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Abstract 16 

Accurate and efficient simulation of remote sensing images is increasingly needed in order to 17 

better exploit remote sensing observations and to better design remote sensing missions. DART 18 

(Discrete Anisotropic Radiative Transfer), developed since 1992 based on the discrete ordinates 19 

method (i.e., standard mode DART-FT), is one of the most accurate and comprehensive 3D 20 

radiative transfer models to simulate the radiative budget and remote sensing observations of 21 

urban and natural landscapes. Recently, a new method, called DART-Lux, was integrated into 22 

DART model to address the requirements of massive remote sensing data simulation for large-23 

scale and complex landscapes. It is developed based on efficient Monte Carlo light transport 24 
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algorithms (i.e., bidirectional path tracing) and on DART model framework. DART-Lux can 25 

accurately and rapidly simulate the bidirectional reflectance factor (BRF) and spectral images 26 

of arbitrary landscapes. This paper presents its theory, implementation, and evaluation. Its 27 

accuracy, efficiency and advantages are also discussed. The comparison with standard DART-28 

FT in a variety of scenarios shows that DART-Lux is consistent with DART-FT (relative 29 

differences < 1%) with simulation time and memory reduced by a hundredfold. DART-Lux is 30 

already part of the DART version freely available for scientists (https://dart.omp.eu). 31 

 32 

Key words 33 

DART, Radiative transfer, Monte Carlo, Bidirectional path tracing, Remote sensing image 34 

 35 

1 Introduction 36 

Physically based three-dimensional (3D) models that simulate the interactions between 37 

electromagnetic radiation and the realistic terrestrial surfaces and that simulate the remotely 38 

sensed multi- and hyper-spectral images of these surfaces provide essential solutions for 39 

quantitative interpretation of remote sensing data and for the design of remote sensing missions. 40 

It explains that in the last four decades, a number of 3D radiative transfer (RT) models that can 41 

simulate the radiative and biophysical processes in 3D natural and/or urban landscape have 42 

been developed (Widlowski et al., 2015, 2013, 2007). These models can be divided into three 43 

categories according to their mathematical solution of RT equation: (i) radiosity methods, (ii) 44 

Monte Carlo methods and (iii) discrete ordinates methods. 45 

 46 

Radiosity methods, such as DIANA (Goel et al., 1991) and RGM (Qin and Gerstl, 2000), solve 47 

the RT equation through the inversion of a square matrix that includes the geometric view 48 

factors of each surface relative to all other surfaces in the simulated scene. The advantage of 49 
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the radiosity method is that once the inverse square matrix is computed, the bidirectional 50 

reflectance factor (BRF), directional brightness temperature (DBT) and radiative budget of the 51 

scene can be easily derived. However, the major limitation is that its computation time and 52 

computer memory dramatically increase for complex scenes made of millions of facets. Also, 53 

it is less flexible to simulate other remote sensing signals such as LiDAR and polarization. 54 

Monte Carlo methods, such as FLIGHT (North, 1996), Raytran (Govaerts, 1996) and librat 55 

(Lewis, 1999), estimate the solution of RT equation by repeatedly sampling the ray paths in the 56 

scene. This stochastic process converges to the exact solution after sufficient trials and 57 

repetitions. The Monte Carlo method is usually considered as the most accurate, flexible, but 58 

also the most computer expensive solution of radiative transfer (Goel, 1988; Myneni et al., 59 

1989). Discrete ordinates methods, such as the models of (Kimes and Kirchner, 1982; Myneni 60 

et al., 1990), DART (Gastellu-Etchegorry et al., 1996) and DIRSIG (Kraska, 1996), solve the 61 

RT equation along a finite number of discrete directions. Similar to Monte Carlo method, the 62 

discrete ordinates method is flexible to simulate the remote sensing signals and radiative budget 63 

of complex landscapes. It is known as a good compromise between accuracy and computation 64 

time.  65 

 66 

The initial implementations of the 3D RT models in the 1980s and 1990s were usually adapted 67 

to small scale, schematic scenes, and provided limited remote sensing products (e.g., BRF or 68 

image). The evolution of the remote sensing science, the ray-tracing algorithms, computer 69 

hardware and 3D representations of Earth surface elements explains the constant improvement 70 

of 3D RT models. For example, RAPID, developed on the basis of RGM, simplifies the 71 

representation of canopy by porous objects, which allows one to simulate complex vegetated 72 

scenes since only view factors between porous objects are computed and stored (Huang et al., 73 

2013). Rayspread, a speeded up successor of Raytran, implements the variance reduction 74 
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technique called photon spreading that sends a group of virtual photons to all possible sensors 75 

after each interaction (Widlowski et al., 2006). It also provides absorption, transmission, and 76 

albedo products for studying photosynthesis and other physiological processes. The flexibility 77 

of discrete ordinates method and the increasing requirements of 3D RT modelling explain that 78 

DART and DIRSIG continuously extend their functionality for general-purpose remote sensing 79 

applications. The initial DART only simulated the BRF and images of turbid canopies in the 80 

short waves (Gastellu-Etchegorry et al., 1996). Later, it integrated a specifically designed 81 

atmospheric RT modelling module (Gascon et al., 2001) and was extended to the thermal 82 

infrared domain with the provision of 3D radiative budget of canopies (Guillevic et al., 2003). 83 

Afterwards, it integrated an additional representation of vegetation and urban elements by 84 

polygons with various surface optical properties (e.g., Lambertian with specular, Hapke and 85 

RPV models) (Gastellu-Etchegorry, 2008), LiDAR and passive sensors (e.g., pushbroom, 86 

airborne and in-situ camera) (Gastellu-Etchegorry et al., 2015; Yin et al., 2016), and sun 87 

induced fluorescence (SIF) (Gastellu-Etchegorry et al., 2017). Subsequently, it integrated a 88 

powerful ray-object intersection kernel Embree (Wald et al., 2014) that considerably 89 

accelerated it up to factors of ~300 (Qi et al., 2019b), depending on the simulated landscapes. 90 

 91 

Despite the continuous improvements of the functionality, accuracy and efficiency of the 3D 92 

RT models, it is still challenging to simulate realistic complex canopy scenes. For example, 93 

reference models in RAMI3 (RAdiative transfer Model Intercomparison) including DART had 94 

good ~1% agreement for schematic canopies (Widlowski et al., 2007) but were less consistent 95 

for the RAMI4 realistic canopies (Widlowski et al., 2015). Indeed, simplifications of RT 96 

modelling and canopy mock-ups were likely applied by many 3D RT models to simulate the 97 

huge volumes of measurements of realistic canopies in a reasonable computer time. Taking 98 

DART as an example, the number of discrete directions was largely reduced, and the shoots of 99 
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pine trees were represented by voxels filled with turbid medium. It stresses the need to improve 100 

3D RT models and the management of mock-ups in order to handle large-scale and complex 101 

landscapes. The advancement of physically-based Monte Carlo light transport algorithms in 102 

computer graphics aimed at rapid rendering of colour images provides solutions (Kajiya, 1986; 103 

Pharr et al., 2016; Veach, 1997). Some of them are already integrated by recent 3D RT models. 104 

For example, DIRSIG was redesigned with the path tracing approach (Goodenough and Brown, 105 

2017; Kajiya, 1986), where a backward ray from the sensor is used to construct a stochastic 106 

path that either connects a light source or terminates on an absorbing surface. LESS uses the 107 

ray-tracer Mitsuba (Jakob, 2010; Nimier-David et al., 2019; Qi et al., 2019a), where a stochastic 108 

path is constructed either forward to simulate the BRF or backward to simulate images. 109 

 110 

Standard DART modelling (i.e., discrete ordinates method) is much less efficient than recent 111 

Monte Carlo-based models such as LESS in simulating precise images of large-scale and 112 

complex landscapes. For example, it takes more than 45 times memory and more than 20 times 113 

computation time than LESS to simulate the nadir image of the Järvselja Birch stand in RAMI4 114 

experiment (Qi et al., 2019a). Therefore, with the goal of fast, robust and accurate RT 115 

simulations for large-scale and complex landscapes, since 2018, we have been designing a new 116 

Monte Carlo method called “DART-Lux” in DART model. It is based on the standard DART 117 

framework and the Monte Carlo algorithm (i.e., bidirectional path tracing) of the open-source 118 

renderer LuxCoreRender (https://luxcorerender.org). DART-Lux efficiently combines forward 119 

and backward light transport to robustly simulate any sensor-source configuration and surface 120 

scattering function, as detailed in section 3.  121 

 122 

Usually, light transport algorithms in computer graphics aim at producing very fast and visually 123 

pleasing colour images or videos. They work with only three bands and with low radiometric 124 
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accuracy, which is not suitable for remote sensing applications. For example, sun and 125 

atmosphere illumination in outdoor scenarios is simulated using parameterized models (Hosek 126 

and Wilkie, 2012; Preetham et al., 1999), which is very approximative compared to the 127 

atmospheric RT modelling in MODTRAN and DART (Berk et al., 1987; Grau and Gastellu-128 

Etchegorry, 2013; Wang and Gastellu-Etchegorry, 2020). Similarly, important physical and 129 

biophysical processes, such as polarization and SIF emission, are not considered. In contrast, 130 

3D RT models must accurately model all major radiation interactions in the atmosphere and 131 

landscapes for remote sensing applications. Therefore, three main types of development have 132 

been carried out in DART-Lux, some of them are still in progress: (1) RT modelling: SIF and 133 

thermal emission, realistic atmosphere and 3D clouds, any surface / volume scattering functions, 134 

polarization, etc. (2) Products: pushbroom and camera hyperspectral radiance / reflectance / 135 

brightness temperature / SIF images, 3D radiative budget, images per type of land cover (e.g., 136 

tree, ground), LiDAR waveform, point cloud and photon counting, polarization components, 137 

look-up-tables for inversion and sensitivity work, etc. (3) Computer science: accurate ray-object 138 

intersection to avoid self-intersection and watertight intersection issues (Woo et al., 1996; 139 

Woop et al., 2013)), high radiometric accuracy, GPU acceleration, distributed computing, etc.  140 

 141 

This paper presents the theoretical basis, framework architecture and evaluation of DART-Lux. 142 

Section 2 summarizes the mathematical formulation of image modelling and DART framework. 143 

Section 3 details DART-Lux theoretical basis and implementation. Section 4 compares the new 144 

DART-Lux and the standard DART with schematic and realistic urban and forest landscapes. 145 

Finally, section 5 discusses results and section 6 concludes the work and highlights perspectives.  146 

 147 
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2 Background and method 148 

