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Abstract
Light detection and ranging (LiDAR) data can provide 3D structural information of 
objects and are ideal for extracting individual tree parameters, and individual tree 
segmentation (ITS) is a vital step for this purpose. Various ITS methods have been 
emerging from airborne LiDAR scanning (ALS) or unmanned aerial vehicle LiDAR 
scanning (ULS) data. Here, we propose a new individual tree segmentation method, 
which couples the classical and efficient watershed algorithm (WS) and the newly 
developed connection center evolution (CCE) clustering algorithm in pattern recog-
nition. The CCE is first used in ITS and comprehensively optimized by considering 
tree structure and point cloud characteristics. Firstly, the amount of data is greatly 
reduced by mean shift voxelization. Then, the optimal clustering scale is automatically 
determined by the shapes in the projection of three different directions. We select 
five forest plots in Saihanba, China and 14 public plots in Alpine region, Europe with 
ULS or ALS point cloud densities from 11 to 3295 pts/m2. Eleven ITS methods were 
used for comparison. The accuracy of tree top detection and tree height extraction 
is estimated by five and two metrics, respectively. The results show that the match-
ing rate (Rmatch) of tree tops is up to 0.92, the coefficient of determination (R

2) of tree 
height estimation is up to .94, and the minimum root mean square error (RMSE) is 
0.6 m. Our method outperforms the other methods especially in the broadleaf forests 
plot on slopes, where the five evaluation metrics for tree top detection outperformed 
the other algorithms by at least 11% on average. Our ITS method is both robust and 
efficient and has the potential to be used especially in coniferous forests to extract 
the structural parameters of individual trees for forest management, carbon stock 
estimation, and habitat mapping.

K E Y W O R D S
airborne LiDAR scanning, connection center evolution, individual tree segmentation, 
unmanned aerial vehicle LiDAR scanning, watershed

http://www.ecolevol.org
https://orcid.org/0000-0002-7323-8488
mailto:
https://orcid.org/0000-0003-3923-6056
http://creativecommons.org/licenses/by/4.0/
mailto:xiedonghui@bnu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.10297&domain=pdf&date_stamp=2023-07-12


2 of 17  |     LI et al.

1  |  INTRODUC TION

Forests, as a vital part of terrestrial ecosystems, play an important 
role in global climate change and biodiversity (Liang et al.,  2016; 
Seidl et al., 2017). It is challenging to conduct resource surveys of 
forests, especially at the individual tree scale. In the past, forest 
resource surveys often relied on field measurements, which were 
time-consuming and laborious. In recent years, remote sensing data 
have been increasingly applied to forestry. 2D optical images have 
been used to estimate forest morphological parameters (e.g., can-
opy cover and leaf area index) (Korhonen et al.,  2017). However, 
these data are unable to retrieval three dimensional (3D) structural 
information of trees (Zheng et al., 2021). Light detection and rang-
ing (LiDAR) data provide 3D structural information of objects and 
are ideal for extracting individual tree parameters of forests (Lefsky 
et al., 2002). There are two main categories of LiDAR for extracting 
individual tree parameters: ground-based and air-based. Ground-
based LiDAR, such as terrestrial LiDAR scanning (TLS), has a high 
distance accuracy of the measurement and denser points within the 
limited extent, which is suitable for delicate structural parameter ex-
traction at the plot scale (Burt et al., 2019; Tao et al., 2015). Air-based 
LiDAR including airborne LiDAR scanning (ALS) and unmanned aerial 
vehicle LiDAR scanning (ULS) can be applied to survey 3D informa-
tion in a bigger region than TLS with a little lower points density. 
Considering that ALS and ULS can acquire the 3D structural charac-
teristics of trees on a large scale in complex terrain conditions, they 
are often used in forest survey (Guo et al., 2020).

