [20] to 

build a comprehensive index of the codebase. ctags is a 

programming tool that generates an index file of names 

found in source and header files of various programming 

languages, aiding code comprehension. It can index 

functions, variables, class members, macros, and more, 

depending on the language. On the other hand, cscope is a 

text-based source browsing tool that allows programmers to 

search source code for symbols, definitions, functions, 

regular expressions, and more. 

 

Emerging Large Language Models 

 

GPT-4 has been a robust tool for our research. However, 

our next steps will leverage Llama 2 (and its variants), 

announced by Meta in partnership with Microsoft in July 

2023. Llama 2 is a open source LLM with the benefit of 

running locally on secure systems and is available in sizes of 



7, 13, and 70 billion parameters. Llama 2, while maintaining 

a similar architecture to its predecessor, is trained on 40% 

more data, offering enhancements in code generation and 

model training flexibility. 

 

Overall, our research contributes to the growing body of 

literature on RAG and its applications in software 

engineering. By demonstrating the effectiveness of RAG in 

test case generation and highlighting the benefits of human-

in-the-loop collaboration, we provide new insights and 

directions for leveraging LLMs in the verification and 

validation process. Our work also opens up avenues for 

future research on the integration of RAG with other 

software engineering tasks and the development of more 

advanced retrieval and generation strategies tailored to the 

unique challenges of the software development lifecycle. 

 

III. TECHNIQUES 

Introduction to the RAG implementation 

 

In our project, we applied RAG across the entire software 

repository, encompassing design documents, requirement 

specifications, prior test cases, and source code. This 

comprehensive approach ensured that the generator was 

provided with a broad context, enhancing the relevance and 

accuracy of the generated test cases. To facilitate this 

process, we developed custom tools and integrated them 

with the Cantata test framework. 

It is important to note that we developed our own custom 

RAG system specifically tailored for working with code and 

documentation fragments. While we investigated various 

existing RAG implementations, such as Graph RAG [15], 

we found that they were not well-suited to our specific use 

case. Our custom RAG system allowed us to effectively 

integrate and process the diverse range of artifacts found in 

the software repository, enabling the generation of highly 

relevant and context-aware test cases. 

 

Indexing and retrieval system 

 

To effectively index and retrieve relevant information 

from the software repository, we developed a custom 

indexing and retrieval system. This system leverages the 

capabilities of ctags [19], cscope [20], and CodeQuery [21]. 

ctags and cscope are well-established tools used by IDEs for 

navigating code and documentation. ctags generates an 

index file of names found in source and header files, while 

cscope allows programmers to search source code for 

symbols, definitions, functions, and more. 

We integrated these tools to create a robust foundation 

for our RAG implementation. CodeQuery further enhances 

the indexing process by building upon the databases of ctags 

and cscope to create a SQLite database. This database can 

be efficiently queried to retrieve relevant code snippets and 

documentation based on specific criteria. 

To complement these existing tools, we developed a 

custom suite of tools called Magrathea. The Magrathea suite 

includes functions for extracting relevant fragments of code, 

documentation, and comments, which are then used to 

populate the context window of the language model. Some 

of the key functions in the Magrathea suite are: 

- find_function_end: Reads a file from a specified 

start line until the end of the function is found, 

extracting the complete function body. 

- find_preceding_comments: Retrieves any 

comment block found directly before a specified 

function. 

- find_macros_for_function: Identifies macros used 

within specific functions in a source file, along 

with their definitions if there are non-unique 

values. 

- find_unique_calls: Finds unique function calls 

made from functions in a given source file. 

By integrating ctags, cscope, CodeQuery, and the 

Magrathea suite, we created a comprehensive indexing and 

retrieval system that allowed us to effectively apply RAG 

across the entire software repository. 

This approach ensured that the language model had 

access to a rich context window containing highly relevant 

code snippets, documentation, and comments, enabling the 

generation of more precise and contextually informed test 

cases. 

The indexing process was performed as a pre-processing 

step, allowing for efficient retrieval of relevant information 

during the test generation phase. The SQLite database 

created by CodeQuery served as a central repository for 

querying and retrieving the necessary artifacts based on 

specific criteria, such as function names, symbols, or 

keywords. This optimised retrieval process contributed to 

the overall efficiency and effectiveness of our RAG 

implementation in the context of automated test case 

generation. 

 

Test generation process 

 

The test generation process follows a structured 

workflow (figure 1) that leverages the RAG implementation 

and human expertise. The key steps in this process are: 

 

1. Querying the RAG API: We query the RAG API 

with a code snippet and an engineered prompt that 

specifically requests the generation of tests. 

2. Retrieval of relevant documents: RAG retrieves 

relevant documents and prior tests from the 

customised corpus based on the query. 

3. Generation of initial test cases: The language 

model (LLM) generates an initial set of raw test 

cases based on the retrieved context. 

4. Iterative refinement through human review: The 

generated test cases undergo an iterative refinement 

process, where human testers review and provide 

feedback on the tests' relevance, uniqueness, and 

potential effectiveness. 

5. The framework was then manually prompted for 

refinements including: 

- Rewriting tests for improved clarity 

- Eliminating redundant or duplicative tests 

- Adding preconditions for clarity 

- Correcting any functional inaccuracies 

This review was crucial for boosting precision and 

overall quality. 

 



 
Figure 1 - Test generation workflow using Retrieval Augmented 

Generation (RAG) and human-in-the-loop review 

 

This interaction shows the collaborative nature of the test 

generation workflow, involving the user, RAG, LLM, 

testing platform, and human examiner. Each component 

plays a crucial role in producing high-quality, context-aware 

test cases that thoroughly exercise the software under test. 

 

Integration with Cantata 

 

The generated test cases are integrated into the Cantata 

test framework [16], a commercial platform that provides a 

stable environment for test execution and result reporting. 

Cantata supports standard coverage metrics, such as 

statement coverage, decision coverage, and Modified 

Condition/Decision Coverage (MC/DC), which are essential 

for compliance with industry standards like DO-178C. 

To enable the execution of robustness test cases, Cantata 

offers targeted error injection methods: 

• Invalid values are introduced by leveraging white-

box instrumentation to override variables with 

out-of-range inputs based on their data types and 

semantic context. 

• Overflow conditions are induced by injecting 

custom code to provide inputs exceeding 

maximum buffer sizes defined in requirements 

specifications. 

• Timeout testing is accomplished through code 

wrapping techniques that artificially increase 

processing time in the test harness beyond 

thresholds specified in design documents. 

• Invalid state transitions are triggered by 

programmatically sequencing calls in an incorrect 

order relative to the expected state machine flow 

defined in the architecture. 

Cantata's flexible error injection features, including 

white-box instrumentation, custom code injection, and code 

wrapping, enabled the wide array of automatically generated 

robustness test cases targeting key areas like invalid values, 

overflow, timeouts, and improper state transitions. 

Experiment Setup 

To evaluate the effectiveness of our RAG-based 

approach for test case generation, we conducted a series of 

experiments using a diverse set of embedded software 

projects. Our preliminary dataset consisted of two open-

source projects: PX4 Autopilot [17] and Apollo Auto [18]. 

These projects were selected based on their complexity, 

availability of source code and documentation, and 

relevance to the domain of safety-critical embedded 

systems. 

For each project, we applied our RAG-based approach to 

generate test cases targeting various aspects of robustness, 

such as invalid inputs, boundary conditions, and resource 

constraints. We evaluated the generated test cases using 

several metrics, including code coverage, defect detection 

rate, and compliance with industry standards like DO-178C 

and ISO 26262. 

To assess the efficiency of our approach, we compared 

the time and effort required to generate test cases using our 

RAG-based method with the time and effort required for 

manual test case creation. We also conducted a qualitative 

analysis of the generated test cases, involving domain 

experts who reviewed the tests for relevance, effectiveness, 

and alignment with project requirements.  

Our experiments were designed to answer the following 

research questions: 

1. How does the RAG-based approach compare to 

manual test case creation in terms of coverage, defect 

detection, and compliance with industry standards? 

2. What is the impact of incorporating human feedback 

in the test case generation process on the quality and 

effectiveness of the resulting tests? 

3. How does the choice of LLM and RAG configuration 

affect the performance of the test case generation 

system? 

To ensure the reliability and validity of our results, we 

conducted multiple runs of each experiment, using different 

prompting and cross-validation techniques where 

Figure 2 - Architectural overview of the interaction between the user, RAG system, LLM, testing platform, 

and human examiner in the test generation process. 

 



applicable. We also documented the specific versions of the 

software tools, libraries, and models used in our experiments 

to facilitate reproducibility. 

 

Optimisation and configuration 

 

To optimise the RAG process for test case generation, we 

conducted several iterations, experimenting with various 

parameters and settings. One critical aspect was determining 

the optimal size of the context window, which determines 

the amount of relevant information provided to the model 

during the generation process. We tested context window 

sizes ranging from 256 to 1024 tokens and found that a size 

of 512 tokens struck a balance between providing sufficient 

context and maintaining computational efficiency. 

We also explored different versions of GPT-4, including 

GPT-4-turbo, which offers faster generation speeds. The 

sampling temperature, which controls the randomness of the 

generated output, was varied between 0.5 and 1.0. The top_p 

parameter, also known as nucleus sampling, was set between 

0.7 and 0.9, ensuring that the model considered only the 

most likely tokens during generation. Additionally, we 

adjusted the frequency_penalty and presence_penalty 

parameters to discourage the model from repeating the same 

output tokens too frequently. 

Through these iterations, we identified the optimal 

configuration for our RAG implementation, which included 

a 512-token context window, GPT-4 with a sampling 

temperature of 0.7, top_p of 0.8, and frequency and presence 

penalties of 0.2. 

Furthermore, we discovered that the precise wording of 

the system prompt played a crucial role in guiding the model 

to generate relevant and effective test cases. By carefully 

crafting the prompt to include specific instructions and 

requirements, we could steer the model towards generating 

tests that aligned with the project's goals. 

Lastly, we employed a multi-shot RAG knowledge 

injection method, where the model was provided with 

multiple rounds of context and generated outputs. This 

approach allowed the model to progressively refine its 

understanding of the project and generate more targeted test 

cases based on the accumulated knowledge. 

 

 
In this early proof-of-concept study, the primary focus 

was on assessing the code coverage achieved by the 

generated test cases. While selected cases, particularly those 

involving failure scenarios, were reviewed for accuracy, a 

more comprehensive examination of the test cases will be 

conducted in future stages of the research. The iterative 

refinement phase involving human examiners played a 

supportive role, with the team providing feedback on the 

generated tests based on their domain expertise. This 

feedback loop allowed for the identification of potential 

improvements and ensured that the generated tests aligned 

with the project's requirements. As this study aimed to 

establish the feasibility of the underlying method, a more 

rigorous and time-intensive review process will be 

incorporated in subsequent research phases to further 

validate the quality and effectiveness of the generated test 

cases. 

 

IV. CASE STUDIES 

We applied our technique to two different open source 

embedded C/C++ projects with the aim to validate to the 

stringent DO-178C Level A standards. 

PX4 Autopilot (PX4) 

PX4 [17] is an open-source flight control software for 

drones and other unmanned vehicles. It provides a flexible 

platform for users who need to control any kind of vehicle 

from a computing board. The platform contains everything 

needed for a full UAV system: flight stack, middleware to 

communicate between processors, and developer APIs to 

enhance existing functionalities. The combination of PX4’s 

open-source nature, broad applicability, and mature, reliable 

ecosystem made it a compelling choice for applying this 

research. 

- Size and Test Generation: A subset of the codebase, 

comprising around 35,000 Lines of Code (LOC), was 

subjected to our method, yielding 378 generated test 

cases. These tests emphasised robustness verification, 

exploring conditions like invalid values and overflow 

situations. 

- Comparison to Human-Authored Tests: Compared to a 

suite of 265 tests written by developers, our method 

provided a significantly denser set of tests. 

- Code Coverage: The tests achieved excellent code 

coverage, addressing 98% statement, 95% decision, and 

90% MC/DC coverage, and were evaluated using 

Cantata. With further refinement of our methods we are 

confident of satisfying the DO-178C requirements for 

structural coverage analysis. 

- Defect Discovery: Interestingly, these tests brought 14 

new defects to light. Predominantly related to overflow 

issues, two defects impacted the function of calculating 

the optimal flight path and were categorised as medium 

severity according to code experts. 

Apollo Auto (AA) 

Apollo [18] is an open autonomous driving platform that 

aims to provide a comprehensive, safe, and reliable solution 

for autonomous driving. The project encompasses various 

technologies related to autonomous driving, such as 

perception, planning, control, and end-to-end deep learning, 

to enable vehicles to navigate in various environments and 

scenarios. The project was selected due to its open codebase, 

comprehensive documentation and robust coding practices. 

- Size and Test Generation: On a larger section of this 

codebase of 50,000 LOC, our method generated 512 test 

cases, which also zeroed in on robustness aspects. 

- Comparison to Human-Authored Tests: A traditional, 

developer-written test suite for Project B consisted of 

342 tests, indicating a robust enhancement in test 

comprehensiveness through our technique. 

- Code Coverage: A good level of code coverage was 

achieved, encapsulating 88% statement, 85% decision, 

and 80% MC/DC coverage, verified via Cantata. With 

further refinement of our methods we are confident of 

satisfying all the structural coverage requirements of ISO 

26262 

- Defect Discovery: Additionally, 9 new defects were 

discovered, mainly pertaining to validating invalid 

inputs, of which 3 were linked to the functionality of 

alerting the driver of potential hazards and were of high 

severity according to code experts. 
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RAG-based 

Approach 

AA 88% 85% 80% 512 9 

Algorithmic 

Test generation 

PX4  85% 80% 75% 0 0 

Algorithmic 

Test generation 

AA 80% 75% 70% 0 0 

Manual Testing PX4  90% 85% 80% 265 0 

Manual Testing AA 85% 80% 75% 342 0 

 

Table 1 – Summary of initial results 

 

To provide a clear overview of the performance of our RAG-

based approach compared to other tools and manual testing, 

we present a summary of the results in Table 1. The table 

includes the statement coverage, decision coverage, MC/DC 

coverage, number of failure tests, and number of defects 

found for each method/tool and project. As clear from the 

table, our RAG-based approach consistently achieves higher 

coverage metrics and detects more defects compared to the 

other tools and manual testing across both projects. 

 

 

 

Insights and Unveiling Additional Defects 

Our RAG-based approach generated a diverse range of 

test cases targeting various aspects of robustness, with code 

coverage being a key driver in achieving a comprehensive 

set of tests. The generated tests encompassed scenarios such 

as: 

Boundary value testing: Tests were generated to validate 

the system's behaviour when inputs approached or exceeded 

the defined limits, such as maximum and minimum values 

for numeric inputs or edge cases for string inputs. This 

included testing with values just inside and outside the valid 

ranges to ensure proper handling of boundary conditions. 

Invalid input testing: Tests were created to assess the 

system's response to invalid, malformed, or unexpected 

input data, including null pointers, out-of-range values, and 

data types inconsistent with the expected format. These tests 

aimed to verify the system's ability to gracefully handle and 

recover from invalid inputs without crashing or exhibiting 

undefined behaviour. 

Resource management testing: Tests were designed to 

evaluate the system's performance and stability under 

resource-constrained conditions, such as limited memory, 

high CPU utilisation, or low power scenarios. These tests 

helped identify potential memory leaks, resource exhaustion 

issues, and other performance bottlenecks. 

Interrupt handling testing: Tests were generated to verify 

the correct handling of interrupts and the system's ability to 

prioritise and manage multiple interrupt sources. These tests 

ensured that the embedded software could respond to real-

time events and maintain deterministic behaviour. 

Error handling and recovery testing: Tests were 

generated to assess the system's ability to detect, isolate, and 

recover from errors, such as communication failures, sensor 

malfunctions, or unexpected resets. These tests verified the 

effectiveness of error handling mechanisms and the system's 

Figure 3 - The iterative process of RAG, LLM and review 



capacity to maintain a safe state or initiate appropriate 

recovery procedures. 

 

Included in the Annex are sample prompts used to 

generate various types of test. 

 

Code comments and documentation fragments played a 

crucial role in informing the scope of the generated tests. By 

supplementing the code with context-relevant requirements 

and the developers' intentions, parsed from comments, our 

approach unlocked a performant set of tests. This contextual 

information guided the generation of test cases that aligned 

with the specific functionality and constraints of each code 

module, resulting in more targeted and effective testing. 

 

The generated tests were executed dynamically, allowing 

for the validation of the system's behaviour under various 

conditions and the identification of any defects or 

vulnerabilities that could compromise the reliability and 

stability of the embedded software. By leveraging code 

coverage metrics, we ensured that the generated tests 

thoroughly exercised the codebase, reaching critical paths 

and uncovering potential issues that might have been missed 

by manual test creation efforts. 

The human effort involved in generating additional 

robustness tests was significantly reduced compared to 

manual test creation. The RAG-based approach 

autonomously generated a comprehensive set of initial test 

cases, which were then reviewed and refined by human 

testers. 

 

This review process (figure 3) typically involved: 

 

1. Assessing the relevance and coverage of the generated 

tests 

2. Identifying any missing critical scenarios or edge 

cases 

3. Providing domain-specific insights and context to 

enhance the tests 

4. Optimising the test data and expected outcomes 

5. Ensuring alignment with project requirements and 

quality standards 

 

On average, the human effort required for reviewing and 

refining the generated tests was approximately 30% of the 

time that would have been needed to create the tests from 

scratch manually. This highlights the efficiency gains 

achieved through the RAG-based approach. 

 

By leveraging RAG to generate a wide range of robust 

test cases and incorporating human expertise to refine them 

further, our approach effectively identified defects and 

coding oversights that were previously undetected. This 

highlights the value of combining generative AI techniques 

with human domain knowledge to enhance software quality 

and reliability. 

 

Comparison with Other Validation Tools 

Compared to traditional validation tools, our RAG-based 

approach offers several distinct advantages. One key 

strength lies in its adaptability and scalability across diverse 

software projects. While many existing tools are tailored to 

specific programming languages, frameworks, or domains, 

our method leverages the language-agnostic nature of 

LLMs. By training on a vast corpus of natural language and 

code, LLMs can effectively generate test cases for a wide 

range of software systems, regardless of their underlying 

technologies. This flexibility enables seamless integration 

into various development workflows and reduces the need 

for specialised validation tools for each project. 

Another significant advantage of our approach is its 

ability to generate test cases that are grounded in real-world 

requirements and specifications. Traditional validation tools 

often rely on predefined templates, heuristics, or static 

analysis techniques, which may not fully capture the nuances 

and complexities of a given software project. In contrast, our 

RAG framework actively retrieves and incorporates relevant 

information from project documentation, user stories, and 

domain-specific guidelines. By combining this contextual 

knowledge with the generative capabilities of LLMs, we can 

produce test cases that are more closely aligned with the 

intended functionality and user expectations. 

Furthermore, our RAG approach excels in generating 

test cases for complex, multi-component systems. Many 

existing validation tools struggle to handle the intricacies of 

interconnected modules, asynchronous operations, and 

distributed architectures. However, the retrieval component 

of our framework enables the LLM to gather and synthesise 

information from multiple sources, allowing it to generate 

test cases that span across system boundaries. This holistic 

perspective is particularly valuable in identifying integration 

points, data flow issues, and potential performance 

bottlenecks. 

Lastly, the human-in-the-loop aspect of our approach 

sets it apart from fully automated validation tools. While 

automation is crucial for efficiency, the involvement of 

human experts adds a layer of qualitative assessment and 

domain-specific insights. The iterative feedback process 

allows for the refinement of test cases based on the unique 

requirements and priorities of each software project. This 

collaborative approach ensures that the generated test cases 

are not only technically sound but also aligned with the 

broader goals and constraints of the development team. 

It is important to note that many of the other validation 

tools discussed in the "Related Work" section, such as 

EvoSuite, Randoop, Pex, and KLEE, are algorithmic in 

nature and focus on specific programming languages. While 

their approaches to test case generation can be compared and 

contrasted with our RAG-based method, these tools could 

not be directly applied to the case study projects, which 

primarily involve embedded C/C++ code. 

The only tool that could be directly applied to the case 

study projects was the existing algorithmic AutoTest 

generation feature of Cantata, the commercial test 

framework used in our experiments. Cantata's AutoTest 

feature employs a combination of static analysis and path 

analysis to generate test cases based on the structure of the 

code under test. 

In summary, our RAG-based approach offers several 

advantages over traditional validation tools: 

- Adaptability and scalability across diverse software 

projects, regardless of the programming language or 

domain 



- Ability to generate test cases grounded in real-world 

requirements and specifications by leveraging the 

knowledge captured in LLMs and project-specific 

documentation 

- Effectiveness in generating test cases for complex, 

multi-component systems by synthesising information 

from multiple sources and considering system-wide 

interactions 

- The value of human-in-the-loop collaboration in 

refining test cases, ensuring their alignment with 

project goals and constraints 

While algorithmic tools like Cantata's AutoTest feature 

can be useful in certain scenarios, our RAG-based approach 

provides a comprehensive and flexible solution for test case 

generation in the context of safety-critical embedded 

systems. 

V. CONCLUSIONS 

Observations and Achievements 

- Increased Test Generation: The approach not only 

produced a larger volume of tests compared to human-

authored ones but also exposed a broader array of test 

scenarios. 

- Compliance with Stringent Standards: The automated 

generation of tests did not compromise the ability to achieve 

high code coverage, ensuring adherence to vital industry 

standards like DO-178C. and ISO 26262 

-  Unveiling of Hidden Defects: Notably, our approach 

unveiled additional, including high-severity, defects, which 

eluded detection by human-authored test suites. 

Future Pathways 

- Exploring Llama 2 and other emerging LLMs: While 

GPT-4 has been instrumental in our research, we plan to 

explore the potential of other emerging LLMs, such as 

Llama 2, for test case generation. As discussed in the 

"Related Work" section, Llama 2 offers several advantages, 

including the ability to run locally on secure systems and its 

enhanced training data. By leveraging these new LLMs, we 

aim to further improve the efficiency and effectiveness of 

our RAG-based approach. 

- Optimising Llama 2 for Embedded Projects: This 

involves calibrating Llama 2 with various software 

documentation, adapting the model to the domain-specific 

language and patterns of embedded systems, and enhancing 

its performance with embedded system code. 

- Broadening RAG Applications: Our future efforts will 

look towards employing RAG earlier in the software 

development process. This involves deriving test cases 

directly from requirements, co-developing test cases and 

code, and establishing a feedback mechanism beneficial for 

system designers. 

 

Our preliminary results validate this approach and instil 

confidence in utilising advanced language models for 

robustness testing in safety-critical domains. The next 

phases of this research will further refine techniques and 

expand test generation capabilities to bolster automated 

testing for safety-critical systems. This ongoing pursuit aims 

to enhance software reliability and safety where flawless 

operation is indispensable. By integrating generative models 

with retrieval augmentation and rigorous human review, a 

pathway emerges to achieve robust and nuanced automated 

testing. Through iterative refinement of these synergistic 

techniques, the journey towards more reliable, resilient, and 

efficient testing methodologies continue. 
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ANNEXE 

Prompting – example flow 

This JSON-formatted example of a RAG interaction 

demonstrates how the user query combined with retrieved 

documents drives the LLM's generation of test cases. This 

illustrates the interplay between the user, RAG system, 

LLM, and human examiner in an iterative process to refine 

the test cases, as outlined in our test generation workflow. 

 
{ 
    "prompt": { 
        "model": "gpt-4", 
        "messages": [ 
            {   "role": "system", 
                "content": "You are an expert C and 
C++ unit test writer. Write tests to exercise boundary 
values, equivalence classes, every statement, every 
decision true and false. Write tests that call every 
boolean condition both true and false. Write suitable 
robustness tests. Return valid json."}, 
            {   "role": "user", 
                "content": "We are only using the 
Cantata test harness to perform checks on the return 
values when calling the software under test. 
              
Along with the name and description of the test, we 
require a block of code achieving the following: 
- setting up any input data required for the test 
- calling the entry point to the test 
- if the function returns, set a variable to hold the 
return value 
- performing a Cantata CHECK on any return 
             
We also require a string of expected calls to onward 
functions. This string needs to be a comma seporated 
list exactly in the order the calls are made and of 
the format: 
 
<function_name_1>,<function_name_2>, 
              
etc. Where <function_name> is the name of the function 
that we expect to be called during the test. We could 
be expecting one or more calls to: 
low_pressure_check 
get_systolic 
get_diastolic 
high_pressure_check 
sound_alarm 
"           }, 
            {   "role": "assistant", 
                "content": "I understand. Please 
provide the code to generate tests for."}, 
            {   "role": "user", 
                "content": "Here is the code to test: 
<truncated>}, 
            {   "role": "assistant", 
                "content": "Thanks for this piece of 
code, I will generate some small unit tests for this 
code. Please specify the entry point function to drive 
our first batch of tests."}, 
            {   "role": "user", 
                "content": "Our entry point is: 
pressure_check"}, 
            {   "role": "assistant", 
                "content": "OK."}, 
            {   "role": "user", 
                "content": "Provide a list of function 
calls with expected returns and expected calls."} 
        ], 
        "functions": [ 
            {   "name": "test_it", 
                "description": "input to drive the 
creation of unit tests", 
                "parameters": "<truncated>} 
        ], 
        "function_call": { 



            "name": "test_it" 
        }, 
        "temperature": 1, 
        "max_tokens": 2000, 
        "top_p": 1, 
        "frequency_penalty": 0, 
        "presence_penalty": 0, 
        "stream": false 
    }, 
    "response": { 
        "id": "xxx", 
        "choices": [ 
            { 
                "finish_reason": "stop", 
                "index": 0, 
                "logprobs": null, 
                "message": { 
                    "content": null, 
                    "role": "assistant", 
                    "function_call": { 
                        "arguments": "{ 
  "tests": [ 
    { 
      "test_name": 
"Test_pressure_check_with_monitor_OK", 
      "test_description": "Test the pressure_check 
function when monitorStatus is MONITOR_OK", 
      "test_code": " 
#define MONITOR_OK 1 
extern int monitorStatus; 
extern int systolic; 
extern int diastolic; 
 
void Test_pressure_check_with_monitor_OK() 
{ 
  int retVal; 
   
  // setup 
  monitorStatus = MONITOR_OK; 
   
  // exercise 
  retVal = pressure_check(); 
   
  // verify 
  CHECK_INT(retVal, 1); 
  CHECK_INT(systolic, 120);  // The expected return 
from get_systolic 
  CHECK_INT(diastolic, 80);  // The expected return 
from get_diastolic 
}", 
      "call_list": "get_systolic,get_diastolic" 
    }, 
    { 
      "test_name": 
"Test_pressure_check_with_monitor_NOT_OK", 
      "test_description": "Test the pressure_check 
function when monitorStatus is NOT MONITOR_OK", 
      "test_code": " 
#define MONITOR_OK 1 
extern int monitorStatus; 
extern int systolic; 
extern int diastolic; 
 
void Test_pressure_check_with_monitor_NOT_OK() 
{ 
  int retVal; 
   
  // setup 
  monitorStatus = !MONITOR_OK; 
   
  // exercise 
  retVal = pressure_check(); 
   
  // verify 
  CHECK_INT(retVal, 0); 
  CHECK_INT(systolic, -1); 
  CHECK_INT(diastolic, -1); 
}", 
      "call_list": "" 
    } 

  ] 
}", 
                        "name": "test_it" 
                    }, 
                    "tool_calls": null 
                } 
            } 
        ], 
        "created": xxx, 
        "model": "gpt-4-0613", 
        "object": "chat.completion", 
        "system_fingerprint": null, 
        "usage": { 
            "completion_tokens": 330, 
            "prompt_tokens": 684, 
            "total_tokens": 1014 
        } 
    } 
} 

 
In this example the part underlined and bold is the key 

element to direct the system to generate tests of a specific 

type. Here we are looking for boundary and robustness 

tests. 

