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Abstract 11 

 12 

DART model is one of the most comprehensive and accurate radiative transfer (RT) models to 13 

simulate remotely sensed signals in the Earth-atmosphere system. Its standard RT modelling 14 

mode, called DART-FT, relies on the discrete ordinates method. Its recently developed Monte 15 

Carlo mode using an unbiased bidirectional path tracing method, called DART-Lux, increases 16 

hundredfold DART efficiency to simulate images. Since DART-Lux does not simulate yet 17 

atmospheric RT, a hybrid method has been designed to accurately and fast simulate remote 18 

sensing images at top of atmosphere (TOA). It couples the atmospheric RT modelling of 19 

DART-FT with the very efficient Earth surface RT modelling of DART-Lux. For that, a new 20 

sky light modelling, an innovative BRF camera modelling and an adapted radiative coupling 21 

framework have been designed. The efficiency and accuracy of this hybrid method have been 22 

validated using DART-FT as a reference. Here, we present this validation for a realistic forest 23 

stand. Simulation time is reduced by a factor of 750 with a relative difference of solar plane 24 
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reflectance factor smaller than 1%. This hybrid method opens new perspectives for the use of 25 

3D modelling in remote sensing applications. It is already part of the DART version freely 26 

available for scientists (https://dart.omp.eu).  27 

 28 

Key words 29 
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 32 

1 Introduction 33 

 34 

Remotely sensed images at the top of atmosphere (TOA) are inevitably contaminated by the 35 

atmosphere due to scattering, absorption and emission of atmospheric constituents (e.g., gases, 36 

aerosols) (Dave, 1980; Myneni and Asrar, 1994; Song et al., 2001; Ueno and Mukai, 1977). 37 

Many approaches have been developed to remove or reduce atmospheric effects in TOA images, 38 

including empirical methods such as the line method and darkest pixel method (Chavez Jr, 1988; 39 

Conel et al., 1987; Crippen, 1987), radiative transfer (RT) modelling methods based on the 40 

physics of ray-matter interactions such as 6S (Vermote et al., 1997) and MODTRAN (Berk et 41 

al., 1987), and hybrid methods that combine empirical and RT modelling methods (Goetz et al., 42 

1997).  43 

 44 

In the absence of field data, modelling TOA radiance is of great interest to better understand 45 

radiation interactions in the Earth system and also to better use the remote sensing observations 46 

of the Earth surface (Gastellu-Etchegorry et al., 1996; Guanter et al., 2009; Kraska, 1996; 47 

Richtsmeier et al., 2001; White et al., 2004; Zahidi, 2019), because it takes into account the 48 

physical mechanisms in the coupled Earth-atmosphere system and the instrumental 49 
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characteristics that give rise to these TOA images. Most atmospheric RT models (e.g., 50 

MODTRAN, 6S) used for atmospheric correction of remote sensing images simulate TOA 51 

radiance depending on a-priori knowledge of the Earth surface reflectance anisotropy. For that, 52 

they are usually coupled with Earth surface RT models such as DART and SAIL (Verhoef, 53 

1984). However, this coupling approach is usually approximate since it simplifies the 3D nature 54 

and topography of the Earth surface as a horizontal plane. In addition, most Earth surface RT 55 

models consider that downward atmospheric diffuse radiation is isotropic, which can be a large 56 

source of inaccuracy. DART does not make these simplifications because it simulates the Earth-57 

Atmosphere radiative coupling with a 3D approach. It explains that it simulates high accuracy 58 

remote sensing images and it is efficient for remote sensing applications.   59 

 60 

Based on its discrete ordinates method, called DART-FT, DART is able to simulate remote 61 

sensing images of arbitrary 3D urban and natural landscapes with atmosphere. Recently, DART 62 

efficiency to simulate BOA remote sensing images of large and complex landscapes has been 63 

greatly improved thanks to its newly developed Monte Carlo mode, called DART-Lux (Wang 64 

et al., 2021b). DART-Lux uses an unbiased and fast bidirectional path tracing method that 65 

improves DART efficiency by a hundredfold in terms of computer time and memory. However, 66 

it has not yet been adapted to simulate TOA images. This is due to two major difficulties: (1) 67 