2.1 Mathematical formulation of remote sensing image modelling 149 

A major objective of 3D RT modelling is to simulate remote sensing image (Gastellu-150 

Etchegorry et al., 1996; Kraska, 1996; Lewis, 1999; Qi et al., 2019a; Richtsmeier et al., 2001). 151 

It is a two-dimensional map of the radiation that the Earth surfaces and the atmosphere emit 152 

and scatter to remote sensing sensor. This modelling can be explicitly formulated by a Lebesgue 153 

integration (Eq. (8)) as detailed below.  154 

 155 

2.1.1 Light transport equation  156 

Radiation leaving a surface 𝛴 is the sum of scattered and emitted radiation. Therefore, the exit 157 

radiance 𝐿(𝑟, Ω!) along direction Ω! is the sum of emitted radiance 𝐿"(𝑟, Ω!) along direction 158 

Ω! and scattered radiance to direction Ω! due to all incident radiance 𝐿(𝑟, −Ω#) from the 4𝜋 159 

space. It leads to the light transport equation, also called rendering equation (Kajiya, 1986): 160 

𝐿(𝑟, Ω!) = 𝐿"(𝑟, Ω!) + - 𝐿(𝑟, −Ω#) ∙ 𝑓(𝑟, −Ω# , Ω!) ∙ cos 𝜃# 𝑑Ω#
$%

 (1) 

with 𝜃#  the incident angle (Figure 1.a) and 𝑓(𝑟, −Ω# , Ω!)  the bidirectional scattering 161 

distribution function (BSDF) of surface 𝛴  that is the bidirectional reflectance distribution 162 

function (BRDF) &((,*+!,+")
%

 or the bidirectional transmittance distribution function (BTDF) 163 

-((,*+!,+")
%

, depending on the relative configuration of the incident and exit directions (Eq. (2)). 164 

𝑓(𝑟, −Ω# , Ω!) =

⎩
⎪
⎨

⎪
⎧ 𝜌(𝑟, −Ω# , Ω!)

𝜋 , if	〈𝒏 ∙ Ω!〉 ∙ 〈𝒏 ∙ Ω#〉 ≥ 0
		

		
𝜏(𝑟, −Ω# , Ω!)

𝜋 , otherwise	
																											

																								
 (2) 

Because solid angles depend on surface area, Eq. (1) is expressed in an area form (Eq. (3)) 165 

where an integral over all scene surfaces 𝐴 replaces the integral over angular space (Figure 1.b)  166 
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𝐿(𝑟! → 𝑟) = 𝐿"(𝑟! → 𝑟) + ( 𝐿(𝑟!! → 𝑟!) ∙ 𝑓(𝑟!! → 𝑟! → 𝑟) ∙ 𝐺(𝑟! ↔ 𝑟!!)𝑑𝐴(𝑟!!)
#

		 (3) 

with 𝑟	∈	𝐴(𝑟)	⊆	𝐴  a point on a surface whose BSDF is 𝑓(𝑟..→𝑟.→𝑟) . 𝐺(𝑟. ↔ 𝑟..) =167 

𝑉(𝑟.↔𝑟..)∙ /01 2!
#$ ∙/01 2"#

$$

‖($$*($‖%
 is a geometric term, with 𝑉(𝑟. ↔ 𝑟..) the visibility function between 168 

𝑟. and 𝑟.., 𝜃#(
$  is the incident angle at 𝑟. and 𝜃!(

$$  is the exit angle at 𝑟... 𝑉(𝑟. ↔ 𝑟..) = 1 if 169 

there is nothing between 𝑟. and 𝑟.., and 0 otherwise.  170 

a)  b)  

 171 

Figure 1. a) BSDF 𝑓(𝑟, −Ω$ , Ω%) of a surface 𝛴 of normal n: exit radiance along direction Ω% due to 172 

the scattering of incident irradiance along direction −Ω$ . Incident angle 𝜃$  is the angle 173 

between Ω$ and n, exit angle 𝜃% is the angle between Ω% and n. (b) Three-point method: a ray 174 

starts from 𝑟!! on 𝑑𝐴(𝑟!!) is intercepted at 𝑟!, then is scattered to 𝑟.  175 

 176 

2.1.2 Path integral of light transport equation 177 

In a scene with no media between surfaces, the incident radiance on a surface is the exit radiance 178 

from previous surface. Therefore, Eq. (3) can be incrementally expanded to an infinite sum of 179 

multiple-dimensional integration (Eq. (4)) with 𝑟5 a vertex on the sensor lens, 𝑟6 a previous 180 

vertex, and so on. Each term is the result of emitted radiance 𝐿"(𝑟7 → 𝑟7*6)  after (n - 1) 181 

scattering events: 182 
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𝐿(𝑟& → 𝑟') = 𝐿"(𝑟& → 𝑟') + ( 𝐿"(𝑟( → 𝑟&) ∙ 𝑓(𝑟( → 𝑟& → 𝑟') ∙ 𝐺(𝑟& ↔ 𝑟()𝑑𝐴(𝑟()
#

+( ( 𝐿"(𝑟) → 𝑟() ∙ 𝑓(𝑟) → 𝑟( → 𝑟&) ∙ 𝐺(𝑟( ↔ 𝑟)) ∙ 𝑓(𝑟( → 𝑟& → 𝑟')
##

∙ 𝐺(𝑟& ↔ 𝑟()𝑑𝐴(𝑟))𝑑𝐴(𝑟()

+ ( ( ( 𝐿"(𝑟* → 𝑟)) ∙ 𝑓(𝑟* → 𝑟) → 𝑟() ∙ 𝐺(𝑟) ↔ 𝑟*)
###

∙ 𝑓(𝑟) → 𝑟( → 𝑟&) ∙ 𝐺(𝑟( ↔ 𝑟)) ∙ 𝑓(𝑟( → 𝑟& → 𝑟')

∙ 𝐺(𝑟& ↔ 𝑟()𝑑𝐴(𝑟*)𝑑𝐴(𝑟))𝑑𝐴(𝑟() + ⋯ 

(4) 

Eq. (4) can be rewritten as: 183 

𝐿(𝑟6 → 𝑟5) = P𝐿(�̅�7)
8

796

 (5) 

with 𝐿(�̅�7) the radiance from 𝑟6 to 𝑟5 integrated over all paths of length n, i.e., path with n edges 184 

and n + 1 vertices, vertex 𝑟7 on the light source and vertex 𝑟5 on the sensor lens. �̅�7 = 𝑟5𝑟6…𝑟7 185 

with 𝑟:95,6,…,7 ∈ 𝐴, and �̅�7 ∈ path space 𝒟7  (𝑛 ∈ ℕ∗ ) with 𝒟7  the set of paths of length n. 186 

Figure 2 shows a path of length 4. If n = 1, we have 𝐿(�̅�6) = 𝐿"(𝑟6 → 𝑟5). If n > 1, we have 187 

𝐿(�̅�7) = - 𝑓(𝑟= → 𝑟6 → 𝑟5) ∙ 𝐺(𝑟6 ↔ 𝑟=)
>

- ⋯
>

- 𝑓(𝑟7*6 → 𝑟7*= → 𝑟7*?)
>

∙ 𝐺(𝑟7*= ↔ 𝑟7*6) ∙- 𝐿"(𝑟7 → 𝑟7*6) ∙ 𝑓(𝑟7 → 𝑟7*6 → 𝑟7*=)
>

∙ 𝐺(𝑟7*6 ↔ 𝑟7)𝑑𝐴(𝑟7)𝑑𝐴(𝑟7*6)⋯𝑑𝐴(𝑟=) 

(6) 
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 188 

Figure 2. Path of length 4. It starts from light source at 𝑟*, is successively scattered at 𝑟), 𝑟(, 𝑟&, and 189 

finally reaches the sensor at 𝑟'.  190 

 191 

2.1.3 Instrumental characteristics 192 

Figure 3 illustrates an example of pinhole camera. Radiation incident on pixel 𝑗 is transferred 193 

to radiance measurement 𝐿(@) (Eq. (7)) using an importance function 𝑊"(𝑟5, Ω5) (Nicodemus, 194 

1978) whose expression depends on the instrumental characteristics (cf. appendix A).  195 

𝐿(@) = - - 𝑊"
(@)(𝑟5, 𝜔5) ∙ 𝐿(𝑟6 → 𝑟5) ∙ cos 𝜃#

(& 𝑑Ω5𝑑𝐴(𝑟5)
∆+&>&

 (7) 

with 𝑊"
(@)(𝑟5, Ω5) = 0  if the incident ray is outside pixel 𝑗 . 𝜃#

(&  is the angle between the 196 

incident direction and the principal optical axis. ∆Ω5  is the solid angle that encloses all 197 

directions of the measured incident rays. 𝐴5 ≡ 𝐴(𝑟5) is the lens area.  198 

 199 

In Eq. (7) expanded with the expression of 𝐿(𝑟6→𝑟5) in Eq. (4), 𝑊" and 𝐿" are interchangeable 200 

which means that 𝑊" can be treated as an exit term in the same way as 𝐿" (Christensen et al., 201 

1993). It gives the theoretical basis to backward light transport that is symmetric to the forward 202 

light transport. Appendix B gives a mathematical formulation of backward light transport. 203 
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 204 

Figure 3. Pinhole camera. The lens with area 𝐴' is at a distance 𝑓 in front of the image plane of normal 205 

n. Radiation from a differential surface 𝑑𝐴(𝑟&) in the scene along direction 𝑟& → 𝑟' is focused 206 

by the lens onto the differential surface 𝑑𝐴6𝑟+,-7 in the image plane.  207 

 208 

2.1.4 Mathematical formulation of radiance measurement 209 

The expanded form of Eq. (7) can be expressed in the more compact form: 210 

𝐿(@) = - 𝑓(@)(�̅�)
𝒟

𝑑𝜇(�̅�) (8) 

with 𝑓(@)(�̅�) the measurement contribution at pixel 𝑗 and 𝜇 the area-product measure, 𝜇(𝒟7) =211 

∫ 𝑑𝜇(�̅�7)𝒟'
= ∫ 𝑑𝐴(𝑟7)∙𝑑𝐴(𝑟7*6)…𝑑𝐴(𝑟5)𝒟'

. �̅� is a path linking light source and sensor, �̅� ∈ 𝒟 212 

path space and 𝒟	=⋃ 𝒟78
796 . For path �̅�7, 𝑓(@)(�̅�7) is defined as: 213 

𝑓(/)(�̅�1) = 𝐿"(𝑟1 → 𝑟12&) ∙ 𝐺(𝑟' ↔ 𝑟&) ∙ 𝑊"
(/)(𝑟' → 𝑟&)

