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Abstract: The meso-tetrakis(4-(trifluoromethyl)phenyl)porphyrinato cobalt(II) complex [Co(TMFPP)]
was synthesised in 93% yield. The compound was studied by 1H NMR, UV-visible absorption, and
photoluminescence spectroscopy. The optical band gap Eg was calculated to 2.15 eV using the Tauc
plot method and a semiconducting character is suggested. Cyclic voltammetry showed two fully
reversible reduction waves at E1/2 = −0.91 V and E1/2 = −2.05 V vs. SCE and reversible oxidations
at 0.30 V and 0.98 V representing both metal-centred (Co(0)/Co(I)/Co(II)/Co(III)) and porphyrin-
centred (Por2−/Por−) processes. [Co(TMFPP)] is a very active catalyst for the electrochemical
formation of H2 from DMF/acetic acid, with a Faradaic Efficiency (FE) of 85%, and also catalysed the
reduction of CO2 to CO with a FE of 90%. Moreover, the two triarylmethane dyes crystal violet and
malachite green were decomposed using H2O2 and [Co(TMFPP)] as catalyst with an efficiency of
more than 85% in one batch.

Keywords: cobalt(II) porphyrins; cyclic voltammetry; electrocatalytic hydrogen evolution; electroreduction
CO2 to CO; catalytic degradation of dyes

1. Introduction

Inspired by nature that is using metalloporphyrins as antennae molecules, redox
shuttles and redox and photo catalysts [1], researchers have tried to use artificial porphyrin
complexes for various purposes in the last decades [2–8]. Cobalt porphyrins provide a rich
electrochemistry consisting of both metal- (Co(I)/Co(II)/Co(III) and porphyrin-centred
redox processes. By variation of the substituents on the phenyl core of the porphyrin
ligands, these processes can cover a huge range of potentials [9–25]. Moreover, there
are one or two axial positions available for binding small molecules [10–12,26–29]. Both
properties make Co porphyrins very suitable for redox catalysis [22,23,30–44].

In view of the climate crisis, the photochemical or electrochemical conversion of
CO2 and H2O into energy-rich fuel products such as methanol [30,32,33] or dihydrogen
(H2) [45–47] are important goals, and cobalt porphyrin complexes have been studied as
catalysts for the CO2 reduction [30,33–40,44] and the H2 evolution [18,41,42,48], besides
other important redox processes such as O2 reduction [19,23,49–54], O2 evolution reaction
(OER) [49,55], and interesting organic redox transformations [56–60].

The potential of the CO2 reduction is strongly connected to the presence of protons [7,40].
However, fine-tuning of the reduction potentials of Co porphyrins is easily possible
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through substitution on the ligand core. The workhorses among the porphyrin ligands,
the 5,10,15,20-tetraphenyl-porphyrins or meso-tetrakis(phenyl)porphyrins (TPP) have been
varied in this respect to a large extent at the phenyl and pyrrole positions and these Co(TPP)
complexes show reduction potentials in the range of −0.5 to −1.5 V vs. the SCE (satu-
rated calomel electrode) [17,18,23–25,30,32,40,44,61,62]. The NHE potentials are converted
into the current SCE scale by subtracting about 240 mV, while SCE differs from the fer-
rocene/ferrocenium couple by +160 mV [63]. As an example, extension of the π-conjugation
in the Co(TPP) system, generating the Co(II)(meso-tetrakis(4-(pyren-1-yl)phenyl)porphyrin),
allowed to move the reduction potential to higher values (easier reduction), which allowed
the operation at −0.6 V, a high Faradaic efficiency (FE) for CO production with a high
turnover frequency of 2.1 s−1 [32]. Co(II)(TPP) complexes in composite materials have also
been used for CO2 reduction [34,37,64].