Individual tree segmentation (ITS) also known as individual tree 
detection (ITC) or individual tree and crown delineation (ITCD) from 
point clouds generated via ALS or ULS is a considerable challenge 
(Lindberg & Holmgren, 2017). There are mainly three categories of 
methods for ITS based on ALS data, including raster-based methods, 
point-based methods, and joint methods. The raster-based methods 
first convert 3D point clouds into 2D rasters, such as canopy height 
models (CHMs) or digital surface models (DSMs), and then use image 
processing or computer vision techniques for ITS. Specific algo-
rithms include the watershed (Jing et al., 2012; Wang et al., 2004), 
region growing (Dalponte & Coomes, 2016; Solberg et al., 2006), val-
ley following (Katoh & Gougeon, 2012; Leckie et al., 2005), marker-
controlled watershed (Chen et al.,  2006; Hu et al.,  2014), variable 
window filtering (Hyyppa et al.,  2001), mean-shift clustering (Dai 
et al.,  2018), and graph-cut (Strîmbu & Strîmbu, 2015) algorithms. 
These methods are usually more efficient, but the part of the in-
formation will inevitably be lost when the 3D point clouds are con-
verted into 2D rasters (Zhen et al.,  2016). In addition, CHMs or 
DSMs may also have pits, which dramatically affect the accuracy of 
the segmentation algorithm (Yang et al., 2019; Zhang et al., 2020). 
The point-based methods directly utilize primitive or voxelized point 

clouds for ITS, such as point cloud region growing (Li et al., 2012; 
Lu et al.,  2014), layer stacking (Ayrey et al.,  2017), k-means 
(Lindberg et al., 2014), and graph cut (Lindberg et al., 2014; Williams 
et al., 2019). These methods can better use the 3D structure infor-
mation of the point cloud data and further improve segmentation 
accuracy (Zhen et al.,  2016). However, these methods also suffer 
from complex parameters, poor generalizability, or low efficiency. 
The joint methods combine the first two in the hope of achieving a 
better result. For example, Tochon et al. (2015) combined the water-
shed and k-means algorithms to ITS in conifer and broadleaf forests. 
Reitberger et al. (2009) first extracted the trunk using the watershed 
algorithm and then used the extracted trunk as a priori knowledge 
of normalized cut. The joint methods combine the advantages of the 
first two categories of methods and therefore can improve the seg-
mentation accuracy, but will also inherit both the disadvantage of 
the raster-  and point cloud-based methods. In some studies, data 
from ALS and ULS have not been distinguished because of the simi-
larity of their data collection principles (Yun et al., 2021). But in fact 
they differ significantly in point density. The point density of ALS is 
typically limited to 10 points/m2, while the point density of ULS can 
range from 10 to t1000 points/m2 depending on the flight altitude 
and sensor characteristics (Kellner et al., 2019; Lu et al., 2014). As a 
result, ULS usually contains more detailed information than ALS. ITS 
studies for ULS have been conducting to achieve better segmen-
tation result. For example, Wallace et al.  (2014), Balsi et al.  (2018) 
and Yin and Wang (2019) used ULS for ITS in homogenous forest. 
Jaskierniak et al.  (2021) develop a bottom-up approach of ITS for 
mixed species eucalypt forests. Although these studies have get 
good results, the forest scenes are homogenous or specific.

Several critical issues about the presented ITS methods of ALS 
and ULS are summarized as follows: (1) There is an urgent need to 
propose more general and flexible methods that are not specific to 
data sources or forest types. Vauhkonen et al. (2012) compared six 
different ITS methods and found that the forest structure strongly 
affected the performance of all algorithms. Wang et al.  (2016) 
found that point density was a highly influential factor in the per-
formance of the methods that use point cloud data. Robust meth-
ods that are not sensitive to point density (both suit for ALS and 
ULS) and can be applied to coniferous, broadleaf, and mixed for-
ests are rarely seen in the current studies. (2) There is an urgent 
need to propose methods that are specific to certain challenging 
forest types or scenarios. Dense vegetation, undulating terrain, 
differences in canopy shape and size, etc. can make it difficult to 
ITS. It is necessary to analyze the mechanism of the impact of spe-
cial scenarios on ITS and propose targeted solutions. For example, 
the issue of omission (under-segmentation) is a big challenge for 
most ITS methods for dense forests (Table 1). A summary about 
under- and over-segmentation percentages of some ITS methods 
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is listed in Table 1. According to the study of Li et al. (2012), when 
the tree stem density increases from 0.05 to 0.07 trees/m2, the 
percentage of omission greatly increases from 15% to 29% even 
in conifer forests. Broadleaf and mixed forests even have bigger 
omission fractions than conifers because of the complex struc-
tures and various species of trees. The reason for these results 
is that there is a severe mutual shading effect among the trees 
in the dense forest. Therefore, methods that make full use of the 
detailed information in the point cloud are needed.