∙;𝑓(𝑟3 ↔ 𝑟32& ↔ 𝑟32() ∙ 𝐺(𝑟32& ↔ 𝑟3)
1

34(

 
(9) 

The notation 𝑓(𝑟:↔𝑟:*6↔𝑟:*=) underlines the reciprocity of BSDF.  214 

 215 
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The contribution ∫ 𝑓(@)(�̅�7)𝑑𝜇(�̅�7)𝒟'
 due to the (n – 1)th scattering order is denoted as 𝐶𝒟' . 216 

Then, 𝐶𝒟( represents the contribution of direct illumination, 𝐶𝒟% represents the contribution of 217 

first order scattering, and so on. The radiance measurement is simply the sum of 𝐶𝒟' terms: 218 

𝐿(@) = - 𝑓(@)(�̅�)
𝒟

𝑑𝜇(�̅�) = P𝐶𝒟'

8

796

 (10) 

 219 

2.2 DART model and its framework 220 

DART (https://dart.omp.eu) is one of the most accurate and comprehensive 3D RT models in 221 

the remote sensing community (Gastellu-Etchegorry et al., 2015, 1996). It simulates the 222 

radiative budget, BRF, radiometric (i.e., radiance, reflectance, brightness temperature) images 223 

(Eq. (8)) of 3D natural and urban scenes from visible to thermal infrared domain. Its standard 224 

iterative discrete ordinates method, called DART-FT, tracks radiation along N discrete 225 

directions {Ω7}796,=,…,C. Radiation intercepted in iteration k is scattered to N discrete directions 226 

in iteration k + 1. All radiation scattered in iteration k to a sensor contributes to 𝐶𝒟)*( (Eq. (10)) 227 

(Gastellu-Etchegorry et al., 1996). DART-FT had good agreement compared to the other five 228 

benchmark models (i.e., drat, FLIGHT, Rayspread, Raytran, SPRINT) in RAMI3 experiment 229 

with 1% difference on average (Widlowski et al., 2007). It was also successfully evaluated with 230 

the satellite, airborne and ground-based measurements which indicated a RMSE about 0.02 on 231 

reflectance (Janoutová et al., 2019) and less than 2 K on brightness temperature (Guillevic et 232 

al., 2003; Sobrino et al., 2011). DART also has a complete framework for 3D RT modelling 233 

and for remote sensing and radiative budget applications (Gastellu-Etchegorry et al., 2015), 234 

with specific input data, processing modules and output data (Figure 4). 235 

 236 
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Input data. Input data set up all the parameters to run a DART simulation. A graphical user 237 

interface (GUI) allows one to import / manage 3D objects and digital elevation models (DEM), 238 

define and assign optical and temperature properties, configure the atmosphere (geometry, 239 

vertical profile and optical properties of gas, aerosol and/or cloud), select the RT modelling 240 

method (e.g., discrete ordinates, Monte Carlo) and the products. All input parameters are 241 

encoded in extensible markup language (XML) to ease data access. 242 

 243 

Processing modules. Four major modules process input data to simulate products. (1) Direction: 244 

it subdivides the 4π space into N user-defined discrete directions for ray tracking. (2) Phase: it 245 

computes band optical properties, temperature properties, and scattering phase functions of 246 

turbid and fluid (gas, aerosol, cloud, soots, etc.) volumes. (3) Mock-up: it creates the 3D mock-247 

up of the landscape and atmosphere, assigns temperature and optical properties per scene 248 

element, and computes atmosphere vertical profiles (pressure, temperature, density). (4) Dart: 249 

it simulates the RT in the landscape and in the atmosphere with a selected modelling method 250 

and generates the requested products. 251 

 252 

Output data. Two types of products are simulated. (1) Remote sensing signal: 253 

satellite/airborne/in-situ radiometric images, BRF/DBT, LiDAR signal, SIF, etc. (2) Radiative 254 

budget: 1D/2D/3D distribution of intercepted, absorbed, scattered and emitted (i.e., thermal 255 

emission, SIF) radiation. All products can be stored per type of scene element (e.g., leaf, trunk) 256 

and in a look-up-table. In addition, DART also generates geometric products such as digital 257 

surface model, area per type of scene element, leaf area index, etc. 258 
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 259 

Figure 4. DART framework. Its four modules (Direction, Phase, Mock-up, Dart) simulate remote 260 

sensing and radiative budget products for any instrumental / experimental configurations. 261 

 262 

3 A new Monte Carlo method DART-Lux 263 

3.1 Presentation 264 

Monte Carlo methods (Weinzierl, 2000) can assess the high-dimensional integral form of 𝐿(@) 265 

in Eq. (8). For example, a random path 𝑅c ∈ 𝒟 sampled according to a choosing probability 266 

density function (PDF) 𝑝(�̅�), can give an unbiased estimate of 𝐿(@): 267 

𝐹(@) =
𝑓(@)(𝑅c)
𝑝(𝑅c)

 (11) 

with expected value 𝔼g𝐹(@)h = ∫ D(,)((̅)
F((̅)

𝑝(�̅�)𝒟 𝑑𝜇(�̅�) = ∫ 𝑓(@)(�̅�)𝒟 𝑑𝜇(�̅�) = 	 𝐿(@). 268 

 269 
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The remote sensing images can be accurately and efficiently simulated under two conditions: 270 

(1) path samples are generated quickly, and (2) an optimised estimator speeds up the 271 

convergence. To meet these conditions, the new Monte Carlo method, called DART-Lux 272 

(Figure 5) is designed based on the bidirectional path tracing (BDPT) algorithm (Lafortune and 273 

Willems, 1993; Veach and Guibas, 1995a, 1995b). It estimates the radiance measurement 𝐿(@) 274 

by sampling a set of paths and summing up their weighed contributions (Figure 5). This section 275 

details its theoretical basis: path creation method, evaluation of radiance measurement, and its 276 

light and sensor models. 277 

 278 

Figure 5. DART-Lux bidirectional path tracing with 𝑁𝑣 = 4 vertices (maximal scattering order 3). 279 

Random walks start from the light source and sensor. �̅�* = 𝑝', 𝑝&, 𝑝(, 𝑝) is a light sub-path 280 

(random walk from light source). 𝑞?* = 𝑞', 𝑞&, 𝑞(, 𝑞) is a sensor sub-path (random walk from 281 

sensor). A set of paths is generated by connecting a vertex of light sub-path and a vertex of 282 

sensor sub-path. An intersection test is done at each connection. Three methods can connect 283 

vertices. 1) Connect to light: a sensor sub-path vertex is connected to a newly sampled vertex 284 

on the light source. 2) Connect to sensor: a light sub-path vertex is connected to a newly 285 

sampled vertex on the sensor lens and mapped to the image plane. 3) Connect vertices: a light 286 
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sub-path vertex in the scene is connected to a sensor sub-path vertex in the scene. Note that a 287 

light sub-path can randomly hit the sensor lens, and a sensor sub-path can randomly hit the 288 

light source. 289 

 290 

3.2 Efficient path sampling 291 

3.2.1 Direction and vertex sampling 292 

At each scattering event, a random scattered direction is sampled according to the distribution 293 

of scattering power due to unit incident power. Eq. (12) defines the PDF of an exit direction Ω! 294 

knowing the incident direction −Ω# , using the importance sampling method (Kahn and 295 

Marshall, 1953). The probability of reflection P∗ is 1 for opaque surfaces (transmittance 𝜏	=	0), 296 

0 for non-reflective surfaces (reflectance 𝜌	=	0), and 0.5 otherwise (𝜌, 𝜏	>	0) which makes the 297 

sampling less dependent on spectral properties. The PDF 𝑝(Ω#| − Ω!)  for sensor sub-path 298 

sampling can be derived similarly. 299 

𝑝(Ω%| − Ω$) =

⎩
⎪⎪
⎨

⎪⎪
⎧

						P∗ ∙
𝜌(𝑟, −Ω$ , Ω%)

𝜋 ∙ cos 𝜃%

∫ 𝜌(𝑟, −Ω$ , Ω%! )
𝜋 ∙ cos 𝜃%! 𝑑Ω%!(8

,				if	(𝒏 ∙ Ω%) ∙ (𝒏 ∙ Ω$) ≥ 0

(1 − P∗) ∙
𝜏(𝑟, −Ω$ , Ω%)

𝜋 ∙ cos 𝜃%

∫ 𝜏(𝑟, −Ω$ , Ω%! )
𝜋 ∙ cos 𝜃%! 𝑑Ω%!(8

,			otherwise																												

 (12) 

For a Lambertian surface (i.e., 𝜌(𝑟, −Ω# , Ω!) = 𝜌, 𝜏(𝑟, −Ω# , Ω!) = 𝜏), we have: 300 

𝑝(Ω!|−Ω#) = l
P∗ ∙

cos 𝜃!
𝜋 ,																	if	(𝒏 ∙ Ω𝑜) ∙ (𝒏 ∙ Ω𝑖) ≥ 0

(1 − P∗) ∙
cos 𝜃!
𝜋 ,							otherwise																									

 (13) 

Once a scattering direction is sampled, an intersection test along the sampled direction 301 

determines the next path vertex. Sections 3.4 details the vertex and direction samplings on the 302 

light source and sensor.  303 

 304 
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3.2.2 Bidirectional random walk 305 

By repeatedly sampling vertices in the scene, the BDPT method (Figure 5) creates two random 306 

walks with 𝑁G vertices each. A random walk starts from the light source and gives a light sub-307 

path �̅�C.	 = 𝑝5, 𝑝6, … , 𝑝C.*6 with vertex 𝑝5 on the light source. A second one starts from the 308 

sensor and gives a sensor sub-path 𝑞cC.	 = 𝑞5, 𝑞6, … , 	𝑞C.*6 with vertex 𝑞5 on the sensor lens. 309 

 310 

3.2.3 Path generating ways 311 

An end-to-end path �̅�I,J is generated by connecting a light sub-path �̅�I = 𝑝5, 𝑝6, … , 𝑝I*6 and a 312 

sensor sub-path 𝑞cJ = 𝑞5, 𝑞6, … , 	𝑞J*6 with 𝑠, 𝑡 ∈ [0, 𝑁G]. 313 

�̅�I,J = �̅�I, 𝑞cJ = 𝑝5, 𝑝6, … , 𝑝I*6, 𝑞J*6, 𝑞J*=, … , 𝑞5 (14) 