Electrochemical hydrogen production suffers from a huge overpotential of the so-
called hydrogen evolution reaction (HER) for many materials, and elemental platinum was
the first choice for a long time [45–47]. In the quest to replace this expensive metal and create
molecular redox catalysts allowing the operation of cheaper electrode materials, complexes
of abundant transition metals [47,65–68] containing various ligands including Co por-
phyrins have been synthesised [18,41,45,47,48,56,66–70]. For example, in a benchmarking
work, the so-called hangman porphyrin which contains a proton-transferring COOH group
in close proximity to the Co centre allowed very efficient HER catalysis with PhCOOH
as substrate at a proton transfer (PT) rate of 3.10−6 s−1 and an electron transfer (ET) rate
constant of 8.5 10−6 s−1 [69]. In a very early study using Co porphyrins containing meso-
tetrakis(N,N,N-trimethylanilinium-4-yl)porphine chloride, meso-tetrapyrid-4-yl-porphine,
and meso-tetrakis(N-methylpyridinium-4-yl)porphine chloride, H2 production from aque-
ous trifluoroacetic acid (TFA) on a Hg pool electrode at −0.95 V reached almost 100%
FE [70]. In the same work, the Co(I) species was identified to react very rapidly with pro-
tons: Co(I) +H+ � Co(II) + 1

2 H2, while the formation of H2 from Co(III)-H− intermediates
is slower.

Amongst other organic redox transformations, the electrochemically or photochem-
ically initiated decomposition of organic dyes in waste water is another increasingly im-
portant research field in recent years [5]. Recently, Zn(II) [12,15,71,72] and Co(II) por-
phyrins [10,11,26,73] have been used as catalysts in the degradation of organic dyes with
H2O2. In view of the first oxidation potential of Co(TPP) complexes lying in the range
of 0.1 to 0.75 V vs. SCE [10,11,13,16,17,22,24–26,61,62], their high reactivity in radical-
based organic transformations [14,58–60] is not unexpected and a very recent study on a
(5,10,15,20-tetrakis(2,5-dimethoxyphenyl)porphyrinato)cobalt(II) has revealed some mecha-
nistic details in such decomposition reactions using H2O2 [73].

We recently stepped on the Co(II) complex [Co(TMFPP)] (H2TMFPP = meso-tetrakis(4-
(trifluoromethyl)phenyl)porphyrin) which has previously been reported [21,29,53,54,59,60,74,75],
for example, as catalyst for the direct C–H arylation of benzene [60]. This motivated us to
study its use as redox catalyst for the electrocatalytic hydrogen evolution, the electrore-
duction of CO2 to CO, and the catalytic degradation and adsorption of the dyes crystal
violet (CV) and malachite green (MG; Scheme 1). We synthesised the compound in a
slightly modified procedure and characterised it by elemental analysis, 1H NMR, FT-IR,
absorption and photoluminescence spectroscopy. We briefly report on basic spectroscopic
and electrochemical properties, as this has not been done before, and then report in detail
on the electrocatalytical experiments.



Molecules 2022, 27, 1705 3 of 15Molecules 2021, 26, x FOR PEER REVIEW 3 of 16 
 

 

 

 

(a) (b) 

Scheme 1. Structures of [Co(TMFPP)], crystal violet (CV) and malachite green (MG). 

2. Results and Discussion 
2.1. Synthesis and 1H NMR Spectroscopy 

The free-base porphyrin meso-tetrakis(4-(trifluoromethyl)phenyl)porphyrin 
(H2TMFPP) was synthesised modifying a literature method [76] (see Experimental Sec-
tion). Elemental analysis and 1H NMR confirmed the purity of the material. The me-
so-tetrakis(4-(trifluoromethyl)phenyl)porphyrinato Co(II) [Co(TMFPP)] (Scheme 1) was 
synthesised using the so-called DMF method [77]. Elemental analysis and MS confirmed 
its purity. FT-IR (Figure S1, Supplementary Material) and UV-vis absorption (Figure 1) 
and 1H NMR data (Figure S2) agree with the reported data [51]. In keeping with the 
paramagnetic character of the Co(II) d7 system, we obtained broadened 1H NMR signals 
at δ = 15.71 ppm for the β-pyrrole protons and at 12.96 and 9.92 ppm for the phenyl at-
oms [10,11,26,54,78]. 