Joint ITS methods take the advantages of both the high effi-
ciency of the raster-based methods and the high accuracy of the 
point-based methods, which have better development prospects. 
The basic idea of the joint methods is to use the raster-based meth-
ods for initial segmentation and then the point-based methods for 
fine segmentation. Many point clustering algorithms in pattern 
recognition can be used for fine segmentation, such as k-means 
(Lindberg et al.,  2014), mean-shift (Dai et al.,  2018), and graph-
based algorithms (Lindberg et al.,  2014; Williams et al.,  2019). 
However, these algorithms directly rely on the input parameters, 
and different parameters may yield very different results (Geng & 
Tang, 2020). Therefore, it is necessary to develop a robust clus-
tering algorithm that does not depend excessively on the input 
parameters.

In this study, we propose a new joint individual tree segmenta-
tion algorithm coupled with the watershed and optimized connec-
tion center evolution algorithm. Firstly, we use a pit-free canopy 
height model to implement initial segmentation based on the 
watershed (WS) algorithm, which has the advantages of high ef-
ficiency. Secondly, we introduce a new clustering algorithm called 
connection center evolution (CCE), which extends the concept of 
the number of paths in graph theory to the case of arbitrary real 
numbers and can automatically skip the unreasonable number of 
clusters (Geng & Tang, 2020). and then fine segmentation based 

on the optimized CCE algorithm, which reduced data amount by 
voxelization and determines the optimal clustering scale by differ-
ent planar projections.

The motivation of this study is to provide individual tree at-
tributes such as height and location for the construction of large-
scale digital forestry. Therefore, a general and efficient ITS method 
is expected. For this purpose, ALS and ULS data from different 
forest types, such as coniferous, broadleaf and mixed forests, with 
different point cloud densities were used and validated by location 
and tree height. This paper is organized according to the following 
structure. In Section 1, we introduce the overview of our study 
site and datasets and describe how the data are preprocessed. 
The basic principle and framework of our method are explained 
in Section 2. In Section 3, the results and analysis are displayed. 
The discussion and conclusion are explained in Sections 4 and 5, 
respectively.

2  |  MATERIAL S AND METHODS

2.1  |  Study site and datasets

2.1.1  |  Study area

Our study plots are located in Saihanba National Forest Park, China 
(42°28′54″ N, 117°16′28″ E). The vegetation types are varied, and 
the main forest types include deciduous coniferous forests, ever-
green coniferous forests, mixed coniferous forests, and broadleaf 
forests. The major tree species include the larch trees (Pincus syl-
vestris var. mongolica Litv.), Mongolian pine (Larix principis-rupprechtii 
Mayr), and birch trees (Betula platyphylla). Saihanba National Forest 
Park is a multifunctional botanical park integrating scientific re-
search and plant species collection.

TA B L E  1 Segmentation accuracy of several ITS methods affected by tree types and density.

Algorithms Type
Density 
(trees/m2)

Matched 
(%)

Omitted 
(%)

Committed 
(%) Reference

Point Cloud Region 
Growing

Conifer 0.05 85 15 0 Li et al. (2012)

0.06 74 26 0

0.07 71 29 0

Marker-controlled 
Watershed

Deciduous trees & 
Conifer

Unknown 74 26 8 Hu et al. (2014)

Point-based Algorithm Mixed mountainous 
forest

0.02 75 25 12 Véga et al. (2014)

Conifer 0.02 93 7 2

Broadleaf 0.05 80 20 14

Bottom-up Region 
Growing

Deciduous- broadleaf 0.02 84 16 3 Lu et al. (2014)

Marker-controlled 
Watershed

Broadleaf Unknown ~70 ~30 0 Zheng et al. (2021)

Note: Matched (%) = the number of correctly segmented trees/the number of trees in plots; Omitted (%) = the number of under-segmented trees/the 
number of trees in plots; Committed (%) = the number of over-segmented trees/the number of trees in plots.
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2.1.2  |  Plots

We selected five forest plots for the validation (Figure  1). P1 is a 
deciduous broadleaf forest plot (birch); P2 is a mixed forest plot 
containing deciduous coniferous and evergreen coniferous and de-
ciduous broadleaf (mixed with aspen, larch, Mongolian pine, spruce, 
and birch); P3 is a deciduous coniferous forest plot (larch); P4 and 
P5 are both evergreen coniferous forests (including spruce and 
Mongolian pine, respectively). The area of the plots is 30 m × 30 m or 
50 m × 50 m, and the average tree density of all 5 plots is 0.10 trees/
m2. The specific information of these plots is shown in Table 2.