Expanded Prompt Examples 

      "content": "You are an expert C and C++ unit test 
writer. Write tests to exercise boundary values, 
equivalence classes, every statement, every decision 
true and false. Write tests that call every boolean 
condition both true and false. Write suitable robustness 
tests. Return valid json. This includes creating 
scenarios where edge cases are tested, such as the 
smallest or largest possible values, values on either 
side of a boundary, and common robustness challenges in 
system behavior." 

In this example we instruct the LLM to focus on 

generating specific types of unit tests, namely boundary 

value tests, equivalence class tests, and robustness tests for 

C/C++ code. These tests are crucial for ensuring that the 

software behaves as expected under various edge conditions 

and stress scenarios. 

This approach emphasizes comprehensive testing by 

ensuring all paths and conditions are evaluated, enhancing 

the software's reliability and performance. 

Variations for Different Testing Scenarios 

1. Invalid Input Testing 

      "content": "As a specialist in C and C++ 
testing, generate unit tests that deliberately use 
invalid, unexpected, or outlier inputs. Verify that the 
software gracefully handles these inputs by either 
rejecting them with appropriate error messages or by 
ensuring no system instability. Return valid json." 

This prompt directs the LLM to create unit tests that 

focus on how the application handles inputs that are 

incorrect or out of the expected range, which is essential for 

validating input validation and error management in the 

software. 

2. Resource Management Testing 

      "content": "Create unit tests for C and C++ 
applications that assess the software's management of 



system resources. These tests should include scenarios 
where resources are limited, such as low memory 
availability, and ensure the application releases all 
resources after use. Return valid json." 

This prompt focuses on testing the software's ability to 

handle and efficiently manage system resources, crucial for 

applications that operate in resource-constrained 

environments or require high reliability. 

3. Interrupt Handling Testing 

     "content": "Develop unit tests that simulate 
various interrupt conditions in C and C++ programs. 
Ensure that the software correctly handles and recovers 
from these interrupts, maintaining data integrity and 
proper operational state. Return valid json." 

The tests generated from this prompt should ensure that 

the software can handle unexpected interruptions, 

maintaining stability and data integrity, which is vital for 

real-time and critical systems. 

4. Error Handling and Recovery Testing 

      "content": "Generate unit tests for error 
handling and recovery mechanisms in C and C++ code. The 
tests should force the software into error states and 
evaluate the recovery procedures to return to a normal 
operating state. Return valid json." 

This prompt instructs the LLM to create tests that assess 

the effectiveness of the software's error handling and 

recovery processes, critical for applications where uptime 

and reliability are essential. 
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1 Abstract 

This paper shows on a case study (launcher 
sequence) how simple semi-formal methods and tools 
(SysML modelling, Domaine Specific Language, 
Simplex algorithm) can be used to improve the 
development and the validation of industrial systems 
without using complex formal methods which are 
sometimes difficult to manage by engineers. 

Keywords: Model-based system and safety 
engineering, Requirement 
engineering, Verification methods, 
Formal method, Automatic test’s 
generation 

2 Introduction 

This paper addresses the development of space 
launchers, for which a failure may have major financial 
consequences. 

Using formal methods (e.g. [1]) to support the 
verification and validation of such critical real-time 
systems is often recommended because classic tests 
cannot be exhaustive (the system is demonstrated to 
be correct only on the used scenarios). Formal 
methods provide power-full tools to demonstrate that 
a system is bug-free on all the possible scenarios. On 
the other hand, formally proving timed properties on a 
system may also be quite difficult for non-experts. 

This paper shows on a case study how informal 
requirements captured by simple tools directly usable 
by system engineers (such as Excel) or readable by 
system engineers (such as SysML [5] state-charts or 
activity diagrams) can be safely translated in more 
formalised descriptions. 

Then it presents a method mixing testing and 
mathematical analysis (a classic simplex algorithm) 
allowing verifying system requirements and their 
implementation in the embedded software in the 
particular case of the design of launcher sequences. 

After this introduction, the section 3 introduces the 
notion of launcher sequences, subject of the case 
study, and the process to develop them. The section 4 
presents how launcher sequence’s requirements can 
be translated in mathematical equations solvable by a 
classical simplex algorithm. The corresponding 
process is detailed section 5. This approach is 
demonstrated on a toy example in section 6. Finally, 
the section 7 compares this approach with other 
experiments performed by ArianeGroup with formal 
methods. 

3 Introduction to launcher sequences 

3.1 Objectives 

The design of a launcher is highly complex and we will 
not present this in the paper. Instead, we focus on a 
sub-part of the design that concerns the launcher 
sequences. A launcher sequence describes all the 
acyclic events occurring during a launcher mission 
(ignition and stop of engines, stage release, payload 
services, etc.). Such launcher sequences shall satisfy 
requirements coming from several sources: 

 Analysis of launcher flight phases: The 
definition of the launcher high-level behaviour 
specifies the flight phases, such as ground 
phase, atmospheric / extra-atmospheric 
phases, propulsive / orbital phases… 

 Launcher versatility: The launcher shall be 
able to fulfil several kinds of mission (with 
different booster configurations, targeting 
different orbits…). Each mission corresponds 
to a specific launcher sequence 

 Subsystems: Each subsystem (engine 
control, flight control, tank management, etc.) 
has its own needs toward the launcher 
sequences (e.g. duration of an equipment 
warmup, maximal frequency for commanding 
a piece of equipment, etc.). 

 Transverse requirements affecting the 
relationships between the subsystems: For 
instance, correct pressurisation of the tanks 
needed for an engine ignition, navigation data 
needed by the guidance, etc. 

The design of launcher sequences requires a 
synthesis of all these needs. 

3.2 Process overview 

The following figure summarizes the low part of a quite 
classical development process (this process is 
detailed section 5) based on a V development cycle 
(see [9]). The red circle highlights the topics 
addressed by this paper. 
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Figure 1: Simplified development process 

 The system design defines the subsystems 
and the high levels interactions between 
them. It defines in particular the launcher 
sequences. 

 The system detailed design provides all the 
details allowing the actual development of the 
subsystems and of the flight software. It 
details in particular the content of the launcher 
sequences.  

 The system unitary tests allow testing each 
subsystem, in particular the launcher 
sequences. 

 The system qualification tests the system as a 
whole (including all the subsystems and the 
launcher sequences). 

3.3 Design of the launcher sequences 

A space launcher is designed to be versatile, i.e. to be 
able to execute several kinds of mission (different 
trajectories, different number of boosts, different 
number of payloads, etc.). As a result, each mission 
corresponding to a specific launcher sequence. The 
flight software implements the launcher sequences 
and selects the sequence to be executed depending 
on the values of mission data. 

Let us take the following very simple example. The 
launcher is supposed to be able to execute two kinds 
of sequences which are selected through the mission 
data “Option” (which can take the values “O1” or “O2”; 
“O1” may for instance require a sub-sequence with a 
boost phase, and “O2” a sub-sequence with a ballistic 
phase). These two possible sequences are designed 
through a SysML activity diagram. 

Option O1 Option O2

Step 1

Step 2

[Option = O1] [Option = O2]

 

Figure 2: Design of the launcher sequences 

“Step 1”, “Option O1”, “Option O2” and “Step 2” 
correspond to sub-sequences of the launcher 
sequences. The Figure 2 represents the two following 
launcher sequences: 

 [Step 1; Option1; Step2] when Option = O1 

 [Step 1; Option2; Step2] when Option = O2 

3.4 Detailed design of the launcher 
sequences 

The detailed design of a sub-sequence specifies the 
events which may occurred during this sub-sequence 
and theirs times of occurrence 

The system engineers design the sub-sequences in 
an Excel file. An example of such design is given 
below (with only one event in each sub-sequence). 

 

Sub-Seq Time Events Properties 

Step 1 T1 + 1mn Ev1  

O1 T2 - 2mn Ev2  

O2 T2 Ev1  

Step 2 T2 + M1 Ev2 Ev2 <= Ev1 + M2 

Figure 3: Example of sub-sequence’s definition 

The “Step 1” sub-sequence specifies for instance that 
at the time “T1 + 1mn”, the “Ev1” event shall occur. 

An event may be an internal event decided by the 
launcher sequence (e.g. a command, such as the 
control of an engine) or an external event observed by 
the launcher sequence (e.g. the end of the warmup of 
a piece of equipment). 

The column “properties” provides additional properties 
the launcher sequence shall satisfy. The “Step 2” sub-
sequence specifies for instance that the “Ev2” event 
shall occur less than M2 minutes after the “Ev1” event 
(e.g. an engine shall be used less than 3 minutes after 
its warmup). 

 “T1” and “T2” are the times of occurrence of key-
events decided by the launcher guidance (such as the 
time to ignite an engine or to release the fairing). Their 
values are computed during the flight and may vary 
depending on the launcher behaviour (e.g. in case of 
an over or under propulsive engine, in case of wind, 
etc.). The times of the other events (e.g. “Ev1” or 
“Ev2”) are defined relatively to the times of these key-
events. 

“M1” and “M2” are mission data allowing customising 
the flight software for a particular mission. 

3.5 Implementation of the launcher 
sequences 

ArianeGroup has put in place a MBSE (Model Based 
System Engineering) method based on SysML [5] 
(customised and completed by a dedicated formalised 
profile) and on Domain Specific Languages (DSL) to 
describe the detailed functional design of the launcher 
system (see [6]). For instance: 
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 Use of a set of state-charts to describe the 
system and subsystem’s high level 
behaviours, 

Ground
Pro-

pulsion

BalisticEnd

 

Figure 4: System state-
chart 

Off

FailedOn

 

Figure 5: State-chart of a 
piece of equipment 

 Use of block diagrams to describe the 
exchanges of information between the 
subsystems. 

Navigation Guidance Control

FDIR

Engine control

 

Figure 6: Main block diagram 

 Use of a textual Domain Specific Language 
(DSL) to describe the launcher sequences 
and the FDIR (Fault Detection Isolation ad 
recovery), 

if Failure_Detected then 
    goto Abort_Flight; 
at T1: Cmd_Lift_Off; 

Figure 7: DSL describing the mission 

 Etc. 

An event (see section 3.4) may typically be a guard of 
a state-chart (internal event of a launcher sequence, 
i.e. the launcher sequence requests the triggering of a 
transition of a state-chart) or an output of a sub-system 
(external event of a launcher sequence, such as the 
detection of an empty tank). 

Automatic code generation is then used to generate a 
part of the flight software from these descriptions. 

4 Formal specification and analysis 

4.1 Formalisation of the design 

This section shows how the informal description 
presented section 3 can be formalised to allow 
automatic analysis (see section 4.2). 

The description of Figure 3 corresponds to the way the 
system engineers wish to describe the launcher 
sequences. As is, this description may be ambiguous 
and prevent an automated analysis. For instance: 

 What is the meaning of “Ev2 <= Ev1 + M2”, 
considering that “Ev1” and “Ev2” are events 
(and that we cannot compare events), and 
that they may occur several times? 

 How can we ensure that an input event (by 
definition not mastered by the launcher 
system) occurs at a given time? 

 Is there an order of occurrence specified by 
the table of the previous section? 

 Etc. 

The system engineers and the method engineers have 
thus discussed to define a formal syntax and a formal 
semantics for both the SysML activity diagrams and 
the content of the Excel sheets in order to allow 
automatic analysis. The syntax has been defined to be 
as close as possible from the informal description 
used by the system engineers in order to be accepted 
by them, and the semantics as intuitive as possible. 

The sub-sequence (first column of the previous table) 
specifies in which cases the line is applicable. In 
Figure 3, depending of the value of the enumerated 
mission data “Option”, the sequence may be: 

 If Option = O1 

 

Time Events Properties 

T1 + 1mn Ev1  

T2 - 2mn Ev2  

T2 + M1 Ev2 Ev2 <= Ev1 + M2 

Figure 8: Instantiation of the sequence for option O1 

 If Option = O2 

 

Time Events Properties 

T1 + 1mn Ev1  

T2 Ev1  

T2 + M1 Ev2 Ev2 <= Ev1 + M2 

Figure 9: Instantiation of the sequence for option O2 

The name of an event used in a property (such as “Ev2 
<= Ev1 + M2”) shall be interpreted as the time of 
occurrence of the event (i.e. the property shall be 
interpreted as “time (Ev2) <= time (Ev1) + M2”). 

When an event occurs several times, such event in a 
property shall be interpreted as the last occurrence of 
this event in the past, starting from the line on which 
the property is specified. 

 In option “O1”, “Ev1” in the property refers to 
“T1 + 1mn”. 

 In option “O2”, “Ev1” in the property refers to 
“T2”. 

An accuracy (or acceptable variability) shall be 
specified for each occurrence of an event. Indeed, 
without such accuracy specification, the description 
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may over-constrain the system design. A line of the 
table may look like: 

 

Time Events Accuracy 

T Ev [-100ms .. 500ms] 

Figure 10: Specification of an accuracy 

Meaning that the “Ev” event shall occur after “T -
100ms” and before “T + 500ms”. 

At first sight, a line of the table shall be executed 
strictly before the next one. 

 In option “O1”, it means that “T1 + 1mn < T2 - 
2mn” and “T2 - 2mn < T2 + M1”. 

 In option “O2”, it means that “T1 + 1mn < T2” 
and “T2 < T2 + M1”. 

After further discussion with the system engineers, this 
last rule has appeared to be too simplistic as shown 
by the following example. Let us consider the case of 
an equipment warmup. The system shall wait until the 
piece of equipment is ready before using it. In practice, 
the duration of an equipment warmup is not 
deterministic. Let say that it take between 2mn and 
6mn. 

Here is an example of sub-sequence with an 
equipment warmup (where the “other event” is 
independent from the equipment warmup). 

 

Time Events Accuracy 

T Start warmup [0ms .. 0ms] 

T+5mn Other event [0ms..0ms] 

T+6mn End warmup [-4mn, 0ms] 

T+7mn Use equipment [0ms .. 0ms] 

Figure 11: Sub-sequence with an equipment warmup 

Through this description, a system engineer wishes to 
express the fact that “end warmup” occurs (obviously) 
after “start warmup” and that “use equipment” shall 
occur after “end warmup”. However, he/she has not in 
mind that “end warmup” shall occur after “other event”. 
Indeed, “end warmup” can occur between “T+2mn” 
and “T+6mn”, i.e. potentially before the Time of 
occurrence of “other event”. These two events are in 
fact not related. 

We have thus decided to provide explicitly a “kind” to 
the events to distinguish “input events” and “output 
events”. We obtain the sequence: 

 

Time Events Kind Accuracy 

T Start warmup Out [0ms .. 0ms] 

T+5mn Other event Out [0ms..0ms] 

T+6mn End warmup In [-4mn, 0ms] 

T+7mn Use equipment Out [0ms .. 0ms] 

Figure 12: Specification of the input / output events 

The previous rule can then be refined by 

 An “output” event shall always occur after the 
event specified in the previous line. It means 
intuitively that the system shall wait until the 
end of the execution of the previous line. 

 The accuracy of an “input” event shall always 
have a null upper bound. It means that the 
column “Time” specifies the latest possible 
time of occurrence of the input event (it can 
occur before this time but not after). 

On this example, it implies that “use equipment” shall 
occur after “end warmup” but that the “other event” 
and “end warmup” are not scheduled. Intuitively, it 
means that the “input event” “end warmup” has not to 
“wait” for the “output” “other event” (which would be in 
contradiction with the definition of “input” and “output” 
events). 

Finally, considering all the possible dispersions (actual 
engine thrust, occurrence of failures), the mission 
analysis computes minimal and maximal values the 
key-event’s times can take. For instance: 

 T1 in [Min1 .. Max1] 

 T2 in [T1+Min2 .. T1+Max2] 

Meaning that it is physically not possible for T1 to be 
less than “Min1” or greater than “Max1”, and that T2 is 
defined relatively to T1. 

Thanks to these rules, the initially informal description 
of the launcher sequences can now be automatically 
analysed. 

4.2 Formal analysis 

In the definition of T1 and T2, “Min1”, “Max1”, “Min2”, 
“Max2”, “M1” and “M2” are mission data 
corresponding to times or durations (i.e. they are 
constants which values depend on the mission). The 
launcher sequence is completely defined by the 
enumerated mission data “Option” and these timed 
mission data. In addition, the launcher sequence will 
be correctly defined if the values taken by this mission 
data are compatible with the rules expressed section 
4.1.  

As introduced in section 3.5, ArianeGroup uses a DSL 
to model the launcher sequences and an automatic 
code generator for their implementation (this model 
being an implementation of the Figure 3 seen as a 
specification). 

In order to ensure that the final product is correct, one 
has to demonstrate that: 

 The design is consistent with the rules 
specified section 4.1. 

 The code (automatically generated from the 
DSL) is consistent with the design. 

From Figure 8 and Figure 9, one can derive some 
equations on the mission data: 

 For “Option = O1”: 
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 “Min2 - 2mn  > max1 + 1mn” (scheduling 
between the two first lines of Figure 8) 

 “T2 + M1 > T2 - 2mn” (scheduling 
between the two last lines of the Figure 8), 
i.e. “M1 > -2mn” 

  “Max2 + M1 <= max1 + 1mn + M2” 
(property) 

 For “Option = O2”: 

 “Min2 > max1 + 1mn” (scheduling 
between the two first lines of Figure 9) 

 “T2 + M1 > T2” (scheduling between the 
two last lines of the Figure 9), i.e. “M1 > 0” 

  “T2 + M1 <= T2 + M2” (property), i.e. “M1 
<= M2” 

In addition some obvious rules shall be applied, such 
as “Max1>= Min1” and “Max2 >= Min2”. 

These equations may be solved with a simplex 
algorithm to compute minimal values for the mission 
data Min1, Max1, Min2, Max2, M1 and M2. 

A system simulator (including the flight software and 
simplified behaviours of the avionics equipment) is 
then applied to analyse each sequence, using these 
minimal values of mission data to ensure that the 
launcher sequences are correctly implemented in the 
flight software [7]. The demonstration of the 
satisfiability of this set of equations ensures that the 
system is correct for any values of mission data. 

5 Process of development of the launcher 
sequences 

This approach of formalised requirements and 
analysis has been included in a more general process 
involving also non-formalised requirements. The 
following diagram summarises this development 
process. 

Flight Software
+ System model

10

Launcher sequence’s specification

PropertiesDefinition

Simulation

4

5

11

System of equations
on the system

parameters
X>Y 
Y>Z
…

Minimal set 
of system 
parameters

6

7

System
1

System
requirements

Subsystem

Subsystem
definition

Subsystem
requirements

2

3

Satisfiability

8

9

Not
formalised

requirements

Formalised
requirements

Implementation
And V&V

 

Figure 13: Launcher sequence development process 

(in the following description, the numbers inside the 
parentheses refer to the numbers in the Figure 13) 

 Each phase of the launcher mission (ground 
phase, atmospheric / extra-atmospheric 
phases, propulsive / orbital phases…) 
specifies transverse system requirements (1) 
toward the launcher sequences. These 
requirements are not formalized (written in 
textual English in an Excel file). 

 Each subsystem has its own definition 
partially formalised in SysML (2) (customized 
and completed by a specific profile, e.g. with 
state-charts, internal block diagrams, etc.), 
and completed by not formalised textual 
requirements (3) written in textual English in 
an Excel file (e.g. a minimal delay is required 
before the opening and a closing of an electro-
valve). 

 All the requirements toward the launcher 
sequences are then analysed and formalised: 

 In a second SysML model (4) to capture 
the sequence’s architecture (see the 
example of Figure 2). This SysML model 
is developed in co-engineering by the 
method team for the system team. 

 In Excel sheets to formalize the sub-
sequences detailed definitions (5) and the 
properties (6) on the sequences. The 
consistency between the formalized 
descriptions and the non-formalized ones 
is performed by manual review. 
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 This formalised specification is automatically 
analysed by an in-house tool to generate a set 
of equations on mission data (7) for each 
sequence, i.e. for path of the sequence’s 
architecture. 

 A classical off the shelf “simplex” algorithm is 
applied on each set of equations to 
automatically demonstrate that these 
equations are satisfiable (8) (i.e. that there is 
a solution to the problem) and to automatically 
generate minimal sets of mission data 
satisfying this set of equations (9). 

 The flight software is implemented (10) 
through SysML and DSL modelling (manually 
developed) and automatic code generation by 
an in-house tool. 

 For each sequence (i.e. each path of the 
sequence’s architecture), the set of minimal 
mission data (7) is used to test (with automatic 
test generation by an in-house tool) that the 
flight software behaves exactly as specified by 
the requirements (11). 

The system engineers use only Excel to write their 
requirements. They are also responsible for the 
content of the SysML models (sequence’s architecture 
and implementation) but these models are developed 
by dedicated teams (specialists in the use of modelling 
tools). The process starts by not formalised 
descriptions ((1) and (3)) to migrate to formalised ones 
during the development ((2), (4), (5), (6) and (7)). The 
automated mathematical analysis can discover errors 
very early in the development, allowing quick loops of 
errors / corrections. 

6 Examples 

6.1 Toy example 

Let us first demonstrate this approach on a very 
simplified toy example. 

 The launcher is composed of two stages 

 The launcher is able to fulfil two missions (i.e. 
it requires two launcher sequences) 

 Without re-ignition of the second stage 
engine. 

 With re-ignition of the second stage 
engine. 

 The second stage engine needs a warmup of 
10mn period before being ignited (or re-
ignited). 

 When a stage engine is not used any more, it 
shall be passivated 

The launcher sequence may thus be informally 
described by 

 First stage engine ignition (IGNI1) 

 Second stage engine warmup (WARM2) 

 First stage passivation (PASS1) 

 Second stage engine ignition (IGNI2) 

  (only for a mission with two second stage 
ignitions) 

 Second stage engine stop (STOP2) 

 Second stage engine warmup (WARM2) 

 Second stage engine ignition (IGNI2) 

 Second stage passivation (PASS2) 

With the following timing: 

 

Time Events Remark 

T_IGNI1 IGNI1 For all mission 

T_IGNI21 - 
10mn 

WARM2 For all mission 

T_PASS1 PASS1 For all mission 

T_EWARM2 END_WARM2 For all mission 

T_IGNI21 IGNI2 For all mission 

T_STOP21 STOP2 Only for a 2nd 
ignition 

T_IGNI22 -
10mn 

WARM2 Only for a 2nd 
ignition 

T_EWARM2 END_WARM2 Only for a 2nd 
ignition 

T_IGNI22 IGNI2 Only for a 2nd 
ignition 

T_PASS2 PASS2 For all mission 

Figure 14: Informal specification of launcher 
sequences 

The launcher flight software shall be able to implement 
the two sequences. A mission data called “Option” is 
then defined to specify to the flight software which 
launcher sequence shall be executed (“Option” can 
take the value “One_Ignition” or the value 
“Two_Ignitions”). 

The architecture of these two sequences can be 
modelled with a SysML activity diagram in the 
following way. 
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First boost of the 
second stage (B1)

First stage
(ST1)

PASSIVATION
(PS)

[Option =
One_Ignition]

[Option =
Two_Ignitions] Second boost of the 

second stage (B2)

 

Figure 15: Two simplified launcher sequences 

The detailed design of these launcher sequences is 
provided in an Excel sheet. 