2.2. Photophysical Properties 
The UV-vis absorption spectrum of [Co(TMFPP)] in CH2Cl2 solution showed a Soret 

band at 437 nm and a Q band at 554 nm in line with similar Co(II) porphyrins (Figure 1A) 
[51,53,79–82]. The optical band gap (Eg), which is the energy difference between the 
HOMO and LUMO levels, was determined from the UV-vis absorption spectrum. The 
values of the optical band gap (Eg) of [Co(TMFPP)] were determined using the Tauc 
relation (Figure 1B). The Eg value was 2.15 eV, which is in the normal range for Co 
metalloporphyrins [53,80]. 
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Figure 1. UV/vis absorption spectrum of [Co(TMFPP)] in CH2Cl2 (A); curve of (αhυ)2 as a function 
of photon energy E (B). 

Scheme 1. Structures of (a) [Co(TMFPP)], (b) crystal violet (CV) and malachite green (MG).

2. Results and Discussion

2.1. Synthesis and 1H NMR Spectroscopy

The free-base porphyrin meso-tetrakis(4-(trifluoromethyl)phenyl)porphyrin (H2TMFPP)
was synthesised modifying a literature method [76] (see Section 3). Elemental analysis and
1H NMR confirmed the purity of the material. The meso-tetrakis(4-(trifluoromethyl)phenyl)
porphyrinato Co(II) [Co(TMFPP)] (Scheme 1) was synthesised using the so-called DMF
method [77]. Elemental analysis and MS confirmed its purity. FT-IR (Figure S1, Supplemen-
tary Material) and UV-vis absorption (Figure 1) and 1H NMR data (Figure S2) agree with
the reported data [51]. In keeping with the paramagnetic character of the Co(II) d7 system,
we obtained broadened 1H NMR signals at δ = 15.71 ppm for the β-pyrrole protons and at
12.96 and 9.92 ppm for the phenyl atoms [10,11,26,54,78].
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Figure 1. UV/vis absorption spectrum of [Co(TMFPP)] in CH2Cl2 (A); curve of (αhυ)2 as a function
of photon energy E (B).

2.2. Photophysical Properties

The UV-vis absorption spectrum of [Co(TMFPP)] in CH2Cl2 solution showed a Soret band
at 437 nm and a Q band at 554 nm in line with similar Co(II) porphyrins (Figure 1A) [51,53,79–82].
The optical band gap (Eg), which is the energy difference between the HOMO and LUMO
levels, was determined from the UV-vis absorption spectrum. The values of the optical
band gap (Eg) of [Co(TMFPP)] were determined using the Tauc relation (Figure 1B). The
Eg value was 2.15 eV, which is in the normal range for Co metalloporphyrins [53,80].

The photoluminescence spectrum of [Co(TMFPP)] in CH2Cl2 at room temperature is
shown in Figure 2. Upon excitation at 405 nm, an emission with maxima at 653 and 718 nm
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is observed and can be attributed to the S1[Q(0,0)]→S0 and S1[Q(0,1)]→S0 transitions in
line with previous studies on [Co(TPP)] [80,83–85] and related [Zn(TPP)] [12,15,72,81]. The
photoluminescence quantum yield (ΦPL) for [Co(TMFPP)] is 0.041. The singlet excited-state
lifetimes were measured by the single-photon counting technique, and the fluorescence
decays were fitted to simple exponentials with 2 ns lifetime (Figure 2B), which lies in a
typical range for [Co(TPP)] derivatives [80,83].
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Figure 2. Emission spectrum of [Co(TMFPP)] in 10−6 M solutions in CH2Cl2 at room temperature (A),
excited at 405 nm; fluorescence decay profile (B).

