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Abstract: Recent studies have demonstrated the potential of using bidirectional reflectance distri-
bution function (BRDF) signatures captured by multi-angle observation data to enhance land cover
classification and retrieve vegetation architectures. Considering the diversity of crop architectures,
we proposed that crop mapping precision may be enhanced by using BRDF signatures. We compared
the accuracy of four supervised machine learning classifiers provided by the Google Earth Engine
(GEE), namely random forest (RF), classification and regression trees (CART), support vector machine
(SVM), and Naïve Bayes (NB), using the moderate resolution imaging spectroradiometer (MODIS)
nadir BRDF-adjusted reflectance data (MCD43A4 V6) and BRDF and albedo model parameter data
(MCD43A1 V6) as input. Our results indicated that using BRDF signatures leads to a moderate
improvement in classification results in most cases, compared to using reflectance data from a single
nadir observation direction. Specifically, the overall validation accuracy increased by up to 4.9%, and
the validation kappa coefficients increased by up to 0.092. Furthermore, the classifiers were ranked
in order of accuracy, from highest to lowest: RF, CART, SVM, and NB. Our study contributes to the
development of crop mapping and the application of multi-angle observation satellites.

Keywords: bidirectional reflectance distribution function (BRDF); crop mapping; Google Earth
Engine (GEE); kernel-driven model; supervised classification

1. Introduction

Accurate crop classification and distribution mapping is vital for crop growth moni-
toring and yield forecasting [1,2]. To ensure food security, alleviate poverty, and manage
water resources, it is crucial to acquire reliable data regarding the position, scope, cate-
gory, condition, and productivity of crops [3]. Remote sensing (RS) is a trusted method
for agricultural production because of the advantages of high frequency, large scale, and
spatial consistency [4–6]. In particular, agricultural production can be effectively monitored
through RS to obtain various details about the phenological status, crop health, crop type,
and estimation of crop production in local to wide areas, based on various features of
satellite imagery (such as spatial, temporal, and spectral dimensions) [7–10].

Up to a petabyte of unprocessed imagery is produced yearly by the cumulative number
of remote sensing satellites [11]. This increase in the number and range of data, known as
the big data dilemma, introduces novel tasks in managing data and requires novel methods
to derive specific data from the RS data science [12]. The Google Earth Engine (GEE) [12]
has emerged as a critical platform for large-scale land cover classification and crop type
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mapping due to its potent computational abilities, abundant satellite imagery, and various
machine learning classifiers [13].

Machine learning algorithms are pioneering approaches to processing RS data [14].
Especially, classification studies take significant advantage of machine learning methods
due to their feature representation flexibility, end-to-end process automation, and automatic
feature selection [15,16]. Machine learning can discover exclusive metrics for crops [17–19]
and is extensively employed for land cover classification [20], crop mapping [21] and
yield estimation [22]. For example, GEE offers several non-parametric machine learning
classifiers for classifications [23]. Although these machine learning classifiers have been
well-used with single observation angle satellite imagery, few studies have compared them
for crop mapping with multiple-observation-angle satellite imagery.

The usage of extra information from input parameters, such as the bidirectional optical
properties of ground surfaces [24,25], can compensate for the uncertainty caused by the
spectral confusion problem in land cover classification and increase accuracy [26]. For
example, the moderate resolution imaging spectroradiometer (MODIS) land cover clas-
sification products (MCD12Q1.006 MODIS Land Cover Type Yearly Global 500 m) [26]
use multi-angle satellite observation data for land cover classification, and is the latter is
improved using the MODIS kernel driver’s (Appendix A) anisotropic parameters using a
decision tree classifier in a Canadian boreal forest region [27]. Studies show that bidirec-
tional canopy reflectance has the potential to identify vegetation architecture, such as leaf
angle distribution (LAD) [28], leaf area index (LAI) [29,30], and leaf size [31]. Considering
the diversity of crop architectures, we assume that multi-angle optical observation satellite
imagery contributes to crop mapping.

Therefore, this study hypothesizes that the use of bidirectional reflectance distribu-
tion function (BRDF) signatures captured by multi-angle observations can enhance crop
mapping precision. To validate the hypothesis, we compare the four machine learning
classifiers provided by the GEE for crop mapping using both MODIS nadir and multi-angle
observations, and the classification accuracy is assessed using the field sampling points in
Jilin Province, China, in 2017.