Vertex 𝑞J-1 is on the light source if 𝑠 = 0. Vertex 𝑝I-1is on the sensor lens if 𝑡 = 0. Any path 314 

of length n (i.e., s + t = n + 1 vertices) can be created in n + 2 ways. For example, Figure 6 315 

shows the five ways to create a path of length 3. 316 

 317 

Figure 6. Five ways to generate a path of length 3. (a) Hit light: a ray starts from a sensor, is scattered 318 

twice in the scene, then hits a light source. (b) Connect to light: a ray starts from a sensor, is 319 

scattered once in the scene, then intersects a scene element from which a path is created by an 320 

explicit intersection test between the intersect vertex and a light source. (c) Connect vertices: 2 321 
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rays start from a sensor and light source, are intercepted by the scene, and a path is created by 322 

an intersection test between the two intersect vertices. (d) Connect to sensor: a ray starts from a 323 

light source, is scattered once in the scene, and intersects a scene element from which a path is 324 

created by an explicit intersection test between the intersect vertex and a sensor. (e) Hit sensor: 325 

a ray starts from a light source, is scattered twice in the scene and hits a sensor. 326 

 327 

3.3 Measurement evaluation 328 

3.3.1 MIS estimator of radiance measurement 329 

The contribution 𝐶𝒟'/( of a path of length n can be estimated with Eq. (11) using one of n + 2 330 

ways (cf. section 3.2.3). For example, the backward light transport applies the “connect to light” 331 

way (Figure 6.(b)), and the forward light transport applies the “connect to sensor” way (Figure 332 

6.(d)). However, the performance of path generation depends on the light source and sensor 333 

configurations, surface scattering properties, as well as the 3D structure of the landscape. For 334 

example, the “hit light” way is not efficient for sunlight because the probability to hit the sun 335 

is very small, while it is efficient for diffuse light from the sky. The “connect to light” way is 336 

efficient for Lambertian surfaces and not efficient for glossy surfaces. Hence, to robustly handle 337 

a variety of scenarios, contributions of the n + 2 ways are weighted and summed. For example, 338 

in the “hit light” case, we can assign a small weight if the light source is sunlight and assign a 339 

larger weight if the light source is the sky. This combined weighting method, called the multiple 340 

importance sampling (MIS) (Veach and Guibas, 1995b), uses a MIS weight 𝑤I,J per path �̅�I,J: 341 

𝐹MNO
(@) =PP𝑤I,Jg�̅�I,Jh ∙

𝑓(@)g�̅�I,Jh
𝑝g�̅�I,JhJP5IP5

 (15) 

Two conditions must be met to get an unbiased estimate for path of length n: 342 

∑ 𝑤I,Jg�̅�I,Jh7Q6
I95,J97*IQ6 = 1 if 𝑓(@)g�̅�I,Jh ≠ 0, and 𝑤I,Jg�̅�I,Jh = 0 if 𝑝g�̅�I,Jh = 0. 343 

 344 
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Eq. (15) gives the radiance measurement of infinite scattering order although infinite scattering 345 

order cannot be simulated explicitly. Usually, the contribution 𝐶𝒟'  in Eq. (10) decreases 346 

exponentially with scattering order (Kallel, 2018). If after scattering order 𝑀 (𝑀 depends on 347 

spectral band, landscape complexity and scene optical properties), the contribution of higher 348 

scattering order is negligible, i.e., 𝜀R = ∑ 𝐶𝒟'
8
79RQ= ≪ 𝐿(@), and we use the approximation: 349 

𝐿(@) = 𝐶𝒟( + 𝐶𝒟% +⋯+ 𝐶𝒟0*( (16) 

The maximal scattering order 𝑀 is a DART parameter: paths of length larger than 𝑀 + 1 are 350 

ignored, which is consistent with scattering order 𝑀. The MIS estimator of 𝐿(@) in Eq. (16) is: 351 

𝐹MNO
(@) = P P𝑤I,Jg�̅�I,Jh ∙

𝑓(@)g�̅�I,Jh
𝑝g�̅�I,Jh

7Q6

I95	

RQ6

796

	 (17) 

with 352 

𝑤I,Jg�̅�I,Jh =
x𝑝g�̅�I,Jhy

=

∑ x𝑝g�̅�I$,J$hy
=

7Q6
I$95,J$97*I$Q6	

	 (18) 

Here 𝑠 + 𝑡 = 𝑠. + 𝑡. = 𝑛 + 1  is always ensured. Appendix C details the incremental 353 

computation of Eq. (18) along the random walk.  354 

 355 

3.3.2 Computation of unweighted contribution 𝒇
(𝒋)T𝒓V𝒔,𝒕W
𝒑T𝒓V𝒔,𝒕W

 356 

The so-called “unweighted contribution” is the estimate of corresponding path generating way 357 

(cf. section 3.2.3) using Eq. (11), i.e., YZ[1\]ZYZ^_	/0^_]`a\_`0^	b\^/_`0^	D
(,)T(̅5,6W

c[_d	efg	FT(̅5,6W
. 358 

 359 

Measurement contribution function 𝒇(𝒋)g𝒓c𝒔,𝒕h.It is the integrand in Eq. (8).  360 

𝑓(@)g�̅�I,Jh = 𝐿"(𝑝5 → 𝑝6) ∙ 𝑇(�̅�I) ∙ 𝑓(𝑝I*= ↔ 𝑝I*6 ↔ 𝑞J*6) ∙ 𝐺(𝑝I*6 ↔ 𝑞J*6)

∙ 𝑓(𝑝I*6 ↔ 𝑞J*6 ↔ 𝑞J*=) ∙ 𝑇(𝑞cJ) ∙ 𝑊"(@)(𝑞5 → 𝑞6) 
(19) 
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with throughputs 𝑇(�̅�I) and 𝑇(𝑞cJ) computed incrementally along the random walks: 361 

𝑇(�̅�I) =}𝑓(𝑝:*= ↔ 𝑝:*6 ↔ 𝑝:) ∙ 𝐺(𝑝:*6 ↔ 𝑝:)
I*6

:96

 

𝑇(𝑞cJ) =}𝑓(𝑞: ↔ 𝑞:*6 ↔ 𝑞:*=) ∙ 𝐺(𝑞:*6 ↔ 𝑞:)
J*6

:96

 

(20) 

The virtual BSDFs 𝑓(𝑝*6 ↔ 𝑝5 ↔ 𝑝6)  and 𝑓(𝑞6 ↔ 𝑞5 ↔ 𝑞*6) are introduced to simplify the 362 

mathematical formulation. They are set to 1. 𝑓g�̅�5,Jh = 𝐿"(𝑞J*6 → 𝑞J*=) ∙ 𝑇(�̅�J) ∙ 𝑊"(@)(𝑞5 →363 

𝑞6) if s = 0 and 𝑓g�̅�I,5h = 𝐿"(𝑝5 → 𝑝6) ∙ 𝑇(�̅�I) ∙ 𝑊"(@)(𝑝I*6 → 𝑝I*=) if t = 0. 364 

 365 

Path probability density 	𝒑g𝒓c𝒔,𝒕h. In the random walk (i.e., Monte Carlo Markov chain), a 366 

stochastic exit direction depends only on the local incident direction. As a result, the PDF 367 

𝑝(𝑝:|𝑝:*6, 𝑝:*=) of vertex 𝑝: depends only on the two previous vertices 𝑝:*6 and 𝑝:*= and 368 

the PDF of a path is the product of the PDF of all its vertices (Eq. (21)). 369 

𝑝g�̅�I,Jh = 𝑝(�̅�I) ∙ 𝑝(�̅�J) =}𝑝(𝑝:|𝑝:*6, 𝑝:*=)
I*6

:95

∙}𝑝(𝑞:|𝑞:*6, 𝑞:*=)
J*6

:95

 (21) 

 370 

3.4 Light and sensor models 371 

3.4.1 light sources 372 

DART-Lux is flexible to integrate a variety of light sources (e.g., sun, sky, moon, LiDAR). 373 

Here, the modelling of sunlight and light from the sky is presented. The light from the sky is 374 

the light scattered downwards by the atmosphere. If more than one light source is simulated, 375 

the light sources are sampled according to their power. The sunlight can be parallel or within a 376 

cone and the sky light can be isotropic or anisotropic. In both cases, light is uniformly emitted 377 

from a virtual disk 𝐴k`1l	that is the projection of the scene sphere along the illumination 378 
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direction, i.e., PDF of the first vertex on the light source is 𝑝(𝑝5) =
6

>789:
. The so-called scene 379 

sphere is the sphere with minimum radius R that encloses all the scene (Figure 7). The light 380 

direction is sampled according to the energy angular distribution. The emitted radiance 381 

𝐿"(𝑝5, Ω5) is always determined by the relationship 𝐸mno = ∫𝐿"(𝑝5, Ω5)∙ cos 𝜃5 𝑑Ω5  where 382 

𝐸mno  is the bottom of atmosphere (BOA) irradiance of the light source. Compared to the 383 

commonly used strategy in which the light is emitted from the horizontal plane at the scene top 384 

as in (North, 1996; Thompson and Goel, 1998), this method is more robust, since it ensures that 385 

the scene can be fully illuminated along any light direction even with strong sloping topography. 386 

 387 

Sunlight. If sunlight (solar direction ΩI) is parallel, the direction PDF is interpreted as a Dirac 388 

delta function 𝑝(Ω5) = 𝛿(Ω5 − ΩI). The emitted radiance is 𝐿"(𝑝5, Ω5) =
p;<=
78>

/01 25
∙ 𝛿(Ω5 − ΩI), 389 

where 𝐸mnok`]  is the direct irradiance at BOA. If the penumbra is simulated, the direction Ω5 is 390 

uniformly sampled within solid angle ∆Ω = >9?@
(6	>q)%

 (𝐴1\^  is the solar disk area, 1	𝐴𝑈 is the 391 

distance from the Earth to sun). Then, the emitted radiance is 𝐿"(𝑝5, Ω5) =
p;<=
78>

/01 25∙∆+
. 392 

 393 

Light from the sky. If it is isotropic, the direction PDF follows a cosine distribution 𝑝(Ω5) =394 

/01 2
%

. The emitted radiance is 𝐿"(𝑝5, Ω5) =
p;<=
78AA

%
, where 𝐸mnok`bb  is the diffuse irradiance at BOA.  	395 

If it is anisotropic, the direction PDF and the emitted radiance is computed according to the 396 

energy distribution as described in (Wang and Gastellu-Etchegorry, 2021).  397 
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a) b) 
Figure 7. Scene illumination of a) Parallel sunlight and b) diffuse light from the sky. The Earth scene 398 

is in a scene sphere with radius R. Sunlight or light from the sky originates from a virtual disk 399 

that is the projection of the scene sphere along the illumination direction. 400 

 401 

3.4.2 Sensors 402 

The two common remote sensing sensors, i.e., pinhole camera and orthographic camera, are 403 

implemented. The pinhole camera has an infinitesimal lens. It is used to simulate airborne and 404 

in-situ observations with infinite depth of field. The orthographic camera has an infinitesimal 405 

field of view (FOV). It is used to simulate satellite images. For both cameras, the random walk 406 

starts by sampling a random vertex on the lens 𝐴5 and a direction in the FOV. The computation 407 

of importance 𝑊" is detailed in appendix A. In addition, a special camera, called BRF camera, 408 

is designed for an efficient simulation of the scene albedo, BRF and DBT.  409 

 410 

Pinhole camera (Figure 3). The pinhole is at a distance 𝑓 in front of the image plane 𝐴`Yr. The 411 

vertex on the lens is sampled by a Dirac delta function 𝑝(𝑞5) = 𝛿(𝑞5 − 𝑞k), with 𝑞k the pinhole 412 

position. The direction is obtained by uniformly sampling a vertex 𝑞`Yr on the image plane and 413 
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connect 𝑞5 on the lens. Since the lens does not refract rays, the directional PDF is derived from 414 

the relationship 𝑝(Ω5)=𝑝g𝑞`Yrh∙
s B
CD9E!