 

Seq Time Events Kind Accuracy 

ST1 T_IGNI1 IGNI1 Out [0s..0s] 

B1 T_IGNI21 - 
11mn 

WARM2 Out [10ms..10ms] 

ST1 T_PASS1 PASS1 Out [10ms..10ms] 

B1 T_IGNI21 - 
1mn 

END_WA
RM2 

In [-10s..0s] 

B1 T_IGNI21 IGNI2 Out [10ms..10ms] 

B2 T_STOP21 STOP2 Out [10ms..10ms] 

B2 T_IGNI22 -
11mn 

WARM2 Out [10ms..10ms] 

B2 T_IGNI22 -
1mn 

END_WA
RM2 

In [-10s..0s] 

B2 T_IGNI22 IGNI2 Out [10ms..10ms] 

PS T_PASS2 PASS2 Out [10ms..10ms] 

Figure 16: Formalised description of launcher 
sequences 

The two stages are modelled by the following state-
charts 

Off1

On1
Passiva
tion1

IGNI1

PASS1

 

Figure 17: Stage 1 state-
chart 

Off2

On2
Passiva
tion2

WARM2

PASS2

Warm-
up2

Stop2

END_WARM2

STOP2

W
A

R
M

2

 

Figure 18: Stage 2 state-
chart 

The flight software is finally automatically generated 
from the following description using the DSL: 

 
-- T_IGNI1 is specified by the mission 
at T_IGNI1: IGNI1; 
-- T_IGNI21 is computed by the guidance 
at T_IGNI21 - DWARMUP: WARM2; 
-- T_PASS1 is computed by the guidance 
at T_PASS1: PASS1; 
-- END_WARM2 is supposed to have already occurred 
at T_IGNI21: IGNI2; 
if Option = Two_Ignitions then 
    -- T_PASS1 is computed by the guidance 
    at T_STOP21: STOP2; 
    -- T_IGNI22 is computed by the guidance 
    at T_IGNI22 – DWARMUP: WARM2; 
    -- END_WARM2 is supposed to have already occurred 
    at T_IGNI22: IGNI2; 
end if; 
-- T_PASS2 is computed by the guidance 
at T_PASS2: PASS2; 

Figure 19: Implementation of the toy example 

The following equations on mission data are then 
automatically generated with the option with two 
engine ignitions (the option with one engine ignition is 
similar): 

 T_IGNI1 < T_IGNI21 - 11 

 T_IGNI21 - 11 < T_PASS1 

 T_PASS1 < T_IGNI21 

 T_IGNI21 - 1 < T_IGNI21 

 T_IGNI21 < T_STOP21 

 T_STOP21 < T_IGNI22 - 11 

 T_IGNI22 - 11 < T_IGNI22 

 T_IGNI22 - 1 < T_IGNI22 

 T_IGNI22 < T_PASS2 

The three equations  

 T_IGNI21 - 1 < T_IGNI21 
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 T_IGNI22 - 11 < T_IGNI22 

 T_IGNI22 - 1 < T_IGNI22 

are obvious and can be ignored. Therefore, it remains: 

 max(T_IGNI1) < min(T_IGNI21) - 11 

 max(T_IGNI21) - 11 < min(T_PASS1) 

 max(T_PASS1) < min(T_IGNI21) 

 max(T_IGNI21) < min(T_STOP21) 

 max(T_STOP21) < min(T_IGNI22) - 11 

 max(T_IGNI22) < min(T_PASS2) 

Any launcher mission shall ensure that the mission 
data fulfil these equations in order to be achievable. 

A simplex algorithm allows computing the minimal 
values of these mission data satisfying these 
equations: 

 min(T_IGNI1) = max(T_IGNI1) = 0 

 min(T_IGNI21) = max(T_IGNI21) = 12 

 min(T_PASS1) = max(T_PASS1) = 2 

 min(T_STOP21) = max(T_STOP21) = 13 

 min(T_IGNI22) = max(T_IGNI22) = 25 

 min(PASS2) = max(T_PASS2) = 26 

These values allow verifying by tests automatically 
generated by an in-house tool that the implementation 
is consistent with the design. 

It shall be noticed that these tests are representative 
only for the verification of the launcher sequence. A 
real mission may have a real duration of several hours 
but we have demonstrated that the test with a mission 
of 26mn is representative enough. This “time” 
reduction makes the test approach achievable. 

6.2 Ariane 6 example 

This approach has been used to develop the Ariane 6 
launcher sequences: 

 Around 20 subsystems 

 The maximal number of states of a sub-
system state-chart is around 500. 

 Several hundreds of launcher sequences 
(considering the options and the degraded 
scenarios) 

 Around one hundred equations for each 
launcher sequence 

7 Comparison with other approaches 

This section compares practically the approach 
described in this paper with former experiments 
conducted by ArianeGroup (and is thus not a 
theoretical academic comparison with an exhaustive 
state of the art). 

7.1 Deductive proof 

Deductive proof (such as SPARK [2] or FramaC |8]) is 
adapted to static properties (such as “a data X is 
always greater that a data Y”) but not to timed 
properties (such as “the event E1 occurs always 10 
seconds after the event E2”). 

ArianeGroup developing its flight software in Ada, the 
use of SPARK has been experimented. This technic is 
able now to automatically demonstrate complex 
properties but not the ones addressed in this paper. 

7.2 Timed model checking 

Timed model checking (e.g. UPPAAL [3], or model 
checking based on SysML [4]) is limited by the 
combinatory explosion of the cases. On case studies 
provided by ArianeGroup, time model checking was 
working only on small models (limited to a few key-
events). 

In addition, if some formalised descriptions usable for 
formal proof may be quite intuitive (e.g. SysML state-
charts), others may be more difficult to understand 
(e.g. µ-calculus). 

Moreover, using such technic requires a model 
translator from the ArianeGroup models toward the 
tool formalism. Such model translator may be quite 
costly to develop.  

Such technic relies also on semantics proposed by the 
model checking tools which is not the semantics of the 
systems developed by ArianeGroup (asynchronous 
semantics versus synchronous semantics). The 
qualification of the model translator may be 
complicated because it requires an accurate 
mastering of the source and target semantics. 

The demonstration that the used model is a correct 
abstraction of the software code is thus not 
straightforward. 

7.3 Certified code generator 

A more adapted approach would be the use of a 
toolset providing at the same time a modelling 
environment, a proof engine and a certified code 
generator. Such toolset ensures then that the results 
of the formal proof are applicable to the product. 

ArianeGroup has experimented the SCADE Suite [1]. 
Its main advantages are its formal semantics, the 
synchronous approach that is compatible with a 
launcher design and its certified code generator. 
Several formal proof tools are also available on 
SCADE Suite models. However, SCADE Suite has 
been abandoned because the data-flow interpretation 
of the state-charts is not intuitive and not adapted. The 
even-driven interpretation of SysML corresponds 
better to the need. 

In addition, the proof tools analysing SCADE Suite 
models have the same limitation than the timed model 
checkers (see section 7.2) and are not able to analyse 
non-trivial models. 
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8 Conclusion 

Excel and even SysML are not formal methods. 
Anyway, they are often used for the development of 
complex systems because they are intuitive tools well 
mastered by the system engineers. This paper has 
shown how a development can start from high-level 
informal requirements to be refined to low-level formal 
requirements which can themselves be translated to 
simple mathematical equations. 

Tests may be used to demonstrate in a quite 
deterministic way the equivalence between the “Excel 
model” and the implementation. 

The approach described in this paper is less formal 
than the technics described section 7. However, it is 
often sufficient even if it is obviously not complete in 
some cases. Let us consider the following example, 
close from the ones of section 4.2. 

 

Times Events 

T1 Ev1 

T2 Ev2 

Figure 20: Simple example 

Even if it is not formally demonstrated, we have the 
feeling that equation max(T1) < min (T2) is always 
sufficient. And the use of the minimal values is also 
sufficient to demonstrate that the implementation is 
consistent with the design. 

However, a property “Ev2 <= Ev1 + Δ” cannot be 
demonstrated correct with this approach. 
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Large legacy systems design maintainability
through modeling

Abstract. Model-Based System Engineering
(MBSE) and particularly Model-Based Product Line
Engineering (MBPLE) now stands as the new
standard for systems engineering at Airbus Group.
Indeed, the Airbus MBSE Architecture Framework
(R-MOFLT)[3] and its feature-based product line
engineering framework extension (MBPLE4MOFLT)
are widely deployed on Research & Technology
projects. This paper tackles the applicability of such
enablers to large legacy systems. As such, it outlines
a proof of concept on redesigning a legacy system
using MBPLE4MOFLT as a new product line based
on several in-service variants definitions that have
been designed over the last four decades following
document-based ways of working. As such, the
interoperability between these ways of working and
the new digital assets is essential to achieve this
migration on one side and, once migrated, to ensure
backwards compatibility with the official process, on
the other side. To this aim, besides using existing
data hubs between Cameo Systems Modeler and
Rational DOORS, the Airbus MBSE SysML profile
has been extended with further customizations to fit
the new product line design golden rules. Wizards
are also proposed to ease authoring and impact
analysis. Finally, a new plugin has been developed
to automate the variability propagation throughout
variable assets and to ensure consistency between
the variability handled with MBPLE4MOFLT and the
requirements applicabilities handled in Rational
DOORS.

Keywords. MBSE, MBPLE, system engineering,
industrial application, avionics.

1. Introduction

Recently, Airbus has launched a new Flight
Management System (nFMS) product line to

capitalize on four decades of designs and
improvements across Airbus aircraft families.

This product line aims to reduce non-recurring costs
and time to market while preparing for the future.
With MBSE being already deployed in the "Zero
Emission” (ZEROe) Demonstrator[2][5], the question
was to assess the methodology maturity against the
new product line needs. It is crucial in our approach
to underscore that unlike ZEROe, nFMS does not
commence from a clean state, but rather inherits a
substantial legacy. As such, a proof of concept has
been conducted, prior to an eventual industrial
deployment as an enabler of this development. The
proof of concept also questioned the actual need of
MBSE. It explored how MBSE can assist system
designers who may not be familiar with it in their
day-to-day tasks in the context of a high-pressure
delivery rate. The objective was to maintain
interoperability with the existing process while
preserving the current format for sharing artifacts
with suppliers.

Consequently, the primary focus shifted swiftly to the
challenge of effectively managing a large volume of
textual requirements. The emphasis was on
organizing them within a robust specification,
prioritizing solid variability management over
modeling the system behavior. Model execution
hence falls out of the scope.

Nevertheless, we explored enhanced collaborative
work methods, digital continuity, document
generation, and impact analysis through MBSE. This
paper delves into these aspects, demonstrating
MBSE's role as a key enabler in large legacy
systems, using an industrial use case.

The rest of the paper is organized as such: section 2
presents the methodology, from the state of the art
down to the tailoring and customizations. Section 3
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outlines the current process of designing a flight
management system at Airbus. Section 4 is the
proposed approach within the framework of the
project assumptions. Section 5 exposes the first
results with benefits, challenges and limitations then
concludes.

2. Methodology

INCOSE’s visions for 2020[12] and 2025[13]
correctly predicted and anticipated the widespread
adoption of MBSE as a de-facto way of deploying
Systems Engineering for complex systems.

Following the trend, the industry, academia and the
systems engineering community have at their
disposal several comprehensive frameworks, such
as DoDAF1, MoDAF2, UAF3, Arcadia[14]. These
frameworks are continuously improved, matured and
tailored to achieve business and technical needs.

Airbus MBSE Framework. Airbus’ own R-MOFLT
Architecture Framework[3] has been developed to
tackle the organization’s challenges regarding SE
and MBSE. It is based on the SysML language[15]
and expands and combines existing frameworks to
support Airbus’ products, services and industrial
systems.

Figure 1: R-MOFLT Architecture Framework Scheme

Airbus MBPLE Framework. As part of providing an
integrated solution, an MBPLE[1][4] approach based
on the principles described in the ISO 26580[18] is
being developed. It currently supports variability on
architecture and requirements, but its ambition is to

3 Unified Architecture Framework (OMG 2020)

2 Ministry of Defence Architecture Framework (U.K. Ministry
of Defence 2012)

1 Department of Defence Architecture Framework
(U.S. Department of Defence 2010)

provide holistic product line approach capabilities, by
expanding existing digital assets to include variation
points, while maintaining a single source of
variability, through feature models. For the project
described in this paper, two methods from the
MBPLE framework have been used and tailored:

● MBPLE4MOFLT. Expansion of the MOFLT
framework. It includes variability and is used to
represent a product line system architecture (or
150% models). It includes a PLE configurator
capable of generating product line variants (or 100%
models).

Figure 2: MBPLE4MOFLT scheme

● MBPLE for Requirements and V&V
Management (MBPLE4RVVM). Expansion of the
model-based requirements management methods. It
includes existence (meaning a textual exists or not
for a certain variant configuration) and parametric
variability to textual requirements. This method is
integrated and meant to be used with
MBPLE4MOFLT.

Tailoring. The digitalisation and transition to a model
based approach is an even bigger challenge in large
and complex organizations such as Airbus. This puts
a big emphasis not only on the framework itself, but
also on organizational and transitional aspects[17].
Programmes have been running for decades and
plenty of data is still stored in older means (hardware
and/or software).

In this context, automations and tailoring were
developed to interface with “non model-based”
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documents and data formats still required by some
processes. These automations are better described
in Section 4 - Proposed Approach.

3. Analysis of current practices

Within the Airbus framework, the newly developed
nFMS adheres to the well-structured Airbus process
titled "Define System Requirements and Design."
This procedural guideline outlines a comprehensive
set of deliverables, encompassing not only the
development and process assurance plan but also a
collection of artifacts that intricately delineate the
system requirements, design specifications, and
interface parameters.

Figure 3: nFMS RDBS

Illustrated in Figure 3, these artifacts are
systematically arranged within a Requirements
Documents Breakdown Structure (RDBS), with the
Detailed Technical Specification (DTS) and the
System Interface Documents (SID) serving as the
central focal points of this organizational framework
at system layer. Requirements within the DTS and
SID satisfy upper-level requirements cascaded from
the multi-systems function layer such as the
Function Definition Documents (FDD) and the
Top-Level System Requirements Document
(TLSysRD). Subsequently, the requirements
embedded in the DTS and SID are disseminated to
suppliers, accompanied by the Purchase Technical
Specification (PTS) delineating the definition of
equipment, encompassing both software and
hardware. The seamless interconnection and
cascade of these design artifacts is facilitated
through the utilization of Rational DOORS[22].
Beyond the functional requirements, the system
design incorporates the interface definition,
meticulously documented within an Interface Control
Document (ICD[9]) facilitated by the Albatros4 tool.
This document comprehensively outlines the

4 The official interface management tool at Airbus

physical characteristics of network messages, digital
inputs and outputs labels and buses, as well as
analog and discrete inputs and outputs signals.
A critical challenge arises due to the absence of
digital continuity among the DTS, the SID, and the
ICD. This lack of integration complicates impact
analysis processes, introducing inefficiencies and
time-consuming evaluations of potential design
evolutions consequences.
Moreover, the current methodology falls short in
addressing essential product line considerations,
specifically in defining variability at the requirement
level. This limitation poses a significant hurdle in
achieving a comprehensive understanding of the
system's adaptability to diverse configurations.
To overcome these deficiencies, the design office
has developed ad-hoc golden rules tailored to nFMS
as a multi-program and a multi-supplier product line,
where the requirements applicabilities are set with
the targeted configurations (Airbus aircraft families)
and the stakeholders with the suppliers as depicted
in the template below:

DTS_FMS-xxx-xxx-xx-xx
<Requirement Statement>
Rationale:<rationale of the requirement>
Additional Information:<any additional info to
support the understanding of the requirement>
Applicability:<aircraft configurations>
Change Rationale:<change rationale with regards to
existing products>
Source:<pre-nFMS source>
Stakeholders:<list of suppliers>
Working Status:<working status>

Before integrating updates into the baseline DTS,
the design office initiates a Specification Evolution
Request (SER) outlining the changes towards the
suppliers. This delta is then assessed for cost
implications. Upon agreement between the involved
parties, the delta is manually incorporated into the
complete DTS.

4. Proposed approach
This section provides a comprehensive exploration
of the pragmatic solutions implemented to address
the design definition and maintainability challenges
outlined in Section 3, employing MBPLE4MOFLT.
Emphasis is placed on the significance of ad-hoc
customizations tailored to deliver substantial value to
the project.
a. Project assumptions
The objective of this proof of concept is to showcase
the effectiveness of improving the authoring process
for DTS and SIDs requirements. The primary focus
is on establishing robust linkages between these
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requirements, facilitating smooth impact analysis.
Furthermore, the goal is to forge connections with
ICDs parameters, thereby establishing a digital
continuity that extends from the functional and
interface requirements to the intricate details of
physical connectors within avionics computers
backplanes.
As depicted in figure 4, to accompany the change
smoothly, bridges and hubs (supporting the
exchanges depicted as red arrows) are opted over
disruptiveness so that interoperability with the
current process is maintained. A primary motivation
behind the adoption of this new approach is to
ensure user-friendliness for designers unfamiliar with
MBSE, aiming to seamlessly integrate with existing
workflows for authoring whilst taking advantage of
new automated time-saving impact analysis
features. MBSE serves in our context as a facilitator
for elevated requirement-based engineering.

Figure 4: nFMS RDBS with R-MOFLT

b. Product Line Engineering
The management of the product line is facilitated
through a rigorous framework comprising a feature
model and a feature configuration. The feature
model serves to formalize the pivotal factors
influencing variability, delineating the software's
adaptability. As described in Figure 5, these factors
include specific features per supplier, cockpit HMI
type, and aircraft type, thus ensuring both software
adaptability and portability. The feature configuration,
on the other hand, is determined by a triplet
encompassing aircraft type (such as A320, A330,
A350), aircraft variants (such as Future architecture
or Legacy), and suppliers.

Figure 5: Extract from nFMS Feature and Configuration
matrix

This structured approach enables the transformation
of the model from 150% to 100% based on a
predefined set of configurations. The 150% model is
founded on the principles of clean and direct
methodologies, as elaborated upon in greater detail
in section 4.c. Moreover, the product line exhibits
robustness against configuration evolution, adeptly
accommodating changes such as supplier product
evolution or the introduction of new aircraft models.
Once both feature model and configuration are
established, features are articulated as elementary
constraints. To mitigate workload and minimize
errors, features are categorized at function level and
subsequently propagated to requirements, coupled
with validation rules. To ensure interoperability with
Rational DOORS, the configuration of aircraft and
supplier specifications is systematically calculated at
the requirement level, with the resulting data
automatically integrated into the applicability and
stakeholders attributes. This process is facilitated
through a specialized plugin and additional
customizations, which encompass derived properties
implemented by opaque behaviors. The overarching
objective of this automated tool chain is to forge a
cohesive connection between MBPLE, leveraging
digital assets as the definitive source of truth, and
traditional Product Line Engineering (PLE) reliant on
textual attributes within Rational DOORS.
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c. Architecture

Modeling the functional breakdown through SysML
Block Definition Diagrams (BDD) and system
architecture via SysML Internal Block Diagrams
(IBD) presented a strategic opportunity to mitigate
complexity in the context of legacy large systems.
The approach involved conceiving this extensive
system as a hierarchical arrangement of functions,
transcending conventional document-based
representations. This method facilitated a holistic
comprehension of the interconnections among
functions and the corresponding functional flows,
exemplified by the Airbus MBSE SysML Profile's
extension of SysML proxy ports stereotypes.

Figure 6: Extract of nFMS 150% functional architecture
with a model transformation preview for a particular variant

with Pure::Variants[19]

The functional analysis adhered to the direct method
(150%, c.f., figure 6), as advocated in [2]. The
resultant model enabled the establishment of
hyperlinks from specific parts of requirements’
textual statements to functional flows. This serves a
dual purpose: validating requirement allocations for
enhanced organizational structure and enabling
metachain navigation essential for impact analysis,
thereby enhancing design maintenance (c.f., 4.b).
Figure 7 illustrates the process wherein functional
flows, originally designated as generic and
referenced in the cross-programs DTS requirements,
undergo specialization to manifest as specific
parameters tailored for each aircraft within the
ICD[9]. In this context, the functional interface,
initially representing a generic parameter, extends
specific functional interfaces defined as variant
assets. This relationship ensures that the former
strictly inherits the variant functional flow properties
of the latter.

Figure 7: Example of functional flow with associated ICD
specific parameters with a model transformation preview

for a particular variant with Pure::Variants

As exemplified in figures 8 and 9, these ICD
parameters are conveyed then through nested ports
which found representation in technical
interfaces—conforming to the Airbus MBSE SysML
Profile's extension of SysML proxy ports
stereotypes—defined within the technical
architectures.

Figure 8: Example of two ICD parameters delegated to
one DTS generic parameters and realized by two different

digital (A429[10]) labels

Figure 9: Example of 6 ICD parameters delegated to one
DTS generic parameters and realized by one Functional

Data Set (FDS) of an AFDX[11] message (avionics
network)

Each variant followed the clean method[2]. Its
technical interfaces, encompassing system inputs
like physical connectors, digital labels, buses,
network message structures, ports, and physical
links, formed a crucial connection between the
Functional (F-layer) and Technical (T-layer)
components. This linkage supported digital
continuity, allowing for bidirectional impact analysis.
Figure 10 shows an example of a specific functional

5



flow (ICD parameter
“LS_MODE_FREQUENCY/CHANNEL”) conveyed
by a digital label (A429 label “033”) and transferred
on a data bus which is connected to FMGC (Flight
Management and Guidance Computer) backplane
pins number “LM10A/10B”.

Figure 10: Example of an ICD parameter in F-Layer and
T-Layer

d. Enhanced Requirement-based
Engineering

Our approach is adaptable to legacy workflows,
encompassing existing processes and exchanges
with suppliers. Its primary objectives are to enhance
engineers' comprehension and to support the 150%
specification completeness.

Requirement authoring. The requirements
authoring is supported by a wizard to streamline the
automatic setup of attributes such as requirement
labels (unique identifiers) and versions, ensuring
adherence to the nFMS golden rules as sketched in
the template defined in section 3. Engineers can
focus on product design rather than formatting the
specification. Allocation of requirements to functions
is achieved through dependency links within
traceability matrices. This linkage enables the
propagation of function variation points, facilitating
the automatic computation of applicability and
stakeholder attributes (c.f 4.b). Subsequently,
validation rules are applied to ensure that
requirements are defined at the appropriate level,
verifying that referenced generic functional flows (if
any) are indeed utilized by the function to which the
requirement is allocated. With this method, we intent
achieve a well organized DTS
The maintenance of the requirements set adheres to
the SER process outlined in Section 3, facilitated
efficiently through the use of branches. The existing
baseline resides within the trunk, with each branch
dedicated to a distinct SER. Upon validation of
functional evolution with suppliers, the branch is
merged into the trunk, establishing a new baseline.
Only potential conflicts necessitate the expertise of a
systems engineer; all other components can be
integrated without any loss of information. While

Rational DOORS remains integral to Airbus's
operational methodology, the baseline is also shared
within its framework. In a branch, the requirement
label is constructed in the creation wizard by taking
the branch name and associating it with a unique
number per branch to identify new requirements.
Once merged into the trunk, another wizard is
launched on the requirement set to define the final
label of created requirements. Each label is built by
retrieving the identifier of the section in which the
requirement resides, providing a unique number
within the section, and retrieving the baseline
number of the trunk in Teamwork Cloud to construct
the version. Branches serve not only to highlight
SER disparities with its original baseline but also
enable comparison with the current iteration,
ensuring comprehensive tracking of system
evolution.

Impact analysis. Beyond merely linking
requirements across diverse documents as
discussed in Chapter 3, our approach involves
referencing model elements such as generic
functional flows, specific functional flows or technical
flows (c.f. 4.c). By leveraging HTML hyperlinks
embedded within requirement attributes such as
statements, additional information or rationale,
facilitating the creation of a relational map spanning
different layers of the system architecture.
Integration of such hyperlinks in a requirement
statement is illustrated in Figure 11. In this scenario,
both the “SLS is active” (Satellite-based Landing
System), and the “FAS data block” (Final Approach
Segment) functional flow interface types are
referenced.

Figure 11: Requirement statement with hyperlinks

Through the utilization of MOFLT profile extensions
and opaque behaviors, it is feasible to define a
forward impact analysis, as illustrated in Figure 12.
This analysis bridges the gap between requirements
and functional flow interface types, along with their
technical implementations. Notably, only the FAS
data block is detailed in technical components as it is
an ICD parameter (c.f. 4.c), while the "SLS is active"
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Boolean is a generic specification-defined element
whose technical definition remains undisclosed to
Airbus.

Figure 12: Example of a forward impact analysis (from a
requirement)

Figure 13 demonstrates the capability to conduct a
backward impact analysis, employing specific
functional or technical flow in a manner akin to the
forward analysis. For instance,all requirements
affected by a system updating one of its interfaces
with the FMS are enumerated.

Figure 13: Example of a backward impact analysis (from a
technical interface type)

Both analyses are initiated via a customized wizard,
wherein the references to SysML and MOFLT[3] are
abstracted away from the user, ensuring a
streamlined interface. For this purpose, realization
and reference attributes are established, employing
the MOFLT method, to link model elements between
them by extending their profiles.

Document generation. Upon the creation of a new
baseline, it is generated and shared with suppliers

after the model undergoes transformation into a
100% model (c.f. 4.c) to uphold confidentiality
between parties.

Using MBSELab@Cameo, the methodology adopts
an ontology-based[6][7][8] approach to maximize
agnosticism towards the MOFLT framework. Indeed,
in our approach, we purposefully separate the
functional architecture hierarchy from the DTS
hierarchy to minimize disruptions to the existing DTS
and to avoid influencing the architecture
retro-engineering process based on an
unconventional document hierarchy. Within this
ontology the DTS abstract elements such
requirements, sections, chapters, free text and
referenced interface data are defined alongside their
attributes (c.f 3) and their relationships. They are
subsequently mapped to stereotypes and organized
according to the document pattern. Figure 14
displays a combination of ontology elements (green
elements) and their corresponding mappings (purple
elements). Certain attributes, such as Name and
Description, are already established within a
higher-level ontology and can be directly utilized in
the document pattern.

Figure 14: nFMS ontology and mapping diagram

MBSELab@Cameo’s enablers facilitate the DTS
generation as a henceforth ontology-based
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document. Emphasizing PLE, they enable thanks to
our ontology the automatic generation of mappings
between generic functional interfaces and their
specific variants, presented in a comprehensive
matrix within the DTS appendix (see section 4.c).
These enablers also allow the extraction of model
diagrams for visually specific requirements and
configuration management data from the Teamwork
Cloud server. Indeed, in legacy documents, the initial
pages are dedicated to cataloging the integrated
components within the baseline and providing a brief
history of the documents. Utilizing APIs, the baseline
numbers, release dates and commit comments are
seamlessly retrieved and incorporated into the
generated document.

e. Tools
Having a methodology (tailoring of MBPLE4MOFLT)
and a language (SysML) defined, one main
challenge was to develop a toolchain able to answer
all the needs while being interoperable with already
existing tools used for other layers (equipment and
multi-systems ones) and being user-friendly to
ensure quick and efficient handling by system
designers with no specific modeling background. To
do so, some of the tools solutions promoted by
Airbus Framework have been adopted. All the
modeling activities are performed in Cameo Systems
Modeler 21x[20], including requirements authoring.
Top-level requirements coming from the
multi-systems layer and defined in Rational DOORS
are imported in Cameo Systems Modeler thanks to
Cameo DataHub[21]. Traceability between nFMS
requirements and top-level one is performed directly
in Cameo Systems Modeler. However, as Rational
DOORS is the official database storing all
requirements in Airbus, when a DTS baseline is
frozen in Cameo System Modeler, requirements and
their traceability links towards top-level requirements
are exported in Rational DOORS through Cameo
DataHub. Nevertheless, Cameo Systems Modeler
remains the only source of truth for FMS
requirements.
Collaboration between designers is ensured through
Teamwork Cloud, allowing them to work on common
shared models.
For the product line aspect, SysFM5 plugin is used to
define the feature models and all the variation points,
and Pure::Variants plugin is used for model
transformation from a 150% model to a 100% one
(for export by supplier for instance). Additionally, the

5 Airbus SysML profile for feature modeling

VPP6 plugin has been specifically crafted to
propagate variation points from functions to their
allocated requirements, while also computing the
applicable variants from the variation points set with
SysFM.
Finally, for cascading the requirements to suppliers
(equipment layer), an export is performed directly
from Cameo System Modeler to Microsoft Word.
The overall toolchain is represented in Figure 16.