Monte Carlo method needs a huge amount of samples to simulate accurate TOA spectrum; (2) 68 

Monte Carlo method can cause distortion of TOA spectrum, since all bands share a common 69 

path from source to detector while spectral properties usually lead to different path per band 70 

(Emde et al., 2011). On the other hand, DART-FT solves the radiative transfer equation per 71 

band with the discrete ordinates method (Grau and Gastellu-Etchegorry, 2013). Although the 72 

discrete ordinates method is less accurate than the exact monochromatic Monte Carlo method 73 
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due to its discretization approximation, it is much more efficient and does not cause distortion 74 

issues. 75 

 76 

This paper presents a hybrid method that allows DART-Lux to simulate accurate and fast TOA 77 

images. It includes a new Monte Carlo modelling of sky lighting, an innovative BRF camera 78 

and a coupling framework for Monte Carlo Earth surface RT modelling and non-Monte Carlo 79 

atmospheric RT modelling. Its efficiency and accuracy are illustrated with a simulation of a 80 

realistic forest stand. The relationship between accuracy and simulation time is also discussed. 81 

 82 

2 Background and method 83 

 84 

DART is developed at CESBIO since 1992 (Figure 1). It is one of the most comprehensive and 85 

accurate 3D RT models in the optical remote sensing community (Gastellu-Etchegorry et al., 86 

2017, 1996). It has been successfully validated against field measurements and through 87 

RAdiation Model Intercomparison (RAMI) (Grau and Gastellu-Etchegorry, 2013; Guillevic et 88 

al., 2003, 2013; Pinty et al., 2004, 2001; Wang and Gastellu-Etchegorry, 2020; Widlowski et 89 

al., 2015, 2013, 2007). Its standard mode, called DART-FT, simulates the bidirectional 90 

reflectance factor (BRF), directional brightness temperature (DBT) and remote sensing images 91 

of arbitrary 3D natural and urban landscapes, with topography and atmosphere, from visible to 92 

thermal infrared domain. Its newly developed Monte Carlo mode, called DART-Lux, increases 93 

hundredfold efficiency to simulate the RT in Earth surface. DART-Lux accuracy for simulating 94 

BOA images, fluorescence and LiDAR signals has already been validated by DART-FT. 95 

 96 
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 97 

Figure 1. DART-FT 3D discrete mock-up. Landscape elements are made of triangles, and/or fluid and 98 

turbid medium in a cell array. In DART-Lux, the simulation of landscapes is similar to that of 99 

DART-FT without using a cell array. 100 

 101 

2.1 Earth-atmosphere radiative coupling 102 

 103 

DART-FT simulates sequentially the atmospheric RT and Earth surface RT and couples them. 104 

Its RT modelling relies on the discrete ordinates method that iteratively tracks rays along finite 105 

discrete directions. Figure 2 illustrates the 5 major steps of DART RT modelling in the coupled 106 

Earth-atmosphere system in order to simulate TOA images (Grau and Gastellu-Etchegorry, 107 

2013; Wang et al., 2020):  108 

(1) Sun illumination followed by atmosphere scattering and thermal emission. 109 

(2) Earth surface RT.  110 

(3) Earth-atmosphere radiative coupling.  111 

(4) Earth surface RT of atmosphere backscattered radiation.  112 

(5) Transfer of BOA upward radiation to TOA.  113 

 114 
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 115 

Figure 2.Major steps to model RT in the Earth-atmosphere system. Step 1: Sun illumination, thermal 116 

emission and atmosphere scattering. Step 2: Earth surface RT, including scene scattering and 117 

emission. Step 3: Earth-atmosphere radiative coupling. Step 4: Earth surface RT of atmosphere 118 

backscattered radiation. Step 5: Transfer of BOA upward radiation to TOA.  119 

 120 

2.2 Hybrid method for simulating TOA images  121 

 122 

DART-Lux models the Earth surface RT using the Monte Carlo based bidirectional path tracing 123 

method (Veach, 1997; Veach and Guibas, 1995a, 1995b). This method simulates the remote 124 

sensing signals by sampling a group of paths between the light source and the detector and 125 

evaluates the contribution of these path samples. It can increase DART efficiency by a 126 

hundredfold to simulate remote sensing images of complex 3D landscapes (Wang et al., 2021b). 127 

