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Abstract
Light	detection	and	 ranging	 (LiDAR)	data	can	provide	3D	structural	 information	of	
objects	 and	 are	 ideal	 for	 extracting	 individual	 tree	parameters,	 and	 individual	 tree	
segmentation	 (ITS)	 is	 a	vital	 step	 for	 this	purpose.	Various	 ITS	methods	have	been	
emerging	 from	 airborne	 LiDAR	 scanning	 (ALS)	 or	 unmanned	 aerial	 vehicle	 LiDAR	
scanning	(ULS)	data.	Here,	we	propose	a	new	individual	tree	segmentation	method,	
which	 couples	 the	 classical	 and	 efficient	watershed	 algorithm	 (WS)	 and	 the	 newly	
developed	connection	center	evolution	(CCE)	clustering	algorithm	in	pattern	recog-
nition.	The	CCE	 is	 first	 used	 in	 ITS	 and	 comprehensively	optimized	by	 considering	
tree	structure	and	point	cloud	characteristics.	Firstly,	the	amount	of	data	 is	greatly	
reduced	by	mean	shift	voxelization.	Then,	the	optimal	clustering	scale	is	automatically	
determined	by	the	shapes	in	the	projection	of	three	different	directions.	We	select	
five	forest	plots	in	Saihanba,	China	and	14	public	plots	in	Alpine	region,	Europe	with	
ULS	or	ALS	point	cloud	densities	from	11	to	3295 pts/m2.	Eleven	ITS	methods	were	
used	for	comparison.	The	accuracy	of	tree	top	detection	and	tree	height	extraction	
is	estimated	by	five	and	two	metrics,	respectively.	The	results	show	that	the	match-
ing	rate	(Rmatch)	of	tree	tops	is	up	to	0.92,	the	coefficient	of	determination	(R

2)	of	tree	
height	estimation	 is	up	 to	 .94,	and	 the	minimum	root	mean	square	error	 (RMSE)	 is	
0.6 m.	Our	method	outperforms	the	other	methods	especially	in	the	broadleaf	forests	
plot	on	slopes,	where	the	five	evaluation	metrics	for	tree	top	detection	outperformed	
the	other	algorithms	by	at	least	11%	on	average.	Our	ITS	method	is	both	robust	and	
efficient	and	has	the	potential	to	be	used	especially	in	coniferous	forests	to	extract	
the	 structural	 parameters	 of	 individual	 trees	 for	 forest	management,	 carbon	 stock	
estimation,	and	habitat	mapping.
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1  |  INTRODUC TION

Forests,	as	a	vital	part	of	terrestrial	ecosystems,	play	an	important	
role	 in	 global	 climate	 change	 and	 biodiversity	 (Liang	 et	 al.,	 2016; 
Seidl	et	al.,	2017).	 It	 is	challenging	to	conduct	resource	surveys	of	
forests,	 especially	 at	 the	 individual	 tree	 scale.	 In	 the	 past,	 forest	
resource	 surveys	 often	 relied	 on	 field	measurements,	which	were	
time-	consuming	and	laborious.	In	recent	years,	remote	sensing	data	
have	been	increasingly	applied	to	forestry.	2D	optical	 images	have	
been	used	 to	estimate	 forest	morphological	parameters	 (e.g.,	 can-
opy	 cover	 and	 leaf	 area	 index)	 (Korhonen	 et	 al.,	2017).	 However,	
these	data	are	unable	to	retrieval	three	dimensional	(3D)	structural	
information	of	trees	(Zheng	et	al.,	2021).	Light	detection	and	rang-
ing	 (LiDAR)	data	provide	3D	structural	 information	of	objects	and	
are	ideal	for	extracting	individual	tree	parameters	of	forests	(Lefsky	
et	al.,	2002).	There	are	two	main	categories	of	LiDAR	for	extracting	
individual	 tree	 parameters:	 ground-	based	 and	 air-	based.	 Ground-	
based	 LiDAR,	 such	 as	 terrestrial	 LiDAR	 scanning	 (TLS),	 has	 a	 high	
distance	accuracy	of	the	measurement	and	denser	points	within	the	
limited	extent,	which	is	suitable	for	delicate	structural	parameter	ex-
traction	at	the	plot	scale	(Burt	et	al.,	2019;	Tao	et	al.,	2015).	Air-	based	
LiDAR	including	airborne	LiDAR	scanning	(ALS)	and	unmanned	aerial	
vehicle	LiDAR	scanning	(ULS)	can	be	applied	to	survey	3D	informa-
tion	 in	a	bigger	 region	 than	TLS	with	a	 little	 lower	points	density.	
Considering	that	ALS	and	ULS	can	acquire	the	3D	structural	charac-
teristics	of	trees	on	a	large	scale	in	complex	terrain	conditions,	they	
are	often	used	in	forest	survey	(Guo	et	al.,	2020).

Individual	tree	segmentation	(ITS)	also	known	as	individual	tree	
detection	(ITC)	or	individual	tree	and	crown	delineation	(ITCD)	from	
point	clouds	generated	via	ALS	or	ULS	 is	a	considerable	challenge	
(Lindberg	&	Holmgren,	2017).	There	are	mainly	three	categories	of	
methods	for	ITS	based	on	ALS	data,	including	raster-	based	methods,	
point-	based	methods,	and	joint	methods.	The	raster-	based	methods	
first	convert	3D	point	clouds	into	2D	rasters,	such	as	canopy	height	
models	(CHMs)	or	digital	surface	models	(DSMs),	and	then	use	image	
processing	 or	 computer	 vision	 techniques	 for	 ITS.	 Specific	 algo-
rithms	include	the	watershed	(Jing	et	al.,	2012;	Wang	et	al.,	2004),	
region	growing	(Dalponte	&	Coomes,	2016;	Solberg	et	al.,	2006),	val-
ley	following	(Katoh	&	Gougeon,	2012;	Leckie	et	al.,	2005),	marker-	
controlled	watershed	 (Chen	et	 al.,	 2006;	Hu	et	 al.,	 2014),	 variable	
window	 filtering	 (Hyyppa	 et	 al.,	2001),	 mean-	shift	 clustering	 (Dai	
et	 al.,	 2018),	 and	graph-	cut	 (Strîmbu	&	Strîmbu,	2015)	 algorithms.	
These	methods	 are	 usually	more	 efficient,	 but	 the	 part	 of	 the	 in-
formation	will	inevitably	be	lost	when	the	3D	point	clouds	are	con-
verted	 into	 2D	 rasters	 (Zhen	 et	 al.,	 2016).	 In	 addition,	 CHMs	 or	
DSMs	may	also	have	pits,	which	dramatically	affect	the	accuracy	of	
the	segmentation	algorithm	(Yang	et	al.,	2019;	Zhang	et	al.,	2020).	
The	point-	based	methods	directly	utilize	primitive	or	voxelized	point	