2. Study Area and Data
2.1. Study Area

The chosen study area is Jilin Province, located in northeast China, which includes
the Yanbian Korean Autonomous Prefecture and eight prefecture-level cities. It covers
approximately 190,000 km2 and is situated between 121◦38′–131◦19′E and 40◦50′–46◦19′N.
(Figure 1). The study area boasts a vast expanse of diverse geomorphological features, char-
acterized by a gentle northwestern terrain and a steep southeastern topography. Bordered
by the sea, the area experiences a temperate monsoon climate, with regional changes in tem-
perature, precipitation, and seasons. The mean temperature varies from lower than −11 ◦C
in the winter to higher than 23 ◦C in the summer. The mean sunshine time per year is
between 2259 and 3016 h. On average, the province receives 400 to 600 mm of precipitation
annually, most of which falls in the east and is concentrated in the summer [32].

The natural resources and fertile soil of Jilin Province are abundant and particularly
suited to the cultivation of maize, rice, and soya beans. All these crops have a growing
season of about six months and are mono-annual (from late April to early October). The
obtainability of water resources affects the distribution of crops across the province, with
rice mainly grown in the Five River Basin, soybeans primarily grown in the eastern and
central parts, and maize grown over the entire province [32]. Jilin Province is a key grain
outcome and export foundation in China and has good conditions for developing grain
production, known as the “hometown of soybeans” and the “golden corn belt”. The grain
sowing area constitutes more than 85% of the total arable land, and the annual grain
output is 16–25.1 million tons, making up approximately 4–5% of the country’s total grain
production capacity, which has reached 25 million tons. Over the years, per capita grain
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production, sales volume, and export volume of grain have been among the highest in
China [33].
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Figure 1. The study area of the Jilin Province. The base map is the MODIS mosaic image of the
growing season (day of year: 170–230). The RGB color is composed of bands 1 (red), 4 (green), and 3
(blue) with median reflectance. Point symbols in triangles, squares, and circles represent maize, rice,
and soybean sampling points.

2.2. Data
2.2.1. Reflectance Data

This study used two MODIS reflectance products, including the nadir BRDF-adjusted
reflectance data (MCD43A4 V6) and the BRDF and albedo model parameter data (MCD43A1
V6). They are part of the MODIS BRDF/Albedo suite and provide observations of the
anisotropic reflectance properties of the Earth’s surface, which is essential for various
applications such as vegetation monitoring, land cover mapping, and climate modeling.
The MODIS wavelengths and spatial resolution are listed in Table 1 [34]. The MCD43A4 V6
product is fitted using a BRDF to simulate the values as though they were observed in the
nadir observation direction. The MCD43A1 V6 product offers the three model weighting
parameters (i.e., isotropic, volumetric, and geometric parameters) for each of the MODIS
bands. The products are generated using a combination of satellite data and modeling
techniques [34]. The detailed data production process can be found in Appendix B.

2.2.2. Cropland Boundary Data

Cropland boundary data were provided by the annual MODIS MCD12Q1 V6 prod-
uct [26]. MCD12Q1 is a land cover-type yearly global product from the MODIS sensors. This
product provides global land cover classification data with a 500 m spatial resolution. The
MCD12Q1 dataset is generated annually and contains information on various land cover
types, such as urban areas, grasslands, croplands, wetlands, and forests. The MCD12Q1
product uses multiple classification schemes, and these classification schemes help scien-
tists and decision-makers to better understand land cover dynamics, monitor changes,
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and assess the impacts of land use and land cover change on ecosystems, the climate, and
human–environment interactions. We used the Annual International Geosphere–Biosphere
Programme classification (land cover type 1) as a mask to select the cropland pixels. This
mask selects pixels where not less than 60% of the area is cultured cropland. The detailed
data production process can be found in Appendix C.

Table 1. The channels (wavelengths) of the MODIS sensor. SWIR: short-wave infrared.