However, this new Monte Carlo modelling is not yet adapted to simulate the atmospheric RT. 128 

Since DART-FT simulates efficiently the atmospheric RT, a hybrid method is proposed to 129 

simulate TOA images that takes advantage of fast DART-Lux Earth surfaces RT modelling and 130 

fast DART-FT atmospheric RT modelling.  131 
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 132 

The three following sections present the details of the hybrid method:  133 

- A new Monte Carlo modelling of the anisotropic sky lighting. 134 

- An innovative BRF camera modelling to capture directional radiation exiting the Earth surface.  135 

- A framework to couple Monte Carlo Earth surface RT and non-Monte Carlo Atmospheric RT.  136 

 137 

2.2.1 Anisotropic sky lighting 138 

 139 

Figure 3 illustrates the sky lighting. The Monte Carlo method models the sky lighting by 140 

sampling a random direction 𝜔! and a start vertex 𝑝! on the virtual disk that is the projection 141 

of the scene sphere along 𝜔! (Figure 3). Most Monte Carlo RT models consider sky light to be 142 

isotropic (e.g., (Qi et al., 2019)) or compute the sky light with empirical equations (e.g., (Pharr 143 

et al., 2016)). With the aim of better precision, we designed a new method to accurately model 144 

the anisotropic sky light. This method uses the DART-FT computed BOA diffuse radiance. 145 

Note that it can use BOA diffuse radiance computed by other atmospheric RT models. 146 

 147 

Figure 3. Sky lighting. The Earth scene is in a sphere of radius R. It is illuminated by the light from 148 

the sky dome.  149 
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 150 

DART-FT tracks radiations along 𝑁"  predefined discrete directions 𝜔#(∆ω#)  with 𝑛 ∈151 

[1, 𝑁"] (Yin et al., 2013). The computed sky light is stored per discrete downward direction per 152 

band 𝐿$%&'()) /𝜔#↓ , 𝜆1. In order to adapt to Monte Carlo method such as DART-Lux that samples 153 

arbitrary sky light direction, we designed a 2D distribution sampler. We first resample 154 

𝐿$%&'()) /𝜔#↓ , 𝜆1 from discrete directions to directions with equal angle step (angle steps ∆𝜃 and 155 

∆𝜑 , angle numbers: 𝑁+=
,/.
∆+

 and 𝑁0=
.,
∆0

) (Figure 4). It results that pixel (i, j) on the 156 

hemisphere stores 𝐿/𝜔1,3 , 𝜆1=𝐿$%&'()) /𝜔#↓ , 𝜆1  if 𝜔1,3 ∈ ∆ω# . Below, the wavelength term 𝜆  is 157 

omitted for compactness.  158 

 159 

Then, a direction is sampled with the probability density function (PDF) 𝑝(𝜔) = 4(+,0)
7(8 +

 where 160 

𝑝(𝜃, 𝜑) is constructed by Eq. (1). 𝑝(𝜃, 𝜑) and radiance 𝐿5/𝜔1,31 are constant in ∆ω1,3. 𝐿5/𝜔1,31 161 

is the mean radiance of all spectral bands along 𝜔1,3. It is only used to compute the PDF. 162 

 163 

𝑝(𝜃, 𝜑)=
∫ :;(<)∙>?7 +∙7(8 +∙@+∙@0∆"#,%

/(∆+∙∆0)

∫ ∫ :;(<)∙>?7 +∙7(8 +∙@+∙@0&/(	(*

=
:;AB#,%C∙7(8(.+#)∙

+,-∆.
∆.