F&t
%

/01 2!
F& = D%

>8GH∙/01I 2!
F&. 415 

 416 

Orthographic camera (Figure 8). It captures parallel radiation perpendicular to the image 417 

plane. Hence, the lens has the same shape as the image (𝐴5 ≡ 𝐴`Yr). The vertex on the lens is 418 

uniformly sampled with PDF 𝑝(𝑞5) =
6
>&

 and the direction is sampled by a Dirac delta function 419 

𝑝(Ω5) = 𝛿(Ω5 − Ωk) with Ωk the orientation of the camera.  420 

 421 

Figure 8. Orthographic camera. Lens with area 𝐴' is placed in front of the image plane 𝐴+,- (𝐴' ≡422 

𝐴+,-). Radiation from a differential surface 𝑑𝐴(𝑞&) in the scene along direction 𝑞& → 𝑞' is 423 

focused by the lens onto the differential surface 𝑑𝐴6𝑞+,-7 at the image plane.  424 

 425 

BRF camera. It is designed for BDPT algorithm to give the scene exit radiance. Its hemispheric 426 

image plane is an array of pixels that capture the scene upward radiation along a solid angle 427 

∆Ω = ∫ ∫ sin 𝜃 𝑑𝜃𝑑𝜑∆2∆u  (Figure 9.b). Each pixel stores the scene average radiance along a 428 

direction Ω5(∆Ω). An exit direction is sampled with: 429 
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𝑝(Ω5) =
𝑝(𝜃, 𝜑)
sin 𝜃 ,with	

⎩
⎨

⎧𝑝(𝜃) =
1
𝜋/2

𝑝(𝜑) =
1
2𝜋

 (22) 

Then, the vertex on the lens is uniformly sampled on the scene ortho-projected surface 430 

𝐴0]_d0(Ω5) (Figure 9.a) along the viewing direction Ω5 with PDF 𝑝(𝑞5) = 	
6

>D>JKD(+&)
. 431 

 432 

Compared to the photon spread method (Thompson and Goel, 1998) commonly implemented 433 

in forward light transport code, such as SPRINT and Rayspread, the BRF camera offers two 434 

advantages: (1) it is flexible to implement in Monte Carlo codes (e.g., forward, backward and 435 

bi-directional light transport), and (2) the mean radiance/reflectance of any direction with any 436 

solid angle can be derived in a postprocess once the camera pixel values are computed.  437 

a)  b)  

 438 

Figure 9. a) Exit radiation of a landscape along direction Ω' captured by a “specific” orthographic 439 

camera with image plane 𝐴;<=>;(Ω'). b) The hemispheric image plane of the BRF camera. 440 

 441 

4 Comparison with standard DART-FT 442 

Here, DART-Lux accuracy for BRF and remote sensing images is assessed using DART-FT as 443 

a reference. Indeed, as indicated in section 2.2, DART-FT accuracy is ~0.02 for reflectance, < 444 
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2 K for brightness temperature and ~1% compared to benchmark RT models. Three scenes are 445 

considered: schematic scene, urban scene and forest scene. 446 

 447 

4.1 Schematic scene 448 

The schematic scene (Figure 10) has seven cherry trees with different sizes and a DART-created 449 

house with gable roof to assess DART-Lux accuracy in presence of slopes. Its mock-up consists 450 

of 0.137 million facets. Table 1 and Table 2 give DART input parameters. Its BOA images are 451 

simulated for four spectral bands (blue B: 0.44 𝜇m; green G: 0.56 𝜇m; red R: 0.66 𝜇m; near 452 

infrared NIR: 0.87 𝜇m) at 0.125m spatial resolution, for three light conditions (i.e., single and 453 

multiple light sources) with SKYL = mno	1lv	k`bb\1Z	`]][k`[^/Z
mno	_0_[w	`]][k`[^/Z	

 equal to 0 (direct sun), 1 (diffuse 454 

sky) and 0.5 (direct sun + diffuse sky).  455 

 456 

Table 1. Input parameters for the mock-up, light source and spectral band. 457 

Parameters  Value 

DART scene Scene dimension X = Y = 32	m  

 Spatial resolution ∆x = ∆y = 0.125	m  

 Tree model Cherry tree 

 Building model DART classic house 

 Neighborhood effect Repetitive mode 

Sunlight Direction Zenith angle 𝜃?@A = 30°, Azimuth angle 𝜑?@A = 225° 

 TOA irradiance THKUR (Berk et al., 2008) 

Sky light SKYL 0, 0.5 or 1 

Spectral band Spectral band 0.44 𝜇m, 0.56 𝜇m, 0.66 𝜇m, 0.87 𝜇m 

 Bandwidth 0.02 𝜇m 
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 458 

Table 2. Configurations of DART-Lux and DART-FT RT methods. 459 

DART-Lux DART-FT 

Samples/pixel 400 Discrete direction 1000 

Max scattering order 6 Max scattering order 6 

Number of threads 8 Number of threads 8 

  Illumination rays per pixel 169 

 460 

 461 

Figure 10. Mock-up of the schematic scene: 7 cherry trees of different sizes and a DART classic house. 462 

 463 

The consistency of DART-Lux and DART-FT images is illustrated by the visual comparison 464 

of their RGB colour composite images (Figure 11) and by the scatter plots of their NIR 465 

reflectance (Figure 12) for the three BOA illumination conditions. Degrading the image 466 

resolution from 0.125m to 0.5 m greatly improves the pixelwise comparison from {R2 > 0.968, 467 

bias < 0.006} to {R2 > 0.995, bias < 0.0004} because it mitigates the noise and discretization 468 

effects. Figure 13 shows the BRF profiles in the solar plane for the four spectral bands (B, G, 469 

R, NIR), with viewing zenith angle step ∆𝜃G = 5°. Differences are quantified by the average 470 
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absolute relative difference 𝜀̅ = 6
CE.

∑ �&L=MN/OPQ(2.)*&L=MN/RN(2.)
&L=MN/RN(2.)

�2. ∙ 100%  with 𝑁2.  the 471 

number of viewing directions. Usually, 𝜀̅ »0.4% (Table 3) and maximal 𝜀Y̅[x  » 0.6%. The 472 

slight differences in the scatter plot and the BRF profile are mostly due to DART-Lux Monte 473 

Carlo noise and DART-FT discretization processes. Indeed, even with 1000 discrete directions, 474 

the DART-FT “atmosphere shadows” (i.e., SKYL = 1) have a discrete aspect less realistic than 475 

that with DART-Lux.  476 

 SKYL=0 (direct sun) SKYL=1 (diffuse sky) SKYL=0.5 (realistic lighting) 

D
A

R
T-

FT
 

   

D
A

R
T-

Lu
x 

   

Figure 11. DART-FT (top) and DART-Lux (bottom) RGB images for three light conditions: SKYL=0 477 

(left), SKYL=1 (centre) and SKYL=0.5 (right). 478 

 SKYL = 0 SKYL = 1 SKYL = 0.5 
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Figure 12. Pixelwise comparison of DART-FT and DART-Lux NIR reflectance. Pixel values 479 

at 0.5 m resolution result of the degradation of the initial image at 0.125 m resolution. 480 

 481 
Band SKYL = 0 SKYL = 1 SKYL = 0.5 

B 

   

G 
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Figure 13. DART-FT and DART-Lux solar plane reflectance (∆𝜃B = 5°) in four spectral bands (R, G, 482 

B, NIR) for three illuminations (SKYL=0, SKYL=1, SKYL=0.5).  483 

 484 

Table 3. Summary of average absolute relative difference 𝜀 ̅of BRF in Figure 13. 485 

Band SKYL = 0 SKYL = 1  SKYL = 0.5 

B 0.443 0.335 0.360 

G 0.467 0.336 0.359 

R 0.445 0.349 0.404 

NIR 0.605 0.226 0.338 

 486 

4.2 Urban scene 487 

The urban scene is the Brienne district (1400 m × 750 m) of Toulouse, France. Its 3D mock-488 

up (Figure 14.a) was provided by the Toulouse townhall. It contains 953 buildings, 2433 trees, 489 

3 grasslands, 1 river, 1 canal and other city facilities, represented by 8 million facets. DART-490 

FT and DART-Lux are configured with direct sun light (𝜃1\^ = 20°, 𝜑1\^ = 180°, SKYL = 0), 491 
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0.5 m spatial resolution, four spectral bands (B: 0.44 𝜇m, G: 0.55 𝜇m, R: 0.66 𝜇m, NIR: 0.87 492 

𝜇m), maximal scattering orders 6, no topography, and no atmosphere. Common optical 493 

properties are assigned per type of urban element (e.g., roof, vegetation). DART-FT is run with 494 

100 discrete directions and 100 illumination rays per pixel. DART-Lux is run with 60 samples 495 

per pixel.  496 

 497 

DART-FT and DART-Lux RGB images are very close as illustrated by their RGB colour 498 

composites (Figure 14) and scatter plot of pixel reflectance in R band at 0.5m resolution (Figure 499 

15.a): R2
 > 0.99 and bias ~ 0.0001. Degrading image resolution down to 2.0 m improves their 500 

similarity: R2
 > 0.999 and bias < 0.0001 (Figure 15.b). Figure 15.c shows the R band BRF in the 501 

solar plane with zenith angle step ∆𝜃G = 2°. Its average absolute relative difference 𝜀 ̅is 0.24%.  502 

a)  
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b)  

c)  

Figure 14. Brienne district: 3D mock-up (1400 m × 750 m) (a) and its DART-FT (b) and DART-Lux 503 