Figure 16: Developed toolchain

f. Customizations
The rationale behind the implemented
customizations is to fulfill the nFMS golden rules by
extending the MOFLT plugin with regards to the
desired data model defined in section 3.
In these profile extensions, derived properties have
been utilized for the calculation of requirements’
stakeholders and applicabilities with respect to
variability. These derived properties along with
wizards defined in 4.d stand for opaque behaviors
scripted in Groovy being well-documented in existing
APIs, and with superior performance. Regarding
impact analyses, efforts were made to base them as
much as possible on SysML and UML[16] to avoid
potential modifications to the existing opaque
behaviors within the MOFLT framework.
Organizing these profile extensions, opaque
behaviors, and wizards as project usage allows for
their potential application in other models.
Additionally, conducting tests when a new framework
or Cameo Systems Modeler version is released prior
to migrating the nFMS model ensures seamless
integration and functionality.

6 Airbus Variation Propagation Plugin
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5. Results assessment and future work
During this proof of concept, all DTS requirements
were migrated from Rational Doors to Cameo
Systems Modeler, totaling exactly 19626
requirements without encountering any significant
delays in tool usage or project access. This
successful migration underscores the scalability of
the approach. However, only 0.5% of these
requirements were retro-engineered within a
functional and technical architecture to conduct
impact analysis, though these examples were
considered representative of the DTS content.This
raises two potential paths forward for the proof of
concept: selectively retro-engineering DTS
components likely to evolve in future increments or
exploring generative AI to address a broader scope.
By leveraging MBSE for enhanced
requirement-based engineering and fostering
collaborative work, we anticipate a significant
reduction of at least 15% in design lead-time, as we
shift focus away from document formatting towards
engineering digital assets.
Industrialization of this proof of concept is scheduled
for 2025, with over 30 FMS designers expected to be
involved. Additionally, exporting generated ICDs to
the official interface management tool (Albatros)
holds promise for further streamlining design
processes and reducing lead times.
However, significant challenges remain, particularly
in improving the performance of MBSELab@Cameo
for DTS generation towards suppliers, which
currently falls below industrial standards (1 hour for
~100 requirements). Backup solutions are being
currently analyzed to mitigate this risk.
Moreover, a first limitation of the developed toolchain
concerns a part of the specification composed of
mathematical requirements coming from the aircraft
performance equations. The capability of writing
mathematical equations in Cameo Systems Modeler
is limited. Being also implemented in Matlab
Simulink by the flight physics team, a bridge
between the Simulink models and the requirements
in Cameo Systems Modeler might be considered in a
future work.
Furthermore, beyond technical concerns,
governance issues have surfaced, including the
maintenance of customizations across MOFLT
plugin releases. These considerations will require
careful attention to ensure the long-term success of
the project. Finally, it is imperative to develop a
customized training program for the nFMS design
team.

Conclusion
In this paper, we present a novel approach utilizing
MBSE and MBPLE methodologies to enhance the
maintenance of large legacy systems without
disrupting procurement processes with suppliers.
Our approach emphasizes interoperability with
existing processes and official tools while minimizing
the training burden on designers.
To accomplish this goal, we introduce a method for
linking unaltered textual requirements with a
retro-engineered architecture, facilitating impact
analysis through a meticulously defined
representation of interface parameters. This method,
implemented as a semi-automated tool, serves as a
bridge between PLE and MBPLE, fostering
enhanced collaborative work among stakeholders.
This customized and tailored solution is now
prepared for full deployment on the current use case.
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Abstract This article seeks to contribute to a nuanced understanding of the integration of Design Structure 

Matrix (DSM) and genetic algorithms in the context of Complex Systems modelling described 

within Model-Based System Engineering approach. By examining coupling minimization as a 

critical aspect of advanced systems engineering practices, we aim to provide a scholarly 

exploration, blending theoretical insights with practical applications. The objective is to equip 

systems architects with analytical tools integrated within their Model Based Systems 

Engineering (MBSE) environment for exploring the design space of component interactions, 

facilitating the identification of optimal system architectures.  

 

I. Context and Motivations  

Within the domain of Systems Engineering and Model-Based Systems Engineering (MBSE), the efficient management 

of complex systems necessitates a systematic approach to manage and refine the interactions among their functional 

components.  A fundamental principle within Systems Engineering, emphasized by standards ISO15288:2023 [1] and its 

associated Systems Engineering Handbook [2], is the imperative to reduce coupling between subsystems for effective 

management of product complexity. The crux of coupling minimization involves the disentanglement of interdependencies 

between components.  

In most industrial processes, Systems Engineering discipline involves applying Functional Analysis [3] approach and 

elicit the stakeholder needs using decomposition of system needs into functions and their associated data flow. Then, 

systems engineering methods propose to distribute these functions over the systems / components implementing the 

architectural solution. This requires an intermediate "logical architecture" that abstracts function closer to their eventual 

physical implementations, primarily guided by functional dependencies to ensure coherent integration. 

In 2015 a DSM/N² matrix technique [4], has been used for extracting coupling metrics from Functional Architectures, 

with the capabilities of a genetic algorithm to minimize coupling among logical components. Our investigation addresses 

this task by employing Coupling Matrices, to assess and reorganize functional dependencies between logical components. 

The specific emphasis is on coupling minimization as an isolated criterion, accounting for factors such as allocation 

constraints and timing requirements. Consequently, our method initiates with the identification of functional dependencies, 

utilizing them to quantify coupling. Then, we propose an optimized allocation of functions to components.  

In the subsequent sections, we present our approach consisting in coupling optimization through the application of a 

genetic algorithm. Following this, we present and discuss the results derived from the application of our approach on two 

case studies. Finally, we review the relevant literature concerning the application of DSM/N² diagrams in the context of 

Model-Based Systems Engineering (MBSE). 

II. Background on Genetic Algorithm, N2 Matrices and Capella  

In this section, we provide an overview of the integration of the DSM/N² matrix technique and genetic algorithm for 

coupling optimization. 

a. Optimization of architecture using DSM/N2 Matrices  

The N² (N-squared) Matrices, also known as a Coupling Matrix or Design Structure Matrix (DSM), is a graphical 

representation used in Systems Engineering to analyse and visualize the relationships and dependencies between different 

components within a system. The primary objective of an N² Matrix is to assess and quantify the coupling or 

interdependencies between various elements, such as functions, subsystems, or components. The interdependencies within 

this matrix are defined by functional exchanges connecting two functions, with a binary representation: '1' indicating 

dependence and '0' signifying independence. Then, the method intends to propose a group of functions (Modules) by 

successively create groups where the number of interfaces between groups is minimized as illustrated in Figure 1. The 

sum of interactions outside the module constitutes total interactions. 



To perform such grouping, at each iteration, method intends to compute the resulting “coupling” value, which is used to 

evaluate the resulting complexity of the proposed architecture. 

 

Figure 1. Illustration of the modularization concept and result after minimization of coupling 

Using this matrix, we can calculate a coupling value pertaining to the interfaces specified between the logical 

components, deduced from the interfaces established among functions allocated to these components. The coupling value 

serves as an assessment of the complexity of coupling between logical components, derived from a formula based on 

software coupling metrics [5]. For this study, we used the Equation 1 to calculate the coupling value of each individual 

logical component. Then, the Equation 2 is used to calculate the coupling value of the complete architecture. 

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(𝐶𝑀𝑘
) = 1 −

1

𝑑𝑖 + 2 ⋅ 𝑐𝑖 + 𝑑𝑜 + 2 ⋅ 𝑐𝑜 + 𝜔 + 𝑟
 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒(𝐶𝑣) =  ∑[𝐶𝑀𝑘

]

𝑛

𝑘=1

 

Equation 1 - Coupling Value of a Logical Component Equation 2 - Coupling Value of the Complete Logical 

Architecture 

Where 𝑀𝑘 is the logical component under consideration, 𝑑𝑖 is the number of input data parameters, 𝑐𝑖 is the number of 

input control parameters, 𝑑𝑜 is the number of output data parameters, 𝑐𝑜 is the number of output control parameters, 𝜔 is 

the number of modules called (fan-out), and 𝑟 is the number of calling the module under consideration (fan-in). 

b. Genetic Algorithm 

Genetic algorithms, aim to explore the solution space of a given problem to meet predefined criteria. As depicted by 

the Figure 2, the algorithm initiates by randomly generating an initial population, with each subject representing a potential 

set of function allocations (1). Subsequently, a fitness function (2), in our case, the coupling equation, assesses each subject, 

assigning a value or rank that reflects its proximity to the optimal solution. Subjects too distant from the desired solution 

are then eliminated (3). 

 

Figure 2. Genetic algorithm processes 

The algorithm assesses the remaining subjects, and if the population size is within a specified threshold, it returns the 

best solution among them; otherwise, it proceeds. The pivotal biomimicry aspect of the genetic algorithm unfolds as the 

remaining subjects undergo crossover, exchanging genes to generate new subjects (4). These newly created offspring 

undergo mutation (5), where a portion of their characteristics undergoes random changes. Crossover and mutation serve 

the purpose of preventing convergence to local optima by dispersing new subjects throughout the solution space. 

Genetic algorithms offer configurability through a set of parameters: 

• Initial population size, a crucial parameter ensuring sufficient coverage of the solution space at the beginning. 

• Max generation number, a parameter determining the algorithm's termination, even as the population grows. 

• Percentage of survivors, indicating the proportion of the least fit subjects to be eliminated. 

• Percentage of parents, denoting the proportion of subjects participating in crossover. 

• Percentage of children to mutate, is the proportion of new subjects subjected to mutation after crossover. 



• Percentage of genes to mutate, indicating the proportion of genes to be mutated for each new subject. 

 

As the algorithm is iterative, the conditions for exiting the loop are defined as the number of chromosomes being less 

than 3 and reaching the maximum number of generations. 

To implement programmatically the genetic algorithm, we have been established: the chromosome encoding is the logical 

component index, the index of chromosomes is the index of each function. The encoded chromosome is represented in 1-

dimensional array format where each chromosome has an identifier. An illustration of the GA translation in code becoming 

in a single gene is shown in the Figure 3. In this example, there are 4 components and 6 functions, as illustration of the 

allocation mechanism: the function index 1 and 4 is allocated to the component index 2.  

Chromosomes 1 2 3 4 2 3 

Function identifier 0 1 2 3 4 5 

Figure 3.  Encoding chromosomes 

c. Capella and Arcadia 

The ARCADIA method [8] defines systems engineering concepts from needs analysis to architectural solution 

definition, we propose in Figure 4 the highlight of involved concepts in our current proposal: 

   

Figure 4. Overview of ARCADIA concepts and emphasis of involved concepts within our proposal 

So, we consider in our current implementation the Logical Functions (LF) allocation to the Logical Components (L). 

The information exchange between functions is modelled using the concept of Functional Exchanges (FE). The Functional 

Exchanges (FE) are allocated to Component Exchanges (CE) when these exchanges cross the boundaries of a single 

component. The Component Exchanges (CE) represent the interfaces between components and the objective of our 

proposal consist of to minimize the number of cross-exchanges between components (and minimize interfaces coupling 

between systems). 

An illustration of simplified logical architecture diagram in Capella is illustrated in Figure 5: 



 

Figure 5. Simplified Logical Architecture Diagram example and associated concepts 

III. Implementation and Case Study 

In this section, we first present the implementation of our DSM Genetic Algorithm solution. Second, we present the 

application of our methodology through a case study. Finally, we present and discuss the obtained results concerning the 

efficiency and the implications of the proposed approach in the domain of Model-Based Systems Engineering. 

a. Implementation in Python and Capella 

The implementation of our DSM-based optimization has been integrated within different MBSE approaches and tools. 

This work relies on our previous work in [7] implemented within Cameo tool. This paper intends to focus on the integration 

of this technique within Capella MBSE tool [6] and offer to systems engineer facilities to evaluate the more optimized way 

to distribute functions in their logical architecture in order to minimize interfaces between the defined systems. This 

automation uses the Python4Capella extension [7], which provides a Python API to interface directly with the Capella 

model. The algorithm overview is presented below in Figure 6. 

 

Figure 6. Algorithm structure and adaptation to Capella 

Our process begins by employing Python4Capella's capabilities to extract the existing logical architecture. Then, using 

Python scripts, we generate the DSM to visualize and analyse the interdependencies and extract in excel format the 

resulting DSM Matrix. 



The binary DSM is built based on the presence or absence of functional exchanges between functions. Once the DSM 

is established, the genetic algorithm, configured with initial parameters begins its optimization cycle. The initial parameters 

are based on our previous work in [9]. After identifying the allocation of functions to components, our tool automates the 

allocation process within the Capella model. It ensures that the allocations respect pre-defined constraints, such as pre-

allocated functions as show in the Figure 7. available functions and are consistent with the lowest coupling values 

determined by the genetic algorithm.  

The final step involves scripting Python4Capella to interpret the updated DSM and translate component 

interdependencies into Component Exchanges, in which the Functional Exchanges are allocated. This transformation is 

executed while filtering out relationships within the same component to maintain a focus on inter-component interactions.  

The main differences between our current Capella implementation in regards to our initial implementation in 

Cameo/SysML environment are: 

• In Capella, the algorithm considers the Functional Exchanges (FE) between all functions. In Capella/ARCADIA, 

some functions are assigned to the actors defined as external entities in interaction within the system of interest.  

 

• In our initial implementation in Cameo tool, we have used in our functional architecture specialization for 

exchanges between functions by distinguishing Flow of Information, Energy or Matter. Then, we have created 

categories of Information Flow: Data, Event, Enable/Disable where “Events” are considered differently in the 

dependency flow. In our current Capella implementation, we have not yet considered the concept of “Exchanged 

Items” which may be used to distinguish Events and Shared Data. 

In order to get the best solution under the parameters given, we observed that the number of functions to allocate is 

correlated with the initial population size, the maximum generation number and the gene mutation percentage. Indeed, the 

higher the number of functions to allocate, the bigger is the space to explore. Therefore, it might-be long process to get a 

suitable solution sufficiently optimized, especially when the number of candidate solutions grows. So, in further work, we 

plan to explore the way to minimize the time to obtain a coupling value minimized for large architectures, how to configure 

automatically initial parameters according to the complexity of architectures, and to study other optimization algorithms 

to find the best solution. 

b. Application to AIDA Case Study 

To assess the relevance of the proposed approach, we applied the optimization process to some case studies. The approach 

has been applied on an Aircraft Inspection by Drone Assistant system [10]. The AIDA system is a Remotely Piloted Aircraft 

System (RPAS) that it is composed of a quadcopter drone, a ground station system and a remote control. 

i. Functions allocation constraints 

In the reality of our system there are constraints on how functions should be allocated, influenced by factors such as 

safety or subcontracting, which is taken in our approach. Figure 7 illustrate this initial functions to components 

“allocations” constraints that should be respected while proposing a final and complete logical architecture. The figure 

shows that 15 of 23 logical functions have been allocated among 12 logical components.  

 

Figure 7. Architecture before algorithm execution 

In order to get a suitable solution under the parameters given, we observed that the number of functions to allocate is 

correlated with the initial population size, the maximum generation number and the gene mutation percentage. Indeed, the 

higher the number of functions to allocate, the bigger is the space to explore. Therefore, it might-be long process to get 

close to a coupling value minimized, especially when the number of candidate solutions grows.  



 

ii. Capture of relationships between logical components 

The approach produces an initial matrix representing functions and their relationships, as depicted in Figure 8 (derived 

from the functional architecture and associated functional exchanges). Figure 9 illustrates the resulting matrix after the 

algorithm's execution, showcasing the functions allocated to 3 out of the 12 components in our use case. These matrices 

are generated in Excel format by our proposed implementation. 

iii. Resulting Architecture 

The resulting architecture is shown in Figure 10, encompassing the analysis and allocation of the lowest level of 

the logical component and function. While the current approach proposes a single logical architecture, in case of multiple 

configurations with the same minimal coupling value exist, one of the relevant solution is selected by our tool. We may 

propose evolution to generate various architecture alternatives and support trade-off analyses in future work. 

 

Figure 10. Allocation result after algorithm execution 

 

 

 

iv. Genetic Algorithm Parameters Tuning 

The setting of the genetic algorithm parameters has been performed currently by iterative experiments. In Table 1., 

we highlight some experiments we made on AIDA simplified model and a larger model. The genetic parameters have been 

Figure 9. Matrix generated after algorithm execution 

Figure 8. Initial matrix generated 



set accordingly to obtain some viable solutions and keep a reasonable execution time based on the previous work [9]. The 

approach has been also executed over another Capella model, AIDA large model with a larger parameter. 

The genetic algorithm parameters can be modified in the Capella tool via user interface. During the experiment, it 

was observed that the population size increase with the matrix size, for matrix 23x23 from 200 population size give a 

coupling value minimized, the survivor percentage have not significant impact less than 90%, else can stay in the loop , 

the population mutation and the gene mutation have similar impact , the population mutation until 50% and gene mutation 

<20% centralize function allocation in few logical components and high percentage (>40%) can be out of solution space 

remaining in the loop. 

 

Model Name # Functions # Components #Pre-Allocated 

Functions 

Execution time 

(seconds) 

GA Parameters 

AIDA light 
model 

23 12 15 1,45 • Initial population=1000 

• Maximum generation=50 

• Survivor (crossover) percentage=70% 

• Parent percentage=20% 

• Population mutation percentage=70% 

• Gene mutation percentage=30%  

 

AIDA large 

model 
47  17  7  120 • Initial population=2500  

• Maximum generation=200  

• Survivor (crossover) percentage=70%  

• Parent percentage=30%  

• Population mutation percentage=40%  

• Gene mutation percentage=70%  

Table 1. Execution time of the algorithm and genetic algorithm parameters 

v. Comparison to our initial implementation in Cameo  

The Table 2. shows comparison results between Capella and Cameo tool for the similar model scope. We can notice 

that coupling value is larger with Capella model in regards to Cameo SysML model.    

 

Model name Coupling value # Interactions  

AIDA (Cameo tool) 3.0 23 

AIDA light model (Capella) 8.7 21 
Table 2. Comparative values in different tool implementation 

This can be explained for different reasons. In our initial implementation in the Cameo tool, the model has not pre-

allocated functions to external actors, which means they are not included in the analysis. In the other hand, in Capella tool 

implementation, the external actors have pre-allocated functions, and they are included in the analysis, leading to 

discrepancies in the coupling values. External actors are considered as constraint for the algorithm in the analysis process, 

but they are not available for function allocation. The functions available for allocation can only be allocated to the logical 

components. The number of transitions refer to the interaction between functions allocated in different components of the 

system 

IV. Current Status, Future work, and Perspectives 

After reviewing with different parties, the usage of such tool may bring interest when there is still flexibility to 

distribute functions over the systems, which might be difficult when reusing legacy products or when system architecture 

is highly constrained by organizational aspects. The generic algorithm is also able to consider already allocated functions 

as constraints for the space exploration.  

Our contribution is currently in the initial stage to give the ability to systems engineer to find a ready to use in Capella 

MBSE use case. As future work we have identified several possibilities to extend this proposal to: 

• Provide implementation of DSM generation within SysML Tools as open-source solution 

• Extend the concept to introduce consideration of timing constraints and extend the functions and component 

exchanges with a time delay property and ensure as a constraint that Time budget allocated to the overall 

functional chain are fulfilled   

• Explore other algorithms than Genetic Algorithm and use optimization techniques proposed in related works to 

handle large matrices. 



• Explore the possibility to generate alternatives of architectures in a same model and exhibit the associated 

properties (timing, performance, costs, …) of each. Then extend this with multi-dimensional optimization 

techniques.  

 

V. Related Works 

DSM/N2 matrices are known tools to analyse the architecture complexity of systems and there are existing work which 

extract DSM/N2 matrices from MBSE methods & tools. A first proposal in [11] exhibits how to extract N2 matrix from 

model of processes developed using OPM method [12]. In [13], the authors propose a contribution compatible with 

different MBSE tools using the standardized XMI format. Using DSM and genetic algorithm has been investigated in [14]. 

In this paper, the authors propose a genetic algorithm tailored for problems characterized by modularity, hierarchy, and 

overlap within complex systems. In [16], the authors proposed to modify DSM’s clustering algorithms to include several 

design constraints. Robert et al. [17] introduce an approach to DSM clustering, addressing shortcomings in existing 

clustering techniques by encompassing data acquisition and handling multiple perspectives to a post-processing phase that 

corrects results for technical feasibility. Finally, in [17], authors proposed and optimized fast clustering algorithm using 

genetic algorithm to generate DSM matrices for complex system architectures. However, this approach is performed on 

physical architecture level and is presented as a MATLAB script to support optimization of complex multi-physical systems 

architecture (with a high number of physical interfaces).  

VI. Conclusion 

The specificity of our approach is to propose an optimization algorithm of DSM where the clustering algorithm is 

influenced by the function’s allocation to Logical Architecture and is implemented as a genetic algorithm integrated within 

common MBSE tools (Cameo Systems Modeler, Capella). This allows to address system representation with intermediate 

complexity using the Logical Architecture concept proposed by several MBSE methodologies such as ARCADIA. As an 

achievement, we have published our proposal as a Capella addon named DSM4Capella in Capella Community within 

Labs4Capella [18]. 

 

Bibliography 

[1]  I. S. Organization, ISO/IEC/IEEE 15288:2023 Systems and software engineering System life cycle processes.  

[2]  INCOSE, Systems Engineering Handbook - V5, 2023.  

[3]  V. Kumar, «Functional Analysis in Systems Engineering: Methodology and Applications,» JETIR, vol. 2, n°110, 

2015.  

[4]  T. R. Browning, «Design structure matrix extensions and innovations: a survey and new opportunities,» IEEE 

Transactions on engineering management, pp. 27-52, 2015.  

[5]  H. Dhama, «Quantitative models of cohesion and coupling in software,» Journal of Systems and Software, vol. 29, 

pp. 65-74, 1995.  

[6]  «Capella - Open source solution for Model-Based Systems Engineering,» [En ligne]. Available: https://mbse-

capella.org/. [Accès le 17 11 2023]. 

[7]  «Python4Capella,» MBSE Capella, [En ligne]. Available: https://github.com/labs4capella/python4capella. [Accès 

le 17 11 2023]. 

[8]  J.-L. Voirin, Model-based system and architecture engineering with the arcadia method, Kildington, Oxford: 

Elsevier, 2018.  

[9]  Y. Khetan, J.-M. Gauthier et S. Dubé, «Part 5 – Coupling optimization of logical architecture using genetic 

algorithm,» June 2020. [En ligne]. Available: https://www.samares-engineering.com/en/2020/07/. [Accès le 17 11 

2023]. 

[10]  IRT St Exupery, «AIDA architecture,» [En ligne]. Available: https://sahara.irt-

saintexupery.com/AIDA/AIDAArchitecture. [Accès le 08 03 2024]. 

[11]  A. Sharon, O. L. De Weck et D. Dori, «Model-Based Design Structure Matrix: Deriving a DSM from an Object-

Process Model,» Wiley Online Library, 2012.  



[12]  D. Dori, Model-Based Systems Engineering with OPM and SysML, Springer, 2016.  

[13]  S. K. Salas Cordero, C. Fortin et R. Vingerhoeds, «Concurrent Conceptual Design Sequencing for MBSE of 

Complex Systems through Design Structure Matrices,» chez International Design Conference, 2020.  

[14]  T.-L. Yu, D. E. Goldberg, K. Sastry, C. F. Lima et M. Pelikan, «Dependency structure matrix, genetic algorithms, 

and effective recombination,» Evolutionary computation, pp. 595-626, 2009.  

[15]  F. Borjesson et U. Sellgren, «FAST HYBRID GENETIC CLUSTERING ALGORITHM FOR DESIGN 

STRUCTURE MATRIX,» chez ASME 2013 International Design Engineering Technical Conferences and 

Computers and Information in Engineering Conference, 2013.  

[16]  K. Sinha, S.-Y. Han et E. S. Suh, «Design structure matrix-based modularization approach for complex systems 

with multiple design constraints,» Systems Engineering, pp. 211-220, 2020.  

[17]  H. Robert, Y. Ali et M. Christoph, «Systematic module and interface definition using component design structure 

matrix,» Journal of Engineering Design, pp. 647-675, 2010.  

[18]  «Labs4Capella,» [En ligne]. Available: https://labs4capella.github.io/. [Accès le 17 11 2023]. 

 





Specializing SysMLv2 for Real-Time Safety-
Critical Systems – an Experiment with AADL 

 
Pierre Dissaux, Jerome Hugues  

pierre.dissaux@ellidiss.com, jhugues@andrew.cmu.edu  
 

 
Abstract – The future release of OMG SysMLv2 provides 
a new set of foundational layers to support engineering 
activities of a large set of systems. SysMLv2 relies on a 
restricted set of concepts combined with a large library to 
define building blocks for designing systems. This 
approach makes it possible to define domain-specific 
libraries that enrich or specialize SysMLv2 elements. In 
this paper, the authors show how to build one such 
specialization for real-time safety-critical systems. 
Starting from the SAE AADL language elements, we show 
how to a) extend SysMLv2 constructs with AADL ones, 
and b) propose guidelines to represent AADL static and 
dynamic semantics. This development serves as an 
illustration of SysMLv2 extension capabilities. It also 
addresses a recurring concern of specializing MBSE for 
domain-specific engineering activities, ranging from 
design activities to V&V.  
 