∑ ∑ :;EB#/,%/F∙7(8A.+#/C∙7(8 ∆+∙∆0
01
%/23

0.
#/23

  (1) 

with 164 

⎩
⎪
⎨

⎪
⎧𝑝(𝜃) = : 𝑝(𝜃, 𝜑)𝑑𝜑

.,
=< 𝑝(𝜃, 𝜑) ∙ ∆𝜑

G1

3HI

𝑝(𝜑|𝜃) =
𝑝(𝜃, 𝜑)
𝑝(𝜃) 																																																		

 (2) 

  165 
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a)  b)  

Figure 4. Radiance resampling from discrete directions to equal angle step directions. a) DART-FT 166 

discrete directions with solid angle ∆ω! (∆𝜃!, ∆𝜑!). b) Resampled equal angle step directions 167 

on the hemisphere with constant ∆𝜃 and ∆𝜑 for each solid angle. 168 

 169 

2.2.2 BRF camera and anisotropic upward fluxes 170 

 171 

To couple Earth surface RT with atmospheric RT, one must compute the anisotropic upward 172 

radiance from the Earth surface. Most Monte Carlo models compute the directional fluxes by 173 

repeatedly simulating directional images, which is very inefficient. In order to avoid this 174 

inefficient approach, we designed and implemented an innovative “BRF camera” in DART-175 

Lux. This BRF camera simulates directional upward fluxes in a single run. It has infinite radius 176 

to capture the upward radiance from the Earth scene. The conceptional hemispherical sensor is 177 

shown in Figure 5.b. It has 𝑁+ ∙ 𝑁0  pixels, with 𝑁+ =
,/.
∆+

 and 𝑁0 =
.,
∆0

. ∆𝜃  and ∆𝜑  are 178 

respectively the step of zenith and azimuth angles. It corresponds to 𝑁+ ∙ 𝑁0  orthographic 179 

cameras (Figure 5.a) placed around the 3D scene. The average radiance captured by each 180 

orthographic camera is stored in the corresponding pixel.  181 

 182 

This BRF camera modelling was adapted to the Monte Carlo models of interest (i.e., backward, 183 

forward, bi-directional path tracing). For that, a viewing direction is sampled with directional 184 
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PDF 𝑝(𝜔!) (Eq. (3)) and a depart point is uniformly sampled on the scene ortho-projected 185 

surface 𝐴?JKL?(𝜔!) along the viewing direction 𝜔!.  186 

 187 

𝑝(𝜔!) =
𝑝(𝜃, 𝜑)
sin 𝜃 ,with	

⎩
⎨

⎧ 𝑝(𝜃) =
1
𝜋/2

𝑝(𝜑|𝜃) =
1
2𝜋

 (3) 

 188 

a) b) 

 189 

Figure 5. a) Radiation exits the Earth scene along direction 𝜔" reaches a virtual orthographic plane 190 

𝐴#$%&#(𝜔") (detector) that is the projection of the scene along the viewing direction 𝜔". b) 191 

BRF camera. The hemispheric sensor of the camera has infinite radius from the Earth scene. 192 

Any radiation along viewing direction 𝜔"(∆Ω) is captured by a pixel on the hemisphere. 193 

 194 

After the Earth surface RT modelling, the image of BRF camera that maps the upward 195 

directional radiance is created (Figure 6). In a latter step, this radiance map is used to compute 196 

the radiance and BRF for any viewing direction. Pixel (i, j) gives the radiance 𝐿/𝜔1,31 for 197 
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direction 𝜔1,3  on the hemisphere (Figure 4.b), which allows one to compute the upward 198 

radiance 𝐿$%&7>M8M/𝜔#↑1 along any discrete direction 𝜔#: 199 

 200 

𝐿$%&7>M8M/𝜔#↑1 =
∫ :(<)∙>?7 +∙7(8 +@+@0∆"4

∫ >?7+∙7(8 +@+@0∆"4

=
∑ ∑ :AB#,%C∙7(8(.+#)∙7(8 ∆+∙∆0

%3
%2%5

#3
#2#5

>?7 +46 ∙∆<4
  (4) 

 201 

where solid angle ∆ω#  covers pixel region from line 𝑖! to 𝑖I and from column 𝑗! to 𝑗I. The 202 

effective zenith angle 𝜃#O of direction ω# verifies: cos 𝜃#O ∙ ∆ω# = ∫ cos 𝜃 ∙ sin 𝜃 𝑑𝜃𝑑𝜑∆<4
. 203 