2.3. Electrochemical Characterisation

Cyclic voltammograms of [Co(TMFPP)] were recorded in DMF, which is a poten-
tial donor ligand and is thus prone to coordinate to the Co centre after oxidation, as
has been found for most square planar coordinated M(II) porphyrins [58,59]. Two re-
versible one-electron reductions were found for [Co(TMFPP)] at E1/2 = −0.91 V and
E1/2 = −2.05 V (Figure 3). While it is generally accepted to assign the first wave to the
Co(II)/Co(I) redox couple [24,61,62,86,87], the second was earlier discussed as porphyrin-
centred (Por2−/Por3−), in line with reports on the unsubstituted [Co(TPP)] [24,61,62,86].
Alternatively, a Co(0) species after a Co(I)/Co(0) reduction has been discussed [20,88,89].
The latter description is supported by UV-vis absorption spectroscopy [89].
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Figure 3. Cyclic voltammogram of [Co(TMFPP)] in 0.1 M nBu4NBF4/DMF, recorded at 100 mV s−1.

A first one-electron oxidation at 0.30 V that can be assigned to the Co(II)/Co(III) redox
couple is broadened, but reversible. The broadening is due to the coordination of DMF
after oxidation, as mentioned above. This wave is followed by a slightly larger reversible
wave at 0.98 V, which is assigned to a porphyrin-centred process (Por2−/Por1−) in line
with previous reports [21,24,61,62,85–87]. For the 4-MeO substituted derivative, a third
oxidation at 1.09 V following the second oxidation at 0.92 V was reported [24,62], and for the
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2,5-MeO substituted complex, second and third oxidation waves were observed at 0.62 and
1.15 V [73]. This lets us assume that, for [Co(TMFPP)], both these two porphyrin-centred
processes are merged into one (larger) wave.

For [Co(TPP)] in DMF potentials of −1.88, −0.77, 0.30, and 1.05 V were previously
reported for the same processes [24], while the 4-MeO substituted derivative showed
−0.98 V, 0.38 V, and 0.92 V for the first reduction and the two oxidations. This means that
the introduction of the four CF3 groups does not markedly affect the metal-centred first
oxidation and reduction.

For a fully homogeneous diffusion-controlled electrochemical process, the peak current
(Ip) for a Faradaic electron transfer varies linearly with the square root of scan rate (ν1/2).
From the slope of the Ip vs. ν1/2 plot, the diffusion coefficient (D) can be determined using
Randles–Sevcik equation (Equation (1)):

Ip = 0.4463 F A (F/RT)1/2 D1/2 np
3/2 [C0] ν1/2 (1)

where Ip is the peak current, F is the Faraday constant (F = 96485 C mol−1), R is the universal
gas constant (R = 8.314 J K−1 mol−1), T = 298 K, np is the number of electrons transferred
(here, np = 1), A is the active surface area of the electrode (0.00785 cm2). Note that our plots
are reported as a function of the current density, bypassing the need of the area value in
Equation (1). D is the diffusion coefficient for the complex, [C0] is the concentration of the
catalyst (here [C0] = 1 mM), and ν is the scan rate in V s−1. The diffusion coefficient (D)
was calculated from the slope of Ip vs. ν1/2 (Figure 4, right). The diffusion coefficient D
for the Co(II)/Co(I) reduction is 1.98 × 10−7 cm S−1, while the value for the Co(II)/Co(III)
oxidation is slightly larger with 9.5 × 10−7 cm S−1, in keeping with the assumed additional
DMF ligand for the oxidised complex [Co(TMFPP)(DMF)]+. The diffusion coefficient D for
the second reduction process with 1.1 × 10−8 cm S−1 is smaller than the value for the first
reduction, which is due to the increased negative charge, but still quite large.
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Figure 4. Cyclic voltammograms of [Co(TMFPP)] in 0.1 M nBu4NBF4/DMF recorded at different
scan rates (A). Peak currents vs. square roots of the scan rate for the two reduction processes (B).

2.4. Electrocatalytic H2 Production in the Presence of Acetic Acid (AcOH)

We studied the electrocatalytic activity of [Co(TMFPP)] in DMF/acetic acid due to
better solubility in this mixture than in water (Figure 5).