2.2  |  Data acquisition and preprocessing

The data in this study include both point cloud data and field meas-
urement data. Point cloud data in each plot were obtained by ULS 
and TLS devices. ULS data were used to test the ITS methods, while 
the combination of TLS and field measurement data is used to obtain 
accurate reference locations for each tree. It is extremely difficult 
to measure the height of a large number of single trees in the field, 
especially for our study area where the tree height is usually greater 
than 10 m. Therefore, we merged the ULS and TLS data and then 
manually extracted the tree height of each tree as reference. The 
reference tree height and location were also used to evaluate the 
ITS methods.

2.2.1  |  Acquisition of LiDAR and field data

The specific data include the following three types. (1) ULS point 
clouds: The ULS data were obtained in July 2022 using RIEGL 

VUX-1UAV mounted on the DJI M600 platform. The drone flies at 
an altitude of approximately 50–200 m based on the topography 
and tree height of the different plots. The specific ULS point cloud 
densities of each plot are shown in Table  2. (2) TLS point clouds: 
A Riegl VZ-1000 terrestrial laser scanner was used to obtain multi-
station scanning data at the sampling center and corners in order 
to relieve the occlusion issue. Depending on plot size and canopy 
characteristics, 9–17 scanning stations were set up. (3) Field data: 
Fieldwork was also carried out in August 2022. We used HI TARGET 
Qstar 8 Mobile GPS to locate the center points of the plots. The lo-
cation of each tree in all plots was checked and corrected by manual 
field surveys according to tree locations extracted from TLS (see 
Section 2.2.2). We did not use GPS to locate each tree because of 
the large uncertainty in positioning in the understory.

2.2.2  |  Data preprocessing

Data preprocessing for the ULS, TLS, and field trunk position data 
includes the four-step operations, which are illustrated intuitively 
in Figure 2. (1) Registration: ULS and TLS data were manually reg-
istered with each other to avoid positioning bias between these 
two datasets by manually selecting control points (Figure 2c). (2) 
Ground filtering: The cloth simulation filter (CSF) proposed by 
Zhang et al.  (2016) was used to separate ground and nonground 
point clouds. The ULS filtering results are shown in Figure 2d. (3) 
Raster generation: After filtering, DTM (Digital Terrain Model) and 
CHM were generated using lidR tools (Roussel et al., 2020). Grid 
resolutions were set to 0.05 or 0.1 m for ULS data according to 
the point density in the specific plots. The Delaunay triangula-
tion (TIN) algorithm was used for spatial interpolation and DTM 
generation (Axelsson, 2000). The pit-free algorithm developed by 

F I G U R E  1 Plots location in the study 
area (a). The tree types of five plots (P1–
P5) are birch (b), mixed (c), larch (d), spruce 
(e), and Mongolian pine (f), respectively. 
All plots photographs are clipped from 
UAV RGB images.

 20457758, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10297 by C

ochrane France, W
iley O

nline L
ibrary on [12/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 17LI et al.

Khosravipour et al.  (2014) was used to generate pit-free CHMs 
(see Section 2.4.1). These CHMs are used as the input of the algo-
rithm, and DTMs are used to normalize the ULS point clouds. (4) 
Tree Location & Height Determination: TLS data were segmented 
with a height threshold value of approximately 1.5 m. Only point 
clouds less than 1.5 m were kept. After that, tree stems could be 
seen clearly through segmented TLS data (Figure 2g). Then, tree 
location was corrected by fieldwork according to extracted tree 
stems. Finally, according to the corrected tree stems distribution, 
each tree height was measured manually using ULS point cloud. 
The obtained positions and tree heights were used for the valida-
tion of the individual tree segmentation algorithms as detailed in 
the results section.