clouds	 for	 ITS,	 such	as	point	cloud	region	growing	 (Li	et	al.,	2012; 
Lu	 et	 al.,	 2014),	 layer	 stacking	 (Ayrey	 et	 al.,	 2017),	 k-	means	
(Lindberg	et	al.,	2014),	and	graph	cut	(Lindberg	et	al.,	2014;	Williams	
et	al.,	2019).	These	methods	can	better	use	the	3D	structure	infor-
mation	of	 the	point	 cloud	data	 and	 further	 improve	 segmentation	
accuracy	 (Zhen	 et	 al.,	 2016).	However,	 these	methods	 also	 suffer	
from	 complex	 parameters,	 poor	 generalizability,	 or	 low	 efficiency.	
The	joint	methods	combine	the	first	two	in	the	hope	of	achieving	a	
better	result.	For	example,	Tochon	et	al.	(2015)	combined	the	water-
shed	and	k-	means	algorithms	to	ITS	in	conifer	and	broadleaf	forests.	
Reitberger	et	al.	(2009)	first	extracted	the	trunk	using	the	watershed	
algorithm	and	then	used	the	extracted	trunk	as	a	priori	knowledge	
of	normalized	cut.	The	joint	methods	combine	the	advantages	of	the	
first	two	categories	of	methods	and	therefore	can	improve	the	seg-
mentation	accuracy,	but	will	 also	 inherit	both	 the	disadvantage	of	
the	 raster-		 and	 point	 cloud-	based	methods.	 In	 some	 studies,	 data	
from	ALS	and	ULS	have	not	been	distinguished	because	of	the	simi-
larity	of	their	data	collection	principles	(Yun	et	al.,	2021).	But	in	fact	
they	differ	significantly	in	point	density.	The	point	density	of	ALS	is	
typically	limited	to	10	points/m2,	while	the	point	density	of	ULS	can	
range	from	10	to	t1000	points/m2	depending	on	the	flight	altitude	
and	sensor	characteristics	(Kellner	et	al.,	2019;	Lu	et	al.,	2014).	As	a	
result,	ULS	usually	contains	more	detailed	information	than	ALS.	ITS	
studies	 for	ULS	 have	 been	 conducting	 to	 achieve	 better	 segmen-
tation	result.	For	example,	Wallace	et	al.	 (2014),	Balsi	et	al.	 (2018)	
and	Yin	and	Wang	(2019)	used	ULS	for	 ITS	 in	homogenous	forest.	
Jaskierniak	 et	 al.	 (2021)	 develop	 a	bottom-	up	 approach	of	 ITS	 for	
mixed	 species	 eucalypt	 forests.	 Although	 these	 studies	 have	 get	
good	results,	the	forest	scenes	are	homogenous	or	specific.

Several	critical	issues	about	the	presented	ITS	methods	of	ALS	
and	ULS	are	summarized	as	follows:	(1)	There	is	an	urgent	need	to	
propose	more	general	and	flexible	methods	that	are	not	specific	to	
data	sources	or	forest	types.	Vauhkonen	et	al.	(2012)	compared	six	
different	ITS	methods	and	found	that	the	forest	structure	strongly	
affected	 the	 performance	 of	 all	 algorithms.	 Wang	 et	 al.	 (2016)	
found	that	point	density	was	a	highly	influential	factor	in	the	per-
formance	of	the	methods	that	use	point	cloud	data.	Robust	meth-
ods	that	are	not	sensitive	to	point	density	(both	suit	for	ALS	and	
ULS)	and	can	be	applied	to	coniferous,	broadleaf,	and	mixed	for-
ests	are	rarely	seen	in	the	current	studies.	 (2)	There	is	an	urgent	
need	to	propose	methods	that	are	specific	to	certain	challenging	
forest	 types	 or	 scenarios.	 Dense	 vegetation,	 undulating	 terrain,	
differences	in	canopy	shape	and	size,	etc.	can	make	it	difficult	to	
ITS.	It	is	necessary	to	analyze	the	mechanism	of	the	impact	of	spe-
cial	scenarios	on	ITS	and	propose	targeted	solutions.	For	example,	
the	 issue	of	omission	 (under-	segmentation)	 is	a	big	challenge	for	
most	 ITS	methods	 for	dense	 forests	 (Table 1).	A	summary	about	
under-		and	over-	segmentation	percentages	of	some	ITS	methods	
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is	listed	in	Table 1.	According	to	the	study	of	Li	et	al.	(2012),	when	
the	 tree	 stem	 density	 increases	 from	 0.05	 to	 0.07 trees/m2,	 the	
percentage	of	omission	greatly	 increases	from	15%	to	29%	even	
in	conifer	 forests.	Broadleaf	and	mixed	forests	even	have	bigger	
omission	 fractions	 than	 conifers	 because	 of	 the	 complex	 struc-
tures	 and	 various	 species	 of	 trees.	 The	 reason	 for	 these	 results	
is	 that	 there	 is	 a	 severe	mutual	 shading	 effect	 among	 the	 trees	
in	the	dense	forest.	Therefore,	methods	that	make	full	use	of	the	
detailed	information	in	the	point	cloud	are	needed.

Joint	 ITS	methods	take	the	advantages	of	both	the	high	effi-
ciency	of	the	raster-	based	methods	and	the	high	accuracy	of	the	
point-	based	methods,	which	have	better	development	prospects.	
The	basic	idea	of	the	joint	methods	is	to	use	the	raster-	based	meth-
ods	for	initial	segmentation	and	then	the	point-	based	methods	for	
fine	 segmentation.	 Many	 point	 clustering	 algorithms	 in	 pattern	
recognition	 can	be	used	 for	 fine	 segmentation,	 such	 as	k-	means	
(Lindberg	 et	 al.,	 2014),	mean-	shift	 (Dai	 et	 al.,	 2018),	 and	 graph-	
based	 algorithms	 (Lindberg	 et	 al.,	 2014;	 Williams	 et	 al.,	 2019).	
However,	these	algorithms	directly	rely	on	the	input	parameters,	
and	different	parameters	may	yield	very	different	results	(Geng	&	
Tang,	2020).	Therefore,	 it	 is	necessary	 to	develop	a	 robust	clus-
tering	 algorithm	 that	 does	 not	 depend	 excessively	 on	 the	 input	
parameters.

In	this	study,	we	propose	a	new	joint	individual	tree	segmenta-
tion	algorithm	coupled	with	the	watershed	and	optimized	connec-
tion	center	evolution	algorithm.	Firstly,	we	use	a	pit-	free	canopy	
height	 model	 to	 implement	 initial	 segmentation	 based	 on	 the	
watershed	 (WS)	algorithm,	which	has	 the	advantages	of	high	ef-
ficiency.	Secondly,	we	introduce	a	new	clustering	algorithm	called	
connection	center	evolution	(CCE),	which	extends	the	concept	of	
the	number	of	paths	in	graph	theory	to	the	case	of	arbitrary	real	
numbers	and	can	automatically	skip	the	unreasonable	number	of	
clusters	 (Geng	&	Tang,	2020).	and	then	fine	segmentation	based	

on	 the	optimized	CCE	algorithm,	which	 reduced	data	amount	by	
voxelization	and	determines	the	optimal	clustering	scale	by	differ-
ent	planar	projections.

The	motivation	 of	 this	 study	 is	 to	 provide	 individual	 tree	 at-
tributes	such	as	height	and	location	for	the	construction	of	large-	
scale	digital	forestry.	Therefore,	a	general	and	efficient	ITS	method	
is	 expected.	 For	 this	 purpose,	 ALS	 and	ULS	 data	 from	 different	
forest	types,	such	as	coniferous,	broadleaf	and	mixed	forests,	with	
different	point	cloud	densities	were	used	and	validated	by	location	
and	tree	height.	This	paper	is	organized	according	to	the	following	
structure.	 In	 Section	1,	we	 introduce	 the	overview	of	 our	 study	
site	 and	 datasets	 and	 describe	 how	 the	 data	 are	 preprocessed.	
The	basic	 principle	 and	 framework	of	 our	method	 are	 explained	
in	Section	2.	 In	Section	3,	 the	results	and	analysis	are	displayed.	
The	discussion	and	conclusion	are	explained	in	Sections	4	and	5,	
respectively.

2  |  MATERIAL S AND METHODS

2.1  |  Study site and datasets

2.1.1  |  Study	area

Our	study	plots	are	located	in	Saihanba	National	Forest	Park,	China	
(42°28′54″ N,	 117°16′28″ E).	 The	 vegetation	 types	 are	 varied,	 and	
the	main	 forest	 types	 include	 deciduous	 coniferous	 forests,	 ever-
green	 coniferous	 forests,	mixed	 coniferous	 forests,	 and	 broadleaf	
forests.	 The	major	 tree	 species	 include	 the	 larch	 trees	 (Pincus syl-
vestris var. mongolica	Litv.),	Mongolian	pine	(Larix principis- rupprechtii 
Mayr),	and	birch	trees	(Betula platyphylla).	Saihanba	National	Forest	
Park	 is	 a	 multifunctional	 botanical	 park	 integrating	 scientific	 re-
search	and	plant	species	collection.

TA B L E  1 Segmentation	accuracy	of	several	ITS	methods	affected	by	tree	types	and	density.