On first view, our cyclic voltammetric plots show that, upon addition of acid, a cat-
alytic current appears at the second reduction wave of [Co(TMFPP)] (Figure 5), while
the first wave remains unchanged. The FE in H2 production (quantified by GC) of
[Co(TMFPP)] at −2.3 V was determined after 2 h to 85%. For the previously reported
[Co(TMAP)](ClO4)2 (H2TMAP = meso-tetrakis(N,N,N-trimethylanilinium-4-yl)porphine),
[Co(TMPyP)](ClO4)2 (meso-tetrakis(N-methylpyridinium-4-yl)porphine) and [Co(TpyP)]
(meso-tetrapyrid-4-ylporphine), FEs of >90% were found [70].
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absence (black trace) or in the presence of 1 to 3 eq. CH3COOH in DMF at 100 mV s−1 (A), Blank test
without catalyst (B).

Mechanistically speaking, it seems that the first reduced species which we formally
describe as [Co(I)(Por2−]− is not catalytically very active, which would stand in contrast to
previous mechanistic studies [18,70] which proposed that the reduced Co(I) species reacts
with protons forming Co(II) and Co(III) species (Equations (2) to (6)) [70].

Co(I) +H+ � Co(II) +
1
2

H2 (2)

Co(II) +e−� Co(I) (3)

Co(I) +H+ � Co(III)H− (4)

Co(III)H− +H+ � H2 + Co(III) (5)

Co(III)H− +H+ �
1
2

H2 + Co(II) (6)

Our experiments indicate that only after the second reduction, the resulting [Co(0)(Por2−)]2−

species is active in reducing protons. In the abovementioned study on the complexes
[Co(TMAP)](ClO4)2, [Co(TMPyP)](ClO4)2, and [Co(TpyP)] catalytic currents representing
the proton reduction were observed at −0.95 V [70]. In a recent study, very different
behaviour was found for the catalytic proton reduction using [Co(TXPP)] (H2TXPP = meso-
tetra-para-X-phenylporphin) catalysts [18]. For X = Cl = catalytic waves were observed
at around −2 V comparable to our findings, while for X = OMe, the H2 evolution was
observed already at around −1 V. Thus, we can conclude that the substitution pattern of
the meso-tetraarylporphin ligands has a strong impact on the observed catalytic potential.
Depending on these patterns, the Co(TPP) derivatives might be an active catalyst in the
Co(I) oxidation state or alternatively might need to reach the Co(0) state after the second
reduction for efficient proton reduction.

2.5. Electroreduction CO2 to CO

[Co(TMFPP)] was further tested for the electrocatalytic CO2 reduction, in CO2-saturated
DMF, with water added as a proton source. Cyclic voltammograms of [Co(TMFPP)] in the
presence of CO2 showed marked catalytic currents at potentials at around −2 V, with the
presence of water being beneficial (Figure 6A, green and red trace). No activity was found
in the absence of the catalyst (Figure 6B).

Controlled potential electrolysis at −2.25 V for 2 h in aqueous DMF under a CO2
atmosphere gave a FE of 90%; GC confirmed the production of CO and only traces of
H2. Remarkably, not even traces of the very common products formate and methanol
were found.
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presence of H2O (Black: in Ar, Red: in CO2, Blue: in Ar and 1 mM of H2O and green: in CO2 and
1mM of H2O) (A). Blank test without catalyst (B).

[Co(TPP)] was reported with an FE of 50% for CO alongside with traces of H2
(FE = 2%), formate (4%), acetate (2%) and oxalate (0.4%) on electrolysis at −1.95 or −2.05 V
vs. SEC in DMF [88]. When immobilised on carbon nanotubes, [Co(TPP)] allowed an
efficiency of 83% at −1.15 V or 93% at −1.35 V [88] and the authors could circumvent the
rapid catalyst decomposition monitored by UV-vis absorption spectroscopy.

Thus, our unsupported [Co(TMFPP)] is markedly superior in terms of efficiency and
selectivity to the standard [Co(TPP)] and support with an electron-conducting material
might pave the way to operate the [Co(TMFPP)] at less negative potentials. Importantly,
also here, only the second reduction wave produces the catalytically active species, which
we describe as Co(0) complex.