(c) RGB images.  504 

 505 

a)  b)  c)  
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Figure 15. DART-Lux and DART-FT reflectance in R band. Scatter plot of pixel reflectance for 0.5 506 

m (a) and 2.0 m (b) spatial resolution. c) Reflectance in the solar plane. 507 

 508 

4.3 Forest scene 509 

The forest scene is the Järvselja summer birch forest (summer, HET09_JBS_SUM) of RAMI4 510 

experiment (https://rami-benchmark.jrc.ec.europa.eu). It has 1029 realistic trees with 465 birch 511 

trees, 196 common alder trees, 185 aspen trees, 78 linden trees, 39 spruce trees, and 46 ash and 512 

maple trees (Figure 16). Its mock-up is created by repeating and/or rotating 18 individual 3D 513 

tree objects. For example, the 465 birch trees are generated by cloning and/or rotating 4 birch 514 

tree objects at different growing stages. This forest stand is very challenging for 3D RT models 515 

(Figure 3 in (Widlowski et al., 2015)) because it consists of more than 550 million facets.  516 

 517 

Simulations are for direct sun illumination (𝜃1\^ = 36.6°, 𝜑1\^ = 270.69°, SKYL=0), 0.125 m 518 

spatial resolution, 4 spectral bands (B: 0.44 𝜇m, G: 0.55 𝜇m, R: 0.66 𝜇m, NIR: 0.87 𝜇m), 519 

maximal scattering order 6, and specific optical properties are assigned per tree species. DART-520 

Lux is run with 200 samples per pixel. DART-FT is run with 62500 illumination rays per pixel, 521 

and 80 discrete directions. Figure 16.b shows DART-FT and DART-Lux RGB color composite 522 

images. As for the schematic and urban cases, the scatter plots of pixel NIR reflectance indicate 523 

that the pixelwise comparison greatly improves from 0.125 m spatial resolution (Figure 16.d): 524 

{R2 >0.93, bias » 0.01} to 1 m spatial resolution (Figure 16.e): {R2 > 0.997, bias < 0.002}. 525 

 526 

Figure 16.f shows DART-FT and DART-Lux NIR reflectance in the solar plane, at first order 527 

scattering. DART-FT is run with and without an acceleration technique: rays that exit a cell 528 

face along a same direction are not merged (approximate case called DART-FT) or merged 529 

(accurate case called DART-FT-REF, used as a reference). DART-Lux average absolute 530 
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relative difference is 𝜀 ̅= 0.5% for DART-FT-REF and 0.7% for DART-FT. Larger differences 531 

occur at the hot spot direction. DART-FT underestimates the hot spot (Figure 16.f) because its 532 

merging technique reduces the exactly backscattered rays. Multiple scattering is only simulated 533 

with DART-FT and DART-Lux because DART-FT-REF is very time and memory consuming. 534 

The average absolute difference 𝜀 ̅between DART-Lux and DART-FT is 1.0% (Figure 16.g). 535 

a)  

b)   c)   d)  

e)   f)   

g) 
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Figure 16. Järvselja birch forest. a) Location of trees and 3D mock-up of the centre region. DART-FT 536 

(b) and DART-Lux (c) RGB images at resolution 0.125 m. Scatter plot of pixel NIR reflectance 537 

at resolution 0.125 m (d) and 1.0 m (e). DART-FT and DART-Lux NIR reflectance in the 538 

solar plane with zenith angle step ∆𝜃B = 2°: f) single scattering reflectance, g) total reflectance.  539 

 540 

5 Discussion 541 

5.1 Correlation of path samples 542 

The BDPT (cf. section 3.2) with 𝑁G vertices per random walk is very efficient because it creates 543 

𝑁G= paths with only 𝑁G= + 2(𝑁G − 1) intersection tests, compared to 𝑁G? if each path is created 544 

independently. Knowing that the intersection test is the most computational expensive process 545 

in 3D RT modelling, the BDPT decreases simulation time by a factor C.I

C.%Q=(C.*6)
. However, it 546 

increases the covariance (i.e., Monte Carlo noise) between path samples, because they are 547 

created with the same light and sensor sub-paths. Although the MIS estimator gives unbiased 548 

results (cf. appendix D), compared to estimates with independent path samples, the path sample 549 

correlation can increase the overall variance by a maximal factor f. With 𝜏 ≈ y𝒟'
y𝒟'*(

  (0 ≤ 𝜏 <550 

1) the average ratio of contributions of successive scattering orders (cf. appendix E), we have:  551 

 552 

𝑓(𝜏) =

(1 + 𝜏) ∙ h2 + 𝜏 i√22 − 𝜏k (3 − 𝜏)l

(1 − 𝜏)(
 

(23) 

 553 

Figure 17.a shows the decrease in the contribution of the scene radiance of scattering order n = 1 554 

to 6, relative to the contribution of first order scattering, for the three scenes studied in section 555 

4. The trendiness is an exponentiation 𝑔(𝑛)=𝜏-(7-1) with 𝜏 that in [0, 0.1] for most simulations 556 

in visible bands and in [0.4, 0.6] for most simulations in the NIR band. 𝑓(𝜏) of Eq. (23) (Figure 557 
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17.b) is less than 2.4 for simulations in visible bands, and in [9,  22] for most simulations in the 558 

NIR band, which stresses that DART-Lux usually converges faster in visible bands than in NIR 559 

bands. This is also underlined by the BRF profiles (Figure 13): results are noisier in NIR bands 560 

than in visible bands if the same number of samples per pixel is used. 561 

a)
 
  b)

 

Figure 17. Contribution 𝑔(𝑛)  of scene radiance for scattering order n = 1 to 6, relative to the 562 

contribution of first order scattering, for the three studied scenes: schematic, urban and forest. 563 

a) Trendlines 𝑔(𝑛)=𝜏-(1-&). b) Factor f in function of 𝜏 value (Eq. (23)).  564 

 565 

The efficiency 𝜂 of a Monte Carlo method depends on its variance 𝕍 and computation time 𝕋 566 

(Eq. (24)) (Veach, 1997). 567 

𝜂 =
1

𝕍 ∙ 𝕋 (24) 

Compared to the use of independent paths, the DART-Lux BDPT algorithm appears to be more 568 

efficient despite the correlation of its path samples. The efficiency gains of DART-Lux over 569 

the method with independent path samples is 𝛾 = � zL=MN/O?T
z8@7UVU@7U@J	VXJK

− 1� = x6
D
∙ C.I

C.%Q=(C.*6)
−570 

1y. In visible bands, usually 𝑁G = 5, 𝑓 ≤ 2.5, then 𝛾 > 50%. In NIR bands, usually 𝑁G ≥ 40, 571 

𝑓 ≤ 22, then 𝛾 > 70%. Actually, 𝛾 is even larger because the variance is usually smaller than 572 

the upper boundary variance. 573 



36 
 
 

 574 

5.2 Advantages of DART-Lux for simulating images 575 

Compared to DART-FT, DART-Lux has great advantages for simulating remote sensing 576 

images and BRF, especially for complex scenes with millions of facets. Table 4 summarizes 577 

the memory demand and computation time of simulations in section 4. For the Järvselja birch 578 

forest, DART-Lux reduces the simulation time by 715 times, and the memory by 142 times. 579 

Four factors explain DART-Lux efficiency. 1) End-to-end simulation: DART-Lux samples the 580 

paths that contribute only to the simulated image whereas DART-FT tracks all possible paths. 581 

2) Efficient path generating strategy: bi-directional random walk and vertex connection ways 582 

can generate a group of paths with less time cost. Despite the potential increase of variance 583 

since path samples can be correlated, the overall efficiency increases (cf. section 5.1). 3) Depth-584 

first strategy: the random walk requires much less memory compared to the breadth-first 585 

strategy of DART-FT whose memory demand greatly increases with scattering order. Although 586 

DART-FT applies an acceleration technique by merging rays that come out of a cell face for 587 

each discrete direction (cf. section 4.3), its memory usage is still very high for modelling large-588 

scale landscapes. 4) Data organisation: for a scene with N instances of a 3D object, DART-Lux 589 

cloning technique stores a unique 3D object and N rotation – scaling matrices whereas DART-590 

FT stores N 3D objects in the memory for simulating the 3D radiative budget. Therefore, 591 

DART-Lux uses much less memory and time than DART-FT.  592 

 593 

Table 4. Simulation time and memory demand for the three cases of section 4. Cases 1 and 2 are 594 

simulated on a personal computer (Intel Xeon E5-1620 @ 3.5 GHz, 8 cores, 64 Gb memory). 595 

Case 3 is simulated on a server (Intel Xeon E5-2687W @ 3.1 GHz, 40 cores, 560 Gb memory). 596 

Scene 
DART-FT DART-Lux 

Time (min) Memory (Gb) Time (min) Memory (Gb) 
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Case 1: Schematic  70.8 1.25 1.38 0.07 

Case 2: Urban  571 40.0 10.86 2.60 

Case 3: Forest  4962 469.0 6.93 3.30 

 597 

5.3 Accuracy of DART-Lux 598 

In theory, the Monte Carlo method is more accurate than the discrete ordinates method, because 599 

it does not need mock-up or modelling simplifications. The DART-FT underestimation of the 600 

hot-spot in Figure 16.f illustrates this point. However, because Monte Carlo methods need many 601 

samples to reach convergence, there is a trade-off between accuracy and number of samples. 602 

Fortunately, DART-Lux accuracy and efficiency is less dependent than DART-FT on the scene 603 

complexity. For example, the forest scene has an average computation time per sample (i.e., 604 

O`Y\w[_`0^	_`YZ
{\YaZ]	0b	1[YcwZ1

) that is only 7 times longer than for the schematic scene, whereas it is 4000 605 

times more complex than the schematic scene in terms of number of facets (Table 5). Table 6 606 

shows the accuracy of DART-Lux forest reflectance for six values of samples/m2: difference 607 

𝜀YZ[^ of image mean reflectance, and RMSE 𝜀c`xZw of image pixel reflectance relative to the 608 

reference values computed with a huge number of samples/m2. Results stress that DART-Lux 609 

configuration can be optimized according to the application and accuracy requirements. 1) 610 

Convergence is much faster for low reflectance bands than high reflectance bands, which is 611 

consistent with discussion in section 5.1. 2) 𝜀YZ[^  and 𝜀c`xZw  decrease with the increase of 612 

samples/m2, with a much faster convergence for 𝜀YZ[^ than for 𝜀c`xZw. 613 

 614 

Table 5. Average time cost per sample D+,@EF=+;A	=+,G
H@,IG<	;J	?F,KEG?