2.3  |  Benchmark airborne LiDAR point clouds

To demonstrate the applicability of the ITS method in different 
study areas, forest types, and point cloud densities, we used a 
benchmark airborne LiDAR point cloud dataset with individual 
tree inventory data in the Alpine Space, Europe (Eysn et al., 2015). 
This dataset includes 14 different plots located in four European 
countries and can be downloaded from the NEWFOR website 

(https://www.newfor.net/). The detailed descriptions of these 
plots are shown in Table 3. Due to the low point cloud densities in 
these plots, the resolutions of CHMs and DTMs generated by ALS 
point clouds were set to 0.2 m.

2.4  |  The method

Our ITS method consists of three main components: pit-free CHM 
generation, initial segmentation using the WS, and fine segmentation 
using the optimized CCE. The implementation is shown in Figure 3.

2.4.1  |  Pit-free CHM generation

The pit-free CHM can eliminate the pits and thus reduce over-
segmentation (Yang et al.,  2019). First, the nonground points are 
normalized according to the DTMs. Then, the normalized point 
clouds are horizontally segmented at 0, 2, 5, 10, and 15 m. For each 
segmented layer, multiple-level CHMs are generated using the TIN 
algorithm according to the highest point. Finally, the pit-free CHM 
is generated by taking the maximum value of these multiple-level 
CHMs in the corresponding pixels (Khosravipour et al., 2014).

Plot Tree type
Average 
height (m)

Number 
of trees

Stem density 
(trees/m2)

Point density 
(pts/m2)

Size ​
(m2)

P1 Birch 15 122 0.14 298 30 × 30

P2 Mixed 18 89 0.10 3295 30 × 30

P3 Larch 21 121 0.05 1636 50 × 50

P4 Spruce 15 87 0.10 1473 30 × 30

P5 Mongolian pine 16 87 0.10 3976 30 × 30

TA B L E  2 Characteristics of five forest 
plots.

F I G U R E  2 Data preprocessing procedure including (1) Registration; (2) Ground Filtering; (3) Raster Generation; (4) Tree Location and 
Height Determination.
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2.4.2  |  Initial segmentation using the WS

The WS is an image region segmentation method, which takes the 
similarity with the neighboring pixels as an essential reference in the 
segmentation process so that the pixels with similar spatial locations 
and similar grayscale values (height value in the CHM) are connected 
to form a closed contour (Wang et al., 2004). Here, the lidR tools de-
veloped by Roussel et al.  (2020) are used to implement the WS and 
get the initial segmentation results. There are two input parameters: 
height tolerance (denoted as tolerance) and neighborhood search ra-
dius (denoted as ext). Tolerance represents the minimum height of the 
object in the units of image intensity between its highest point (seed) 
and the point where it contacts another object (checked for every con-
tact pixel). If the height is smaller than the tolerance, the object will 
be combined with one of its neighbors, which is the highest. Ext rep-
resents the radius of the neighborhood in pixels for the detection of 
neighboring objects. A higher ext value smoothes out small objects. 
Figure 4 shows an example of the ITS results by the WS. Consistent 
with Table 1, the method suffers from significant under-segmentation.

2.4.3  |  Fine segmentation using the optimized CCE

In this part, the CCE algorithm is optimized and used for fine seg-
mentation. The CCE first constructs the similarity matrix between 
each point, then performs the power multiplication operation on 
the similarity matrix continuously, and finally determines the ag-
gregation center and the number of clusters by comparing the el-
ement sizes of the similarity matrix after each power operation. 
The CCE is considered an efficient and elegant clustering algo-
rithm in Pattern Recognition (Geng & Tang, 2020). Concepts such 
as the number of walks and undirected graph in graph theory are 
extended, and the implementation of the CCE involves only the 
matrix power operation and does not require any human interven-
tion. It suggests appropriate observation scales and provides cor-
responding clustering results. Here, we extend this algorithm for 
ITS of LiDAR point clouds. However, there are two issues in the 
original CCE algorithm. First, it is challenging to be implemented 
on point clouds with a large amount of data because of heavy com-
putations. Second, it does not specify how to determine the most 

TA B L E  3 Characteristics of 14 forest plots in the Alpine Space of Europe. The plot numbers are discontinuous because the data of 05, 12, 
13, and 14 plots are not available.