Band Sequence Band Spatial Resolution (m) Bandwidth (nm)

1 Red 500 620–670
2 NIR 500 841–876
3 Blue 500 459–479
4 Green 500 545–565
5 N/A 500 1230–1250
6 SWIR16 500 1628–1652
7 SWIR22 500 2105–2155

2.2.3. Field Sampling Data

Three field campaigns were conducted in Jilin Province in 2017 to obtain abundant
and reliable prior knowledge and verification information on crop distribution in the study
area. We employed a systematic field sampling site validation approach, which involved
a sequence of progressive travel from the northwestern to the southeastern regions of
Jilin Province. The field experiment was divided into three main stages: the first stage
(1–6 September) was focused on the northwestern region of Jilin Province, primarily in
Baicheng city and its surrounding areas; the second stage (12–21 September) involved
targeting the central region of Jilin Province, mainly in Changchun city and its surrounding
areas; the third stage (1–5 October) involved examining the southeastern region of Jilin
Province, predominantly in Jilin city and its surrounding areas. After completing each
phase of fieldwork, the team returned to the laboratory to process and verify the collected
field data. Once the data had been validated, the subsequent fieldwork phase was initiated.

Prior to initiating field experiments, we roughly selected sampling sites indoors using
high-spatial-resolution imagery (i.e., Sentinel-2) and approximate predicted crop types,
favoring areas that were as large as possible, minimally disturbed, and easily accessible,
while ensuring that all sampling sites were evenly distributed throughout the study area.
Once all sampling points were identified, we used a portable global positioning system
(GPS) to measure the geometric locations, validate the predetermined crop types, and
document primary information for each cropland. GPS measurements were taken as close
to the center of the field as possible, and preliminary data were recorded concurrently.
Primary data mainly consisted of determined crop type, elevation, latitude, and longitude.
In total, 258 corn, 132 rice, and 53 soybean sampling points were obtained. The distribution
map of the field sampling points is shown in Figure 1.

3. Methods
3.1. Overall Processing

The whole process is illustrated in Figure 2. It can be divided into two parts: data
preprocessing and supervised classification. Data preprocessing was aimed at obtaining
composite images for crop mapping. The supervised classification aimed to evaluate the
classification accuracy of random forest (RF), classification and regression trees (CART),
support vector machine (SVM), and Naïve Bayes (NB) classifiers (Appendix D) using single-
and multi-angle observation data.
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Figure 2. The procedure of crop mapping. Dark parallelograms represent the input parameters. White
rectangles represent the processes. NR: nadir reflectance data; MF: multi-angle observation factor
data; RF: random forest; CART: classification and regression trees; SVM: support vector machine; NB:
Naïve Bayes.

3.2. Data Preprocessing

We assessed the potential of multi-angle observations for crop classification by uti-
lizing both single- and multiple-angle-observation remote sensing data. The single-angle
observation type was the MODIS nadir reflectance (MCD43A4 V6), referred to as NR (nadir
reflectance). The multiple-angle observation type was the MODIS kernel-driven model
parameters (MCD43A1 V6), referred to as MF (multi-angle observation factors).

We restricted the data to cover Jilin Province using one spatial filter and limited it to
2017 using one date filter. We employed all available MODIS NR and MF data from two
distinct periods: the growth stage (day of year: 170–230) and the harvest stage (day of year:
231–291) [35]. Within each of these periods, we took the medians as temporal metrics for
all band data (i.e., NR and MF) to provide to the classifiers. According to the literature [36],
temporal metrics improved classification accuracy by 7%. Medians were used instead of
means due to the non-symmetric error distribution [37,38]. Subsequently, we applied the
MODIS MCD12Q1 V6 crop mask from 2017 to retain only crop pixels.

Finally, for the NR data type, we had 7 (bands)× 1 (direction)× 2 (phase)× 1 (temporal
metric) = 14 classification indices to provide to classifiers for supervised classification. For the
MF data type, we had 7 (bands)× 3 (direction)× 2 (phase)× 1 (temporal metric) = 42 class-
ification indices to provide to classifiers for supervised classification.

3.3. Supervised Classification

The sampling points, together with their pixel values of the NR and MF, were randomly
divided into modeling and validation groups in a ratio of 7:3. Then, a spatial join was
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performed by deleting the training samples within 1000 m of the validation samples to
avoid a correlation due to the spatial autocorrelation of the predicted phenomena. The
input sampling points were the same for each classifier. Four classifiers (RF, CART, SVM,
and NB) provided by GEE were employed to assess the classification accuracy with the
sampling points in Jilin Province. Finally, we classified crop types from composite images
using trained classifiers and verified accuracy in terms of input data and classifier types.
The input parameters are listed in Table 2.