 204 

Figure 6. Radiance map simulated by the BRF camera. It has 𝑁' lines and 𝑁( columns. The value of 205 

pixel (i, j) is the scene radiance along direction 𝜔),+. The black rectangle outlines the region 206 

of a solid angle ∆ω!  of discrete direction 𝜔! . 𝜃)  and 𝜑+  represent the zenith and azimuth 207 

angle at centre of pixel (i, j) respectively. 208 

  209 

2.2.3 Radiative coupling framework 210 

 211 

In the hybrid method, the DART-FT atmospheric RT modelling realizes the steps 1, 3 and 5 of 212 

the five major radiative steps (Figure 2), while the DART-Lux Earth surface RT modelling 213 
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realizes steps 2 and 4, plus an additional step 6. Steps 1 to 5 give spatially averaged radiance 214 

values conversely to step 6 that gives images. These steps are detailed below. 215 

 216 

1) DART-FT atmospheric RT modelling. TOA direct irradiance 𝐸P%&'(J  leads to diffuse 217 

radiance 𝐿P%&'()) /𝜔#↑1 per upward direction 𝜔#↑ , BOA direct irradiance 𝐸$%&'(J , BOA diffuse 218 

irradiance 𝐸$%&'())  and BOA diffuse radiance 𝐿$%&'()) /𝜔#↓1 per downward direction 𝜔#↓ . 219 

 220 

2) DART-Lux Earth surface RT modelling. It uses two light sources: sunlight with direct 221 

irradiance 𝐸$%&'(J  and anisotropic sky light with BOA diffuse radiance 𝐿$%&'()) /𝜔#↓1. This step 222 

gives the upward scene radiance 𝐿$%&7>M8M/𝜔#↑1 per upward direction 𝜔#↑  using Eq. (4). 223 

 224 

3) DART-FT atmospheric RT modelling. It computes the transfer functions TF$&Q$& (i.e., 225 

BOA downward radiance 𝐿$%&
>?RST/𝜔#↓1 contributed by BOA upward radiance 𝐿$%&7>M8M(𝜔#↑ )) 226 

and TF$&QP%&  (i.e., TOA radiance 𝐿P%&
>?RST/𝜔#↑1  contributed by BOA upward radiance 227 

𝐿$%&7>M8M(𝜔#↑ )).  Then, 𝐿$%&
>?RST/𝜔#↓1  is extrapolated to infinite coupling order radiance 228 

𝐿$%&
>?RST(U)/𝜔#↓1 using the Earth scene albedo 𝜌 and atmosphere backscattering albedo 𝑠 (Eq. 229 

(5)). The backscattered irradiance 𝐸$%&
>?RST(U) is computed using 𝐿$%&

>?RST(U)/𝜔#↓1: 230 

 231 

𝐿$%&
>?RST(U)/𝜔#↓1 =

1
1 − 𝜌 ∙ 𝑠 ∙ 𝐿$%&

>?RST/𝜔#↓1																 

𝐸$%&
>?RST(U) =< 𝐿$%&

>?RST(U)/𝜔#↓1 ∙ cos 𝜃#O ∙ ∆ω#
B4↓

 
(5) 

 232 

with  233 

 234 
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𝜌 =
∑ 𝐿$%&7>M8M/𝜔#↑1 ∙ cos 𝜃#O ∙ ∆ω#B4↑

𝐸$%&'(J + 𝐸$%&'())  

𝑠 =
∑ 𝐿$%&

>?RST/𝜔#↓1 ∙ cos 𝜃#O ∙ ∆ω#B4↓

∑ 𝐿$%&7>M8M/𝜔#↑1 ∙ cos 𝜃#O ∙ ∆ω#B4↑
 

(6) 

 235 

4) DART-Lux surface RT modelling. It uses a single light source: the extrapolated anisotropic 236 

sky light with radiance 𝐿$%&
>?RST(U)/𝜔#↓1. It computes the scene radiance per upward direction 237 

𝜔#↑  using Eq. (4), which added to 𝐿$%&7>M8M/𝜔#↑1 gives 𝐿$%&
7>M8M,>?RST/𝜔#↑1. 238 