Index Terms – Model-Based Systems Engineering, 
Embedded Systems, SysMLv2, AADL. 

INTRODUCTION 

The engineering of software-intensive systems such as 
embedded systems is a complex endeavor whose scope 
extends well-beyond software engineering to incorporate 
systems engineering, safety, or security to name a few. 
Model-Based Engineering provides foundations to tackle this 
diversity of concerns through well-defined abstractions to 
capture system constituents, combined with model 
transformations e.g., to perform analysis. It is not uncommon 
to combine multiple modeling notation, picked among a rich 
portfolio of languages.  
 
In the following, we focus on the engineering of real-time 
safety-critical embedded systems. A common denominator of 
these approaches is the need to capture system requirements, 
system architectures up to some level of details and then 
further developed. In this context, the OMG SysML v1 [1] 
standard usually plays a role to build the first abstract set of 
models covering functional and logical architectures, whereas 
domain-specific languages like SAE AADL [2] or OMG 
MARTE allows one to refine a logical architecture expressed 
in SysML into a physical one in AADL [3]. 
 

 
1 Draft document available at https://www.omg.org/spec/SysML/  

Yet, these approaches are usually inefficient in that a) there is 
an overlap between these models: they may share similar 
interface or component definitions, b) they force the usage of 
different languages, adding pressure on project cost and 
schedule.  
 
The future release of SysML v21 brings a set of new attractive 
features that deserve to be analyzed to improve on the current 
state-of-practice. The most interesting ones are the ability to 
define domain libraries as a replacement to UML profiles 
along with a rich textual and graphical syntax that provides a 
unified type system, regular definitions of model elements 
based on the notions of definition and usage, along with user-
extensible semantics for, e.g., port-based communication or 
automata description. 
 
This paper is organized as follows: first, we recall the need 
for combining SysMLv1 with another notation. The authors 
selected AADL, but this would equally apply to OMG 
MARTE or AutoSAR. We illustrate some of the existing 
transformation approaches and their limits. Then, we 
introduce some of the features of the future SysMLv2 
standard and how they can be leveraged to build domain-
specific libraries. Taking the SAE AADL language as an 
input, we show how to build a library for extending SysMLv2 
for the engineering of embedded systems and provide an 
overview of the foreseen tool support. An illustrative example 
is provided at the end of the paper and we conclude by 
introducing a current initiative to draft one such library in the 
scope of the OMG Systems Modeling Community. 

STANDARDS FOR MODEL-BASED ENGINEERING 

The development of SysMLv1 started in 2004, in 
coordination with INCOSE, with the goal of providing a 
model-based solutions to support the ISO15288 Systems 
Engineering technical processes, ranging from Stakeholder 
Needs to Requirements, Architectural Design down to 
Verification and Validation processes. The standard has been 
revised several times and release 1.7 has been published in 
December 2022. 

The AADL standardization committee has been established in 
1999. This committee is hosted by SAE International, that 
published multiple standards for the avionics community. The 
first release of AADL has been published in 2004, with the 



latest revision published in April 2022. AADL has been 
designed to be a formal language with a rich set of semantics, 
to allow for unambiguous and precise modeling of embedded 
systems architectures that encompass the software design and 
runtime architecture, the physical system, and the computing 
hardware. 

In both cases, developing an open standard has been a critical 
decision to foster an international community of researchers, 
tool vendors, and industrial users. There is a natural overlap 
between SysMLv1 and AADL: both support architectural 
design modeling. Yet, they do so at different levels of 
abstractions.  

1. SysMLv1 considers mostly logical (abstract) system 
architectures and connects elements of a system to 
requirements and abstract behaviors. SysML models 
rely on naming conventions to infer the role of 
blocks (such as router, bus, etc.) and provide limited 
mathematically grounded analyses capabilities.  

2. AADL has native concepts for describing both the 
interface of components (devices, buses, etc.), but 
also to configure these elements (using default 
property sets) or through AADL annexes and define 
their run-time semantics.  

For instance, AADL models can be analyzed for performance 
or safety analysis, whereas SysMLv1 models remain mostly 
descriptive and could be used to drive external simulation or 
analysis capabilities.  

Complex systems require both the descriptive approach 
supported by SysML and the analytical one supported by 
AADL. The descriptive paradigm allows for the realization of 
a “single source of truth” that can be queried, whereas the 
analytical one allows for automated analysis capabilities, 
bringing confidence that the system will deliver the right set 
of performance. From a modeling perspective, an AADL 
model can be seen as a refinement of a SysMLv1 model: it 
provides a more accurate description of the system while 
using similar elements such as interfaces or components 
topology.  

The most challenging issue in such model transformations is 
the preservation of the semantics between the two languages. 
This can be achieved by expressing the target model 
semantics in at least three ways:  

1. Within the source model via a metamodel extension 
(e.g., UML stereotypes). 

2. Within the source model via a library of specialized 
constructs (e.g., SysMLv2 domain libraries). 

3. With an independent third-party tool that 
implements the semantical transformation rules 
(e.g., ATL, LMP). 

The pros and cons of these three approaches can be 
summarized as follows: 

 Pros Cons 

Source 
metamodel 
extension 

- Robust mapping 
that can be verified 
at the most 
abstract level 

- High impact on 
modeling tools 
implementation. 

- Lack of portability 
often observed 

Source 
model 
library 

- Easily changed 
and sharable 

- Low impact on 
modeling tools 
implementation  

- Risk of lack of 
mapping 
standardization  

Independent 
processing 
rules 

- No extension 
required at 
metamodel or 
model levels 

- Low impact on 
modeling tools 
implementation 

- Third-party tool 
and language 
required 

Following the first approach (UML stereotypes), Galois [4] 
has developed a bi-directional translator between SysMLv1 
and AADL to support the navigation between the two model 
spaces teams.  Still, this means two sets of models that must 
be maintained in parallel, with adequate training for the 
engineering teams. This adds extra costs and burden on 
engineering teams. 

On the contrary, Ellidiss applied the third approach to 
implement a SysMLv1 to AADL transformation process 
using the LMP technology [7], where the mapping between 
the two languages is formalized by Prolog rules. However, 
due to the lack of standardized guidelines, this solution 
requires a high level of customization at corporate or project 
level.  

SysMLv2 now brings an opportunity to experiment the 
second approach with the definition of a domain library 
dedicated to AADL. 

ABOUT  SYSMLV2 

SysMLv2 is the successor of the Systems Modeling Language 
(SysML) series of languages. The “v2” is an important factor 
in that SysMLv2 is not a simple revision but a complete 
redesign of the language. SysMLv2 and is not built as an 
extension/tailoring of UML like SysMLv1 Instead, SysMLv2 
is built around a metamodel and model libraries. The 



preferred approach to extend the language is to create model 
libraries. What is the most important is that the language 
semantics is grounded in mathematical and ontological terms. 
These should not frighten the end user: it means that the 
language has been carefully thought to be consistent from the 
ground up. Although the language is still under finalization, 
one does not expect the language to change significantly at 
this stage. Also, it has been heavily analyzed and presented 
[4, 5]. The general feedback is that SysMLv2 has a set of 
features that will enable new approaches to support model-
based engineering at large: 
 

• Simpler set of language constructs built around the 
concept of “definition” and “usage”. This separation 
provides the required rigor to express the various 
dimensions of a system lifecycle.  

• SysMLv2 is built on top of KerML, a small 
foundational set of concepts such as “occurrences” 
or “thing”. These ontological definitions bring 
clarity compared to a collection of stereotypes. 

• SysMLv2 provides a standardized API to manage 
model storage, exchange, and interaction. This 
allows a strong decoupling between configuration 
management, model authoring, and model 
processing. 

• SysMLv2 provides both graphical and textual 
syntax. The latter allows for a leaner approach to 
modeling.   

 
As of Summer 2023, more than 14 SysMLv2 tools are under 
development, covering the typical landscape of modeling 
tools. The textual syntax allowed for the development of 
plugins for IDE such as VSCode, lowering the barrier to start 
building models.  

ABOUT AADL 

The AADL [2] language is an architecture description 
language for model-based engineering of embedded real-time 
systems. It defines notations, expressed using both a graphical 
and a textual syntax, to represent a full system with its 
software and hardware components in one model 
(architectural representation of the system).  

The AADL components are defined by a type (that mainly 
contains the component interface elements, called features) 
and zero or more implementations (that present the 
component internal structure composed of subcomponents, 
calls, connections, flows, modes, and properties). The 
components are grouped in three categories: software 
components (subprogram, subprogram group, data, 
thread, thread group and process); hardware 
components (processor, virtual processor, 
device, bus, virtual bus, and memory); and system 
composition component (system). An AADL connection is 
a linkage established between components that can be port, 
parameter, or access connections. The AADL language brings 

the capability to enrich the model with additional information 
by a set of standard properties and annexes. Properties are 
used to complete the component definition and bind the whole 
system hierarchically.  
 
There is a notional correspondence between AADL concepts 
and SysMLv2 ones. Component types and implementations 
are like SysMLv2 parts: they describe the constituents of a 
system. Similarly, AADL concepts of ports and connections 
echo SysMLv2 concepts of features and connections, AADL 
properties and SysMLv2 attributes share the same goal.  

However, AADL provides a constrained set of semantics 
rules for modeling safety-critical systems: 

• AADL component categories are representative of 
building blocks of these systems. They are 
associated with legality rules that constrain 
composition of components. 

• AADL components have predefined semantics, e.g., 
for periodic threads, for system startup or model 
change that prescribes the system lifecycle. 
Similarly, port-based communication is fully 
specified in terms of expected observable behavior. 

• AADL property sets are representative of the 
configuration parameters for these systems. 

Hence, it is natural to consider AADL as a specialization in 
which AADL concepts specialize SysMLv2 ones. 
 

SPECIALIZING SYSMLV2 FOR REAL-TIME SAFETY-
CRITICAL SYSTEMS – AN OVERVIEW 

 
In the following, we sketch our current work in defining 
elements to specialize SysMLv2 with AADL concepts.  
 
Our approach aims to address three requirements: 
 

1. Support AADL vocabulary by specializing 
SysMLv2 concepts to define AADL ones. 

2. Ensure that SysMLv2 models respects AADL static 
semantics, such as typing rules, e.g., a thread can be 
a subcomponent of a process, but not vice-versa. 
AADL defines 200+ rules to define the notion of 
model validity. 

3. Support for AADL dynamic semantics. Whenever 
possible, we want to specialize SysMLv2 semantics 
to describe the execution semantics of a model. Let 
us note this would constitute a nice addition to the 
original AADL specifications: currently, the AADL 
semantics is formally described as a collection of 
hybrid automaton and English text. Leveraging 
SysMLv2 state machines would make the 
description less ambiguous and machine 
processable. 

 



Figure 1 illustrates how to support the first requirement: 
AADL component categories are defined using 
corresponding SysMLv2 part specialization. From the end 
user perspective, they have access to the original concepts of 
the language defined in a library imported (see “import 
AADL::*”). 

 
Figure 1 AADL and SysMLv2 with AADL concepts. 

The library itself defines each specialization and associate 
rules to these specializations, covering the second 
requirement (see Figure 2). Each AADL component category 
specializes a common ancestor that specializes SysMLv2 
part. This specialization specifies static constraints to be 
respected. In this example, we state which elements can be 
subparts (subcomponents in AADL vocabulary) and which 
features can be used (e.g. a process may not use hardware 
features). SysMLv2 makes it easy to specify those constraints 
using iterators and basic logic. We note this modeling 
approach is equivalent to the definition of a meta-model. The 
library model used by SysMLv2 allows one to hide the way 
constraints are defined, or the inheritance tree.  
 

 
Figure 2 AADL Process as a SysMLv2 part specialization. 

An alternative approach that addresses the second 
requirement with a more complete specialization hierarchy 
was also explored in [6]. It has the advantage of being easy to 
check by a SysMLv2 tool, but does not cover some specific 

cases (e.g., for assessing the compatibility of connections),  
Constraints addresses this issue, but makes the validation of a 
model more costly, as constraints must be evaluated. 
Currently, there is no available implementation of SysMLv2 
that support either their evaluation on-the-fly or on-demand.  
 

 
Figure 3 AADL process with execution semantics. 

Finally, figure 3 shows a more elaborated example to cover 
the third requirement. We defined a collection of attributes to 
capture some configuration parameters for scheduling. We 
also instantiate a state machine to represent the expected 
periodic behavior of this entity. Similar specializations have 
been defined for port-based communication or other 
scheduling policies.  

DETAILS OF THE AADL/SYSMLV2 MAPPING 

The strategy that has been chosen to describe in detail the 
representation of AADL constructs in SysMLv2 is to follow 
the structure of the AADL standard document (SAE AS-
5506D). Indeed, one of the short-term objectives of this work 
is to make it as easy as possible for AADL users to use the 
new language. 
 
The AADL standard document is organized as follows: 
 

• Chapters 1 to 3 provide informal description text 
about the scope, references, and a summary of the 
language. 

• Chapter 4 gives a more formal description of the 
main structural elements of the language, i.e., 
packages, components, and annexes. 

• Chapters 5 to 7 describe each specific category of 
component. 

• Chapters 8 to 10 address components interactions in 
terms of features, connections, and flows. 

• Chapter 11 contains the definition of the AADL 
properties language. 

• Chapters 12 to 14 deal with the elaboration of a 
complete operational model and support of layered 
architectures. 



• Chapter 15 is dedicated to the textual language 
lexical rules. 

• Appendix A contains the complete definition of the 
predefined AADL properties that apply to the 
various AADL constructs. 

• Appendix B to F provide summaries of terms, textual 
syntax, graphical notation, and other ancillary 
information about the language. 

• Annexes A to F are extensions to the core language 
that are specified in separate documents. They 
address more specific topics such as data modeling 
and code generation, interaction with the ARINC 
653 and FACE standards, as well as real-time 
behavior and safety sub-languages. 

 
The ultimate goal of the AADL/SysMLv2 mapping is to cover 
all the topics addressed by the SAE documents that are 
relevant to enable operational use of SysMLv2 to perform 
AADL modeling and verification activities. 
 
This initial version of the mapping addresses chapters 4 to 11 
only. The current state of this work is described below in this 
paper. Additional work will be required to address chapters 
12 to 14 and the annexes. Chapter 15 must also be addressed 
for the management of AADL and SysMLv2 reserved words 
and their difference in case sensitivity. 
 

MAPPING RULES FOR AADL STANDARD CHAPTER 4 
 
The first part of chapter 4 of the AADL standard document 
(4.1 and 4.2) deals with high level organization of a model. 
An AADL specification is the collection of AADL packages 
and AADL property sets that contribute to the definition of all 
the required modeling elements. The AADL specification 
defines a global namespace, and each package or property set 
defines its own namespace. Access to definitions of remote 
packages may be insured thanks to a with statement that can 
be optionally enforced by a renames statement to avoid the 
use of full qualified names. An AADL package may 
optionally define a private section. 
 
Corresponding constructs in SysMLv2 are very similar. A 
SysMLv2 root namespace defines a global namespace that 
owns packages. Each SysMLv2 package defines a new 
namespace. Access to remote declarations can be obtained 
with an import statement, that automatically allows for the use 
of short names instead of qualified names. Local renaming is 
supported by the definition of aliases. There is no dedicated 
notion of property set in SysMLv2; as explained below, 
specially featured SysMLv2 packages will be used instead. 
We can also note that both AADL and SysMLv2 share the 
same syntax for defining qualified names. 
 

AADL SysMLv2 
specification root namespace 
package package 
public/private sections public/private elements 

property set package (see chapter 11) 
with/renames import/alias 
:: sep. for qualified names :: sep. for qualified names 

Table 1 mapping for packages. 

The second part of chapter 4 of the AADL standard document 
(4.3, 4.4, 4.5, and 4.6) is related to the AADL component 
model. An AADL component definition is done within an 
AADL package and can be split into a mandatory component 
type declaring its externally visible features, and zero or 
several component implementation(s) containing the internal 
realization(s), and in particular a list of subcomponents. This 
section also contains the definition of a particular kind of 
AADL components, referred to as abstract. An AADL 
abstract component is a generic placeholder used in early 
phases of the design process, that must be later refined into 
one of the concrete categories of AADL components. 
 
The concept of type and implementation does not exist in 
SysMLv2. Two possible mapping options can be considered 
depending on the intent of the modeling process. The first 
option consists in ignoring this two-fold definition and 
including all the owned elements inside a single SysMLv2 
part definition. Necessary split or merge operations can be 
supported respectively by SysMLv2 to AADL and AADL to 
SysMLv2 model transformation rules. The second option 
supposes the declaration of one part definition for the 
component type and as many additional part definitions as 
there are component implementations. The part definitions 
representing the component implementations must then 
specialize the one representing the component type. The 
AADL legality rules specifying what a component type and a 
component implementation may contain can then be managed 
by two abstract part definitions owning the relevant SysMLv2 
constraints, on for the component types and the other for the 
implementations. The concept of AADL abstract component 
is easy to manage in SysMLv2. Indeed, it could be directly 
mapped to the native SysMLv2 part definition construct. In 
practice, it will be processed in the same way as the other 
AADL component categories in the SysMLv2 domain library.  
 

AADL SysMLv2 
component type abstract part definition 
component implementation abstract part definition 
subcomponent part usage 
abstract component part definition 

Table 2 mapping for components. 

The last part of chapter 4 of the AADL standard document 
(4.7 and 4.8) is about component parametrization and 
language extensions. AADL prototypes are used to define 
parametric components, i.e. components having some of their 
features that can be customized while being instantiated as 
subcomponents. AADL annexes are the way to extend the 
AADL language definition under the form of guidelines, 



libraries, or sublanguages. Some of these annexes have been 
included into the SAE standard package whereas others are 
user or tool specific, such as Resolute, Agree or LAMP. 
 
SysMLv2 does not provide a dedicated construct to support 
parametric part definitions highlighting which elements can 
be customized. An almost similar result can be obtained using 
general SysMLv2 specialization and redefinition 
mechanisms. Regarding AADL annexes, the mapping will be 
specified on a case-by-case basis. Although these have not 
been explored in detail yet, we can expect that the AADL 
behavior annex can leverage native SysMLv2 constructs such 
as states, actions and the KerML expression language. The 
AADL error annex may better rely on the future adaptation to 
SysMLv2 of the existing OMG RAAML standard. User 
defined annex sublanguages can be embedded inside a 
SysMLv2 model thanks to textual representations. Finally, 
annex libraries can be represented by SysMLv2 library 
packages. 
 

AADL SysMLv2 
prototype part usage redefinition 
behavior annex states, actions, expressions 
error annex RAAML ? 
other annex sublanguages textual representation 
annex libraries library package 

Table 3 mapping for prototypes and annexes. 

MAPPING RULES FOR AADL STANDARD CHAPTERS 5 TO 7 
 
Chapters 5 to 7 of the AADL standard document provide a 
detailed specification of each category of component. This 
includes software components (chapter 5), execution platform 
components (chapter 6), and system composition (chapter 7).  
 
For each category, the AADL specification consists of 
informative text, a set of more formal naming, legality, and 
consistency rules, as well as the list of relevant AADL 
properties. All this information contributes to the definition of 
the static and dynamic semantics of the AADL language and 
makes it appropriate for the support of real-time embedded 
critical system and software development. 
 
The first step of this work aiming at representing an AADL 
specification with a corresponding SysMLv2 model, focuses 
on the selection of the most appropriate SysMLv2 construct 
or combination of construct for each AADL one. At that stage, 
we do not address in depth the definition of all the specific 
AADL static and dynamic semantics under the form of 
SysMLv2 constraints or metadata for instance. That’s why, in 
this paper, we will not perform a precise analysis of each 
individual category of AADL component and its SysMLv2 
counterpart. Instead, we present a general strategy to support 
the generic concept of AADL category that does not exist 
explicitly in SysMLv2. 
 

The currently proposed solution is to add to each component 
a dedicated attribute typed by an enumeration listing all the 
possible AADL category names. Most of the AADL static 
semantics rules can be expressed in terms of SysMLv2 
constraints. This is in particular the case for the rules defining 
which categories of features and subcomponents can be 
embedded in each kind of AADL component. 
 

AADL SysMLv2 
component category abstract part definition with 

a category attribute usage 
list of categories enum definition 
allowed feature constraint 
allowed subcomponent constraint 

Table 4 mapping for categories 

Note that there are still ongoing discussions with the 
SysMLv2 standardization committee to check other possible 
mapping options requiring some clarifications about the 
definition of the semantics of the language. 
 

MAPPING RULES FOR AADL STANDARD CHAPTERS 8 TO 10 
 
Chapters 8 to 10 of the AADL standard document specify in 
order component features, connections between components, 
and logical dataflows across one or several components. The 
last item (chapter 10) has not been studied yet.  
 
AADL features represent interaction points for a component. 
As such, they are part of an AADL component type. They can 
be either an AADL abstract feature, an AADL port, or an 
access point to a remote shared AADL subcomponent. AADL 
also specifies feature groups that encompass a collection of 
features. AADL connections are defined for each kind of 
feature. 
 
The general way to represent AADL features with SysMLv2 
is the port. However, it must be enriched by additional 
constructs to better match either AADL ports or access 
features. Indeed, an AADL port is typed by a specific data 
component which can be represented by an owned item of a 
SysMLv2 port. In a similar way, an AADL access feature 
requires a binding between a SysMLv2 port and a ref usage 
representing a proxy of the remote component. Feature groups 
can be managed natively with SysMLv2 port nesting. Finally, 
AADL connections can be represented in a general case by 
SysMlv2 connections. 
 

AADL SysMLv2 
port and abstract feature port with a type item  
provided access feature out port + ref + bind 
required access feature in port + ref + bind 
feature group nested ports 
connection connections 

Table 5 mapping for features and connections. 



MAPPING RULES FOR AADL STANDARD CHAPTERS 11 
 
Chapter 11 of the AADL standard document deals with the 
property sublanguage. Properties are one of the ways to 
enforce the semantics of each category of AADL elements. 
They are also commonly used as a language extension 
mechanism. Finally, they have sometimes been overused to 
implement constructs that would have probably been better 
described at architectural level. This is typically the case for 
binding, entry points, and modeling properties. In the 
following, we will distinguish the mapping for the general 
case, and the specific mapping for binding properties. The 
other modeling properties have not been studied in depth yet. 
 
AADL properties are declared in property sets containing lists 
of property types, property definitions, and property 
constants. A group of predefined property sets is part of the 
normative standard and its annexes, and user defined 
nonstandard property sets can be added to fit project or tool 
specific needs. Within the core of an AADL model, these 
properties can be used as property associations to assign a 
value thanks to a property expression statement. 
 
The mapping in the general case consists in using a SysMLv2 
package to represent AADL property sets, attribute 
definitions for property types and property definitions, 
attribute usages for property associations and property 
constants, and the KerML expression language for AADL 
property expressions. The validation of these mapping rules 
will consist in implementing the existing predefined property 
sets in full. This task has not been carried out yet. 
 

AADL SysMLv2 
property set package  
property type attribute definition 
property definition attribute definition 
property constant attribute usage 
property association attribute usage 
property expression KerML expression 

Table 6 mapping for properties (general case) 

The proposed mapping for AADL binding properties does not 
rely on SysMLv2 attributes, as the language offers better 
constructs to define structural relationships between 
components that are not directly related to data or control 
flows. An AADL binding establishes a many-to-one 
hosted/allocated relationship between components using 
resources and those representing resources.  In particular, it 
maps application components to execution platform 
components. In practice, AADL bindings are used to define 
either mappings from functional architectures to system 
architectures (function binding), or software to hardware 
deployments (processor and connection bindings).  
 
For these three special cases of AADL properties, the binding 
construct proposed by SysMLv2 does not match as it 

expresses an equivalence instead of an allocation of separate 
entities. Discussions with the SysMLv2 standardization 
committee are still in progress to select the most appropriate 
construct for representing AADL binding properties. 
Moreover, AADL also defines allowed binding and allowed 
binding class properties, whose mapping with SysMLv2 has 
not been explored yet. 
 

AADL SysMLv2 
actual binding property allocation  (to be confirmed) 
allowed binding property (to be defined) 
allowed binding class 
properties 

(to be defined) 

entrypoint properties (to be defined) 
Matching and substitution 
rules 

(to be defined) 

implemented_as property (to be defined) 
is_hardware property (to be defined) 

Table 7 mapping for properties (special cases) 

ONGOING TOOLING EXPERIMENTS 

These definitions are supported by several ongoing efforts led 
by the authors. 
 
First, we defined a SysMLv2 library defining AADL concepts 
that we presented. This library supports the AADL syntactic 
elements (component and feature categories, property sets) 
and draft of the static semantics. The latter is currently being 
refined as SysMLv2 addresses the last pending issues during 
its finalization. 
 
This library can be used in multiple ways. The SEI has 
released two translators between AADL and SysMLv2. The 
AADL-to-SysMLv2 translation builds on OSATE AADL 
meta-model to translate AADL models to SysMLv2. The 
SysMLv2-to-AADL translation builds on the SysMLv2 
reference implementation of the API to query SysMLv2 
model elements and translate them to AADL. These 
translators serve two purposes: first, to validate the proposed 
mapping rules. Building a translator is a good strategy to 
ensure the completeness and correctness of the mapping rules. 
Furthermore, they allow to either translate legacy AADL 
models to SysMLv2, but also to apply existing AADL 
toolsets, for instance for performance analysis or model 
checking, on SysMLv2 models. 
 
For its part, Ellidiss Technologies is working to take SysML 
v2 into account in its tool offering. In the short term, this will 
follow two tracks. The first one aids with textual edition of 
AADL and SysML v2 models as well as prototyping the bi-
directional transformations thanks to the Visual Studio Code 
extensions developed by the company.  
 