Algorithms Type
Density 
(trees/m2)

Matched 
(%)

Omitted 
(%)

Committed 
(%) Reference

Point	Cloud	Region	
Growing

Conifer 0.05 85 15 0 Li	et	al.	(2012)

0.06 74 26 0

0.07 71 29 0

Marker-	controlled	
Watershed

Deciduous	trees	&	
Conifer

Unknown 74 26 8 Hu	et	al.	(2014)

Point-	based	Algorithm Mixed	mountainous	
forest

0.02 75 25 12 Véga	et	al.	(2014)

Conifer 0.02 93 7 2

Broadleaf 0.05 80 20 14

Bottom-	up	Region	
Growing

Deciduous-		broadleaf 0.02 84 16 3 Lu	et	al.	(2014)

Marker-	controlled	
Watershed

Broadleaf Unknown ~70 ~30 0 Zheng	et	al.	(2021)

Note:	Matched	(%) = the	number	of	correctly	segmented	trees/the	number	of	trees	in	plots;	Omitted	(%) = the	number	of	under-	segmented	trees/the	
number	of	trees	in	plots;	Committed	(%) = the	number	of	over-	segmented	trees/the	number	of	trees	in	plots.
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2.1.2  |  Plots

We	 selected	 five	 forest	 plots	 for	 the	 validation	 (Figure 1).	 P1	 is	 a	
deciduous	 broadleaf	 forest	 plot	 (birch);	 P2	 is	 a	 mixed	 forest	 plot	
containing	deciduous	coniferous	and	evergreen	coniferous	and	de-
ciduous	broadleaf	(mixed	with	aspen,	larch,	Mongolian	pine,	spruce,	
and	birch);	P3	 is	a	deciduous	coniferous	forest	plot	 (larch);	P4	and	
P5	 are	 both	 evergreen	 coniferous	 forests	 (including	 spruce	 and	
Mongolian	pine,	respectively).	The	area	of	the	plots	is	30 m × 30 m	or	
50 m × 50 m,	and	the	average	tree	density	of	all	5	plots	is	0.10 trees/
m2.	The	specific	information	of	these	plots	is	shown	in	Table 2.

2.2  |  Data acquisition and preprocessing

The	data	in	this	study	include	both	point	cloud	data	and	field	meas-
urement	data.	Point	cloud	data	in	each	plot	were	obtained	by	ULS	
and	TLS	devices.	ULS	data	were	used	to	test	the	ITS	methods,	while	
the	combination	of	TLS	and	field	measurement	data	is	used	to	obtain	
accurate	reference	 locations	 for	each	tree.	 It	 is	extremely	difficult	
to	measure	the	height	of	a	large	number	of	single	trees	in	the	field,	
especially	for	our	study	area	where	the	tree	height	is	usually	greater	
than	10 m.	Therefore,	we	merged	 the	ULS	and	TLS	data	and	 then	
manually	extracted	 the	 tree	height	of	each	 tree	as	 reference.	The	
reference	 tree	height	and	 location	were	also	used	 to	evaluate	 the	
ITS	methods.

2.2.1  |  Acquisition	of	LiDAR	and	field	data

The	 specific	 data	 include	 the	 following	 three	 types.	 (1)	ULS	point	
clouds:	 The	 ULS	 data	 were	 obtained	 in	 July	 2022	 using	 RIEGL	

VUX-	1UAV	mounted	on	the	DJI	M600	platform.	The	drone	flies	at	
an	 altitude	 of	 approximately	 50–	200 m	 based	 on	 the	 topography	
and	tree	height	of	the	different	plots.	The	specific	ULS	point	cloud	
densities	 of	 each	 plot	 are	 shown	 in	Table 2.	 (2)	 TLS	 point	 clouds:	
A	Riegl	VZ-	1000	terrestrial	laser	scanner	was	used	to	obtain	multi-	
station	 scanning	data	 at	 the	 sampling	 center	 and	corners	 in	order	
to	 relieve	 the	occlusion	 issue.	Depending	on	plot	 size	 and	canopy	
characteristics,	9–	17	scanning	stations	were	set	up.	 (3)	Field	data:	
Fieldwork	was	also	carried	out	in	August	2022.	We	used	HI	TARGET	
Qstar	8	Mobile	GPS	to	locate	the	center	points	of	the	plots.	The	lo-
cation	of	each	tree	in	all	plots	was	checked	and	corrected	by	manual	
field	 surveys	 according	 to	 tree	 locations	 extracted	 from	 TLS	 (see	
Section	2.2.2).	We	did	not	use	GPS	to	locate	each	tree	because	of	
the	large	uncertainty	in	positioning	in	the	understory.

2.2.2  |  Data	preprocessing

Data	preprocessing	for	the	ULS,	TLS,	and	field	trunk	position	data	
includes	the	four-	step	operations,	which	are	illustrated	intuitively	
in	Figure 2.	(1)	Registration:	ULS	and	TLS	data	were	manually	reg-
istered	with	each	other	 to	avoid	positioning	bias	between	 these	
two	datasets	by	manually	selecting	control	points	(Figure 2c).	 (2)	
Ground	 filtering:	 The	 cloth	 simulation	 filter	 (CSF)	 proposed	 by	
Zhang	et	al.	 (2016)	was	used	to	separate	ground	and	nonground	
point	clouds.	The	ULS	filtering	results	are	shown	in	Figure 2d.	(3)	
Raster	generation:	After	filtering,	DTM	(Digital	Terrain	Model)	and	
CHM	were	generated	using	lidR	tools	(Roussel	et	al.,	2020).	Grid	
resolutions	were	 set	 to	 0.05	or	 0.1 m	 for	ULS	data	 according	 to	
the	 point	 density	 in	 the	 specific	 plots.	 The	 Delaunay	 triangula-
tion	 (TIN)	 algorithm	was	used	 for	 spatial	 interpolation	 and	DTM	
generation	(Axelsson,	2000).	The	pit-	free	algorithm	developed	by	

F I G U R E  1 Plots	location	in	the	study	
area	(a).	The	tree	types	of	five	plots	(P1–	
P5)	are	birch	(b),	mixed	(c),	larch	(d),	spruce	
(e),	and	Mongolian	pine	(f),	respectively.	
All	plots	photographs	are	clipped	from	
UAV	RGB	images.
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    |  5 of 17LI et al.

Khosravipour	 et	 al.	 (2014)	 was	 used	 to	 generate	 pit-	free	 CHMs	
(see	Section	2.4.1).	These	CHMs	are	used	as	the	input	of	the	algo-
rithm,	and	DTMs	are	used	to	normalize	the	ULS	point	clouds.	 (4)	
Tree	Location	&	Height	Determination:	TLS	data	were	segmented	
with	a	height	threshold	value	of	approximately	1.5 m.	Only	point	
clouds	less	than	1.5 m	were	kept.	After	that,	tree	stems	could	be	
seen	clearly	through	segmented	TLS	data	 (Figure 2g).	Then,	tree	
location	was	corrected	by	 fieldwork	according	 to	extracted	 tree	
stems.	Finally,	according	to	the	corrected	tree	stems	distribution,	
each	 tree	height	was	measured	manually	using	ULS	point	 cloud.	
The	obtained	positions	and	tree	heights	were	used	for	the	valida-
tion	of	the	individual	tree	segmentation	algorithms	as	detailed	in	
the	results	section.

2.3  |  Benchmark airborne LiDAR point clouds

To	 demonstrate	 the	 applicability	 of	 the	 ITS	method	 in	 different	
study	 areas,	 forest	 types,	 and	 point	 cloud	 densities,	 we	 used	 a	
benchmark	 airborne	 LiDAR	 point	 cloud	 dataset	 with	 individual	
tree	inventory	data	in	the	Alpine	Space,	Europe	(Eysn	et	al.,	2015).	
This	dataset	includes	14	different	plots	located	in	four	European	
countries	 and	 can	 be	 downloaded	 from	 the	 NEWFOR	 website	

(https://www.newfor.net/).	 The	 detailed	 descriptions	 of	 these	
plots	are	shown	in	Table 3.	Due	to	the	low	point	cloud	densities	in	
these	plots,	the	resolutions	of	CHMs	and	DTMs	generated	by	ALS	
point	clouds	were	set	to	0.2 m.