2.6. Catalytic Oxidative Degradation of Dyes

To further evaluate the catalytic properties of [Co(TMFPP)], we studied the decomposi-
tion of the two dyes malachite green (MG, 4-([4-(dimethylamino)phenyl](phenyl)methylidene)-
N,N-dimethylcyclohexa-2,5-dien-1-iminium chloride) and crystal violet (CV, 4-(bis[4-(dimeth
ylamino)phenyl]methylidene)-N,N-dimethylcyclohexa-2,5-dien-1-iminium chloride; see
Scheme 1) in the presence of H2O2. The MG cation shows a very intense green colour with
an absorption band centred at 621 nm, while the CV cation has a very intense violet colour
and the absorption maximum of the most intense band at 591 nm (Figure 7). Upon addition
of H2O2 in the presence of [Co(TMFPP)], the dyes were rapidly decomposed, as the UV-vis
absorption traces showed (Figure 7).

To further study the reaction kinetics of the degradation, the Ct/C0 ratios were
varied and a pseudo-first order rate constant k was calculated using Equation (7)
(Langmuir–Hinshelwood):

ln C0/Ct = k t (7)

Ct and C0 are the dye concentrations at times t and 0, k is the first-order rate con-
stant. The fit of the pseudo kinetic model is shown in Figure 8, and the rate constants of
degradation (k) were calculated to 0.023 and 0.034 min−1 for CV and MG, respectively.
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(CV) through H2O2 in aqueous solution: changes in Ct/C0 versus time (A) and changes in ln(Ct/C0)
versus time (B).

The two triarylmethane dyes crystal violet and malachite green were decomposed us-
ing H2O2 and [Co(TMFPP)] as catalyst with an efficiency of more than 85% (C0 = 25 mg/L,
pH = 8, H2O2 concentration = 3 mL/L, T = 25 ◦C). Two 4-cyanopyridine complexes of
the type [Co(II)(Por)(4-CNpy)] (Por = meso-tetrakis(para-methoxyphenyl)porphyrinato
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and meso-tetra(para-chlorophenyl)porphyrin) as catalysts in the degradation of organic
dyes using H2O2 gave a degradation efficiency of more than 78% [10,11,26,73], while
recently reported Zn(II) triazole-substituted meso-arylsubstituted porphyrin complexes
gave efficiencies of up to 50% [12,15,71,72]. This shows that Co(II) porphyrins are gener-
ally superior to Zn(II) derivatives in line with the assumption that the first reduction is
cobalt-centred (Co(II)(Co(I)).

3. Experimental Section
3.1. Materials

All reagents and solvents were purchased from ACROS ORGANICS (Geel, Belgium) or
Sigma Aldrich (St. Louis, MO, USA). Solvents were purified using literature methods [90].
Silica gel 150 (35–70 µm particle size, Davisil) was used for final purification of the products.
Double-distilled water was used in the experiments.

3.2. Synthetic Procedures
3.2.1. Synthesis of the meso-Tetrakis(4-(trifluoromethyl)phenyl)porphyrin (H2TMFPP)

Note that 3.65 g of 4-(trifluoromethyl)benzaldehyde (21 mmol) were dissolved in
propionic acid (100 mL) in air and heated to 120 ◦C. In addition, 1.4 g of pyrrole (1.35 mL,
21 mmol) were added dropwise to the reaction and the mixture was kept at 120 ◦C for
a further 45 min. The resulting solution was allowed to cool and the tarry mixture was
filtered to give a black solid, which was rinsed with water (5 × 100 mL) and (5 × 100 mL)
n-hexane and finally dried under vacuum with a yield of 1.25 g (1.4 mmol, 27%). Anal.
calcd. for C48H26F12N4 (886.74): C, 65.02; H, 2.96; N, 6.32; found: C, 65.21; H, 2.85; N, 6.43%;
MS (ESI(+), CH2Cl2): m/z = 886.68 for [M]+; UV-vis (CH2Cl2): λmax (ε.10−3M−1cm−1):
424(370), 519(85), 557(39), 591(30), 651(25); 1H NMR (500 MHz, CDCl3) δ = 8.95 (s, 8H,
β-pyrrole), 8.13 (s, 8H, arylH), 7.77 (s, 8H, arylH) ppm. FT-IR (solid, ν, cm−1); 3290 (νNH),
2922 (νCH), 1518 (νC=N/νC=C), 965 (δCCH).