 239 

5) TF$&QP%&  is applied to compute direct transmitted radiance 𝐿P%&'(J /𝜔#↑1  and scattered 240 

radiance 𝐿P%&
>?RST/𝜔#↑1 per upward direction using 𝐿$%&

7>M8M,>?RST/𝜔#↑1.  241 

 242 

6) DART-Lux Earth surface RT modelling. It uses two light sources: sunlight with irradiance 243 

𝐸$%&'(J  and anisotropic sky light with BOA diffuse radiance 𝐿$%&'()) (𝜔#↓ )+𝐿$%&
>?RST(U)(𝜔#↓ ). It 244 

gives BOA upward radiance images 𝐿$%&/𝑖, 𝑗, 𝜔#↑1. TOA radiance images are computed as:   245 

 246 

𝐿P%&/𝑖, 𝑗, 𝜔#↑1 = 𝐿$%&/𝑖, 𝑗, 𝜔#↑1 ∙
𝐿P%&'(J /𝜔#↑1

𝐿$%&
7>M8M,>?RST/𝜔#↑1

+ 𝐿P%&'()) /𝜔#↑1 + 𝐿P%&
>?RST/𝜔#↑1 (7) 

 247 

Reflectance images can be also computed: 248 

 249 

𝜌$%&/𝑖, 𝑗, 𝜔#↑1 =
:9:;A1,3,B4↑ C

V9:;
<,= WV9:;

<,>> WV9:;
?@ABC(E),  𝜌P%&/𝑖, 𝑗, 𝜔#↑1 =

:G:;A1,3,B4↑ C
VG:;
<,=  (8) 

 250 
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3 Results and discussion 251 

 252 

3.1 Validation with realistic forest stand 253 

 254 

The accuracy and efficiency of the presented hybrid method (hereinafter, it is referred by 255 

DART-Lux) are assessed by comparing its results with those of DART-FT for a 30 m × 30 m 256 

plot of Järvselja Birch forest (summer) from RAMI experiment (https://rami-257 

benchmark.jrc.ec.europa.eu; (Widlowski et al., 2015)) (Figure 7). This plot contains 91 trees 258 

including 50 birch trees, 18 linden trees, 15 aspen trees, 5 spruce trees, and 3 ash and maple 259 

trees (Figure 7). We did not consider the full 100 m × 100 m birch forest that contains more 260 

than 550 million of facets because it would have required too much RAM and computation time 261 

for DART-FT.  262 

 263 

a)   b)  

 264 

Figure 7. The 30 m × 30 m plot of Järvselja birch forest. a) Spatial distribution of tree species. b) 265 

DART 3D mock-up. 266 

 267 
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Table 1. Optical properties of ground and tree species for four spectral band. 𝜌 is the reflectance and 268 

𝜏 is the transmittance. 269 

 270 

3D object Optical properties B G R NIR 

Birch 

𝜌,-./  0.045 0.104 0.039 0.474 

𝜏,-./  0.000 0.110 0.012 0.483 

𝜌0$.12&  0.072 0.094 0.101 0.464 

𝜌%$314  0.355 0.410 0.436 0.539 

Linden 

𝜌,-./  0.045 0.073 0.035 0.442 

𝜏,-./  0.000 0.074 0.004 0.462 

𝜌0$.12&  0.125 0.167 0.206 0.363 

𝜌%$314  0.125 0.167 0.206 0.363 

Aspen 

𝜌,-./  0.045 0.078 0.036 0.436 

𝜏,-./  0.000 0.107 0.009 0.517 

𝜌0$.12&  0.111 0.107 0.118 0.266 

𝜌%$314  0.169 0.189 0.215 0.441 

Spruce 

𝜌,-./  0.045 0.077 0.036 0.447 

𝜏,-./  0.000 0.044 0.002 0.369 

𝜌0$.12&  0.117 0.141 0.155 0.363 

𝜌%$314  0.117 0.141 0.155 0.363 

Ash 

𝜌,-./  0.045 0.098 0.038 0.516 

𝜏,-./  0.000 0.046 0.002 0.379 

𝜌0$.12&  0.125 0.167 0.206 0.363 

𝜌%$314  0.125 0.167 0.206 0.363 

Maple 
𝜌,-./  0.046 0.123 0.042 0.465 

𝜏,-./  0.001 0.155 0.025 0.025 
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𝜌0$.12&  0.125 0.167 0.206 0.363 