Plot Tree type
Average 
height (m)

Number of 
trees

Stem density 
(trees/m2)

Point density 
(pts/m2)

Size 
(m2) Study area

01 Fir, beech 17 359 0.04 13 10,000 Saint-Agnan, 
France

02 Scots pine, larch, spruce 18 106 0.08 11 1300 Cotolivier, 
Italy03 Scots pine, larch 17 49 0.04

04 Larch, sycamore 13 22 0.02

06 Spruce 14 107 0.04 22 3000 Montafon, 
Austria

07 Spruce, larch, fir 16 49 0.04 95–121 1300 Asiago, Italy

08 Larch, spruce, fir, sycamore, 
poplar

14 235 0.19

09 Spruce, fir 24 80 0.07 11

10 Spruce, fir, beech 17 110 0.09

11 14 183 0.13

15 Fir, spruce, beech 23 53 0.03 30 2000 Leskova, 
Slovenia16 25 37 0.02

17 Fir, spruce, beech, sycamore, 
elm

21 117 0.06

18 Fir, beech, sycamore 25 92 0.05

F I G U R E  3 The implementation of the ITS method. Three steps are included: (1) Pit-free CHM generation; (2) initial segmentation using 
the WS; (3) fine segmentation using the optimized CCE.
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appropriate observation scale. To this end, we optimized the CCE 
algorithm, which can greatly reduce the amount of data by mean 
shift voxelization and automatically determine the optimal obser-
vation scale by crown projection. This optimized CCE algorithm 
consists of four main steps: mean shift voxelization, similarity ma-
trix construction, CCE clustering, and Automatic determination of 
optimal scale.

1.	 Mean shift voxelization. Mean shift is a nonparametric feature-
space mathematical analysis technique and has been used 
for cluster analysis in computer vision and image processing 
(Comaniciu & Meer, 2002). Pang et al. (2021) used this algorithm 
for irregular voxelization of ALS point clouds and achieved fast 
and robust results. A consistent voxelization program is adopt, 
and the amount of data is reduced by approximately a factor 
of 10.

2.	 Similarity matrix construction. For each “individual tree” point 
clouds that has been initially segmented and voxelized, we con-
struct the point-to-point distance matrix D:

where di,j =
√
ni × nj ×

(
xi−xj

)2
+
(
yi−yj

)2
+ Vr

(
zi−zj

)2 represents 
the variable related to the distance between point pi and point pj. Vr is 
the vertical distance correction factor (value range is 0–1), which is in-
troduced to consider the incompleteness of the ULS/ALS point clouds 
in the lower part of the tree canopy due to occlusion. ni and nj are the 
weights of the two voxels, that are used to maintain the consistency of 
the voxel space with the original point clouds.

Next, the distance matrix (D) can be converted to the similarity ma-
trix (S̃) by the Gaussian kernel function (Geng & Tang, 2020) as follows:

where σ is an empirical coefficient that controls the size of the Gaussian 
kernel function. The element s̃i,j represents the similarity between pi 
and pj.

The similarity matrix is similar in concept to the adjacency ma-
trix, but the elements of the similarity matrix can be real numbers. 
Typically, the elements themselves are the most similar, so the diag-
onal elements of the similarity matrix are maximal.

(1)D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 d1,2 … d1,n−1 d1,n

d2,1 0 … … d2,n

… … … … …

dn−1,1 … … 0 dn−1,n

dn,1 dn,2 … dn,n−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)s̃i,j = exp
(
− d2

i,j
∕�2

)

(3)S̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃1,1 s̃1,2 … s̃1,n−1 s̃1,n

s̃2,1 s̃2,2 … … s̃2,n

… … … … …

s̃n−1,1 … … s̃n−1,n−1 s̃n−1,n

s̃n,1 s̃n,2 … s̃n,n−1 s̃n,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

F I G U R E  4 Initial segmentation of ULS 
point cloud data using WS. The results 
are shown in the side view of the plot (a), 
and in the top view (b), individually. The 
IDs and colors of segmented trees are 
randomly assigned. It is obviously suffered 
from omission issue. Therefore, eight 
under-segmentation trees were taken 
as examples and manually selected in 
subplot (c).
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8 of 17  |     LI et al.