3.2.2. Synthesis of the meso-Tetrakis(4-(trifluoromethyl)phenyl)porphyrinato
Co(II) [Co(TMFPP)]

An amount of 200 mg (0.225 mmol) H2TMFPP was dissolved in 100 mL of DMF. The
solution was brought to reflux under magnetic stirring. After dissolution of H2TMFPP or
H2TTMPP, 53 mg (0.222 mmol) CoCl2.6H2O were added. The reaction mixture was left
under stirring for 3 h. Thin-layer chromatography (Al2O3, with CH2Cl2 as eluent) showed
no free-base porphyrin- at this level. After this, the solution was brought to 45–55 ◦C, and
100 mL H2O were poured in. The resulting solid was filtered, washed with n-hexane and
finally dried under vacuum to yield 195 mg (206 mmol, 93%) of product. Anal. calcd. for
C48H24N4F12Co (943.66): C, 61.09; H, 2.56; N, 5.94; found: C, 60.99; H, 2.59; N, 6.02%; MS
(ESI(+), CH2Cl2): m/z = 943.62 for [M]+; UV-vis (CH2Cl2): λmax (ε.10−3M−1cm−1): 414(380),
533(54), 568 sh(16), 437(385), 554(30), 592(20); 1H NMR (500 MHz, CDCl3): δ = 15.71 (s,
8H, β-pyrrole); 12.96 (s, 8H, arylH); 9.92 (s, 8H, arylH); FT-IR (solid, ν, cm−1); 2959 (νCH
porphyrin), 1498 (νC=N/(νC=C porphyrin), 1021 (δCCH porphyrin).

3.3. Instrumentation

UV-vis absorption spectra were recorded on a WinASPECT PLUS (validation for
SPECORD PLUS version 4.2, WinASPECT, Jena, Germany) scanning spectrophotometer
using 10 mm path length cuvettes. 1H NMR spectra were measured on Bruker DPX
500 spectrometers (Bruker, Rheinhausen, Germany) in CDCl3 with the solvent peak as
an internal standard. FT-IR spectra were measured on a Perkin Elmer Spectrum Two
FT-IR spectrometer (Perkin Elmer, Darmstadt, Germany). Elemental analysis and mass
spectrometry were carried out in the nanobio chemistry platform of the ICMG, Grenoble,
France. A Fluoromax-4 spectrofluorometer (Horiba Scientific, 59120 Loos, France) was used
to record photoluminescence (PL) spectra at room temperature in CH2Cl2. PL quantum
yield (ΦPL) was determined using the optical method [12] with [Zn(TPP)] as standard
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(ΦPL = 0.031). The luminescence lifetime detection was performed upon irradiation at
λ = 405 nm. The luminescence decay was analysed using the PicoQuant FLUOFIT software
(PicoQuant, Berlin, Germany) [15].

3.4. Electrochemistry

Cyclic voltammetry experiments were performed using a CH-660B potentiostat at
room temperature. All measurements were performed in DMF with a solute concentration
of approximately 10−3 M and nBu4NBF4 (0.1 M) as supporting electrolyte. A three-electrode
cell was set up with a glassy carbon working electrode, a Pt wire as counter electrode, and
an Ag/AgNO3 reference electrode. Potentials were converted into values for the saturated
calomel electrode (SCE) by applying Equation (8) [11,63,91,92]:

E(SCE) = E(Ag/AgNO3) + 360 mV (8)

3.5. Electrocatalytic CO2 Reduction

The experiments were performed at room temperature under a CO2 atmosphere in a
conventional three-electrode cell sealed with Apiezon M vacuum grease. A glassy carbon
electrode plate (2 cm2, 0.25 mm thickness) was used as the working electrode in the cathodic
compartment. A 0.5 mm diameter platinum wire (10 cm length) was used as the counter
electrode in the anodic compartment. The cell was purged with Ar or CO2 for a minimum of
15 min before controlled potential electrolysis was carried out. Constant magnetic stirring
was applied during electrolysis.