The second realization is more focused on providing 
advanced model analysis features for SysML v2 users and 
will leverage the existing AADL Inspector tool and its Prolog 



based LAMP plugins [7]. Foreseen enhancements of this tool 
are the realization of user customizable AADL to SysML v2 
and SysMLv2 to AADL model transformation rules, as well 
as an implementation of the SysML v2 constraints defined to 
enforce the AADL static semantics, into Prolog.  
 

AN ILLUSTRATIVE EXAMPLE 

This section provides an illustration of the SysML v2 domain 
library for AADL trough a simple example that is 
representative of the benefit brought by the proposed 
approach. 
 
We first present the illustrative example in its AADL form, 
showing its graphical representation, the complete 
corresponding AADL text, and a typical possible timing 
analysis that can be performs on such a model. The textual 
AADL model was automatically generated by the Stood for 
AADL design tool. The timing simulation was performed by 
the AADL Inspector tool. 
 
In the second part, we introduce fragments of a representation  
of the example in SysML v2, and the current state of the 
AADL library for SysML v2. The corresponding SysML v2 
textual files were tested with the OMG System Modeling 
Community Reference Implementation tool prototype, in the 
version that was available at the date this paper was written.  
 

THE EXAMPLE IN AADL 
 

The proposed example describes a minimalistic AADL real-
time system that includes a sufficient level of details to enable 
scheduling analysis and simulation  As shown in Figure 4, his 
system is composed of a software application represented by 
an AADL process and its hardware execution platform 
described by an AADL processor with a real-time scheduler 
characterized by a scheduling protocol property. 
 

 
Figure 4 a minimalistic AADL real-time system 

The software application is composed of two periodic threads 
exchanging integer values via AADL data ports. Figure 5 
shows the two connected threads and the connections up and 
down the encompassing process. Note that this graphical 
representation focuses on architectural design and thus does 

not show all the modeling details that must be handled by 
other features of the AADL authoring tool. 

 
Figure 5 Software architecture of the example 

The corresponding complete AADL code is shown below. 
 
package AADL_Example 
public 
with Data_Model; 
 
system System_Def 
end System_Def; 
 
system implementation System_Def.others 
subcomponents 
  Hardware : processor Hardware_Def; 
  Software : process Software_Def.i; 
properties 
  Actual_Processor_Binding =>  

(reference(Hardware))  
applies to Software; 

end System_Def.others; 
 
processor Hardware_Def 
properties 
  Scheduling_Protocol => (HPF); 
end Hardware_Def; 
 
process Software_Def 
features 
  Input : in data port Int; 
  Output : out data port Int; 
end Software_Def; 
 
process implementation Software_Def.i 
subcomponents 
  Sender : thread Thread_100hz_Def { 
    Compute_Execution_Time => 1 ms..2 ms; 
    Priority => 2; 
  }; 
  Receiver : thread Thread_100hz_Def { 
    Compute_Execution_Time => 2 ms..2 ms; 
    Priority => 1; 
  }; 
connections 
  cnx1 : port Input -> Sender.Input; 
  cnx3 : port Receiver.Output -> Output; 
  cnx2 : port Sender.Output -> 
    Receiver.Input; 
end Software_Def.i; 
 
thread Thread_100hz_Def 
features 
  Input : in data port Int; 
  Output : out data port Int; 



properties 
  Dispatch_Protocol => Periodic; 
  Period => 10 ms; 
end Thread_100hz_Def; 
 
data Int 
properties 
  Data_Model::Data_Representation => 
    Integer; 
end Int; 
 
end AADL_Example; 

 
The real-time behavior of such a concise model is fully 
defined by the standard AADL run-time specification. It is 
thus possible to execute the AADL model, as shown in the 
simulation trace in Figure 6. 
 

 
Figure 6 Simulation trace of the example 

THE EXAMPLE IN SYSMLV2 
 

In this sub-section, we provide a possible representation of the 
same example in SysML v2 that is based on the current state 
of the mapping that is presented above in this paper. It is 
important to recall that the dynamic aspects of SysML v2 
language have not been studied in depth yet, so only the static 
architecture semantics have been addressed for now. 
 
The SysML v2 source text shown below describes the 
applicative part of the example and we can observe that its 
structure is very similar to the AADL one. Apart from the 
obvious change in terms of syntax, the most notable 
difference is the list of imported libraries whose role is to 
implement the mapping between the two languages. 
 
package AADL_Example { 
  import AADL::*; 
  import AADL_Project::*; 
  import AADL_Project::Time_Units::*; 
  import Deployment_Properties::*; 
  import Thread_Properties::*; 
  import Timing_Properties::*; 
 
  part def System_Def :> System { 
    part Hardware: Hardware_Def; 
    part Software: Software_Def; 

allocation SwToHw:  
  Actual_Processor_Binding  

      allocate Software to Hardware; 
  } 
  part def Hardware_Def :> Processor { 

attribute :>> Scheduling_Protocol = HPF; 
  } 
  part def Software_Def :> Process { 

port Input: DataPort  

  { in :>> type: Int; } 
    port Output: DataPort  

  { out :>> type: Int; } 
    part Sender: Thread_100Hz_Def { 
      attribute :>> Priority = 2; 
      attribute :>> Compute_Execution_Time =  
        1 [ms]..2 [ms]; } 
    part Receiver: Thread_100Hz_Def { 
      attribute :>> Priority = 1; 
      attribute :>> Compute_Execution_Time = 
        2 [ms]..2 [ms]; } 
    connection ToSe: PortConnection 
      connect Input to Sender.Input; 
    connection SeToRe: PortConnection 
      connect Sender.Output  
      to Receiver.Input; 
    connection ReTo: PortConnection 
      connect Receiver.Output to Output; 
  } 
  part def Thread_100Hz_Def :> Thread { 

port Input: DataPort  
  { in :>> type: Int; } 
port Output: DataPort  
  { out :>> type: Int; } 
attribute :>> Dispatch_Protocol =  
  Periodic; 

    attribute :>> Period = 10 [ms]; 
  } 
  part def Int :> Data {  

attribute :>> value:  
  ScalarValues::Integer; 

  }     
} 

 
The SysML v2 domain library for AADL is currently 
organized in such a way that it follows the structure of the 
AADL standard document. Only small fragments of these 
libraries are shown in this paper. 
 
The first library corresponds to the AADL core definitions. It 
implements the mapping defined between the modeling 
constructs of the two languages. The fragment shown below 
provides a generic representation for AADL components, 
ports and connections, as well as the specific specialization 
for threads. 
 
standard library package AADL { 
/* references:  
 * SAE AS-5506D AADL chapters 4 to 10 
 * OMG SysML v2 release 2024-02 */   
 
  enum def ComponentCategory { 
    enum Data; 
    enum Process; 
    enum Processor; 
    enum System; 

enum Thread; 
/* … (fragment) */ 

  } 
  abstract part def Component { 
    attribute category : ComponentCategory; 
  } 
  part def Thread :> Component { 

attribute :>> category =  
  ComponentCategory::Thread; 
attribute Compute_Execution_Time :  

       Timing_Properties::Compute_Execution_Time; 
attribute Period :  
  Timing_Properties::Period; 



attribute Dispatch_Protocol :  
  Thread_Properties::Dispatch_Protocol; 
attribute Priority :  
  Thread_Properties::Priority; 

  } 
  abstract port def Feature; 
  port def DataPort :> Feature { 
    inout item type : Component; 
  } 
  abstract connection def Connection :>  
    Connections::BinaryConnection; 
  connection def PortConnection :>  
    Connection { 
      end source : Feature; 
      end target : Feature; 
  } 
  abstract attribute def Property;   
  /* … (fragment) */ 
} 

 
The second library provides a SysML v2 implementation of 
the AADL_Project property set. It contains a list of common 
declarations for AADL properties. These declarations may be 
customized to fit project specific requirements.  
 
standard library package AADL_Project { 
/* references:  
 * SAE AS-5506D AADL appendix A8 
 * OMG SysML v2 release 2024-02 */ 
 
  enum def Supported_Scheduling_Protocols { 
    enum RM; 
    enum DM; 
    enum HPF; 
  } 
  alias HPF for  
    Supported_Scheduling_Protocols::HPF; 
  /* … (fragment) */ 
} 

 
Then, for each appendix of the AADL document that specifies 
the predefined property sets, a dedicated SysML v2 library is 
proposed. As an example, the library for AADL deployment 
properties is shown below. 
 
standard library package Deployment_Properties { 
/* references:  
 * SAE AS-5506D AADL appendix A1 
 * OMG SysML v2 release 2024-02 */   
  import AADL_Project::*; 
 
  allocation def Actual_Processor_Binding { 
    end part sw : AADL::Component;  
    end part hw : AADL::Component;  
  } 
  attribute def Scheduling_Protocol :>  

AADL::Property,  
Supported_Scheduling_Protocols; 

  /* … (fragment) */  

} 

 

LESSONS LEARNT AND WAY FORWARD 

In the previous sections, we sketched elements of the 
development to specialize SysMLv2 with AADL concepts. 
These snapshots of our current development show that 
SysMLv2 provides interesting abstractions that cover many 
use cases of AADL. At the time of writing, we covered most 
static semantics rules, and the most basic cases for the 
execution semantics. 
 
To foster SysMLv2 adoption, the OMG recently initiated the 
Systems Modeling Community (SMC). The primary goal of 
the SMC is to gather user communities interested in specific 
usages of SysMLv2. The authors are currently engaged in a 
specific working group aiming at pushing forward this 
development. Our primary goal is to capture AADL semantics 
as SysMLv2 constructs. This would address the issues of 
having two languages that have some overlap. This would 
also equip systems engineers with a domain-specific library 
with consistent semantics rather than developing ad hoc 
solutions. A longer-term goal is to close the gap between 
MBSE and domain specific engineering for other classes of 
embedded systems (e.g., robotics) or standards (e.g., OMG 
MARTE or AutoSAR).  The maturity of these standards or 
practice makes it possible to build such a community that 
could deliver reusable libraries for support model-based 
engineering activities.  
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ABSTRACT

In this paper, we present a development process of a
drone detection system involving a machine learning object
detection component. The purpose is to reach acceptable
performance objectives and provide sufficient evidences,
required by the recommendations (soon to be published)
of the ED 324 / ARP 6983 standard, to gain confidence in
the dependability of the designed system.

I. INTRODUCTION

The ever increasing traffic of UAVs (Unmaned Aerial
Vehicles) in the airspace represents a new threat for safety
and security. In this context, we are developing a surveil-
lance system aimed at detecting and localizing intrusions
of UAVs in sensitive areas.

A. System description

The drone surveillance system is composed of two main
parts: a sensing sub-system and a machine learning (ML)-
based detection and localization sub-system. The sensing
sub-system is composed of a radar and a camera. The
radar scans continuously the area under surveillance and
can detect and classify (as UAV, bird or other) multiple
objects simultaneously within a range of 5 km and an angle
of view of 120 degrees. For small objects, the performance
of the radar detection and classification being low [14], the
camera is used to confirm the type of the detected object
on the basis of the objects locations provided by the radar.

In this work, we only consider the camera-based de-
tection and localization functions. Therefore, we make
no hypothesis on the position of detected objects in the
images. This is coherent with the uncertainty inherent to
the information provided by the radar. Indeed, assuming the
drone to be in specific position in the image (e.g. always in
the center), thanks to the radar localization, would possibly
lead to miss the presence of an intruder.

Figure 1: Surveillance Area

Figure 1 shows the surveillance area that is delimited
by a conic boundary (in green on the figure). In this area,
any object of at least 0.5m and at most 800m must be

detected. This area is partitioned into three sub-areas (A1,
A2, and A3) in order to adapt the detection performance
and latency requirements of the system to the distance
to the intruder. Indeed, the closer the intruder, the faster
the detection should be and the higher the quality of the
detection should be. Moreover, depending on the size of the
drone in the image (in pixel2), the system could execute
different object detection models, the performance of which
has been optimized with a range of object size.

For confidentiality reasons, no precise performance re-
quirements can be given for the system. For area A3 for
instance, detection performance must be higher than 80%
and detection latency must be lower than 50ms. In addition,
detection performance must be achieved in a large range
of environmental conditions including various backgrounds
(landscape, city,...) or weather conditions (sunny, cloudy,
...). Finally, coverage (i.e., ratio of false negatives) must
be lower than 20% in order to prevent false alarms and
the unnecessary triggering of the interception action (for
instance).

In order to reach a high level of reliability and availabil-
ity, we choose to follow the recommendations promoted
in the aeronautics domain, and specifically the guidance
[8] released by the the EASA (European Union Aviation
Safety Agency) and the soon to be published ED 324/ARP
6983 recommendations currently being developed by the
SAE G34/EUROCAE WG114 working group [9]. Another
aeronautical standard, named the SORA [17], has been
published to regulate drone flight to ensure safe operations
in air traffic and environments. However, it does not address
the integration of ML models into safety-critical systems.
Applying the SORA could be considered in a further step to
integrate an ML-based detection function in an interceptor
drone (which is a better way to treat intrusion in sensitive
area rather than an on-ground system).

B. ED 324/ARP 6983

The ARP 6983 is a Process Standard for Development
and Certification/Approval of Aeronautical Safety-Related
Products Implementing AI1. As of the date of redaction of
this article, this document is still a work-in-progress, and a
first public version is expected in Q2 2025. The ARP 6983
provides guidance that can be used as means of compliance
for embedded AI. It complements existing practices to
cover the specific issues raised by the introduction of
AI/ML. Insights on the expected contents of the standard
can be found in [11].

The ARP 6983 covers a significant part of the engi-
neering activities for a AI/ML system, from the system/-

1See https://www.sae.org/standards/content/arp6983/



Figure 2: ARP 6983 simplified development workflow (adapted from [11])

subsystem level down to the hardware and software items
levels, through the ML constituent level2. An overview of
the overall process is given on Figure 2. Note that this
diagram refers to an interim version of the standard that
still may change before the official release of the standard
is published.

In this paper, the focus is placed on the activities of
the standard labelled with a red tag (those in grey are
mentioned for completeness). More precisely: the system
Operational Design Domain (➀, §II-A) and the other
subsystem requirements are used to develop the ODD
(Operational Design Domain) of the ML Constituent, or
MLCODD (➁, §II-B) and, finally, the input dataset (➂,
§III-B). The ML model designed to comply with the ML
constituent requirements (➃) is refined into one or several
ML Model Item Description(s) (MLMID, ➄), which are
implemented and deployed on the target hardware (➅, §IV).

C. Contributions

Our main contribution is the description of a partial
process compliant with ARP 6983 applied in the devel-
opment of an actual industrial system. The main phases
of the development process addressed in the paper are the
following:

• in phase 1, the system-level Operational Design Do-
main is specified and propagated to the ML con-
stituent of the system,

• in phase 2, the dataset is built (selected, augmented)
in compliance with the ODD and the MLCOOD,

• in phase 3, the ML model is designed (selected,
adapted) so as to comply with the functional (ML
performance) and non functional (memory footprint
and latency) requirements,

2A ML constituent is defined in the certification guideline as a
constituent containing the ML model(s) and its associated data processing.

• finally, in phase 4, different implementation paths
are investigated considering traceability and latency
concerns.

In addition from applying this process, we also propose
the following technical contributions:

• Biases on the input dataset have been identified and
corrected by data augmentation;

• Compliance with detection performance and inference
latency requirements has been addressed by conjointly
(1) improving detection performances by (1.a) pre-
venting information loss due to image redimension-
ing, (1.b) achieving good sub-image overlap, and (2)
improving implementation efficiency thanks to (2.a) a
quantized representation of the ML model (FP16 and
INT16) and (2.b) an efficient implementation of the
GEMM matrix multiplication operator.

There is a significant and increasing number of pub-
lications addressing the usage of ML in safety critical
systems. When it comes to certification aspects, we can
for instance mention the work on the ACAS-Xu in [5].
However, this work considers a very specific problem with
a narrow operational domain (5 scalars). More recently,
papers address the certification vision-based landing such
as [7]. But none of them covers the full spectrum as we do
and none addresses the drone intrusion detection problem.
In that sense, our case study is representative of a (new)
broader class of problems for which ML is considered
useful.

The paper is organized as follows: Section II presents
our approach to define the Operational Design Domain of
our ML constituent; Section III describes the dataset design
compliant to the ODD; Section IV and Section V describe
respectively the model design and deployment process;
Section VI concludes the paper.
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II. ODD SPECIFICATION

The first phase of our process is to define the Operational
Design Domain (ODD). The ODD of a system is the
allocation of the Operational Domain (OD) requirements to
the system, the OD being a “specification of all foreseeable
operating conditions under which an end-product is ex-
pected (and should be designed) to fulfill its missions” [20].
The ODD is a crucial element for the development of
any ML-based system. Below, we first specify the ODD
at system level and then refine it at ML constituent level,
where the ML constituent only includes the ML model and
its associated processing.

A. System ODD

The system ODD has been developed from a set of
operational scenarios provided by domain experts. This set
is deemed to cover the complete range of conditions in
which the system must operate. For defining the operational
scenarios, we use some terminology of the ISO 34503 [19],
a standard that proposes some concepts and requirements to
enable the definition of an ODD of an automated driving
system. In particular, an operational scenario determines
(i) the environmental conditions, (ii) the set of dynamic
elements, also referred to as objects (intruder or drone,
birds or other), (iii) the set of scenery elements (spatially
fixed elements) of the system environment (”landscape”,
”sun”, etc.) that must be considered and (iv) the set
of attributes characterizing those (dynamic and scenery)
elements (e.g., “position in the sky” for the “sun” element,
“type of drone” for the “intruder” element, etc.). Here is
an example of such a scenario.

Operational scenario 1: is defined by:
• Environmental conditions: Time = 2 pm. Season =

winter. Location: Europe. Atmosphere (nebulosity =
none – meaning that the weather is clear).

• Scenery elements: The system is installed in an urban
area with background buildings of high below 15m.

• Dynamic elements: A 50cm x 50cm x 20cm drone
arrives on the hand left side of the surveillance area
(with orientation = (10°, 25°, 3°)) at a distance
of 450m from the system, moving with a straight
trajectory, in the direction of the system, at a constant
speed of 1m/s. Sun is visible (on the left hand side of
the image).

The set of operational scenarios encompass many ele-
ments and associated attributes that are translated as a set of
constraints that in fine defines the ODD. Those constraints
can be numerous, highly complex or non tractable by
human. It may that an additional simplification step is
necessary to aggregate some constraints into simpler ones,
that can be more easily interpreted at the image level. For
instance, the “position of the sky” and “presence of clouds”
could be folded into a single attribute called “lightning
conditions”. In addition, the experts should define the real-
istic distribution of elements (together with their attributes).
For the drone intrusion detection, some of the constraints
obtained to define the ODD are:

• The type of intruders is in {Quadrotor, Birotor};
• The size of intruders is within [0.5m, 1m];
• The type of area is in {urban, sub-urban, country

side};

• The time of the day is in within [6am, 10pm];
• The lighting condition is the range [sunny, slightly

cloudy];
• etc.
To complete the ODD, the EASA guidelines [8] [20]

(Anticipated MOC DM-01-1) and the ARP require to iden-
tify particular conditions that need to be specified explicitly
1) so as to be surely taken into account (edge-cases) during
training and testing; or 2) on the contrary to be removed
from the ODD (outliers). Those edge-case conditions may
refer, for instance, to specific relations between attributes of
the environment elements. The condition where an object
has the same color as some other elements of the environ-
ment (e.g. painted intruder in green to reproduce the grass
and hide easily) is such an example in our context. Edge-
case conditions could be generated by randomly sampling
values of the various attributes identified in the ODD, but
with a very low probability.

For example, the ODD given above allows some other
objects such as distant airplanes or helicopters to appear
in the surveillance area where they would be hard to
distinguish from a drone (to some extent, some drones
may be seen as a “small airplanes”). These situations are
considered rare and as outliers. Actually, they can be made
as rare as necessary by forbidding to install the system in
areas close to airports, for instance. The ODD must clearly
address those outlier situations.

Finally, let us remind that the definition of the ODD is
an iterative process. For instance, the latter constraints on
edge-cases and outliers have to be “reinjected” in the ODD
to complete it. The model design could also lead to refine
the ODD.

B. ML Constituent ODD

According to [9], the ML constituent is the “defined
and bounded set of either hardware item(s) and/or soft-
ware item(s) that implement ML”. In our case, the ML
constituent is a software component (running on some
piece of hardware) that takes as input images provided
from a camera and generates as outputs data representing
bounding boxes of objects detected in the image along with
their classification. The ML constituent, figure 3, contains
three main software components (the pre/post-processing
and the ML model implementation). The pre-processing
is in charge of translating the raw image into a format
expected by the ML model (e.g. resize high resolution
images into 640x640). Typical object detection algorithms
are presented in [22]. The post-processing is in charge of
computing the localisation of the intruder (if any) in the
image and providing the absolute position on the area.

Figure 3: ML Constituent

The ML constituent ODD (MLCODD) specifies “the
foreseeable operating conditions under which an ML Con-
stituent is expected to work” [9]. In this paper, focus is
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placed on the image processing elements, so the MLCODD
of interest refers to constraints related to the processed im-
ages. Some of those constraints represent the “projection”
of the system-level ODD constraints to the image domain;
some others are related to the technical solutions used to
implement the ML components. Examples are:

• The size of objects is in the range [20 px2, 400 px2]
with 95% of them in [20 px2, 100 px2];

• The position of objects in the image is uniformly
distributed in the 2 (geometrical) axes of the image;

• The main frequency components of the image3 is in
the wavelength greater than 20 px (covering a range
from e.g., a solid clear sky background to a complex
grass background);

• The mean brightness of the image computed as the
mean of the V value for the image coded in HSV
(Hue Saturation Value) should belong to a pre-defined
range;

• etc.

III. DATASET DESIGN

The second phase of our process is to create the dataset
that is used during the training, validation and test phases.
The dataset is built so as to comply with the definition of
the MLCODD (see section II-B). In our case, we exploit
private and public existing data sources including [10],
[24].

A. Biases analysis

For the system to behave with the expected level of
performance in operations, the dataset used during the
training phase must reflect the distribution of situations
that will be actually encountered during operations. These
distributions and constraints are defined by the ODD. Let us
take as an example the position of the objects in the image.
The ODD states that their position is uniformly distributed
on the camera image plane4

Figure 4: Object positions in the original dataset on the left and
the augmented dataset with unbiased position on the right

Figure 4 left hand side shows the spatial distribution
of the objects in our initial dataset: 70% of the objects
are located in a very narrow area centered in the image.
This is clearly not representative of the actual operational
conditions (and thus not compliant with the MLCODD),
for it would mean that most objects would fly towards
the system from a far distance and remain centered on
the camera axis. This is clearly a bias that may have

3https://en.wikipedia.org/wiki/Frequency domain
4As stated earlier, the system is also fitted with a radar that would

normally place the camera axis in the direction of the object. Here, we
consider that this feature is not reliable and ignore it.

a significant negative impact on the capability of the
system to detect objects in operating conditions such as
the early stage of intrusion (i.e, when the objects enter the
surveillance area from the side of the observation cone) and
when the drone tries to leave the camera’s view. Having
such a biased dataset during the learning phase would
potentially lead the network to erroneously correlate the
presence of a target to its position in the image. This would
also significantly reduce the detection accuracy for objects
located at the edge of the image.

By displaying the size of the bounding boxes (Figure 5),
we observe that the dataset is compliant with the ODD with
respect to object sizes. Indeed, almost 95 % of the boxes
are smaller than 100x100 pixels.

Figure 5: Distribution of size of object in the dataset

B. Dataset augmentation

In order to remove the biases and improve the repre-
sentativeness of the dataset with respect to the MLCODD,
the dataset must be enriched. There are several strategies to
enrich the dataset among which making real data collection
in real environment. A real data collection is always a
challenge because it is expansive and it can hardly reach
the quantity / distribution / independence requirements. For
example, ensuring a large variety of intruders would imply
to have access to many drones and program them to make
several types of intrusion. Collecting several images of one
drone intrusion corresponds to one intrusion and dependent
data. Moreover, reaching a uniform drone position on the
camera would be highly challenging. This is the reason
why, augmentation with image processing is often used,
in addition to real data collection, to reach compliance
with the ODD. We have thus applied the following data
augmentation techniques:

• generating images with objects at various positions
and with various sizes;

• generating inlaying objects in various backgrounds
(e.g., sky or urban background);

• generating new versions of existing images with mod-
ified brightness;

• generating images with various numbers of objects
(from 0 to 4).

To unbiased the dataset, we develop the algorithm 1
that is detailed hereafter. The idea of the algorithm is to
create new images from the original dataset by performing
image transformations. A possible transformation consists
in transforming an 1080x1920 image with a drone at
coordinate (486,921) (i.e. in the center) into an 640x640
image with the drone at coordinate (486,510) (i.e. bottom
right). The spatial distribution of the new unbiased dataset
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with respect to the object position is shown on the right
hand side of Figure 4. Thanks to data augmentation, the
objects are uniformly distributed in the 2-axes.

Algorithm 1 Spatial Coverage Algorithm

1: Let D be the set of all 1080x1920 images
2: Let s be the size of the target image
3: for i : Image in D do
4: Get the coordinate of the object in i
5: Collate i with 7 background images along each side

of i.
6: Get the coordinate of the object in the new reference

frame
7: Generate a random position of a window where the

object is present and then crop the window
8: end for
9: Save all new pictures in the dataset P with 640x640

images

The algorithm 1 allows to generate new images with a
specific size and a new object position. Let us explain the
algorithm via an example shown in the Figure 6. First an
image is picked (yellow in the picture), then is replicated
nine times to produce a larger image (red). The yellow
image can contain an intruder or can be a background.
A window (green) with a size of (640,640) is randomly
selected and cropped. The resulted image (in green on the
bottom) is added to the dataset P . The algorithm does not
resize the objects and allows to off-center them.

Figure 6: Algorithm 1 in action

In addition to algorithm 1, we create a “mosaic dataset”
to increase the number of samples with different contexts.
Figure 7 shows a mosaic image of size (640,640) which is
an aggregation of 4 samples of size (320,320) with slight
variations of brightness and image geometry. This allows
to address the brightness and main frequency components
constraints of the MLCOOD.