Table 2. Input parameters for training per classifier. The values are determined by considering the
GEE official help document [39] and the literature [40,41].

Parameters Values

Random forest (RF)
The amount of decision trees to be created for rifles by class 10
The quantity of variables in each division 0
The smallest size of a terminal node 1
The percentage of input to the bag for each tree 0.5
Whether or not the out-of-bag mode should be used by the classifier False

Classification and regression trees (CART)
The greatest amount of leaf nodes in each tree None
Create nodes only if the training set includes this many values or more 1

Support vector machine (SVM)
The process for making decisions Voting
The SVM type C_SVC
The kernel type RBF
Using or not using reducing algorithms True
The degree of the polynomial None
The gamma value in the kernel function 0.5
The coef0 value in the kernel function None
The cost (C) parameter 1
The nu parameter None
The termination criterion tolerance None
The epsilon in the loss function None
The class of the training data on which to train in a one-class SVM None

Naïve Bayes (NB)
Smoothing lambda 0.000001

4. Classification Results and Accuracy Assessment

The crop classification maps were drawn, and their areas were calculated. The classifi-
cation results and accuracy of the four classifiers were compared concerning NR and MF
data types.

4.1. Classification Results

The crop mapping images are shown in Figure 3. The location of maize showed
good consistency across the four classification results, while the location of soybean varied
dramatically. Table 3 shows the crop area and corresponding classification accuracy. The
choice of classifier had a more significant influence on the results than the input data
did. Different classifiers produced significantly different classification results for the same
classification data, with a maximum standard deviation of the maize area of 16,556.75 km2.
In contrast, different classification data using the same classifier produced less different
results, with the maximum standard deviation of maize area being 4083.54 km2. Notably,
the SVM classifier was unable to classify soybean pixels using NR data, but it could classify
them using MF data (despite accounting for a very small area). The NB classifier could not
classify soybean and wheat pixels, regardless of whether NR or MF data were used.
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Table 3. Crop areas and classification accuracy. RF: random forest; CART: classification and regression
trees; SVM: support vector machine; NB: Naïve Bayes. NR: nadir reflectance data; MF: multi-angle
observation factor data. TA: overall training accuracy; VA: overall validation accuracy; TK: training
kappa coefficient; VK: validation kappa coefficient.

Classifier Data
Areas (km2)

TA VA TK VK
Maize Rice Soybean

RF NR 90,835.50 16,419.25 2542.25 96.1% 75.5% 0.929 0.539
RF MF 89,836.50 17,500.75 2459.75 97.4% 79.4% 0.953 0.602

CART NR 75,355.75 20,469.00 13,972.25 98.7% 58.8% 0.977 0.307
CART MF 69,580.75 25,934.25 14,282.00 98.7% 63.7% 0.977 0.368
SVM NR 97,668.50 12,128.50 0.00 73.0% 73.5% 0.442 0.450
SVM MF 94,010.50 15,786.00 0.50 76.5% 77.5% 0.531 0.542
NB NR 109,797.00 0.00 0.00 55.7% 54.9% 0.000 0.000
NB MF 109,797.00 0.00 0.00 55.7% 54.9% 0.000 0.000

4.2. Accuracy Assessment

The assessment of accuracy was conducted from three different perspectives, namely
the accuracy of classification among classifiers, input data types, and crop types. The
criteria used for evaluation were the overall accuracy and kappa coefficients. Overall
accuracy is a metric that measures the proportion of correctly classified pixels to the overall
amount of pixels in the image. It is a simple and easy-to-understand measure that offers
an overall estimation of the robustness of the classification model. On the other hand, the
kappa coefficient is a statistical measure that takes into account the agreement between
the observed and expected classifications and corrects for the agreement that would be
expected by chance. The kappa coefficient is in a range of −1 to 1, with 1 denoting perfect
agreement, 0 denoting probability agreement, and−1 denoting total disagreement. Because
it takes into account the agreement that would be predicted by chance, the kappa coefficient
is a more reliable indicator than total accuracy is. Therefore, it is a more reliable measure of
the performance of the classification model [42].