2.4  |  The method

Our	ITS	method	consists	of	three	main	components:	pit-	free	CHM	
generation,	initial	segmentation	using	the	WS,	and	fine	segmentation	
using	the	optimized	CCE.	The	implementation	is	shown	in	Figure 3.

2.4.1  |  Pit-	free	CHM	generation

The	 pit-	free	 CHM	 can	 eliminate	 the	 pits	 and	 thus	 reduce	 over-	
segmentation	 (Yang	 et	 al.,	 2019).	 First,	 the	 nonground	 points	 are	
normalized	 according	 to	 the	 DTMs.	 Then,	 the	 normalized	 point	
clouds	are	horizontally	segmented	at	0,	2,	5,	10,	and	15 m.	For	each	
segmented	layer,	multiple-	level	CHMs	are	generated	using	the	TIN	
algorithm	according	to	the	highest	point.	Finally,	the	pit-	free	CHM	
is	 generated	by	 taking	 the	maximum	value	of	 these	multiple-	level	
CHMs	in	the	corresponding	pixels	(Khosravipour	et	al.,	2014).

Plot Tree type
Average 
height (m)

Number 
of trees

Stem density 
(trees/m2)

Point density 
(pts/m2)

Size  
(m2)

P1 Birch 15 122 0.14 298 30 × 30

P2 Mixed 18 89 0.10 3295 30 × 30

P3 Larch 21 121 0.05 1636 50 × 50

P4 Spruce 15 87 0.10 1473 30 × 30

P5 Mongolian	pine 16 87 0.10 3976 30 × 30

TA B L E  2 Characteristics	of	five	forest	
plots.

F I G U R E  2 Data	preprocessing	procedure	including	(1)	Registration;	(2)	Ground	Filtering;	(3)	Raster	Generation;	(4)	Tree	Location	and	
Height	Determination.
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2.4.2  |  Initial	segmentation	using	the	WS

The	WS	 is	 an	 image	 region	 segmentation	method,	which	 takes	 the	
similarity	with	the	neighboring	pixels	as	an	essential	reference	in	the	
segmentation	process	so	that	the	pixels	with	similar	spatial	locations	
and	similar	grayscale	values	(height	value	in	the	CHM)	are	connected	
to	form	a	closed	contour	(Wang	et	al.,	2004).	Here,	the	lidR	tools	de-
veloped	by	Roussel	et	al.	 (2020)	are	used	to	 implement	the	WS	and	
get	the	initial	segmentation	results.	There	are	two	input	parameters:	
height	tolerance	 (denoted	as	tolerance)	and	neighborhood	search	ra-
dius	(denoted	as	ext).	Tolerance	represents	the	minimum	height	of	the	
object	in	the	units	of	image	intensity	between	its	highest	point	(seed)	
and	the	point	where	it	contacts	another	object	(checked	for	every	con-
tact	pixel).	 If	 the	height	 is	 smaller	 than	 the	 tolerance,	 the	object	will	
be	combined	with	one	of	its	neighbors,	which	is	the	highest.	Ext rep-
resents	the	radius	of	the	neighborhood	in	pixels	for	the	detection	of	
neighboring	objects.	A	higher	ext	 value	smoothes	out	 small	objects.	
Figure 4	shows	an	example	of	the	ITS	results	by	the	WS.	Consistent	
with Table 1,	the	method	suffers	from	significant	under-	segmentation.

2.4.3  |  Fine	segmentation	using	the	optimized	CCE

In	this	part,	the	CCE	algorithm	is	optimized	and	used	for	fine	seg-
mentation.	The	CCE	first	constructs	the	similarity	matrix	between	
each	point,	then	performs	the	power	multiplication	operation	on	
the	similarity	matrix	continuously,	and	finally	determines	the	ag-
gregation	center	and	the	number	of	clusters	by	comparing	the	el-
ement	 sizes	of	 the	 similarity	matrix	 after	 each	power	operation.	
The	 CCE	 is	 considered	 an	 efficient	 and	 elegant	 clustering	 algo-
rithm	in	Pattern	Recognition	(Geng	&	Tang,	2020).	Concepts	such	
as	the	number	of	walks	and	undirected	graph	in	graph	theory	are	
extended,	 and	 the	 implementation	of	 the	CCE	 involves	only	 the	
matrix	power	operation	and	does	not	require	any	human	interven-
tion.	It	suggests	appropriate	observation	scales	and	provides	cor-
responding	clustering	results.	Here,	we	extend	this	algorithm	for	
ITS	of	LiDAR	point	clouds.	However,	 there	are	 two	 issues	 in	 the	
original	CCE	algorithm.	First,	 it	 is	challenging	to	be	 implemented	
on	point	clouds	with	a	large	amount	of	data	because	of	heavy	com-
putations.	Second,	it	does	not	specify	how	to	determine	the	most	

TA B L E  3 Characteristics	of	14	forest	plots	in	the	Alpine	Space	of	Europe.	The	plot	numbers	are	discontinuous	because	the	data	of	05,	12,	
13,	and	14	plots	are	not	available.

Plot Tree type
Average 
height (m)

Number of 
trees

Stem density 
(trees/m2)

Point density 
(pts/m2)

Size 
(m2) Study area

01 Fir,	beech 17 359 0.04 13 10,000 Saint-	Agnan,	
France

02 Scots	pine,	larch,	spruce 18 106 0.08 11 1300 Cotolivier,	
Italy03 Scots	pine,	larch 17 49 0.04

04 Larch,	sycamore 13 22 0.02

06 Spruce 14 107 0.04 22 3000 Montafon,	
Austria

07 Spruce,	larch,	fir 16 49 0.04 95–	121 1300 Asiago,	Italy

08 Larch,	spruce,	fir,	sycamore,	
poplar

14 235 0.19

09 Spruce,	fir 24 80 0.07 11

10 Spruce,	fir,	beech 17 110 0.09

11 14 183 0.13

15 Fir,	spruce,	beech 23 53 0.03 30 2000 Leskova,	
Slovenia16 25 37 0.02

17 Fir,	spruce,	beech,	sycamore,	
elm

21 117 0.06

18 Fir,	beech,	sycamore 25 92 0.05

F I G U R E  3 The	implementation	of	the	ITS	method.	Three	steps	are	included:	(1)	Pit-	free	CHM	generation;	(2)	initial	segmentation	using	
the	WS;	(3)	fine	segmentation	using	the	optimized	CCE.
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appropriate	observation	scale.	To	this	end,	we	optimized	the	CCE	
algorithm,	which	can	greatly	reduce	the	amount	of	data	by	mean	
shift	voxelization	and	automatically	determine	the	optimal	obser-
vation	 scale	 by	 crown	 projection.	 This	 optimized	 CCE	 algorithm	
consists	of	four	main	steps:	mean	shift	voxelization,	similarity	ma-
trix	construction,	CCE	clustering,	and	Automatic	determination	of	
optimal	scale.

1. Mean shift voxelization.	 Mean	 shift	 is	 a	 nonparametric	 feature-	
space	 mathematical	 analysis	 technique	 and	 has	 been	 used	
for	 cluster	 analysis	 in	 computer	 vision	 and	 image	 processing	
(Comaniciu	&	Meer,	2002).	Pang	et	al.	(2021)	used	this	algorithm	
for	 irregular	voxelization	of	ALS	point	 clouds	and	achieved	 fast	
and	 robust	 results.	 A	 consistent	 voxelization	 program	 is	 adopt,	
and	 the	 amount	 of	 data	 is	 reduced	 by	 approximately	 a	 factor	
of	 10.

2. Similarity matrix construction.	 For	 each	 “individual	 tree”	 point	
clouds	that	has	been	initially	segmented	and	voxelized,	we	con-
struct	the	point-	to-	point	distance	matrix	D:

where di,j =
√
ni × nj ×

(
xi−xj

)2
+
(
yi−yj

)2
+ Vr

(
zi−zj

)2	 represents	
the	variable	related	to	the	distance	between	point	pi	and	point	pj. Vr is 
the	vertical	distance	correction	factor	(value	range	is	0–	1),	which	is	in-
troduced	to	consider	the	incompleteness	of	the	ULS/ALS	point	clouds	
in	the	lower	part	of	the	tree	canopy	due	to	occlusion.	ni	and	nj are the 
weights	of	the	two	voxels,	that	are	used	to	maintain	the	consistency	of	
the	voxel	space	with	the	original	point	clouds.