C. Compliance with the MLCODD

We have analysed the initial dataset D along the dimen-
sions (e.g. size of object, position in the image, number of
objects ...) identified by the MLCODD and compared with

Figure 7: Mosaic dataset creation

the constraints set by the MLCOOD. As several constraints
were not satisfied, we have extended D so as to comply
with the definition of the MLCODD. In this paper, we
illustrate some of those dimensions (at the end of section
II-B) and provide the algorithm 1 to illustrate some image
transformations to reach compliance. In particular, we have
unbiased the dataset with respect to the objects’ positions
by adding images with objects relocated at random places.
We have also increased 1) the coverage of drone attitude
thanks to rotation and symmetry transformations (in the
mosaic approach); 2) the representativeness of contexts
with a large diversity of backgrounds and variation of
brightness; 3) the situations to have from 0 to 4 intruders
on images. The final dataset P is more than three times
bigger than the initial one D.

The last step of the data management process is the split-
ting of the dataset into three subsets: training, validation
and test datasets, each compliant with the MLCOOD.

IV. MODEL DESIGN

The third phase of our process is to select and adapt
a detection and localization algorithm in order for the ML
constituent to perform the intended function. The model
design was done following state-of-the-art machine learn-
ing approaches and an ad hoc tiling strategy to optimize
the accuracy.

A. Requirements

The ML constituent, and the ML model, are designed
to realise the intended function (detect safely and quickly
intruders in the sensitive area) in all operational scenar-
ios defined during the ODD design. In addition to the
(MLC)ODD definition, the design phase has also identified
requirements to be fulfilled. There are several types of
requirements including, but not restricted to, functional
performance, output format compatible with the intended
function and real-time performances.

MLC Requirements 1 (Functional Performance): The
first type of requirements concerns the detection capacity
of the model.

• The ML model shall classify objects with an accuracy
greater or equal to 90% in areas A1 and A2, and
greater or equal to 80% in area A3.

• The ML model must have a false alarm rate of less
than 20%.

• The ML model must have a non missed UAV rate of
less than 20%.

The ML constituent is expected to output the image coordi-
nate of the intruder(s) if any, to provide the classification,
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to crop of the detected intruder(s) and to compute their
absolute position. All of these information are used for the
decision-making (e.g. interception).

MLC Requirements 2 (Output format): The ML model
shall localize object in the image with a bounding box and
should output the bounding box coordinates, the classifi-
cation and the confidence level.
The last type of requirements applies to the deployment
and implementation of the ML model on the target.

MLC Requirements 3 (Real-time performances): The
ML model shall be deployable on an Nvidia Xavier AGX
target with the minimal use of COTS software and libraries.
Moreover, the ML model shall detect and localize objects
in at most 50 ms.

B. Model selection

Object detection, classification, and localization tasks
are usually done using deep learning neural networks.
We experimented two different models: a one-stage
model (YOLOv3 [21]) and a two-stage model (Faster
RCNN [13]). While the accuracy was similar for both
models, the inference latency of the two-stage model was
incompatible with the real-time performance requirements.
In addition, the YOLOv3 model has the capability to detect
objects at different scales, and this maps nicely to the
different areas considered in the system. We choose the
YoloV3 tiny [1] model which is a refinement of the lighter
YoloV3 model with optimized feature scaling, making it
more efficient in terms of latency.

Another important design choice is to rely on a smart
pre-processing. During the design of the model, focus was
placed on improving the detection of small objects, while
keeping the architecture of the YOLOv3 component. To
achieve this goal, we choose not to rescale the 1920x1080
camera image in order to preserve its information content.
Instead, we decompose the high resolution image into
several 640x640 tiles with some overlap, as described in
the next paragraph and shown on Figure 9. This solution
reveals to be a good trade-off between detection perfor-
mance, latency, and memory footprint.

C. Tiling Strategy

The transformation of a high resolution 1920x1080 im-
age into multiple smaller images (or tiles) without image
compression can be done in several ways. Such tiling
strategy depends on the tile size (here fixed at 640x640)
and the targeted overlap between tiles [23]. Each tile must
then be analyzed by the YoLo model leading to several
model inferences to cover the full high resolution image.
This has a direct impact on the real-time performances (and
the latency). In terms of implementation latency, having no
overlap is the best solutions since there will be less tiles.
However, in that case, the detection algorithm only gets a
partial view of objects located at the boundaries in each tile.
Moreover, models are known to badly detect objects (even
if complete) on boundaries due to phenomena of blind spots
[2] and spatial bias [25]. So we must choose the size of
the overlap to force the intruder(s) to be in at least one
optimal inference area, as shown on Figure 8.

As a consequence, the objective of our tiling strategy
is to find an optimal decomposition trade-off that allows

Figure 8: Optimal Inference Area

some overlap for the detection accuracy and that produces
reasonable number of model inferences for the detection
latency. We have defined two strategies depending on the
detection areas since they do not share the same functional
and real-time requirements. Indeed, in areas 1 and 2, the
drone size in pixel is larger than in area 3 (thus the
detection performance is easier) but the latency is shorter.
We thus select for those areas the configuration of Figure 9
left hand side composed of three 1080x1080 tiles with an
overlap of 50%. The 4 blue points represent the input space
to cover. Because the YoLo model expects 640x640 tiles, a
resize processing is applied on each 1080x1080 tile. Since
the drone size is large, the resizing will not reduce it too
much and the YoLo performance remains in the range of
acceptable models. The overlapping is important (50%) to
increase the accuracy on the frontier between the left and
right parts of the image. Finally, having 3 tiles leads to a
reduced latency.

Figure 9: Tiling Strategy according to the Area

The case of area 3 is different since the drones are far
away and their size in pixel is small. The tiling scheme
for this area is shown on Figure 9 right hand side. It is
composed of eight 640x640 tiles with an overlap of 30%.
Resizing would degrade too much the performance thus
the input image is just decomposed. Having more than 8
tiles is challenging for the implementation and the latency
constraints. The two tiling schemes, summarized in Table I,
meet latency and memory requirements and provide similar
object detection performance for each area.

AREA A1 and A2 A3
Tiling (3,1080,1080) (8,640,640)
Overlap 50% 30%
Resizing 56% on one axis None

Table I: Tiling configuration for inference optimization

D. Model optimization

In order to lower the computational footprint of the
YOLOv3 algorithm while maintaining the detection perfor-
mances, we modified its backbone by replacing the 7 2D-
convolution layers with depth-wise separable convolution
(DSC) layers. The use of DSC dramatically reduces the
number of operations and the memory footprint. Such layer
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is in particular used in the MobileNet model to support
efficient object detection on embedded devices [18].

V. MODEL IMPLEMENTATION AND DEPLOYMENT

The last phase of our process is to implement and deploy
the design model. The implementation must ensure that
all the requirements listed in section IV-A are satisfied.
In addition, we also consider ARP 9683 development
assurance concerns, including the capability to demonstrate
traceability between the ML model and its implementation.

A. Implementation approach

The target as already mentioned is the NVIDIA Xavier
AGX platform that comes with 8 Carmel ARM-core, a
GPU and a NVDLA (NVIDIA Deep Learning Accelerator).
We selected the Darknet implementation framework [21]
that supports many YoLo object detection and classification
algorithms, including the YoLov3 tiny that we selected.
Darknet is open-source, which means that it can be anal-
ysed and possibly assessed for traceability and semantic
preservation analysis. It has two back-ends: C code for
CPU and CUDA code for NVIDIA GPU targets. The
training of the model was done with the Keras framework.
We then manually describe the model architecture of Keras
in a ”.cfg” textual file (layers and operators) and export the
parameters of each layer in a ”.weights” binary file (coded
in the IEEE754 format and little endianness). These two
files must be consistent with each other and correspond to
the ML model description (MLMD) provided at the end
of the model design. These files are loaded as input by
Darknet to generate the (C or CUDA) code, see figure 10.

Figure 10: Darknet Framework

B. C code generation for CPU

We first investigate a CPU-only implementation and
port the executable on one ARM code of the Xavier.
The generated C code is similar to the neural network
description which facilitates traceability activities. Several
tests were made and the behaviour on the target was
similar to one observed in the learning framework Keras.
Unfortunately, the real-time requirements are not satisfied.

In order to compensate the limited performances of
the CPU, we investigate the use of fixed-point arith-
metic, on particular on the convolution layers. Darknet
generates Generalized Matrix Multiply (GEMM) [4] based
implementation. We optimized GEMM operator with ideas
inspired by [12], [3], [16]. Figure 11 shows the latency
figures for layer 24 of the YOLOv3 model, using 32-bit
floating point arithmetic (left side) and 16-bit fixed point
arithmetic (right side). We observe a 50% latency drop
between the two implementations, a significant reduction

of the measurement dispersion, and a reduction of 29%
of the Observed Worst-case Execution Time (OWCET).
Unfortunately, this performance level still does not meet
our requirements.

Figure 11: Original Darknet GEMM implementation vs. fixed
point modified version (latency for layer 24)

C. Cuda code generation for GPU

We then try the Cuda code generated by Darknet on the
NVIDIA GPU. In this case, layer 24 of the FP32-encoded
YOLOv3 model is executed in around 1.2ms, which rep-
resents around 7% percent of the latency measured on the
CPU. Another optimization was achieved by replacing the
classical convolution operator used in the initial model by a
depth-wise separable convolution (DSC) (already discussed
in Section IV). This optimization led to a reduced inference
time for each tile of (640,640). The Table II summarizes
the latency on the NVIDIA Xavier AGX platform.

Model (FP32) YOLOv3 YOLOv3 DSC
Inference time 26ms 20ms

Table II: YOLOv3 inference

Finally, a second level of optimization was done by
modifying Darknet to generate Cuda code in half precision
(i.e. FP16) to reduce memory footprint and latency. By
applying FP16 quantization to the entire neural network,
the total inference time decreases to 15 ms, a 25 %
improvement over the initial FP32 model. Note that we
also benchmarked different batch schemes to process the 8
tiles of the full resolution image (see section IV). We did
not gain any latency benefit with such an approach.

D. Optimized Cuda code for GPU

The CUDA FP32 and FP16 implementations meet the
latency requirements, but they rely on the closed-source
cuBLAS library5. Using COTS libraries in safety-critical
systems can be discouraged because traceability analysis is
difficult and static WCET analysis could be unattainable.
This is the reason why, we tried our own GEMM operator
implementation inspired by the article of6. In particular, we
applied some optimizations, taking into account the specific
structure of the network and the GPU platform.

We remind that to execute a convolution with a GEMM
operator, the input 3D tensor is translated into a 2D matrix.
A 3D tensor is defined by its three dimensions (H,W,C)
where H refers to the height, W the width and C the number
of channels. The classical algorithm to translate a 3D tensor
into a matrix for GEMM is the im2col method [4] shown

5https://docs.nvidia.com/cuda/cublas.
6https://siboehm.com/articles/22/CUDA-MMM
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in Figure 12. Note that nothing needs to be done for the
kernel.

Figure 12: im2col tensor

There is a huge variability in the tensor sizes that are
exchanged within the layers of the YoLo architecture.
Indeed, the first layers are made up of large images with
few channels (large (H,W), small C), while the last layers
are made up of small vignettes with a large channel
depth (small (H,W), large C). We thus have two main
configuration types:

• C1 : First Layers : (Large (H,W), Small C)
• C2 : Last Layers : (Small (H,W), Large C)

These two types of tensor impact directly the size of the
2D matrix produced by the im2col function. The CUDA
GEMM operator then necessitates different optimizations
depending on the size of generated matrix.

To perform the matrix multiplication A × B, GEMM
decomposes the matrices A, B and C into blocks As, Bs

and Cs. Those blocks contain another level of decompo-
sition (micro-panels and tiles) [15], [6] that we refer to
here as chunk. Each chunk of the two matrices A and B
is loaded in a shared memory array and a thread block on
an SM calculates the element of the chunk of matrix C.
Note that the C chunk is partially computed and needs to
be accumulated with several block operations. Figure 13
shows how the global matrix multiplication is decomposed
using small blocks. The block parameters are:

• M, N and K: dimensions of A (M,K) and B (K,N);
• BM: Number of rows in blocks Cs and As;
• BN: Number of columns in blocks Cs and Bs;
• BK: Number of As columns and Bs rows;
• TM: Number of elements of C computed by each

thread.
A GPU is composed of multiple SM (Stream Multipro-

cessor) where a SM is a general purpose processor (with
cache, shared memory, etc.) able to execute several thread
blocks in parallel. Each thread in a thread block is executed
on the same SM.

We propose to adapt the GEMM algorithm by adjusting
the matrix block parameters as efficiently as possible
according to the tensor configurations C1 and C2. To find
the optimal chunk decomposition, we have (i) maximized
the occupancy of the SM (we set the registers to 32 per SM
to increase the number of 4 blocks used per thread to reach
100 % of occupancy), (ii) reduced the data movements
on shared memory by optimizing the number of element
calculated per thread so as to reduce the load of elements
of As, Bs. In addition, the reproducibility of the results was
also verified. All experiments are made in float32.

Figure 13: Matrix multiplication accumulation

As shown in Figure 13, matrices A and B are de-
composed into blocks. These blocks “traverse” the rows
of matrix A and the columns of matrix B to compute
the blocks of the output matrix C. In order to maximize
performances, the size of these blocks is chosen so that
they fit into shared memory. Then we optimize the thread
in a thread block to load multiple elements in A and B to
reduce data movement in shared memory. Moreover, the
im2col operation provides a contiguous mapping of data in
memory that enables to optimize the calculus in the same
block of threads. In our case, the values of those parameters
are given on Table II.

GEMM Tiling First Layer (C1) Last Layer (C2)
M 16 1024
N 409600 400
K 27 4608
BN 16 64
BM 16 64
TM 8 8
BK BN/TM=2 min(BN/BM)/TM=8
Table III: GEMM block decomposition parameters

Performances of our implementation with respect to
CuBLAS’ is given on Figure 14. The performance remains
lower than the highly optimized version implemented in
CuBLAS by NVIDIA’s engineers, but it is sufficient to
meet our latency requirement.

Figure 14: Performances of the GEMM implementation

VI. CONCLUSION

The purpose was to design a surveillance system to
detect and localize intrusions of UAVs in sensitive areas.
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To support the design, we decided to follow part of the ED
324/ARP 6983 guidance in order to help us increase the
confidence and reliability of the design. We have addressed,
in a pragmatic way, some important issues raised when in-
tegrating a ML component in a system performing critical,
real-time functions. We have proposed a partial process
compliant with the ARP 6983 that helped us reaching a
much higher quality / confidence in the system. The process
focuses on:

• the ODD and MLCODD definition. This was possible
with the definition of operational scenarios and their
translation into constraints that can be mapped in the
image domain;

• the dataset design. We have shown how biases on
existing datasets have been detected and corrected via
an appropriate data augmentation. The verification of
the dataset compliance with the MLCOOD is done
by providing insights of the dataset, such as the
distribution of scenery elements with respect to the
constraints identified for the ODD;

• the ML model design in order to reach the expected
functional performances while integrating implemen-
tation constraints. This results from a classical pre-
cision vs. latency trade-off by preventing the loss of
useful information thanks to the use of a tiling strategy
instead a simple image resizing;

• the implementation with optimizations. Again, we
addressed conjointly performance and dependability,
by developing an ad-hoc implementation of the most
demanding operator (GEMM) that allows to reach an
acceptable performance level with a full traceability
of the source code to the input model.

As stated previously, we have only addressed a small
subset of issues raised by embedding ML components. In
future work, we will extend our work in several directions
including in particular (i) a more precise and complete
definition of the ODD in order to improve the quality of the
datasets and, possibly, detect the out-of-ODD conditions in
which the system cannot operate safely, (ii) a more trace-
able implementation of the model (currently, traceability
ends with the NVIDIA drivers and hardware comes into
play).

Finally, we will consider architectural means to alleviate
the remaining and irreducible concerns raised by ML. In
particular, we will consider the addition of system-level
monitoring and mitigation means. Finding independent
(e.g., non-ML) solutions remains a challenge considering
that the function essentially relies on image processing.
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Abstract—This paper focuses on a Vision-based Landing task
and presents the design and the validation of a dataset that
would comply with the Operational Design Domain (ODD) of a
Machine-Learning (ML) system. Relying on emerging certifica-
tion standards, we describe the process for establishing ODDs
at both the system and image levels. In the process, we present
the translation of high-level system constraints into actionable
image-level properties, allowing for the definition of verifiable
Data Quality Requirements (DQRs). To illustrate this approach,
we use the Landing Approach Runway Detection (LARD) dataset
which combines synthetic imagery and real footage, and we
focus on the steps required to verify the DQRs. The replicable
framework presented in this paper addresses the challenges of
designing a dataset compliant with the stringent needs of ML-
based systems certification in safety-critical applications.

I. INTRODUCTION

Artificial Intelligence (AI) is rapidly becoming a corner-
stone technology in various sectors, including transportation.
In aeronautics, AI promises efficiency enhancement and op-
erational cost reductions, yet its adoption remains complex.
This is primarily due to the stringent certification process these
systems must undergo to meet the rigorous safety standards
of the domain. Thus, this paper delves into the challenges of
certifying AI in aviation, focusing on the design of a dataset
that would comply with the Operational Design Domain
(ODD) of an AI-based system.

A. Certification guidelines

EUROCAE WG-114/SAE G-34 is a joint working group
on the certification of ML-based systems that will release the
ED-324/ARP-6983 soon. Even if not yet published, there are
several publications [1], [2], [3] that highlight the objectives
and activities expected by the Aerospace Recommended Prac-
tice (ARP). In parallel, the European certification authorities
– EASA – published their concept papers [4], [5] that aim
at guiding applicants introducing AI (Artificial Intelligence)
/ ML (machine learning) technologies into systems intended
for use in safety-related or environment-related applications.

Both guidelines rely on the existing standards as much
as possible. From an airborne perspective, this means using
the ED-79/ARP-4754A [6] guidance whenever possible to
integrate the ML-based function at subsystem level and using
the ED-12C/DO-178C [7] and the ED-80/DO-254 [8] when it
comes to the deployment of the ML models onto respectively
software and hardware items. The change of paradigm that
comes with a data-driven development method entails a new

process that covers the whole spectrum of ML-based system
development.

In this work, we only focus on part of the new process
called data management to produce a dataset whose internal
features match the intended function and its operating environ-
ment. Practically, the intended function must be defined with
its Operational Design Domain (ODD). Then, the question is
how to design a dataset compliant with such an ODD.

B. Motivation

To support our work, we have selected a safety-critical
application, namely visual-based landing (VBL). Indeed, in-
creasing the level of autonomy of aircraft will ease the flying
in case of pilots’ cognitive load and would therefore improve
the safety in civil aviation. In a future where it is envisaged
to fly with only one pilot on board, a single pilot may not
be in capacity to assume all tasks required during the landing
phase (especially the final ones). Thus, vision-based landing
systems could circumvent such a need and would be in charge
of computing the position of the aircraft from the position of
the runway within an image taken during the landing phase of
an aircraft. We particularly focus on the sub-task that consists
of detecting the runway in the image.

As no open-source use cases (and no dataset) were available
at the beginning of our work, we first had to define what
a visual-based landing system should be and how machine
learning could help. This has lead us to develop the Landing
Approach Runway Detection (LARD) open-source dataset
[9]1. Among the important features of this dataset, we can
cite the capacity to generate easily new data thanks first
to synthetic data generators based on Google Earth Studio
and Microsoft Flight Simulator, and second the selection of
Youtube channels (such as 2) with real landing footage video
from which we can label new data easily. The Figure 1
reproduces an image recorded during a flight and with our
generators. Although the weather conditions differ between
the images, we note a great similarity in the runway’s
environment.

C. Approach

We propose a preliminary approach to apply the aeronauti-
cal certification guidelines. We have drawn an overview of our
interpretation of the ED-324/ARP6983 workflow, see figure

1https://github.com/deel-ai/LARD
2https://www.youtube.com/user/TheGreatFlyer



Fig. 1: Illustration of the quality of the synthetic images - Compar-
ison of a real landing footage (left) with synthetic replicas (Google
Earth Studio center, Microsoft Flight Simulator right)

2, to design a dataset from a system-level ODD provided
by the ED-79/ARP-4754 and the system CONOPS. For the
VBL system, the system-level ODD, presented in section
II, consists of the landing approach geometry of an aircraft
and the standardised runway markings. The ED-324/ARP6983
introduces an intermediate level of engineering (called ML
Constituent – MLC) between the system and item layers. From
a system perspective, the MLC is an item (or a container of
items). The MLC contains at least one ML model and its
implementation should provide the necessary items to support
the ML model(s) inference. The VBL constituent, presented
in section III, contains three stages, among which an object
detection stage for which we design the dataset.

system-level
ODD

CONOPS
- operating conditions
- VBL: Landing cone
- operational scenarios

VBL constituent
- intended function
- architecture

MLCOOD
Image-level

ODD

- projection of system-
level ODD on image
via MLC architecture

- experts concepts
- DQRs

VBL dataset
design and
verification

LARD
- projection of image

level ODD
- synthetic images
- real-footage

of landing

Fig. 2: ODD Design Workflow

The guidance advocates a refinement of the ODD that
starts at the system level with the definition of the operating
environment of the VBL system (landing approach conditions)
and continues at the MLC level (MLCODD or image-level
ODD in this use case) with some expected properties on
the ML tasks. This activity is highly complex since we
have to project the geometry of a landing on the possible
images observed by the camera. We propose 3 activities, see
section IV, to define the image-level ODD: 1) the geometric
projection of a landing on the image; 2) the definition with the
help of domain experts of expert concepts; and finally 3) the
definition of Data Quality Requirements (DQRs) associated to

the VBL. These DQRs are imposed by the ED-324/ARP6983
as a result of the ODD characterization activity. Based on this
image-level ODD, we developed a strategy for constructing
the dataset to encompass those DQRs and we evaluated the
compliance of the LARD dataset on some of them. The LARD
dataset definition and evaluation are detailed in section V.
Note that the workflow is highly iterative. Indeed, depending
of the ability to refine the ODD into image-level ODD or the
capacity of the dataset to comply with the requirements, it
may be necessary to revise the system-level ODD or the ML
constituent architecture.

II. SYSTEM-LEVEL ODD

The system-level ODD regroups the requirements that must
flown from the ED-79/ARP-4754 and the specific Concept
of Operations (CONOPS) of the system under development
down to the dataset and model designs.

A. ODD concept

The concept of Operational Design Domain (ODD) orig-
inated in the automotive industry as a way to define the
specific operating conditions under which automated driving
systems are designed to function. The ODD concept was first
introduced in the SAE (Society of Automotive Engineers)
J3016 standard [10] to define levels of driving automation
for on-road motor vehicles. Their definition of ODD was "the
operating conditions under which a given driving automation
system or feature thereof is specifically designed to function,
including, but not limited to, environmental, geographical,
and time-of-day restrictions, and/or the requisite presence or
absence of certain traffic or roadway characteristics". The
ISO-21448/SOTIF (Safety Of The Intended Functionality)
standard [11] focuses on the safety considerations within
automotive autonomous vehicles and directly integrates the
concept of ODD from the SAE J3061 standard.

A more recent automotive standard, the ISO 34503 [12]
proposes some concepts and requirements to enable the
definition of an ODD for an automated driving system. The
document, in particular, distinguishes the ODD and the Target
Operational Domain (TOD) that refers to the real-world
conditions that a system may encounter. As the TOD is
not specifiable, it can be seen as a superset of the ODD.
It is up to the system design to specify the optimal ODD
to be as close as possible to the TOD, but it is also their
responsibility to ensure that the system is used on the ODD
solely and deactivated otherwise. The standard also promotes
the definition of operational scenarios on which the safety
assessment should rely to evaluate the final system.

For aeronautical applications, the European Union Avia-
tion Safety Agency (EASA) has adapted the ODD concept
from SAE J3016. The ODD is defined in EASA Artificial
Intelligence Concept Paper Issue 2 [5] as "the operating
conditions under which a given AI/ML constituent is specif-
ically designed to function as intended, including but not
limited to environmental, geographical, and/or time-of-day
restrictions". While the EASA definition is similar to the
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SAE J3016 definition, it differs in that it applies specifically
to AI/ML constituents within a larger system, rather than
to the system as a whole. This reflects the importance
of defining constraints and requirements on the data used
during the learning process, implementation, and inference
in operations for AI/ML constituents. Nonetheless, the ODD
concept remains an important tool for ensuring the safety
and reliability of automated systems in both aeronautical and
automotive applications.

B. ED-324/ARP6983 – operating environment

The data management requires an upstream process at the
system level of engineering to define the operating environ-
ment of the VBL system. This definition is developed from
the expertise of subject matter experts (SMEs) who have a
deep knowledge of the Concept of Operations (CONOPS)
and who can define the operational envelope of the system,
i.e. the system operating conditions and environment where
the system is supposed to operate correctly. An accurate
definition of the operating environment is a prerequisite for AI
scientists to start the data management process and to define
the MLCODD (image-level ODD).

C. VBL system-level ODD

Defining such an ODD is highly complex [13] and of
vital importance. For a vision-based system, it details in
particular the environmental and weather conditions (e.g. tem-
perature, wind, visibility, precipitation, types of sensor noise);
operational terrain (e.g., runway slope, runway roughness);
operational infrastructure (e.g. fixed obstacles) and many other
information. Such a list could be infinite depending on the
level of details. Making this problem tractable in practice
is generally accomplished by constraining the operational
environment to a subset of all possible situations that could
be dealt with by a human.

Fig. 3: Geometry of a landing

The application is designed for civil aircraft landings.
Therefore, we start by defining a generic landing approach
cone based on the documentation provided by aeronautical
standards. Figure 3 illustrates the different positions / angles
/ distances / markings involved in the geometric description
of a landing. Runway markings are standardized [14] and
appear in most cases as follows: a first line at the start of
the runway, called landing threshold, represents the underline
limit of the runway. It is usually followed by a pattern of
stripes (the piano) and then the runway identifiers. The target
of an aircraft during landing is the Aiming Point, located 300

Parameter range
Along track distance [0.08, 3] NM
Vertical path angle [-2.2, -3.8]°
Lateral path angle [- 4, 4] °
Yaw [-10,10] °
Pitch [-8,0] °
Roll [-10,10] °

TABLE I: Parameters of the generic landing approach cone

meters beyond the landing threshold, between two rectangular
markings visible on each side of the runway centerline3.