𝜌%$314  0.125 0.167 0.206 0.363 

Ground 𝜌0.245$#316  0.019 0.058 0.032 0.329 

 271 

DART-FT and DART-Lux simulations are conducted with direct sun illumination (𝜃7R8 =272 

36.6°, 𝜑7R8 = 270.69°), THKUR TOA irradiance spectra (Berk et al., 2008), a 0.125 m spatial 273 

resolution and 4 spectral bands (blue: 0.44 𝜇m, green: 0.55 𝜇m, red: 0.66 𝜇m, NIR: 0.87 𝜇m), 274 

with 6 scattering orders at most. The atmosphere model is mid-latitude summer (Anderson et 275 

al., 1986) and the aerosol model is rural (Shettle and Fenn, 1979). Specific optical properties 276 

were assigned per tree species (Table 1). Here, DART-Lux is run with 800 samples per pixel 277 

and DART-FT is run with 62500 illumination rays per pixel, and 1000 discrete directions. 278 

DART-FT and DART-Lux BOA colour composite images are shown in Figure 8.a, d. The 279 

associated scatter plot of BOA pixel reflectance (Figure 9.a) gives R-squared > 0.92 and bias » 280 

0.01. Densities of scatter points are shown by colours in order to stress that most points are on 281 

the diagonal. TOA colour composite images are shown in Figure 8.b, e. The associated scatter 282 

plot of TOA pixel reflectance (Figure 9.b) gives R-squared » 0.92 and bias » 0.01. Scatter points 283 

outside the diagonal are mainly due to DART-Lux Monte Carlo noises and to DART-FT 284 

discretization. By averaging the image resolution from 0.125 m to 1.0 m, which more or less 285 

compensates these effects, scatter plots become more linear, with R-square > 0.998 and bias » 286 

0.0002 (Figure 9.c). We also assessed the BRF accuracy in the solar plane by computing the 287 

average absolute relative "DART-Lux - DART-FT" BRF difference 288 

𝜀=̅ I
G.H

∙ ∑ |YI;JGKLAM(+H)QYI;JGKNG(+H)|
YI;JGKNG(+H)+H ∙100% with 𝑁+H viewing directions in the solar plane 289 

with zenith angle step ∆𝜃Z=2°. Here, 𝜀 ̅is 1.0% at BOA level and 0.8% at TOA level. 290 

 291 
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a)  b)  c)  

d)  e)  
 f)  

Figure 8. Nadir colour composite images of the forest plot shown in Figure 7. DART-FT BOA (a) and 292 

TOA (b) images. DART-Lux BOA (d) and TOA (e) images. DART-FT and DART-Lux BOA 293 

(c) and TOA (f) BRFs at NIR band in the solar plane, with 2° zenith angle step. 294 

 295 

a) b) c) 

Figure 9. Pixelwise comparison of DART-FT and DART-Lux nadir images at NIR band. a) BOA. 296 

0.125 m resolution. b) TOA. 0.125 m resolution. c) TOA. 1.0 m resolution. 297 

 298 
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Therefore, DART-Lux and DART-FT give similar results but DART-Lux has two major 299 

advantages: much smaller computer time and RAM. In this simulation, DART-FT takes 86.35 300 

hours and 305.5 Gb RAM on a server (Intel Xeon E5-2687W @ 3.1 GHz, 40 cores) for steps 2 301 

and 4 in Figure 2 whereas DART-Lux takes only 2.3 minutes and 1.2 Gb RAM to simulate the 302 

spectral nadir image or the spectral radiance map (i.e., steps 2, 4 and 6 take a total of 6.9 303 

minutes). Compared to DART-FT, DART-Lux computer time is reduced by a factor of 750 and 304 

the required RAM is reduced by a factor of 255. Since the atmospheric RT modelling for 305 

stratified 1D atmosphere in steps 1, 3 and 5 takes much less time than the Earth surface RT 306 

modelling in steps 2 and 4, the hybrid method greatly accelerates the simulation of TOA images. 307 