4.2.1. Evaluation of the Classifiers

Table 3 shows the classification result and accuracy (overall accuracy and kappa
coefficient) of the RF, CART, SVM, and NB classifiers in terms of training and validation
data. The four classifiers exhibited noteworthy differences in performance. The CART
classifier held the highest training accuracy (overall training accuracy equaled 98.7%, and
the training kappa coefficient equaled 0.977). The RF classifier held the highest overall
validation accuracy (an overall validation accuracy of over 75% and a kappa coefficient of
over 0.500). The SVM classifier (an overall accuracy of over 73.0% and a kappa coefficient
of over 0.440) had lower training and validation accuracy than CART and RF did. The NB
classifier had the worst accuracy among the four classifiers (overall validation accuracy
equaled 54.9%, and the kappa coefficient equaled 0.000).

4.2.2. Evaluation of the Multi-Angle Observations

The use of multi-angle observation data could improve the classification accuracy
of classifiers. Specifically, the accuracy of RF, CART, and SVM classifiers using MF data
showed greater improvement than that using NR data. The overall validation accuracy
of RF increased from 75.5% to 79.4%, and the validation kappa coefficient increased from
0.539 to 0.602. The overall validation accuracy of CART increased from 58.8% to 63.7%,
and the validation kappa coefficient increased from 0.307 to 0.368. The overall validation
accuracy of SVM increased from 73.5% to 77.5%, and the validation kappa coefficient
increased from 0.450 to 0.542. However, the difference in accuracy caused by using NR
and MF data (an overall accuracy of up to 4.9% and a kappa coefficient of up to 0.092) was
relatively small compared to the difference caused by using different classifiers (an overall
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accuracy of up to 43.0% and a kappa coefficient of up to 0.977). Therefore, the choice of
classifier was the dominant factor influencing classification accuracy (Table 3).

4.2.3. Accuracy Comparison among Crop Types

Tables 4 and 5 show the producer accuracy (PA) and user accuracy (UA) measures of
the training and validation datasets, respectively. Producer accuracy indicates the number
of pixels properly classified in a specific class as a proportion of the total number of pixels
in that class in the reference data. Producer accuracy assesses the classifier’s ability to
accurately identify a specific class, indicating the probability that a certain class in the
reference data (ground truth) is correctly classified in the image classification. This metric
is also referred to as the commission error. A high producer accuracy indicates that the
classifier effectively identifies a specific class, while a low producer accuracy suggests
that the classifier may be misclassifying that class. User accuracy indicates the number of
correctly classified pixels for a given class as a proportion of the total number of pixels in
the image classification that are classified as that class. This metric is also known as the
omission error. User accuracy evaluates the reliability of the classification for a specific
class, indicating the probability that a certain class in the classified image corresponds to
the same class in the reference data (ground truth). A high user accuracy indicates that the
classification results for a specific class are reliable, while a low user accuracy suggests that
the classifier may include pixels from other classes in the specific class [43].

Table 4. Producer accuracy (PA) and user accuracy (UA) of the training dataset. RF: random forest;
CART: classification and regression trees; SVM: support vector machine; NB: Naïve Bayes. NR: nadir
reflectance data; MF: multi-angle observation factor data.

Classifier Data
PA UA

Maize Rice Soybean Maize Rice Soybean

RF NR 98.4% 93.8% 90.5% 94.7% 98.7% 95.0%
RF MF 97.7% 97.5% 95.2% 97.7% 98.8% 90.9%

CART NR 99.2% 97.5% 100.0% 98.4% 100.0% 95.5%
CART MF 99.2% 97.5% 100.0% 98.4% 100.0% 95.5%
SVM NR 98.4% 51.9% 0.0% 68.1% 93.3% 0.0%
SVM MF 94.5% 67.9% 0.0% 72.9% 85.9% 0.0%
NB NR 100.0% 0.0% 0.0% 55.7% 0.0% 0.0%
NB MF 100.0% 0.0% 0.0% 55.7% 0.0% 0.0%

Table 5. Producer accuracy (PA) and user accuracy (UA) of the validation dataset. RF: random forest,
CART: classification and regression trees, SVM: support vector machine, NB: Naïve Bayes. NR: nadir
reflectance data, MF: multi-angle observation factor data.