Next,	the	distance	matrix	(D)	can	be	converted	to	the	similarity	ma-
trix	(S̃)	by	the	Gaussian	kernel	function	(Geng	&	Tang,	2020)	as	follows:

where σ	is	an	empirical	coefficient	that	controls	the	size	of	the	Gaussian	
kernel	function.	The	element	 s̃i,j	represents	the	similarity	between	pi 
and	pj.

The	similarity	matrix	 is	similar	 in	concept	to	the	adjacency	ma-
trix,	but	the	elements	of	the	similarity	matrix	can	be	real	numbers.	
Typically,	the	elements	themselves	are	the	most	similar,	so	the	diag-
onal	elements	of	the	similarity	matrix	are	maximal.

(1)D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 d1,2 … d1,n−1 d1,n

d2,1 0 … … d2,n

… … … … …

dn−1,1 … … 0 dn−1,n

dn,1 dn,2 … dn,n−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)s̃i,j = exp
(
− d2

i,j
∕�2

)

(3)S̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃1,1 s̃1,2 … s̃1,n−1 s̃1,n

s̃2,1 s̃2,2 … … s̃2,n

… … … … …

s̃n−1,1 … … s̃n−1,n−1 s̃n−1,n

s̃n,1 s̃n,2 … s̃n,n−1 s̃n,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

F I G U R E  4 Initial	segmentation	of	ULS	
point	cloud	data	using	WS.	The	results	
are	shown	in	the	side	view	of	the	plot	(a),	
and	in	the	top	view	(b),	individually.	The	
IDs	and	colors	of	segmented	trees	are	
randomly	assigned.	It	is	obviously	suffered	
from	omission	issue.	Therefore,	eight	
under-	segmentation	trees	were	taken	
as	examples	and	manually	selected	in	
subplot	(c).
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Finally,	the	similarity	matrix	needs	to	be	normalized	as	follows:

where D̃	is	the	degree	matrix	of	S	and	di	is	the	degree	of	the	ith	point	
(pi).

3.	 CCE	 clustering.	 First,	 the	 power	 operation	 is	 performed	 on	
the	normalized	 similarity	matrix	 to	obtain	 the	 following	k-	order	
connectivity:

The	entry	 (sk
i,j
)	of	 the	kth	power	 (Sk)	of	 the	similarity	matrix	 (S)	 is	

defined	 as	 the	 k-	order	 connectivity	 between	 pi	 and	 pj	 (denoted	 as	
con(k)

(
pi , pj

)
).	 In	particular,	 the	diagonal	 entry	 sk

i,i
	 is	 defined	as	 the	k-	

order	connectivity	of	point	pi	(denoted	as	con(k)
(
pi , pi

)
).	For	each	k,	the	

k-	order	 relative	connectivity	of	all	points	can	be	calculated,	and	 the	
clustering	centers	will	be	determined	according	to	the	following	rules:	
If	one	point	satisfies	Equation	(6),	it	will	be	a	connection	center	of	the	
graph	and	is	defined	as	a	k-	order	clustering	center	of	the	data.

After	the	clustering	centers	are	determined,	the	relative	connec-
tivity	(rcon(k)(i, j))	is	calculated	according	to	Equation	(7),	and	the	clus-
tering	rules	(p∗)	are	determined	according	to	Equation	(8).	If	we	have	
m	clustering	centers	pci

(
ci ∈ {1, 2, … , n} and i = 1, 2, … ,m

)
,	for	any	

point	pj,	it	will	be	assigned	to	p*,	where	p*	satisfies	Equation	(8).

For	some	datasets,	for	different	values	of	k,	we	may	obtain	the	
same	clustered	data	but	with	slightly	different	clustering	results.	In	
this	situation,	we	can	retain	the	optimal	clustering	results	by	intro-
ducing	the	normalized	cut	as	follows:

where Pl	represents	the	complement	of	Pl	in	P	and	Vol
(
Pl
)
	is	the	sum	of	

k-	order	connectivity	between	all	points	in	Pl	and	all	points	in	P.

4.	 Automatic determination of optimal scale.	 According	 to	 the	
CCE	 clustering,	 the	 clustering	 situation	 of	 different	 scales	
can	 be	 determined.	 When	 k = 1,	 each	 point	 is	 a	 clustering	
center,	 which	 is	 the	 most	 microscopic	 case.	 As	 the	 value	 of	
k	 increases,	 more	 points	 will	 be	 grouped	 together,	 which	 is	
the	 macroscopic	 case.	 We	 need	 to	 determine	 that	 the	 clus-
tering	 results	 of	 the	 optimal	 scale	 and	 correctly	 segment	
individual	 trees.	 For	 this	 purpose,	 we	 project	 each	 scale	 of	
clustering	 result	 point	 clouds	 to	 the	X– Y,	X– Z	 and	Y– Z	 plane,	
respectively	 (Figure 5).	 Then,	we	 determine	whether	 the	 fol-
lowing	 three	 inequalities	hold	 in	each	of	 the	 three	projection	
planes:

(4)

⎧⎪⎪⎨⎪⎪⎩

S= D̃
−1∕2

S̃D̃
−1∕2

D̃=diag
�
d1, d2, … , dn

�

di =

n�
j=1

s̃ij

(5)
⎧
⎪⎨⎪⎩

Sk

sk
i,j

k = 1, 2, …

(6)sk
i,i
> sk

i,j
, j = 1, … , n(j ≠ i)

(7)rcon(k)(i, j) = sk
i,j
∕ sk

i,i

(8)p∗ = argmax
pci

(
rcon(k)

(
pci , pj

))

(9)

⎧
⎪⎪⎨⎪⎪⎩

Ncut
�
P1,P2, … ,Pm

�
=

m�
l=1

�

pi∈Pl ,pj∈
−

Pl

s
(k)

ij
∕Vol

�
Pl
�

Vol
�
Pl
�
=

�
pi∈Pl ,pj∈P

s
(k)

ij

(10)ABS
(
CrownX − CrownY

)
<

CrownX + CrownY

2
(X − Y Plane)

(11)
7 × Xmin + Xmax

8
< XZ

max
<

7 × Xmax + Xmin

8
(X − Z Plane)

F I G U R E  5 Diagram	of	segmented	
point	clouds	projected	to	X– Y,	X– Z,	and	
Y– Z	planes.	The	blue	filled	graph	shows	
the	approximate	outline	of	the	tree	
point	cloud	projected	onto	the	X–	Y	and	
Y–	Z	planes.	CrownX	and	CrownY are the 
crown	widths	along	the	X-	axis	and	Y-	axis	
direction.	XZ

max
 is the x	value	of	the	point	

with	maximum	z	projected	onto	the	X– Z 
plane.	YZ

max
	is	the	corresponding	parameter	

on	the	Y– Z	plane.	Three	constraint	
inequalities	are	list	on	Corresponding	
projection	planes.
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    |  9 of 17LI et al.

CrownX	and	CrownY	are	the	crown	widths	along	the	X-	axis	and	
Y-	axis	 direction.	XZ

max
 is the x	 value	 of	 the	 point	with	maximum	 z 

projected	onto	the	X–	Z	plane,	Xmin	and	Xmax	are	the	maximum	and	
minimum	x	values	in	all	points	projected	to	this	plane,	respectively.	
YZ
max
,	Ymin,	 and	Ymax	 are	 the	 corresponding	 parameters	 on	 the	Y– Z 

plane.	Finally,	we	filter	the	clustering	results	that	satisfy	the	above	
conditions.	If	there	are	multiple	candidate	results,	the	one	with	the	
maximum	number	of	 the	 candidates	will	 be	 selected	 as	 the	best.	
Equations	(10)–	(12)	ensures	that	the	segmented	tree	shape	is	ratio-
nal.	Equation	(10)	requires	that	the	larger	of	the	crown	width	in	the	
X	and	Y	directions	does	not	exceed	three	times	that	of	the	smaller,	
and	 canopies	 that	 exceed	 this	 limit	 are	 rare	 in	 nature.	 The	 sensi-
tivity	 of	 the	 parameters	 of	 Equations	 (11)	 and	 (12)	 is	 analyzed	 in	
Section	4.1.