 308 

3.2 Discussion 309 

 310 

Monte Carlo method is usually the most precise RT method since no approximations are applied. 311 

It gives exact results after running a sufficient long time. However, we have to balance the 312 

computation time and the accuracy in practical applications. Based on the simulation of the 313 

forest stand (Figure 7) in step 2, we did a sensitivity study about the time cost and the accuracy 314 

using DART-Lux. The time cost is quantified by the samples/pixel since time increases linearly 315 

with this ratio. Accuracy is quantified by two variables: image mean reflectance difference 316 

𝜀[M\8 and root-mean-square-error (RMSE) 𝜀S(]MT of all pixel reflectance by comparing with a 317 

reference simulation with 2000 samples/pixel. Table 2 summarizes results. It illustrates three 318 

major points: 1) 𝜀[M\8  and 𝜀S(]MT  decrease nearly exponentially with the increase of 319 

samples/pixel. 2) The image mean reflectance converges much faster than image pixel 320 

reflectance. 3) The low reflectance band (G) converges much faster than high reflectance band 321 

(NIR). It indicates that the DART-Lux simulation time can be optimised according to the 322 

application and accuracy requirements. For example, with the above-mentioned computer and 323 
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configuration and RMSE accuracy 0.05 of the NIR band pixel reflectance, DART-Lux takes 324 

5.25 minutes and 3.3 Gb RAM to simulate nadir BOA and TOA images of the 100 m × 100 m 325 

RAMI forest stand (Figure 10). 326 

 327 

Table 2. Mean reflectance error 𝜀7-.1  and RMSE of image pixel reflectance 𝜀89:-,  for different 328 

samples/pixel ratios and for G and NIR bands. The reference image is simulated with 2000 329 

samples/pixel. 330 

 331 

 Samples/pixel 10 25 50 100 200 400 800 

G 
𝜀7-.1 5.8e-5 1.2e-5 1.6e-5 1.1e-5 6.1e-6 2.3e-6 4.9e-6 

𝜀89:-, 0.011 0.007 0.005 0.004 0.003 0.002 0.0015 

NIR 
𝜀7-.1 1.2e-4 3.5e-4 4.1e-5 4.1e-5 2.4e-5 1.8e-5 5.5e-6 

𝜀89:-, 0.094 0.061 0.043 0.031 0.022 0.017 0.013 

 332 

a)  b)  

 333 

Figure 10. DART-Lux BOA (a) and TOA (b) colour composite nadir images of the 100 m × 100 m 334 

Järvselja birch forest stand. 335 
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 336 

4 Concluding remarks 337 

 338 

This paper proposes a new Monte Carlo sky lighting modelling, an innovative BRF camera 339 

modelling and a coupling framework in order to (1) couple Monte Carlo Earth surface RT 340 

modelling with non-Monte Carlo atmospheric RT modelling and to (2) accurate and fast 341 

simulate TOA images. The efficiency of this hybrid method is illustrated here with a realistic 342 

forest stand, using DART-FT as a reference. Compared to DART-FT, DART-Lux decreased 343 

computer time by a factor of 750 and the need of RAM by a factor of 255. Also, the average 344 

absolute relative difference of solar plane BRF profile is 0.8% at TOA. The pixelwise 345 

reflectance comparison of TOA image shows good agreement with R-squared » 0.92 and bias 346 

» 0.01 at 0.125m resolution, and R-squared > 0.998 and bias » 0.0002 at 1m resolution. A 347 

sensitivity study of accuracy in function of simulation time shows that pixel RMSE decreases 348 

nearly exponentially with simulation time. It stresses that DART-Lux offers the advantage to 349 

set computation time as a function of the expected accuracy. This accurate and fast hybrid 350 

method opens new perspectives for DART model applications. Readers are referred to DART 351 

user manual 352 

(https://dart.omp.eu/Public/documentation/contenu/documentation/DART_User_Manual.pdf) 353 

for more details about DART-Lux simulation preparation. 354 

 355 
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