 of the schematic and forest scenes in section 615 

4, for an Intel Xeon E5-2687W server (3.1 GHz, 40 cores, 560 Gb memory). 616 

Scene Nb facet Nb pixels Samples/pixel Time (min) Time/sample (𝜇s) 
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Case 1: Schematic 0.137 106 65536 400 0.20 0.45 

Case 3: Forest 558.2 106 640000 200 6.93 3.25 

 617 

Table 6. Absolute nadir reflectance error 𝜀,GFA and pixel RMSE 𝜀K+LGE of forest scene in the G and 618 

NIR bands for six samples/m2 values; reference images are simulated with 128000 samples/m2. 619 

 Samples/m2 640 3200 6400 12800 25600 51200 

G 
𝜀,GFA 3.8E-6 9.7E-6 4.0E-7 2.4E-6 1.5E-6 2.1E-6 

𝜀K+LGE 0.010 0.005 0.003 0.002 0.002 0.001 

NIR 
𝜀,GFA 3.0E-6 4.1E-5 1.2E-5 4.9E-6 1.3E-5 1.1E-5 

𝜀K+LGE 0.075 0.034 0.024 0.018 0.013 0.010 

 620 

6 Conclusion and perspectives 621 

The unbiased, rapid and robust DART-Lux is a new Monte Carlo RT method in DART. Its 622 

physical modelling relies on a bidirectional path tracing algorithm that efficiently samples a 623 

group of paths between the light source and the sensor to estimate radiance measurements. The 624 

algorithm is flexible to incorporate multi light sources (e.g., sun and sky) and multi sensors 625 

(perspective camera, orthographic camera, BRF camera). It greatly improves the computational 626 

efficiency of DART to simulate spectral images and BRF. Its accuracy and efficiency are 627 

assessed by standard DART-FT for three landscapes (i.e., schematic scene, urban scene, forest 628 

scene). Compared to DART-FT, DART-Lux gives consistent results (relative difference < 1%) 629 

while reducing the computation time by up to a factor of 700. In addition, conversely to DART-630 

FT, its accuracy and efficiency depend much less on the landscape complexity. 631 

 632 

A theoretical demonstration gives analytical expressions of the computation time and the largest 633 

variance. It appears that DART-Lux algorithm improves efficiency 𝜂 (i.e., inverse of Variance 634 
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× Computation time) even if it creates correlated path samples. It also has great advantages and 635 

is much faster for simulating remote sensing images due to end-to-end modelling, efficient path 636 

sampling and depth-first strategy. Finally, a sensitivity study shows that DART-Lux error 637 

decreases with the number of samples, image mean values converges much faster than image 638 

pixel values, and the convergence is faster for low reflectance bands than for high reflectance 639 

bands.  640 

 641 

The high-performance DART-Lux addresses the requirements for simulating large-scale and 642 

complex landscapes and massive remote sensing data, as well as the trends in RT model 643 

development. The Monte Carlo approach is potentially better adapted than discrete ordinates 644 

method for designing and implementing complex physical phenomena such as adjacency 645 

effects and clouds scattering and shadowing. DART-Lux opens new avenues for many remote 646 

sensing applications: design of satellite missions; correction of directional effects; inversion of 647 

remote sensing images; training machine learning models with a large amount of images; 648 

studying the impact of complex 3D architecture, etc. DART-Lux modelling development is still 649 

underway to expand DART functionality, including SIF and thermal emission, LiDAR, 650 

atmospheric RT, polarization and 3D radiative budget (Gastellu-Etchegorry et al., 2022; 651 

Regaieg et al., 2022; Yang et al., 2022).  652 
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Appendix A. Definition of the importance function 662 

The importance function 𝑊"(𝑟5, Ω5)  (Nicodemus, 1978), quantifies the sensor response 663 

𝑑S(𝑟5, Ω5) to the flux 𝑑Φ(𝑟5, Ω5) incident on the sensor lens at 𝑟5 along direction Ω5.  664 

𝑑S(𝑟5, Ω5) = 𝑊"(𝑟5, Ω5)𝑑Φ(𝑟5, Ω5) (A.1) 

With the usual assumption of constant 𝑊" for a position 𝑟5 and a direction Ω5, the sensor response 665 

of pixel 𝑗 is: 666 

S(/)=( ( 𝑊"
(/)(𝑟', Ω')𝑑Φ(𝑟', Ω')

∆N!#!
=( ( 𝑊"

(/)(𝑟', Ω')∙𝐿(𝑟&→𝑟') cos 𝜃$
O! 𝑑Ω'𝑑𝐴(𝑟')

∆N!#!
 (A.2) 

DART-Lux importance function 𝑊"(𝑟5, Ω5) is such that it transfers the sensor response S(@) to 667 

radiance measurement 𝐿(@) (i.e., average radiance for pixel area 𝐴`Yr
(@) ), knowing 𝐿g𝑟Yrh at 𝑟Yr:  668 

𝐿(@) =
1

𝐴`Yr
(@) - 𝐿g𝑟Yrh𝑑𝐴g𝑟Yrh

>8GH
(,)

 (A.3) 

Below, we give the expression of 𝑊"(𝑟5, Ω5) for two sensors: 669 

Pinhole camera (𝐴5≪𝐴`Yr, Figure 3): the optical system does not refract incident rays. Eq.(A.3) 670 

gives 𝐿(@)= 6

>8GH
(,) ∙ ∫ 𝐿(𝑟6→𝑟5)∙𝐽|𝑑Ω5∆+&

(,)  with transfer function 	𝐽|=
TD/ /01 2!

#&W
%

/01 2!
#&  and solid angle 671 

∆Ω5
(@) that contains the directions that are mapped to 𝐴`Yr

(@) . Comparing 𝐿(@) to Eq. (A.2) and 672 

assuming that ∫ 𝑊"
(@)(𝑟5, Ω5)∙𝐿(𝑟6→𝑟5)∙ cos 𝜃#

(& 𝑑Ω5∆+&
 is constant over 𝐴5, we have: 673 

𝑊"
(@)(𝑟5, Ω5) = l

	𝑓=

𝐴`Yr
(@) ∙ 𝐴5 ∙ gcos 𝜃#

(&h$
, Ω5 ∈ ∆Ω5

(@)

0,																																						Ω5 ∉ ∆Ω5
(@)

 (A.4) 

Orthographic camera (𝐴5 ≡ 𝐴`Yr, Figure 8): it captures light in very narrow ∆Ω5. With Ωk the 674 

camera orientation, S(/)=∫ P"($)(O!,N!)
𝛿(Ω0−Ωd)

∙𝐿(𝑟&→𝑟')𝑑𝐴(𝑟0)#!
. Its comparison to Eq. (A.3) gives: 675 

𝑊"
(@)(𝑟5, Ω5) =

	𝛿(Ω5 − Ωk)

𝐴`Yr
(@)  (A.5) 
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Appendix B. Importance transport equation (backward light transport) 676 

Christensen et al. (1993) proved that the backward and forward light transport are symmetric if 677 

the BSDF reciprocity is verified. Then, the importance function 𝑊" can be treated equivalently 678 

as an exit quantity as the emitted radiance 𝐿". The importance function 𝑊(@)(𝑟 → 𝑟.) along 679 

direction 𝑟 → 𝑟.  quantifies the contribution of the exit radiance at 𝑟.  to the radiance 680 

measurement at pixel 𝑗 . Let a virtual ray carrying 𝑊(@)(𝑟 → 𝑟.) that starts from 𝑟 , and is 681 

virtually scattered to 𝑟.. after being intercepted at 𝑟.. The adjoint formulation of Eq. (3) is: 682 

𝑊(")(𝑟$ → 𝑟$$) = 𝑊%
(")(𝑟$ → 𝑟$$) + ( 𝑊(")(𝑟 → 𝑟$)∙𝑓(𝑟 → 𝑟$ → 𝑟$$)∙𝐺(𝑟 ↔ 𝑟$)𝑑𝐴(𝑟)

&
 (B.1) 

Eq. (3) and Eq. (B.1) are symmetric if there is BSDF reciprocity, i.e., 𝑓(𝑟 → 𝑟. → 𝑟..) =683 

𝑓(𝑟.. → 𝑟. → 𝑟).  684 

 685 

686 
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Appendix C. MIS weight evaluation 687 

Direct evaluation of the MIS weight is very computationally expensive, which reduces the 688 

efficiency of the bidirectional path tracing algorithm. DART-Lux uses an efficient method to 689 

evaluate it incrementally along the random walk.  690 

 691 

The power heuristic MIS weight is: 692 

𝑤I,Jg�̅�I,Jh =
x𝑝g�̅�I,Jhy

=

∑ x𝑝g�̅�I$,J$hy
=

7Q6
I$95

 (C.1) 

where 𝑠 + 𝑡 = 𝑠. + 𝑡. = 𝑛 + 1 . The virtual path �̅�I$,J$  with (𝑠., 𝑡.) ≠ (𝑠, 𝑡)  has the same 693 

vertices as the sampled path �̅�I,J, but is generated with another sampling way (Figure 6). The 694 

term “virtual path” emphasizes that the path is only used to evaluate the MIS weight 𝑤I,Jg�̅�I,Jh.  695 

 696 

The division of Eq. (C.1) by x𝑝g�̅�I,Jhy
=
 gives:  697 

𝑤I,Jg�̅�I,Jh =
1

𝑤I*6
w`rd_ + 1 + 𝑤J*61Z^10]

 (C.2) 

with 698 

𝑤I*6
w`rd_ 	= ∑ £

F�(̅5$,6$�

FT(5̅,6W
¤
=

I*6
I$95  and 𝑤J*61Z^10] = ∑ £

F�(̅5$,6$�

FT(̅5,6W
¤
=

J*6
J$95  (C.3) 

The terms �⃗�(𝑝:) ≡ 𝑝(𝑝:|𝑝:*6, 𝑝:*=),  �⃖�(𝑝:) ≡ 𝑝(𝑝:|𝑝:Q6, 𝑝:Q=)  and �⃗�(𝑞:) ≡699 

𝑝(𝑞:|𝑞:Q6, 𝑞:Q=), �⃖�(𝑞:) ≡ 𝑝(𝑞:|𝑞:*6, 𝑞:*=) are used to simplify the expressions of 𝑝g�̅�I,Jh 700 

and 𝑝g�̅�I$,J$h: 701 

𝑝g�̅�I,Jh = 𝑝(�̅�I) ∙ 𝑝(�̅�J) =}�⃗�(𝑝:)
I*6

:95

∙}�⃖�(𝑞:)
J*6

:95

 (C.4) 
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𝑝g�̅�I$,J$h =

⎩
⎪
⎨

⎪
⎧}𝑝(𝑝:)
I$*6

:95

∙ } �⃖�(𝑝:)
I*6

:9I$
∙}�⃖�(𝑞:)
J*6

:95

, 𝑠. < 𝑠

}�⃗�(𝑝:)
I*6

:95

∙ }𝑝(𝑞:)
J*6

:9J$
∙} �⃖�(𝑞:)
J$*6

:95

, 𝑠. > 𝑠

 