Classifier Data
PA UA

Maize Rice Soybean Maize Rice Soybean

RF NR 87.5% 68.3% 0.0% 75.4% 96.6% 0.0%
RF MF 87.5% 78.0% 0.0% 77.8% 88.9% 0.0%

CART NR 62.5% 53.7% 60.0% 66.0% 78.6% 14.3%
CART MF 69.6% 61.0% 20.0% 70.9% 80.6% 6.2%
SVM NR 98.2% 48.8% 0.0% 67.9% 95.2% 0.0%
SVM MF 94.6% 63.4% 0.0% 72.6% 89.7% 0.0%
NB NR 100.0% 0.0% 0.0% 54.9% 0.0% 0.0%
NB MF 100.0% 0.0% 0.0% 54.9% 0.0% 0.0%

The training dataset held higher PA and UA values than the validation dataset did,
with mean values of 68.22% and 46.74%, respectively. Among the three crop types, maize
held the highest accuracy (mean value averaged by method, input data type, training and
validation, PA and UA; 83.42%), followed by rice (mean value averaged by method, input
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data type, training and validation, PA and UA; 62.05%), while soybean held the lowest
accuracy (mean value averaged by method, input data type, training and validation, PA
and UA; 26.97%). Notably, only the CART classifier produced reliable classification results
for soybean.

5. Discussion and Conclusions
5.1. Discussion
5.1.1. Discussion of the Classifiers for Optical Data

The choice of classifier can greatly impact the accuracy of the classification [44,45]. In
our case with MODIS optical images, the classifier is the dominant factor influencing the
classification results, and the influence of NR or MF data on the results is small. Among
the classifiers provided by GEE, RF has the highest validation accuracy, while CART has
the highest training accuracy. SVM and RF show similar good performance for validation
accuracy. NB shows the worst performance.

RF is generally considered the most accurate of the four classifiers provided by GEE.
For example, a meta-analysis of 349 publications on GEE over the last decade shows that the
RF algorithm is the most often employed classification classifier for satellite imagery [45].
In our case with optical data, RF shows the highest validation accuracy. However, CART
holds higher training accuracy than RF does. This may be explained by several studies on
crop mapping [46,47] and tree species mapping [48]. CART is suitable for areas with simple
land cover categories and consistent spatial distribution, while RF is ideal for areas with
complicated land cover types and disjointed spatial distribution [49]. Additionally, the
quality of training samples can also affect the performance of classifiers [41]. The spatial
resolution of MODIS of 500 m may not be sufficient for crop mapping studies compared to
previous studies. Therefore, the components within a pixel may be more complex, and the
mixed pixel effect may be more severe, affecting the quality of the training samples.

The noise in the training data also degenerates the SVM accuracy. Compared with
the RF classifier [50], SVM may have a higher sensitivity to training data quality [51]. As a
result, in line with the literature [52] on crop mapping that uses multi-temporal Sentinel-2
images, SVM has a lower accuracy than RF does. NB shows the worst performance because
irrelevant features can easily fool it. Therefore, our research emphasizes the significance of
selecting classifiers according to the intrinsic property of the study objective and the types
of image data.

5.1.2. Discussion of the Multi-Angle Optical Observations

Multi-angle optical observation has been broadly utilized for Earth observation as it
can capture BRDF signatures [53], and BRDF signatures have been shown to contribute
to land cover classification [26,27] and vegetation architecture (e.g., LAI [29,30], LAD [28],
and leaf size [31]) inversion. The variability of spectra between crops is much lower than
the variability of spectra between land covers, increasing classification difficulty. However,
the architecture (e.g., LAI, LAD, and leaf size) of crops may have a substantial difference,
which can be well-expressed by BRDF signatures. Therefore, we propose using BRDF
signatures captured by the multi-angle optical observation data for crop classification. Our
results show that using multi-angle optical observations in most cases results in a moderate
enhancement in the classification results compared with using only nadir reflectance data.

5.1.3. Discussion of the Accuracy Comparison among Crop Types

It has been reported that raising the number of training sets can result in a moderate
improvement in classifier performance [40,41]. In our classification results, maize has the
highest classification accuracy, followed by rice, while soybean has the lowest accuracy.
This order corresponds to the number of points we sampled. However, when the sample
size for training approaches a certain threshold, the impact of raising the sample size for
training on the improvement of classification accuracy will progressively diminish and
even reach a bottleneck. At this time, other methods should be employed to boost the
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classification accuracy, such as improving feature selection, adjusting classifier parameters,
etc. [54]. Since the main crops are numerically dominant in the training sample, classifying
crops that are not numerically dominant is a challenge.