The	 input	 parameters	 of	 our	 method	 are	 summarized	 in	
Table 4.	In	addition,	for	plantations	with	trees	of	relatively	similar	
growth,	we	followed	the	postprocessing	method	proposed	by	Pang	
et	al.	(2021).	If	the	distance	between	two	adjacent	individual	trees	
is	less	than	the	average	crown	diameter	of	the	corresponding	plot	
and	the	elevation	of	these	two	trees	is	less	than	10 m,	they	will	be	
merged	into	an	individual	tree.	The	average	crown	width	is	calcu-
lated	using	the	segmented	point	clouds	by	our	ITS	algorithm.	The	
watershed	algorithm	and	data	processing	 also	 involve	 the	 corre-
sponding	parameters.	The	sensitivity	analysis	of	these	parameters	
is	not	addressed	 in	this	study,	as	 it	has	been	previously	analyzed	
by	 corresponding	 studies	 (Pang	 et	 al.,	 2016;	Wang	 et	 al.,	 2004).	
Finally,	each	tree	height	and	location	are	automatically	extracted	
by	calculating	the	height	and	geographical	coordinates	of	the	high-
est	point.

2.5  |  Accuracy assessment

LiDAR	point	clouds	with	tree	labels	are	output	after	applying	the	ITS	
method.	Then,	horizontal	location	and	tree	height	are	matching	to	the	
field	reference	data.	The	matching	method	started	from	the	highest	
detected	tree	and	searched	for	the	reference	trees	that	satisfied	the	
height	and	distance	criterion	as	match	candidates.	 If	 a	 farther	can-
didate	 showed	 a	 better	 height	 difference,	 then	 it	 became	 a	 better	
match.	This	process	was	repeated	until	all	detected	trees	have	been	
checked.	If	the	closest	one	with	the	smallest	height	difference	is	the	
matched	detection	tree	previously,	these	two	trees	will	be	treated	as	

a	matched	pair	(Pang	et	al.,	2021).	The	matching	criterion	is	described	
by	Eysn	et	al.	(2015).	Eventually,	a	series	of	matching	parameters	are	
calculated.	TP	 (true	positive)	 is	 the	number	of	correctly	 segmented	
trees;	FN	(false	negative)	is	the	number	of	trees	not	segmented	but	
assigned	to	a	nearby	tree	(omission	error	or	under-	segmentation);	FP	
(false-	positive)	is	the	number	of	trees	that	did	not	exist	but	were	seg-
mented	from	the	point	cloud	(commission	error	or	over-	segmentation).

We	select	extraction	rate	(Rextraction),	matching	rate	(Rmatch),	com-
mission	rate	 (Rcommission),	omission	rate	 (Romission),	and	F	score	 (F)	as	
evaluation	metrics	 (Eysn	et	al.,	2015;	Li	et	al.,	2012).	Here	are	 the	
expressions.

Rmatch,	Rextraction,	and	F	are	the	main	assessment	metrics,	related	
to	 the	 overall	 accuracy,	 and	 the	 closer	 they	 are	 to	 1,	 the	 higher	
the	 accuracy	of	 the	 ITS	 algorithm.	Romission	 and	Rcommission are sec-
ondary	 assessment	metrics	 to	measure	 the	 degree	 of	 under-		 and	
over-	segmentation,	and	the	closer	they	are	to	0,	the	less	under-		or	
over-	segmentation.	The	above	metrics	are	used	for	tree	top	detec-
tion,	and	tree	height	estimation	is	evaluated	by	coefficient	of	deter-
mination	(R2)	and	root	mean	square	error	(RMSE).

3  |  RESULTS

3.1  |  Treetop detection results

Figure 6	 shows	our	 ITS	 results	with	 corresponding	 reference	 tree	
top	locations	of	the	five	plots	located	in	Saihanba.	The	results	of	P2–	
P5	are	visually	pleasing	and	match	well	with	the	reference	positions.	

(12)
7 × Ymin + Ymax

8
< YZ

max
<

7 × Ymax + Ymin

8
(Y − Z Plane)

(13)Rextraction =
Ndetection

Nreference

=
TP + FP

TP + FN

(14)Rmatch =
Nmatch

Nreference

=
TP

TP + FN

(15)Rcommission =
Ncommission

Ndetection

=
FP

TP + FP
= 1 −

Rmatch

Rextraction

(16)Rommission =
Nommission

Nreference

=
FN

TP + FN
= 1 − Rmatch

(17)F = 2 ×
Rmatch ×

Rmatch

Rextraction

Rmatch +
Rmatch

Rextraction

Parameter Description Purpose

Vr The	vertical	distance	correction	
factor

Reducing	the	influence	of	incompleteness	
of	the	ULS/ALS	point	clouds	in	the	lower	
part	of	the	tree	canopy	due	to	occlusion.

� Empirical	coefficient	related	to	
the	Gaussian	kernel

Controlling	the	size	of	the	Gaussian	kernel	
function	when	converting	the	distance	
matrix	into	the	similarity	matrix.

TA B L E  4 Description	of	two	input	
parameters	in	our	ITS	method.

 20457758, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10297 by C

ochrane France, W
iley O

nline L
ibrary on [12/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 17  |     LI et al.

However,	for	P1,	it	is	difficult	to	evaluate	the	segmentation	results	
because	the	tree	tops	of	the	broadleaf	cannot	be	observed	clearly	
on	one	hand,	on	the	other	hand,	the	point	cloud	density	in	this	plot	
is relatively low.

The	 quantitative	 assessment	 results	 are	 presented	 in	Table 5. 
Overall,	 the	 segmentation	 accuracy	 is	 fine	with	 an	 average	match	
rate	 and	 F-	score	 greater	 than	 0.7.	 However,	 there	 is	 some	 over-	
segmentation,	 especially	 in	 P3	 and	 P5	 with	 a	 relatively	 lower	
Romission.	We	checked	ULS	and	TLS	data	carefully	and	found	that	the	
conifers	 in	Sahanba,	especially	 the	 larch,	are	prone	 to	 trunk	bifur-
cation.	A	case	is	shown	in	Figure 7	to	illustrate	the	phenomenon	of	
trunk	bifurcation.	The	phenomenon	can	be	clearly	seen	in	the	TLS	
point	clouds	(Figure 7b,c).	However,	the	tree	trunk	is	not	clearly	vis-
ible	through	the	ULS	point	clouds	due	to	the	occlusion	issue,	which	
causes	it	to	look	similar	to	two	trees	(Figure 7a).

3.2  |  Tree height accuracy evaluation

The	 accuracy	 of	 tree	 height	 extraction	 is	 evaluated	 by	 comparing	
the	 reference	with	 the	matched	 tree	heights.	As	seen	 in	Figure 8,	
all	the	results	are	well	except	for	P1.	P3	and	the	14	plots	of	bench-
mark	dataset	are	the	best	with	R2 = .94,	although	the	RMSE	of	the	
benchmark	 dataset	 is	 1.667 m.	 The	 results	 for	 P2,	 P4,	 and	P5	 are	
relatively	well,	with	R2 = .79	(.74	for	P2)	and	RMSE < 1 m.	In	general,	
our	method	can	accurately	extract	the	tree	height	of	coniferous	and	

mixed	forests.	For	broadleaf	forests,	especially	on	slopes,	the	pre-
cise	extraction	of	tree	height	requires	more	effort.

3.3  |  Comparison with existing methods

To	evaluate	our	approach	more	comprehensively,	we	choose	three	
classical	 ITS	 methods	 for	 comparison,	 including	 the	 WS	 (Wang	
et	al.,	2004),	mark-	controlled	watershed	(denoted	as	MCWS)	(Chen	
et	 al.,	 2006),	 and	 point	 cloud	 region	 growing	 segmentation	 (de-
noted	as	PCS)	 (Li	et	al.,	2012).	The	WS	and	PCS	are	 implemented	
through	the	 lidR	tool	 (Roussel	et	al.,	2020),	and	the	MCWS	imple-
mented	 through	 Digital-	Forestry-	Toolbox	 (https://mpark	an.github.
io/Digit	al-	Fores	try-	Toolb	ox/).	Due	to	the	high	densities	of	the	ULS	
point	 clouds	 in	 P2–	P5,	 the	 PCS	 cannot	 be	 executed	 effectively.	