The position of the aircraft with respect to the runway
is defined by 3 parameters: the along-track distance which
corresponds to the distance between the projection of the
aircraft nose on the centerline of the runway (on the ground)
and the Aiming Point. The lateral (resp. vertical) path angle
which corresponds to the angle formed by the centerline
and the line defined by the Aiming Point and the plane
nose projection on the ground (resp. plane orthogonal to the
ground going through the centerline). On the other hand, the
attitude of the aircraft is defined by its rotation angles (denoted
respectively as pitch, roll, yaw). The yaw angle is relative to
the runway heading4 whereas pitch and roll are relative to the
horizontal plane.

These 6 parameters allow to define a generic landing
approach cone (Definition II-C) corresponding to a realistic
aircraft trajectory during landing, as well as an envelope
for the aircraft attitude that encompasses typical aircraft
orientations during approaches on a runway.

Definition 1 (Generic landing approach cone): A generic
landing approach cone is the set of all pairs ⟨positions,
attitude⟩ within the ranges of the 6 parameters of Table I.

In addition to the approach cone specification, it is also
relevant to define some operational scenarios that describe
some usual trajectories observed in the real world. Such
scenarios can represent complex landing situations (e.g. crab
and de-crab manoeuvres in the presence of wind) or can
be constructed by collecting real traffic observations [15],
[16]. These scenarios will help in assessing the performance
reached by of the ML constituent and the safety of the
complete system.

Operational Design Domain 1 (of VBL): The VBL system
must permit the landing as long as the aircraft is in the generic
landing approach cone.

III. VBL ML CONSTITUENT

The constraints of the system-level ODD expressed on the
Operating Environment must be propagated to the components
of the system. It is then mandatory to specify the ML
constituent architecture and its associated intended function.
The VBL constituent is expected to realise the following
intended function:

Intended function 1 (VBL intended function): The intended
function is the pose estimation of the aircraft with respect to

3An imaginary line going through the middle of the runway
4For instance a yaw of 0° indicates that the aircraft faces directly the

runway, regardless of the runway orientation.
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the airport runway when the aircraft flies within the generic
landing approach cone. The pose is estimated from several
sensors, including a camera positioned at the aircraft’s nose
and directly facing the runway during the landing.

The ML constituent architecture should fulfil the intended
function. The one we propose is directly inspired from the 3-
stage architecture of Daedalaen AG [17] as shown in Figure
4. The first stage is based on an object detection step that is
in charge of computing a bounding box around the detected
runway. The image is then cropped around the bounding box
and a second stage is in charge of computing the 4 corners
of the runway. From this identification, the pose estimation of
the aircraft is done with a non-ML approach by the last stage.

Fig. 4: VBL constituent architecture with 3 stages

Subsequently, we solely focus on the first stage of the
architecture that we call the VBRD (for Vision-Based Runway
Detection). This component comes with its own intended
function and its associated performances. The contribution of
all MLC components intended functions and their associated
performances should ensure the MLC intended function and
should fulfil the system requirements. How to derive the
requirements on each component and how to define the rules
to combine the contributions of each component is out of
scope of the paper. These activities are non trivial and should
benefit from a meticulous work.

The VBRD is a pure ML component and is in charge of
realising an ML object detection task. The family of object
detection models covers a large range of applications and
offers much more capacities than we need. Indeed, such a
model must be able to detect several types of objects (e.g.
pedestrians, vehicles) and several objects appearing in a high
resolution input image. In our case, the model should identify
one or more runways and as a consequence, there is a unique
class (runway). Moreover, we expect the output of the stage-1
to select the runway on which the aircraft must land. An object
detector, without any further support, will hardly be capable
of selecting the target runway, in particular when there are
parallel runways. To simplify the task, we decided to restrict
the intended function and thus the ODD to have a unique
runway on the image.

Operational Design Domain 2 (of VBL): We restrict the
operating conditions of the intended function 1.
1) The aircraft is landing on airports with a piano;
2) There exists only one runway for which current position

is considered within the approach cone5;
3) The runway is fully visible on the image (no occlusion).

5Another runway can still be visible, but the aircraft should not be in its
approach cone

Such restriction must be fed back to the system level for
negotiation and update on the system architecture / operating
conditions. In terms of object detection, the model belongs
then to the category of single class single object detection.

Task 1 (Single object detection task): The detector must lo-
calize the object within the image by providing bounding box
candidates surrounding said object. An acceptable bounding
box should include the complete runway with a margin of x
pixels on each side (top, bottom, left, right).

The VBRD takes as input an image and outputs a bounding
box around the runway it contains. Therefore, propagating
the system-level ODD down to the components consists of
characterising the appropriate constraints at the image level.
At this stage, we can only define a very basic and un-
exploitable image-level ODD a first characterisation of the
ML constituent restricted to the object detection task ODD.

Operational Design Domain 3 (of task 1): The ODD is the
infinite set of all images that could be seen during a landing
on an (extremely large) set of airport runways.

IV. IMAGE-LEVEL ODD

To define properly an exploitable image-level ODD, we
need to make more activities.

A. ED-324/ARP6983 – MLCODD Characterization and val-
idation

The MLCODD is defined from the operating environment
identified at the system level to specify all foreseeable oper-
ating conditions under which the MLC is expected to work.
Roughly speaking, we can see the MLCODD as a set of
parameters (or features). For instance, a parameter could
be the weather conditions selected at system-level (e.g. the
VBL should function correctly from -5◦C up to 40◦C in the
presence of mist or in a perfect sunny day). The parameter
must then been translated as an image-level parameter. For
instance, the weather conditions parameter can be translated
into several parameters such as contrast or brightness on
the images. However, this translation into MLC inputs must
be supported by some rationale and its impact on system-
level parameters should also be examined. The MLCODD
characterisation is instrumental in specifying the inputs of
the data management process, i.e. the capture of all the
requirements necessary to produce and verify the dataset.

In any case, parameters must be representable with a
recognised nomenclature and understandable by a human.
This entails that parameters must belong to well-typed ele-
ments (e.g. continuous parameters, set of nominal values for
discrete/categorical parameters). After this preliminary iden-
tification of parameters, it may be that the number of image-
level parameters is too high to be tractable. In that case, the
MLCODD is refined by identifying potential interdependence
between the parameters and applying a reduction strategy on
the parameters to reduce the complexity and the dimension of
the MLCODD. In this paper, we consider geometric strategies
and expert concepts identification to identify the parameters.
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In addition, the MLCODD parameters are also characterised
by some Data Quality Requirements (DQRs). Such a DQR
can specify some ranges of values and a distribution where
applicable. Regarding the example of the weather conditions
parameter, contrast or brightness parameters must be defined
with a reachable range covering all the supported weather
conditions and distribution among the range. Such a distri-
bution can be conditioned on the airport (e.g. Toulouse and
Montreal airport weather conditions distributions differ). In
this paper, we consider a subset of identified DQRs: Source
Suitability, Completeness, Representativeness and Accuracy.
These properties will be detailed in Section IV-B3.

The ODD is not only limited to nominal situations. Indeed,
the system must ensure safe behaviour in all foreseeable
situations. As a result, the ODD must encompass more general
cases. The ED-324/ARP6983 has defined its own taxonomy
of data types for non-nominal data (outliers, edge/corner
case, singularity, novelty) that should be considered with the
appropriate stopping criteria.

B. Approach to design an image-level ODD

In addition to the ED-324/ARP6983 considerations, it is
worth looking at other works in the literature and other domain
existing standards to help the designer in such a complex
activity. For instance, the ISO 34503 [12] encourages the
designer to consider, in addition to parameters mentioned
previously, elements that correspond to main parts of an
image. There are 2 categories of elements:
• scenery elements that refer to the spatially fixed elements

of the operating environment relative to the aircraft;
• dynamic elements that refers to moving elements (e.g. other

aircraft).
To define the parameters and the elements of the VBRD, we
propose an approach based on 3 activities, that is generic
enough to be applied to other object detection ML constituent.

1) Geometry parameters: For now, the only usable con-
straints from the system level are the ones expressed with
precise ranges on the geometry of the landing, represented
by the definition of the Generic landing approach cone see
section II-C. The majority of the constraints on the image
space will, therefore, be related to the position and attitude
of the aircraft, but the focal length6 of the camera will have
to be taken into account as well. Thus, using the geometry
of the landing, we can derive the possible positions of the
runway on the image space. This activity should be supported
by image processing methods. The book [18] recalls the basics
of geometry for images and is a good basis for deriving
some properties of the position/shape and other geometric
considerations of the runway (or any other scenery element)
depending on the range of attitude of the aircraft. Among
the transformations, we can cite the projection from the real
world to the image-based coordinate system, which is done
using two standard matrices [19]:

6The resolution of the image and the expected position of the runway will
depend on this parameter combined with the distance to the runway.

• The Extrinsic matrix whose role is to get the coordinates
of the corners in the camera-centered coordinate system.

• The Intrinsic matrix whose role is to project the 3D
coordinates expressed in the camera-centered coordinate
system into the 2D image.
2) Domain-specific concepts: Human making-decision

process on an image relies on the identification of concepts.
We propose the following partitioning of concepts, depending
on their utility and relevance to the task of object detection:
• Primary concepts: refer to elements (or landmarks) that are

considered fundamental by a human for fulfilling the task.
The absence of only one of the primary concepts would
imply that the object considered is not an object of interest.
For the detection of a runway, we can typically consider the
shape of the runway (the typical 4-sided polygon), the clear
demarcation with the external area, and the main markings
(the target, the piano, the runway number)7.

• Secondary concepts: refer to elements that may reinforce
a decision, but the absence of which is not prohibitive in
the identification of the object. For runway detection, we
consider the surrounding elements such as the airport traffic
control tower, secondary markings which are not always
present (for instance the displaced thresholds), other sur-
rounding runways, other aircraft in parking phase, taxiways
parallel to the runway, etc...

• Tertiary concepts: The presence or the absence of the
elements considered in this category should not have any
impact on the detection of an object. We can identify here
the colours of the areas surrounding the runway, due to
vegetation or seasonal changes, as well as the environment
around the airport itself, such as the presence of buildings,
mountains or water bodies, etc...
A first analysis of these concepts highlighted that they could

be different according to the distance to the runway. Indeed,
the details on the image are not necessarily equivalent when
the runway is a few kilometres away and when it is seen
from a few hundred meters. In the first case, we may rely
on secondary concepts like the overall airport and the traffic
control tower, and for detecting the runway, we will rely in
priority on the typical geometric shape of the runway and its
visible markings (the target for instance). In the second case,
we may consider the details of the markings, like the piano
and the runway number, as well as parts of the secondary
concepts like the markings on the surrounding taxiways.

We want to point out that these defined concepts could
be used and extended in the validation phase of the Model.
Indeed, if we consider a correct detection from an ML model,
it is possible to use explainability methods such as [20], [21]
to identify concepts which were used for this decision. These
concepts can be categorised using the partition presented
above as follows:
• The concept belongs to the category of primary concept, and

it should be added to the list of primary concepts already

7This will be challenged when considering the distance at which the runway
may be detected.
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identified.
• The concept corresponds to a secondary one, which may or

may not be used by humans. For instance, for detecting
runways, we identified aircraft tyre marks as a valuable
indication that is, consciously or not, used by humans when
attempting the same task. However, since this concept is
secondary, it is crucial that the model remains robust to
its removal or its absence, as all runways are not heavily
marked by tyres. Another example would be the difference
in colours between the runway and its surroundings, or the
possible texture of the runways, which can hardly be seen
with the naked eye.

• The concept belongs to the tertiary ones, which means that it
should not have been used for the decision-making process.
In that case, it undoubtedly represents a bias of the model
that should be eliminated, possibly by making changes to
the training data, or by working on the retraining of the
model.
For now, we only mentioned the correct detections of the

ML model. Besides, in an ideal world, the list of primary
concepts should be precise enough so that the absence of one
concept would allow us to discriminate a true positive from a
potential false positive. However, as mentioned earlier, this is
not always true, typically due to the variability in the distance
to the runway, which may lead to some runway features
disappearing. Indeed, if we compare a highway segment to
a runway from a relatively short distance, certain primary
concepts such as geometry and shape, as well as the clear
demarcation with the outer area are present, but the markings
are very different. Nevertheless, at a certain distance, these
markings are likely to be invisible, making it hardly possible
to rely solely on these primary concepts to distinguish true
positive detections from false positive ones. In that case,
we can consider the problem in reverse: the false positive
observed in the decision of a model could help us build a
fourth list of concepts corresponding to well-identified biases
leading to these potentially incorrect decisions.

Quaternary concepts: For objects identified as false pos-
itives by a model, we could include in the fourth list the set
of elements that are primary concepts for this specific object
(e.g. a highway) but not for our object or interest (e.g. a
runway). For a highway, we could typically add the presence
of cars, a central road divider, road markings, traffic signs,
etc... This fourth list of concepts will, therefore, correspond to
the elements which, if they are present, invalidate a detection.

3) DQR for VBL: The guidelines [22] gives a set of
recommendations to build and manipulate the datasets used
to develop and/or validate machine learning models.

The Data source suitability [23] “refers to the appropriate-
ness and relevance of a data source for a specific purpose or
context, particularly in relation to its ability to provide data
satisfying specified data quality attributes for a given task or
analysis.”

DQR 1 (Data source suitability for VBRD): This property is
critical for the choice of generator of synthetic images which
should be compared to the images captured by a camera in

real conditions.
Completeness [23] is “the extent to which a dataset covers,

according to the specified criteria, the ODD for the intended
application.”

DQR 2 (Completeness): In our case, guarantees should be
provided regarding the coverage of the operating conditions
and the operational scenarios defined in system-level ODD.

Representativeness [23] states that “a dataset is represen-
tative if it covers the full ranges of the parameters that define
the ODD and the distribution of each parameter matches the
specified distribution.”

DQR 3 (Representativeness): This crucial property should
motivate extensive testing of the data distribution regarding
each parameter of the image-level ODD.

Accuracy/Correctness [23] "Measures the faithfulness to the
real value and depends on data gathering/generation. It also
measures the degree of ambiguity of the representation of the
information.".

DQR 4 (Accuracy/Correctness): In our case, this is highly
related to the choice of labels and their precision for the task
that must be fulfilled.

These requirements are not guidelines to produce a dataset
but must be kept in mind when designing it, ensuring a
successful verification in later stages of the process.

V. DESIGN OF THE DATASET

The objective is to design a dataset for the VBRD compo-
nent compliant with image-level ODD defined by the activities
of section IV-B.

A. ED-324/ARP6983 – Data management and verification
processes

The objective of the data management process is to produce
the dataset that matches the characterized ODD. The first
activity of the data management process is to identify the
sources of such data. Then data are collected, prepared and
split into datasets in order to deliver trustworthy training,
validation and test datasets which will be used to design,
implement and integrate the ML inference model that meets
the functional and operational requirements.

Once the ODD is defined, it should be validated. That
is the purpose of the ML data validation process that is
intended to provide assurance that the ODD and its DQRs
are correct and complete with respect to the intended function
supported by the MLC. The high quality of the datasets (and
at least the test dataset for low critical applications) should be
demonstrated. If this verification is not properly performed,
then the trained model might exhibit unintended behaviour
(e.g. make incorrect decisions, fail to generalize to new or
unseen situations) that could be detrimental to its intended
use and/or the safety objectives that have been assessed at
system level. To this purpose, the ED-324/ARP6984 proposes
several activities:
• ODD/datasets bi-directional traceability to guarantee that

the complete ODD is covered and eliminate any undesirable
data
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• Data quality analysis to demonstrate the datasets compli-
ance to the DQRs.

B. Strategy to generate the dataset

LARD is composed of both synthetic and real footage
images. Synthetic images were generated via a generator
generator pipeline presented in Figure 5. The two inputs (in
gray) are the airport database and the configuration file to
be filled by the user, setting which runway they want to
generate images from and other parameters (e.g. number of
images). Then, the first script (in white) generates a scenario
file that can be provided as an input for the synthetic image
environment (either Google Earth Studio or Microsoft Flight
Simulator). This virtual globe tool can then generate the
corresponding images, together with an information file (here
in json format). Finally, the last module of our generator
associates the ’labels’ to each image, in particular the scaled
position of the four corners on the picture. The output in gray
contains the images, the labels and the metadata.

runway
database

Configuration
file

Scenario
generation

Synthetic
images

environment
Labelling

Synthetic images

image.jpg labels
+ metadata

Fig. 5: Generator pipeline

Overall, this generator allows to produce an infinity of
images with various camera angles and positions, where the
annotation is automatically propagated, which drastically
reduces the labelling cost. In parallel, we have access to
numerous Youtube channels from which we can extract
images and label them.

This framework allows us to generate the dataset for our
intended function. The question that we will have to tackle
is how to generate sufficient representative data that fit the
development of the data quality requirements. As an example,
the risk of having thousands of images per runway or more is
the high similarity of resulting positions in the cone and the
low independence between each image, which may lead to
overfitting models, while collecting only a few dozen images
per runway limits the possibility to encounter edge cases for
each parameter and increases the need for manual annotation
of runway corners to fulfil the high volume of data required.

C. Adequation between image-level ODD and DQRs

The verification of the DQRs is a fundamental step to pro-
vide a first estimation of the quality of the proposed dataset.
We detail in the following the quality analysis performed on
the data and the results of the verification activities performed
for each of the requirements defined in Section IV-B3.

1) Source Suitability: The task targeted by the ML com-
ponent is the detection of runways on images during landing.
However, the cost of labelling real images in a sufficient
volume for ML training is prohibitive, which leads us to
choose a tool for generating synthetic images instead. We

selected Google Earth Studio, which supports trajectories
of positions (defined within our landing approach cone) as
input and allows us to produce a variety of high-quality
images relatively close to reality. However this tool came
with restrictions such as the absence of adverse weather
simulation or realistic night images. As these constraints were
not considered critical, we had to propagate them to the
system-level ODD, producing a third refinement defined as
follows:

Operational Design Domain 4 (of VBL): We further restrict
the operating conditions of the intended function 1.
1) Optimal conditions: clear daylight and no adverse weather

conditions (clouds, precipitations...).
The quality analysis presented in this paper were performed

on this refinement of the ODD. However, in a recent extension
of our generator, we integrated the capability to generate
images with both Google Earth Studio and Microsoft Flight
Simulator, making this last restriction obsolete. Figure 6
illustrates this comparison, while Figure 7 shows some image
variability supported in Flight Simulator.

Fig. 6: Comparison between
Google Earth Studio and
Flight Simulator

Fig. 7: Illustration of weather
and lighting variation on
Flight Simulator

To fulfil DQR 1, another complex question is the quality
and the representativity of the synthetic images vs real images
that will be observed at operation. There should be rationale
and verification activity to accept synthetic images in the
dataset. This is considered as future work.

2) Completeness: Considering the ODD of the VBRD,
associated with the intended function 1, an adequate dataset,
i.e. that satisfies DQR 2, should not only cover a variety of
airports all around the world but also span a wide range of
positions inside the approach cone, to ensure a comprehensive
coverage of all possible operational scenarios.
Coverage of landing scenarios: Figure 8 illustrates the
distribution of aircraft positions in the training and the test
set. In this figure, the z-axis corresponds to the along track
distance, but the other two axes are also distances (cross track
distance and height above runway), computed from the angles
provided in Table I (Lateral path angle and Vertical path
angle). For the training set in Figure 8a, the randomly sampled
points span the whole approach cone corresponding to II-C.
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(a) Training set (b) Synthetic test set

Fig. 8: 3-dimensional visualisation of aircraft positions in the training set and the test set

Moreover, while the synthetic test set contains less data, it
still covers a variety of positions in the cone, as illustrated in
Figure 8b.
Airport distribution: Figure 9 plots the distribution of
airports from all around the world which were used to
build the LARD dataset. Indeed, obtaining a great variety of
images is a fundamental aspect for verifying the generalization
capabilities of the models, and current distribution of airports
presents the following benefits: first, it ensures a diversity
of runway visuals, with different surface types8 and various
runway length, width and markings, even if the runway
standardization reduces the variability for this aspect. Second,
it allows for a variety of surrounding terrain and landscapes
such as grass, snow, dirt, but also city architectures, water
bodies or mountainous reliefs.

Fig. 9: Distribution of airports used for the training set and
the test set

3) Representativeness: For each parameter considered in
the definition of the image-level ODD, we need to ensure that
the distribution of the corresponding image-related features is
thoroughly verified, as required by DQR 3. We consider here
that the test set is a faithful representation of our image-level
ODD, and we compare the distribution of some of its features
against the training set.
Runway center positions: The plot of runway centers po-
sitions of Figure 10 shows an even distribution both for the
training set and for the test set, located primarily around the
center of the images. Nevertheless, a large area in the top and

8Asphalt and concrete are typically used for runway surfaces
8Subset of the test set containing only images from real footage.

the bottom contain little to no points, which is the result of
two main factors:

Fig. 10: Normalized positions of runway centers in train, test
and real9 subsets.

(i) the presence of the watermark, which is expected to
be removed from the images before usage by cropping 300
pixels from the top and the bottom of the pictures, and (ii) the
ranges of the pitch parameter defined in the Table I which
prevent the runway to appear at the very top or bottom of the
image. Additionally, the real images of the test set appear to
be slightly biased towards the bottom-right, which seems to
result from the positions of the cameras in the cockpits.
Bounding box fill ratios: The aspect ratio of the objects
bounding boxes is a sensitive aspect for a detection task, as
elongated objects in one or the other direction may not exhibit
recognizable features. Figure 11 illustrates the aspect ratio
variability, and highlights how the majority of the bounding
boxes in all three subsets have an aspect ratio between 0.5 and
1.5, indicating that most images are suitable for the targeted
detection task.

The histograms of Figure 12 illustrate the relationships
between the runways, their bounding boxes and the global
images. Figure 12a shows comparable distribution for the
training and the test set, where most of the runways fill
between 20% and 80% of their bounding boxes. This also in-
dicates that bounding boxes should in general contain enough
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Fig. 11: Top - Illustration of different aspect ratios of the bounding
boxes. Bottom - Distributions of bounding boxes height over width
ratios for the train, test and real subsets.

runways pixels for the detection task to be applicable and
consistent. Additionally, Figure 12b, which illustrates how the
areas of the bounding boxes cover the whole images, shows
that the training set and the test set follow approximately the
same distribution. This provides a certain level of guarantee
that the bounding boxes will look similar between the training
and the test set. Moreover, the figure shows that the vast
majority of bounding boxes areas are over 25 × 25 pixels,
which makes them large enough for a runway to be detected
by humans. On the other hand, the dataset contains only a few
examples of bounding boxes with large size, which may bias
the learning process when the aircraft is close to the runway
and should be further investigated.
Slant distance: The synthetic images and the real images
do not contain the same metadata. The distance between the
aircraft and the runway is given for synthetic images as the
slant distance, however it is not available for real images, for
which a value called time to landing is provided instead. This
value can be used as a proxy for the distance to the runway,
considering that planes have comparable speed during landing
phase.

Figure 13 shows how the distributions of slant distance
(for synthetic images) and time to landing (for real images)
relate to each other10. It indicates that for both sources of data,
the test set contains an important part of the images close to
the runway while a non-negligible number of pictures were
taken at longer distances from the runway, in a nearly evenly
distributed manner, despite the limited number of real images.

4) Accuracy/Correctness: As specified by the ODD, the
images of the dataset must always contain fully visible
runways. Any label associated to an image should allow to
define the runway inside of it in an unambiguous way whether
the data is synthetic or real footage, according to DQR 4.
There are several approaches for delimiting a runway, the

10Only the shapes of the distributions should be compared as the slant
distance was re-scaled to fit the diagram

(a) Distribution of bounding box fill ratios (percentage of the bounding box
that correspond to pixels belonging to the runway itself)

(b) Distribution of bounding boxes areas (areas in logarithmic scale)

Fig. 12: Comparison of bounding box characteristics between
training and test sets

Fig. 13: Comparison of distance estimation between real
images and synthetic images in the test set

most usual being contours, ground marking, corners, horizon
line or any other semantics specific to a runway. We chose
to encode the runway position by the pixel coordinates of its
four corners in the image.

As pointed out in [24], representing the runway by its
four corners poses some concerns such as instability in the
presence of runway occlusion and sensitivity to the aircraft
position estimation. In practice, none of the synthetic images
(both in the training and the test sets) present situations of
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corner occlusions, but they may occur in real images, typically
when the camera is placed inside the cockpit. However, these
drawbacks are outweighed by the advantages of the corner
representation, as this approach is easily applicable to any
image, does not require camera-related information (typically
camera angles), and is compatible with both image detection
and image segmentation approaches, two of the most widely
used approaches for locating and identifying objects in image.

Finally, our labelling tool relies on the automatic projection
of the runway corners onto the image, which ensures high pre-
cision of their position and directly satisfies the requirement
for label accuracy.

VI. CONCLUSION

Considering a well-defined vision-based landing task, we
have presented a comprehensive approach for designing the
system-level ODD of this intended function. We then focus on
a specific ML component of the system and refine the ODD at
the image level. Using specific tooling based on Google Earth
Studio, we illustrate the generation of a dataset designed to
fulfil the targeted task. In the process, we establish a link
with relevant standards relative to the introduction of ML-
based systems in the industry. In particular, we focus on the
definitions of Data Quality Requirements and show how they
can be verified on the dataset defined for the intended function.

The process leading to the definition of the ODD and the
design of the dataset is an iterative process that also benefits
from the model design. Indeed, the verification of the model
may exhibit some lacks in the dataset, e.g. insufficiency of
images for certain airports or attitudes, that should be fed
back to the data process management. We will investigate the
whole process by pursuing the VBRD design following the
ARP 6983 guidelines.

Moreover, our approach is complementary to [3], which
defines the ODD by characterizing the distribution of samples
it may contain (in or out-of ODD, edge-cases, corner cases...).
We plan to leverage this formal definition to generate dedi-
cated datasets for each of the parameters we identified in this
paper, to investigate how the coverage of the ODD can be
ensured.

Finally, the quality of a model solely trained on synthetic
data must be carefully estimated. The addition of multiple data
sources and more image variability should help us address this
complex question in the future, but it would require a clear
methodology that has yet to be written.
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