5.2. Conclusions

We evaluated the potential of using BRDF signatures captured by multi-angle obser-
vation data for crop mapping using four machine learning classifiers provided by GEE and
MODIS nadir BRDF-adjusted reflectance data and BRDF and albedo model parameter data.
Some general conclusions are listed below:

• Using BRDF signatures leads to a moderate improvement in classification results
compared to using reflectance data from a single nadir observation direction.

• Among the four classifiers, RF has the highest validation accuracy for crop mapping,
followed by CART, SVM, and NB.

• The selection of a classifier plays a crucial role in classification accuracy, regardless of
whether NR or MF data is used.

Our study contributes to the utilization of multi-angle observation data for crop
mapping. However, the usage of multi-angle remote sensing observations for crop mapping
is still limited by a lack of data sources and the low spatial resolution of current multi-angle
observation satellites. In addition, the use of multi-angle data will also lead to increased
computational demands. The variation of input parameters may also influence the accuracy
and ranking of the four classifiers.

Author Contributions: Methodology and writing—original draft preparation, Z.Z.; writing—review
and editing, S.C. and T.Y.; supervision, J.-P.G.-E. and S.C.; funding acquisition Z.Z., S.C. and J.-P.G.-E.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(No. 42201372), in part by the National Key Research and Development Program of China (No.
2020YFA0714103), in part by the Scientific and Technological Development Scheme of Jilin Province
(No. 20210201138GX), and in part by the TOSCA program of the French space center (CNES).

Data Availability Statement: The Google Earth Engine can be assessed through the website (https:
//explorer.earthengine.google.com, accessed on 23 May 2023). The MCD43A1 product can be
assessed through the website (https://developers.google.com/earth-engine/datasets/catalog/MO
DIS_006_MCD43A1, accessed on 23 May 2023). The MCD43A4 product can be assessed through the
website (https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD43A4,
accessed on 23 May 2023). The MCD12Q1 product can be assessed through the website (http
s://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1, accessed on
23 May 2023). The random forest classifier provided by GEE can be accessed through the website
(https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest, accessed on
23 May 2023). The classifications and regression trees classifier provided by GEE can be accessed through
the website (https://developers.google.com/earth-engine/apidocs/ee-classifier-smilecart, accessed on
23 May 2023). The support vector machine classifier provided by GEE can be accessed through
the website (https://developers.google.com/earth-engine/apidocs/ee-classifier-libsvm, accessed on
23 May 2023). The Naïve Bayes classifier provided by GEE can be accessed through the website
(https://developers.google.com/earth-engine/apidocs/ee-classifier-smilenaivebayes, accessed on
23 May 2023).

Acknowledgments: The authors express their gratitude to Eric Chavanon, Nicolas Lauret, and Jordan
Guilleux at the University of Toulouse. The authors express their gratitude to Lisai Cao, Jian Li, and
Peng Lu at the Jilin University.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Kernel-Based BRDF Model

The kernel-based BRDF model represents surface reflections as a linear combination
of multiple models. To concentrate on surface directional reflection signatures, it separates
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direction-related terms from direction-independent terms in the model. The bi-directional
reflectance factor, R(Ωi,Ωv), is expressed as follows:

R(Ωi, Ωv) = fisotropy + fgeometrykgeometry(Ωi, Ωv) + fvolumekvolume(Ωi, Ωv) (A1)

Here, f represents direction-independent terms, including the isotropy scattering factor
(f isotropy), geometry scattering factor (f geometry), and volume scattering factor (f volumn).
The direction-dependent terms, k, include the geometry scattering kernel (kgeometry) and
volume scattering kernel (kvolume), which are dependent on the direction of incidence, Ωi,
and the direction of view, Ωv.