3.6. Gas Detection

Gas analyses were performed using a GC/MS gas chromatography (Perkin Elmer
Clarus 560) instrument with a thermal conductivity detector fitted with RT-QPlot pre
column + molecular sieve 5Å column. The temperature was held at 150 ◦C for the detector
and 80 ◦C for the oven. The carrier gas was helium. Manual injections of 100 µL were
performed during the experiment via a gas-tight Hamilton microsyringe. The total volume
of the cell was 173 mL.

3.7. Faradaic Efficiency Calculation

The Faradaic Efficiency (FE) of the CO2 reduction or hydrogen evolution reaction
(HER) was calculated using Equation (9):

FE = Z n F/Q (9)

where Z is the amount of product in mol, n is the number of the electrons (2 for both CO
and H2), F is the Faraday constant, and Q is the number of electrons (or charge) passed
through the solution during electrolysis (I t).

3.8. Catalytic Dye Degradation

In a typical investigation, to a 10 mL aqueous solution of the dyes crystal violet (CV)
and malachite Green (MG) (20 mg L−1), 3 mL/L of H2O2 (30 wt %) were added. Next,
5 mg of the catalyst were added to this mixture at a stirring speed of 250 rpm. The reaction
solution was pipetted into a quartz cell and UV-vis absorption spectra were recorded at
different reaction times. Blank experiments were carried out to confirm that the reactions
did not take place without catalyst in the presence of H2O2.

4. Conclusions

In this work, the meso-tetrakis(4-(trifluoromethyl)phenyl)porphyrinato cobalt(II) com-
plex [Co(TMFPP)] was synthesised via modified literature methods in an excellent yield
of 93% from the free-base porphyrin meso-tetrakis(4-(trifluoromethyl)phenyl)porphyrin
(H2TMFPP). Elemental analysis, FT-IR, and 1H NMR spectroscopy confirmed the molecular
entities. UV-vis absorption spectroscopy localised the Soret band at 437 nm and the Q
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band at 554 nm. The optical band gap Eg was calculated using the Tauc plot method to
2.15 eV. The (αhυ)2 over E plot suggests a semiconducting behaviour of the material. Cyclic
voltammetry of the title compound showed two fully reversible reduction waves. Both
the first wave, observed at E1/2 = −0.91 V vs. SCE, and the second at E1/2 = −2.05 V are
ascribed to cobalt-centred processes Co(II)/Co(I) and Co(I)/Co(0), respectively. The first
oxidation wave at around 0.3 V is metal-centred Co(II)/Co(III) and broadened through the
interaction of the DMF solvent with the oxidised complex. A second oxidation is following
at 0.98 V, which is presumably due to the redox couple Por2−/Por−. [Co(TMFPP)] is a
very active catalyst for the electrochemical formation of H2 from DMF/acetic acid, with
a Faradaic Efficiency (EF) of 85% at a working potential of −2.3 V. This is in line with
[Co(0)(Por2−)]2− being the active species. The complex also catalysed the reduction of CO2
to CO in aqueous DMF under CO2 atmosphere with a high EF of 90% and only traces of H2
by-product, making our derivative superior to the standard [Co(TPP)]. Also here, catalytic
currents are only observed at potentials coinciding with the second reduction potential
in the voltammograms, thus the same [Co(0)(Por2−)]2− species seems to be active as for
the proton reduction. Moreover, the two triarylmethane dyes crystal violet and malachite
green were decomposed in aqueous solution using H2O2 and [Co(TMFPP)] as catalyst with
an efficiency of more than 85% in one batch. Given the high stability of the complex and
the relatively easy preparation with excellent yields, this makes [Co(TMFPP)] a versatile
catalyst for important electrocatalytic reductions and oxidations. The performance on the
cathodic side might be improved with the goal of less negative working potentials in future
work by blending the complex with electroactive materials such as carbon nanotubes, or by
immobilising the complex directly on electrodes.

Supplementary Materials: The following information is available online. Figure S1: FT-IR spectrum
of [Co(TMFPP)]. Figure S2: 1H NMR spectrum of [Co(TMFPP)] (C ~10−3 M) in CDCl3.
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