F I G U R E  6 Diagram	of	the	tree	top	detection	of	five	plots	in	Saihanba.	The	black	discrete	points	are	the	reference	tree	top	coordinates,	
and	the	normalized	point	clouds	with	different	colors	are	the	ITS	results.

TA B L E  5 Results	of	treetop	detection	of	P1–	P5	using	our	ITS	
algorithm.

Plot Rmatch Rextraction F Romission Rcommission

P1 0.61 0.80 0.68 0.39 0.23

P2 0.75 1.24 0.67 0.25 0.39

P3 0.92 1.76 0.66 0.08 0.48

P4 0.71 0.92 0.74 0.29 0.23

P5 0.89 1.34 0.75 0.11 0.34

Average 0.78 1.21 0.70 0.22 0.33
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Therefore,	only	the	results	of	P1	are	available.	For	sample	P2–	5,	we	
use	CloudCompare	software	to	subsample	the	point	clouds	for	the	
PCS	method.	Table 6	shows	the	average	ITS	results	of	P1–	P5.	The	
matching	rate,	F-	score,	and	ommission	rate	of	our	algorithm	are	most	
well	compared	to	the	WS,	MCWS	and	PCS.	The	results	of	the	MCWS	
are	 extremely	 poor,	which	may	be	due	 to	 the	 parameter	 settings,	
and	 the	 reasons	are	analyzed	 in	 the	Section	4.	The	 results	of	 tree	

top	detection	using	the	four	different	methods	in	P1	are	shown	in	
Table 7.	Compared	with	the	other	three	methods,	our	method	gives	
the best results.

Table 8	and	Figure 9	show	the	ITS	results	of	14	public	plots	in	
the	benchmark	dataset.	Compared	with	the	WS,	MCWS,	and	PCS,	
our	method	gives	the	best	matching	rate.	Although	the	F-	score	by	
our	algorithm	is	0.02	lower	than	that	by	MCWS,	our	matching	rate	

F I G U R E  7 A	case	of	trunk	bifurcation	
of	the	larch	tree	in	P3	which	looks	like	
two	trees	over	the	top	of	the	tree.	(a)	
is	the	ULS	point	clouds	and	(b)	is	the	
corresponding	TLS	LiDAR	point	clouds.	(c)	
shows	the	local	zoom	of	the	TLS,	where	
two	similar	bifurcations	are	depicted	by	
dashed	lines.

F I G U R E  8 Tree	height	estimation	results	of	P1–	P5	and	Benchmark	dataset.
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12 of 17  |     LI et al.

is	0.16	higher.	Our	method	also	gives	the	best	matching	rate	com-
pared	to	methods	#1–	#8	described	by	Eysn	et	al.	(2015).	Of	these	
methods,	WS,	 #5,	 #6,	 and	 ours	matched	more	 than	 50%.	All	 the	
four	methods	 give	 over-	segmentation	 result,	 while	 ours	 is	 at	 the	
medium	level.

4  |  DISCUSSION

4.1  |  Sensitivity analysis and parameter settings

For	P1,	the	result	is	relatively	poor	with	the	R2 = .5.	There	are	three	
reasons	for	this:	(1)	the	average	slope	of	this	plot	is	30°,	so	the	point	
cloud	normalization	will	cause	distortion	of	the	trees	(Khosravipour	
et	al.,	2015).	(2)	there	is	distortion	of	the	trunk	of	birch	due	to	the	
natural	environment;	(3)	there	is	no	obvious	top	of	broadleaf	trees,	
which	 is	 different	 from	coniferous	 trees.	 So	 it	 is	 difficult	 to	 accu-
rately	 detect	 tree	 tops	 even	 visually.	 The	 above	 factors	 cause	 er-
rors	in	both	field	measurements	and	algorithm	estimation.	Figure 10 
shows	the	TLS	point	cloud	data	of	P1	and	clearly	confirms	the	three	
analyses	above.

P1	was	the	most	complex	plot	in	this	study,	with	complex	topo-
graphic	conditions,	the	highest	tree	stem	density,	 irregular	canopy	
shape,	and	relatively	low	point	cloud	density.	Therefore,	it	was	used	
for	the	sensitivity	and	parameter	settings	analysis.	For	the	optimized	
CCE,	the	optimal	clustering	scale	is	determined	by	Equations	(10)–	
(12).	With	Equation	(10),	it	is	ensured	that	the	shape	of	the	canopy	
is	reasonable	and	unreasonably	flattened	canopy	is	removed.	With	
Equations	 (11)	and	 (12),	 the	distance	between	the	 top	and	edge	 is	
determined	by	projection	in	two	directions,	and	then,	the	minimum	
distance	threshold	is	set	to	ensure	that	the	top	is	located	near	the	
center	of	the	canopy.	Table 9	demonstrates	the	effect	of	the	mini-
mum	distance	threshold	setting	on	the	results	in	P1.	If	no	minimum	
distance	 is	 set	 (or	 a	 small	 value,	 e.g.,	 1/16	 crown	diameter),	 over-	
segmentation	will	be	very	serious.	However,	if	this	threshold	is	set	
too	 large	 (e.g.,	1/4	crown	diameter),	many	 trees	will	not	be	segre-
gated,	especially	for	broadleaf	forests	with	inconspicuous	tree	tops.	
Therefore,	this	threshold	was	set	to	1/8	crown	diameter	to	ensure	its	
applicability	in	both	coniferous	and	broadleaf	forests.

There	 are	 two	 input	 parameters	 in	 our	 algorithm.	 The	 vertical	
distance	correction	factor,	Vr,	is	to	be	considered	for	ULS/ALS	point	
cloud	clustering.	In	our	study,	Vr	is	set	to	1/6	according	to	the	best	
results	given	by	Pang	et	al.	(2021).	The	empirical	coefficient	related	

TA B L E  6 Tree	top	detection	results	of	P1–	P5	using	three	
different	methods.

Method Rmatch Rextraction F Romission Rcommission

WS 0.74 1.11 0.70 0.26 0.28

MCWS 0.34 0.48 0.46 0.66 0.16

PCS 0.57 0.58 0.71 0.43 0.02

Ours 0.78 1.21 0.70 0.22 0.33

Bolded	values	show	optimal	results.

TA B L E  7 Tree	top	detection	results	of	P1	using	four	different	
methods.

Method Rmatch Rextraction F Romission Rcommission

WS 0.43 0.49 0.57 0.57 0.13

MCWS 0.20 0.20 0.33 0.80 0.00

PCS 0.38 0.38 0.55 0.62 0.00

Ours 0.61 0.80 0.68 0.39 0.23

Bolded	values	show	optimal	results.

TA B L E  8 Tree	top	detection	results	of	14	public	plots	in	Europe	
using	four	different	methods.

Method Rmatch Rextraction F Romission Rcommission

WS 0.52 1.28 0.47 0.48 0.47

MCWS 0.21 0.35 0.28 0.79 0.23

PCS 0.38 0.50 0.50 0.62 0.19

Ours 0.56 1.41 0.48 0.44 0.50

Bolded	values	show	optimal	results.

F I G U R E  9 Tree	top	detection	results	of	14	public	plots	in	Europe	using	our	and	other	eight	methods.	#1–	#8	correspond	to	the	methods	
described	by	Eysn	et	al.	(2015).
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    |  13 of 17LI et al.

to	the	Gaussian	kernel,	σ,	is	was	analyzed	in	our	study.	The	variation	
of	 extraction	 rate,	matching	 rate,	 commission	 rate,	 omission	 rate,	
and	F score with σ2	is	shown	in	Figure 11.	It	can	be	seen	that	these	
five	evaluation	metrics	are	very	stable,	indicating	that	our	algorithm	
is robust.