Appendix B. The Generation of the MCD43A1/MCD43A4 Product

The generation of the MCD43A1 BRDF/Albedo Model Parameters product involves
three steps [55]: Collection of MODIS surface reflectance data: The MODIS sensors gather
surface reflectance data at a 500 m spatial resolution in seven spectral bands. These data
undergo preprocessing to correct for atmospheric effects, such as aerosols and water
vapor. Then, to create the MCD43A1 BRDF/Albedo Model Parameters product, a 16-day
composite of MODIS surface reflectance data is utilized. This composite is formed by
selecting the highest-quality observations (i.e., values with optimal quality flags) from
Terra and Aqua satellites over the 16-day period, taking into account factors such as
cloud cover, view angle, and solar zenith angle. Finally, the BRDF model coefficients are
estimated by fitting the model to the multi-date composite of MODIS surface reflectance
data. This process, known as BRDF inversion, involves minimizing the difference between
the observed and modeled reflectance by employing the kernel-based BRDF model.

The MCD43A4 NBAR (Nadir BRDF-Adjusted Reflectance) product is derived from the
MCD43A1 BRDF/Albedo Model Parameters product. Once the BRDF model parameters
are estimated, the NBAR product is generated by adjusting the surface reflectance data
for the nadir view and solar zenith angles. This adjustment accounts for the anisotropic
reflectance properties of Earth’s surface, providing a more consistent and accurate repre-
sentation of surface reflectance [55].

Appendix C. The Generation of the MCD12Q1 Product

The generation of the annual global MCD12Q1 land cover type product involves a
three-step process [26]: Remote sensing data are processed in 32-day cycles, aggregating
measurements into summary data (studies including that in [56] have demonstrated that
a minimum of 30 days is required to compile a dataset with minimal cloudiness impact).
Remote sensing inputs for the 32-day database encompass land/water marks, skyline BRDF-
adjusted reflectance, texture channels, vegetation indices, directional information, snow/ice
cover, and surface temperature. Subsequently, the classification algorithm processes a series
of twelve 32-day MOD12M databases and a global 1 km topographic database (EOS range)
to generate seasonal land cover labels for data reduction. In the final classification phase, a
sequence of 32-day databases and the earth observing system data and information system
(EOSDIS) 1 km terrain database (MOD03) are provided as input to the classifier. The
classifier then processes the 32-day databases and ancillary data using decision trees and
neural network classification algorithms.

Appendix D. Supervised Machine Learning Classifiers in GEE

Four non-parametric machine learning classifiers provided by GEE, including ran-
dom forest (RF, https://developers.google.com/earth-engine/apidocs/ee-classifier-sm
ilerandomforest, accessed on 23 May 2023), classification and regression trees (CART,
https://developers.google.com/earth-engine/apidocs/ee-classifier-smilecart, accessed
on 23 May 2023), support vector machine (SVM, https://developers.google.com/earth-
engine/apidocs/ee-classifier-libsvm, accessed on 23 May 2023), and Naïve Bayes (NB,
https://developers.google.com/earth-engine/apidocs/ee-classifier-smilenaivebayes, ac-
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cessed on 23 May 2023), were used to compare classification accuracy between single- and
multi-angle observation data.

(1) Random Forest

Random forest (RF) [57] is an ensemble learning method that combines multiple
decision trees to improve the accuracy and robustness of a model. RF is famous for
effectively handling large datasets with high dimensionality, providing a good balance
between bias and variance, reducing the risk of overfitting by aggregating multiple decision
trees, handling missing data and maintaining accuracy, and estimating feature importance.
However, RF can be slow to train and predict with large trees and poor performance on
imbalanced datasets [58,59].

(2) Classification and Regression Trees

Classification and regression trees (CART) [60] is a decision tree learning technique that
recursively splits the input data into subsets on the basis of the values of the input features,
aiming to create pure leaf nodes (i.e., nodes containing only one class for classification or
similar values for regression). CART is famous for capturing non-linear relationships and
handling both categorical and continuous data. However, CART is prone to overfitting and
sensitive to small changes in the data [59,61].

(3) Support Vector Machine

Support vector machines (SVM) [62] is a supervised algorithm for binary classification
tasks that finds the hyperplane that maximally separates the data into different classes.
SVM is famous for handling high-dimensional data, its robustness to outliers, and its ability
to capture non-linear relationships using kernel functions. However, SVM can be sensitive
to the choice of kernel function and noise [59,63].

(4) Naïve Bayes

Naïve Bayes (NB) [64] is a probabilistic algorithm that assumes independence between
features given the class label. NB is famous for its fast training speed and for handling
high-dimensional data. However, NB may not work well for correlated features [59,65].
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