Using Eq. (C.4), Eq. (C.3) can be expanded as 702 

𝑤I*6
w`rd_ 	= P £

∏ 𝑝(𝑝:)I$*6
:95 ∙ ∏ �⃖�(𝑝:)I*6

:9I$ ∙ ∏ �⃖�(𝑞:)J*6
:95

∏ �⃗�(𝑝:) ∙ ∏ �⃖�(𝑞:)J*6
:95

I*6
:95

¤
=I*6

I$95

= P ¨}
�⃖�(𝑝:)
𝑝(𝑝:)

I*6

:9I$
©

=I*6

I$95

 

𝑤J*61Z^10] = P £
∏ 𝑝(𝑝:)I*6
:95 ∙ ∏ �⃗�(𝑞:)J*6

:9J$ ∙ ∏ �⃖�(𝑞:)J$*6
:95

∏ �⃗�(𝑝:) ∙ ∏ �⃖�(𝑞:)J*6
:95

I*6
:95

¤
=J*6

J$95

= P ¨}
𝑝(𝑞:)
�⃖�(𝑞:)

J*6

:9J$
©

=J*6
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(C.5) 

Both 𝑤I*6
w`rd_ and 𝑤J*61Z^10] can be iteratively evaluated. After mathematical inductions, Eq. (C.6) 703 

can be incrementally evaluated along the random walk. Then, the MIS weight (Eq. (C.2)) of 704 

any path sample is fast computed based on 𝑤:
w`rd_ and 𝑤:1Z^10]. 705 

𝑤:
w`rd_ = [�⃖�(𝑝:)]= ¨

1
[𝑝(𝑝:)]=

+
𝑤:*6
w`rd_

[𝑝(𝑝:)]=
© 

𝑤:1Z^10] 	= [𝑝(𝑞:)]= £
1

[�⃖�(𝑞:)]=
+
𝑤:*61Z^10]

[�⃖�(𝑞:)]=
¤ 

(C.6) 
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707 
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Appendix D. Upper boundary of estimate variance of 𝑪𝓓𝒏 708 

The variance of estimate of scattering order contribution 𝐶𝒟' can increase if path samples �̅�I,J 709 

(�̅�I,J∈𝒟7, 𝑠+𝑡=𝑛+1) are not all independent. The MIS estimator for 𝐶𝒟' and its variance are 710 

𝐹𝒟' = P𝑤I,Jg�̅�I,Jh ∙
𝑓(@)g�̅�I,Jh
𝑝g�̅�I,Jh

= P𝐹I,J 	(IQJ97Q6)

7Q6

I95	

7Q6

I95	

 (D.1) 

𝕍6𝐹𝒟𝑛7 = r r Cov6𝐹R,S , 𝐹R&,S&7
1T&

R&4'	

1T&

R4'	

= r 𝕍6𝐹𝑠,𝑡7
𝑛+1

𝑠=0	
+r r Cov6𝐹R,S , 𝐹R&,S&7

1T&

R&4',	R&UR	

1T&

R4'	

 (D.2) 

With independent path samples, ¬Covg𝐹I,J , 𝐹I.,J.h¬=0		∀𝑠.≠𝑠, then 𝕍(𝐹C)=∑ 𝕍(𝐹I,J)=𝛿𝒟'
=7Q6

I95	 . 711 

When ¬Covg𝐹I,J , 𝐹I.,J.h¬>0 the overall variance can increase. By resampling vertices on light 712 

source or sensor (i.e., no re-use of already sampled vertex), the “connect to light” and “connect 713 

to sensor” methods (Figure 5) reduce path correlation. For path sample �̅�I,J  of length n: 714 

Cov6�̅�',1T&, �̅�1T&,'7 = Cov6�̅�&,1, �̅�1,&7 = Cov6�̅�',1T&, �̅�1,&7 = Cov6�̅�&,1, �̅�1T&,'7 = 0  and 𝕍6𝐹𝒟17=𝛿𝒟'
( . 715 

If n >1, the upper boundary of 𝕍6𝐹𝒟𝑛7  is computed with the Cauchy-Schwarz inequality 716 

Cov(X, Y) ≤ x𝕍(X) ∙ 𝕍(Y) and inequality x𝕍(X) ∙ 𝕍(Y) ≤ 𝕍(X)	T	𝕍(Y)
(

. 717 

													𝕍6𝐹𝒟(7 ≤ r r
𝕍6𝐹R,S7 + 𝕍6𝐹R&,S&7

2

1T&

R&4'	

1T&

R4'	

− 2y𝕍6𝐹',1T&7 + 𝕍6𝐹&,17 + 𝕍6𝐹1T&,'7 + 𝕍6𝐹1,&7z718 

= (𝑛 + 2)𝛿𝒟(
( − 2y𝕍6𝐹',1T&7 + 𝕍6𝐹&,17 + 𝕍6𝐹1T&,'7 + 𝕍6𝐹1,&7z 719 

Hence:                     l
𝕍g𝐹𝒟'h = 𝛿𝒟'

= ,																	𝑖𝑓		𝑛 = 1
𝕍g𝐹𝒟'h ≤ 2𝛿𝒟'

= ,															𝑖𝑓		𝑛 = 2
𝕍g𝐹𝒟'h ≤ (𝑛 + 2)𝛿𝒟'

= ,			𝑖𝑓		𝑛 > 2
 (D.3) 

Although the variance of the estimator 𝐹𝒟' can increase due to correlation, it is still unbiased: 720 

𝔼g𝐹𝒟'h = P𝔼g𝐹I,Jh	(IQJ97Q6)

7Q6

I95	

= P- 𝑤I,J(�̅�7) ∙
𝑓(�̅�7)
𝑝(�̅�7)

∙
𝒟'

𝑝(�̅�7)𝑑𝜇(�̅�7)	(IQJ97Q6)

7Q6

I95	

721 

= - ¨P𝑤I,J(�̅�7)
7Q6

I95	

©
𝒟'

∙ 𝑓(�̅�7)𝑑𝜇(�̅�7)	(IQJ97Q6) = - 𝑓(�̅�7)𝑑𝜇(�̅�7)
𝒟'

 722 

where 𝑝(�̅�7) is a marginal PDF if the path samples are correlated.  723 

724 
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Appendix E. Upper boundary of variance for radiance measurement 725 

The methodology in appendix D can be extended to evaluate the upper boundary variance of 726 

MIS estimator for radiance measurement (Eq. (15)). Since in most optical Earth observation 727 

missions, the sensor does not see the light source (e.g., sun), the contribution 𝐶𝒟( is zero, and 728 

the correlation between path samples does not affect the variance of estimate for 𝐶𝒟( (Eq. (D.3)). 729 

Therefore, the following discussion focuses on the impact of path sample correlation on the 730 

contributions for scattering order larger or equal to one. Then, the MIS estimator becomes: 731 

𝐹MNO = P𝐹𝒟'

8

79=

 (E.1) 

Eq. (E.1) is unbiased (cf. appendix D) even if path samples are correlated. Its variance is:   732 

𝕍(𝐹MNO) = P P Cov x𝐹𝒟'( , 𝐹𝒟'%y
8

7%9=

8

7(9=

 (E.2) 

(Kallel, 2018) shows that the contribution 𝐶𝒟' decreases exponentially with the scattering order. 733 

We can suppose 𝐶𝒟'*( ≈ 𝜏 ∙ 𝐶𝒟', 𝜏 is a constant, 0 ≤ 𝜏 ≤ 1. It is more or less true in most RT 734 

modelling for remote sensing data (Figure 17.a). It leads to: 𝕍g𝐹𝒟'*(h ≈ 𝜏= ∙ 𝕍g𝐹𝒟'h. 735 

 736 

If all the path samples are independent, the variance 𝕍(𝐹MNO) is the sum of 𝛿𝒟'
=  737 

𝕍(𝐹!"#) = & 𝛿𝒟Z
%

&

'(%

= &𝜏%('*%) ∙ 𝛿𝒟[
%

&

'(%

=
𝛿𝒟[
%

1 − 𝜏%
= 𝛿,% (E.3) 

If path samples are not all independent, the Cauchy-Schwarz inequality and Eq. (D.3) lead to: 738 
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𝕍(𝐹'()) = 1 1 Cov5𝐹𝒟!" , 𝐹𝒟!#7
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741 

= 𝛿𝒟#
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,-/
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E 742 

Because ±(𝑛6 + 2)(𝑛= + 2) ≤
(7(Q=)Q(7%Q=)

=
, ±(𝑛 + 2) ∙ 1 ≤ (7Q=)Q6

=
 when n > 0 and 743 

∑ (𝑛 + 𝑖) ∙ 𝜏7*=8
79? = (?Q#)-*(=Q#)-%

(6*-)%
 (𝑖 ∈ ℕ), we have: 744 

𝕍(𝐹MNO) ≤ 𝛿𝒟%
= x=QT�√=*�W-QT66*66√=W-

%QT�√=*�W-I

(6*-)I
y = ¨

=Q-�√%% *-�(?*-)

(6*-)I
+

� _
√%
*��-Q�6$*%(

√%
�-%QT�√=*�W-I

(6*-)I
© ≈ 𝛿𝒟%

= ∙ ¨
=Q-�√%% *-�(?*-)

(6*-)I
© = 𝛿5∗=  

(E.4) 

The termx �
√=
− 6y 𝜏 + x14 − =6

√=
y 𝜏= + g5√2 − 7h𝜏? is omitted since it is less than 0.04 ≪ 1 if 745 

𝜏 ∈ [0,1]. Hence, the variance will increase maximally by a factor of 746 

𝛿5∗=

𝛿5=
=

(1 + 𝜏) ∙ ¨2 + 𝜏 £√22 − 𝜏¤ (3 − 𝜏)©

(1 − 𝜏)=  
(E.5) 

In the short waves, a sensor does not usually see the light source, conversely to the long waves 747 

where the observed landscape is a light source, which implies that the contribution 𝐶𝒟( to the 748 

measured radiance is usually large. Then, the same method as above shows that the variance 749 

maximally increases by the factor �&
∗%

�&%
=

(6Q-)∙�6Q-%∙T6*-%W∙(=*-)�

(6*-)%
.750 
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