To	fairly	compare	various	ITS	methods,	the	same	canopy	struc-
ture	related	parameters	were	set	in	all	test	plots	(Table 10).	These	
parameters	are	either	program	default	parameters	or	determined	
by	reference	to	previous	studies.	For	the	parameter	related	to	the	

point	cloud	density,	that	is,	the	resolution	of	the	CHM,	we	set	this	
parameter	 to	 0.2 m	 for	ALS	 generation	 and	0.1 m	 for	ULS	 gener-
ation.	 For	 the	MCWS,	 the	 relationship	 between	 tree	 height	 and	
canopy	radius	is	required.	However,	field	measurements	are	diffi-
cult	to	obtain	sufficient	accuracy	and	enough	data,	so	we	refer	to	
the	formulas	by	Popescu	and	Wynne	(2004)	(See	Table 10).	In	the	
previous	section,	the	MCWS	gave	poor	results	in	many	plots.	This	
is	 due	 to	 the	 inappropriate	 relationship	 between	 the	 tree	 height	
and	 crown	 radius	 within	 the	 plots,	 and	 not	 the	 algorithm	 itself.	
The	properties	of	different	types	of	trees	should	be	complex,	but	
due	to	 field	measurements	constraints,	only	 three	 fixed	 formulas	
are	given	for	broadleaf,	coniferous,	and	mixed	forests	(Popescu	&	
Wynne,	2004).

4.2  |  Efficient implementation

With	the	development	of	LiDAR	hardware	technology,	high	quality	
and	density	ULS/ALS	LiDAR	point	clouds	are	emerging.	Therefore,	
ITS	 algorithms	 are	 also	 expected	 to	 be	 able	 to	 process	 data	 effi-
ciently.	Thanks	to	the	initial	segmentation	using	the	watershed	and	
the	mean	shift	voxelization,	the	execution	speed	of	the	CCE	algo-
rithm	has	been	greatly	improved.	The	processing	speed	of	the	im-
proved	CCE	algorithm	was	tested	with	the	configuration	of	a	Core	
Intel(R)	Core(TM)	 i7-	8700	CPU@3.20GHz	Processor,	40 GB	RAM,	
an	 NVIDIA	 GeForce	 GTX	 1660	 graphics	 card	 and	 the	Microsoft	
Windows	10	operating	system.	The	results	are	shown	in	Table 11. 
We	 did	 not	 compare	 the	 original	 CCE	 algorithm	 because	 there	

Top- edge min. distance Rmatch Rextraction F Romission Rcommission

1/4	crown	diameter 0.44 0.51 0.59 0.56 0.13

1/8	crown	diameter 0.61 0.80 0.68 0.39 0.23

1/16	crown	diameter 0.79 1.39 0.66 0.21 0.43

No	limitation 0.95 1.99 0.64 0.05 0.52

Bolded	values	show	optimal	results.

TA B L E  9 Setting	of	the	minimum	
distance	threshold	from	the	top	to	the	
edge	for	the	trees	in	P1.

F I G U R E  11 Variations	of	the	tree	top	
detection	assessment	metrics	with	σ2.

F I G U R E  1 0 Side	view	of	the	TLS	point	cloud	data	of	P1.
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14 of 17  |     LI et al.

was	not	enough	memory	in	the	device	we	used	for	the	method	to	
run	successfully.	For	the	P3	with	50 × 50 m	with	a	density	of	over	
1500 pts/m2,	the	time	to	run	the	algorithm	is	within	6 min.	Our	ITS	
method	 has	 the	 potential	 to	 meet	 the	 upcoming	 era	 of	 massive	
point	clouds.

4.3  |  Future prospects

By	segmenting	the	ULS/ALS	point	clouds,	each	tree	coordinates,	
height,	 and	 crown	 width	 can	 be	 further	 extracted.	 The	 open	
source	 code	 we	 provide	 already	 enables	 this	 function.	 The	 ac-
curacy	of	tree	top	detection	and	tree	height	extraction	has	been	
demonstrated	and	discussed	in	this	study.	However,	the	accuracy	
of	crown	width	estimation	is	 lacking.	This	 is	due	to	the	difficulty	
in	finding	a	valid	and	accurate	method	for	crown	width	measure-
ment.	We	have	tried	to	manually	extract	the	crown	width	of	each	
tree	 from	 the	 TLS	 LiDAR	 point	 clouds.	 However,	 this	 attempt	
failed	because	it	was	so	time-	consuming	and	labor-	intensive,	and	
in	many	cases,	it	was	impossible	to	distinguish	each	tree	manually.	
Perhaps	in	the	future,	the	enhancement	of	TLS	ITS	algorithms	and	
open	source	of	the	code	will	facilitate	the	research	of	crown	width	
estimation.	 In	addition,	 the	method	process	can	be	 further	opti-
mized	 in	 the	 future,	 for	 example,	 tree-	top	detection	 is	 added	 to	
the	CCE	method.	Currently,	we	have	not	found	a	method	that	can	
handle	complex-	shaped	canopies	on	a	 large	scale.	Therefore,	we	
use	the	simple	qualifications	of	Equations	(10)–	(12).	In	the	future,	

it	is	necessary	to	improve	the	accuracy	in	complex	forest	and	ter-
rain	conditions.

5  |  CONCLUSION

Individual	 tree	 segmentation	using	ALS	or	ULS	data	 is	 still	 a	 chal-
lenge	due	 to	 the	 complexity	 of	 forest	 structure.	 In	 this	 paper,	we	
proposed	a	new	 individual	 tree	 segmentation	method,	which	con-
sists	of	the	WS	algorithm,	and	the	optimized	CCE	algorithm.	We	op-
timized	the	CCE	algorithm	to	make	it	more	efficient,	and	the	optimal	
segmentation	scale	can	be	determined	automatically	by	taking	into	
account	 the	 structural	 characteristics	of	 the	 canopy.	The	new	 ITS	
method	can	take	full	advantages	of	the	efficient	of	the	WS	and	the	
accuracy	of	CCE	algorithm.	Additionally,	the	new	method	is	robust	
for	the	complex	plots	and	insensitive	for	the	parameters.	Tree	coor-
dinates	and	heights	are	extracted	and	output	directly	automatically.

Validation	at	five	different	forest	types	of	plots	in	China	and	14	
public	plots	in	Europe	showed	the	accuracy	of	both	treetop	detec-
tion	and	tree	height	estimation.	Compared	with	the	other	11	 indi-
vidual	tree	segmentation	methods,	our	method	gives	better	results.	
Through	sensitivity	analysis	for	 input	parameters,	we	find	that	the	
algorithm	 is	 robust.	 Efficient	 processing	 speed	 enables	 it	 to	meet	
the	high-	density	point	clouds	of	4000 pts/m2.	Our	method	 is	both	
practical	and	applicable	and	can	be	used	to	extract	the	structural	pa-
rameters	of	individual	trees	over	large	areas	for	forest	management,	
carbon	stock	estimation,	and	habitat	mapping.

TA B L E  1 0 Parameter	setting	in	different	methods	used	for	comparison.	h	stands	for	tree	height.

Algorithms Parameters Values Explanation

PCS Zu 15	[m] Height	threshold

dt1 1.5	[m] Spacing	threshold	when	tree	height > Zu

dt2 2	[m] Spacing	threshold	when	tree	height < Zu

R 2	[m] Search	radius

WS Tolerance 1	[m] The	min	height	of	a	tree	between	its	top	and	
another	tree

Ext 2	[pixel] The	radius	of	the	neighborhood	in	pixels	for	
detection	of	neighboring

MCWS Search	radius (3.09632 + 0.00895	*	h2)/2 Deciduous	forest

(3.75105–	0.17919	*	h + 0.01241	*	h2)/2 Coniferous	forests

(2.51503 + 0.00901	*	h2)/2 Mixed	forests

Ours Vr 1/6 Vertical	distance	correction	factor

σ
√
30 Gaussian	kernel

Plot P1 P2 P3 P4 P5

Point	density(pts/m2) 298 3295 1636 1473 3976

Size	(m2) 900 900 2500 900 900

Cost	time	(s) 8.439 192.340 357.954 87.199 231.257

Bolded	values	show	optimal	results.

TA B L E  11 Program	runtime	in	
different	plots.
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