Finally, the similarity matrix needs to be normalized as follows:

where D̃ is the degree matrix of S and di is the degree of the ith point 
(pi).

3.	 CCE clustering. First, the power operation is performed on 
the normalized similarity matrix to obtain the following k-order 
connectivity:

The entry (sk
i,j
) of the kth power (Sk) of the similarity matrix (S) is 

defined as the k-order connectivity between pi and pj (denoted as 
con(k)

(
pi , pj

)
). In particular, the diagonal entry sk

i,i
 is defined as the k-

order connectivity of point pi (denoted as con(k)
(
pi , pi

)
). For each k, the 

k-order relative connectivity of all points can be calculated, and the 
clustering centers will be determined according to the following rules: 
If one point satisfies Equation (6), it will be a connection center of the 
graph and is defined as a k-order clustering center of the data.

After the clustering centers are determined, the relative connec-
tivity (rcon(k)(i, j)) is calculated according to Equation (7), and the clus-
tering rules (p∗) are determined according to Equation (8). If we have 
m clustering centers pci

(
ci ∈ {1, 2, … , n} and i = 1, 2, … ,m

)
, for any 

point pj, it will be assigned to p*, where p* satisfies Equation (8).

For some datasets, for different values of k, we may obtain the 
same clustered data but with slightly different clustering results. In 
this situation, we can retain the optimal clustering results by intro-
ducing the normalized cut as follows:

where Pl represents the complement of Pl in P and Vol
(
Pl
)
 is the sum of 

k-order connectivity between all points in Pl and all points in P.

4.	 Automatic determination of optimal scale. According to the 
CCE clustering, the clustering situation of different scales 
can be determined. When k = 1, each point is a clustering 
center, which is the most microscopic case. As the value of 
k increases, more points will be grouped together, which is 
the macroscopic case. We need to determine that the clus-
tering results of the optimal scale and correctly segment 
individual trees. For this purpose, we project each scale of 
clustering result point clouds to the X–Y, X–Z and Y–Z plane, 
respectively (Figure  5). Then, we determine whether the fol-
lowing three inequalities hold in each of the three projection 
planes:

(4)

⎧⎪⎪⎨⎪⎪⎩

S= D̃
−1∕2

S̃D̃
−1∕2

D̃=diag
�
d1, d2, … , dn

�

di =

n�
j=1

s̃ij

(5)
⎧
⎪⎨⎪⎩

Sk

sk
i,j

k = 1, 2, …

(6)sk
i,i
> sk

i,j
, j = 1, … , n(j ≠ i)

(7)rcon(k)(i, j) = sk
i,j
∕ sk

i,i

(8)p∗ = argmax
pci

(
rcon(k)

(
pci , pj

))

(9)

⎧
⎪⎪⎨⎪⎪⎩

Ncut
�
P1,P2, … ,Pm

�
=

m�
l=1

�

pi∈Pl ,pj∈
−

Pl

s
(k)

ij
∕Vol

�
Pl
�

Vol
�
Pl
�
=

�
pi∈Pl ,pj∈P

s
(k)

ij

(10)ABS
(
CrownX − CrownY

)
<

CrownX + CrownY

2
(X − Y Plane)

(11)
7 × Xmin + Xmax

8
< XZ

max
<

7 × Xmax + Xmin

8
(X − Z Plane)

F I G U R E  5 Diagram of segmented 
point clouds projected to X–Y, X–Z, and 
Y–Z planes. The blue filled graph shows 
the approximate outline of the tree 
point cloud projected onto the X–Y and 
Y–Z planes. CrownX and CrownY are the 
crown widths along the X-axis and Y-axis 
direction. XZ

max
 is the x value of the point 

with maximum z projected onto the X–Z 
plane. YZ

max
 is the corresponding parameter 

on the Y–Z plane. Three constraint 
inequalities are list on Corresponding 
projection planes.
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    |  9 of 17LI et al.

CrownX and CrownY are the crown widths along the X-axis and 
Y-axis direction. XZ

max
 is the x value of the point with maximum z 

projected onto the X–Z plane, Xmin and Xmax are the maximum and 
minimum x values in all points projected to this plane, respectively. 
YZ
max
, Ymin, and Ymax are the corresponding parameters on the Y–Z 

plane. Finally, we filter the clustering results that satisfy the above 
conditions. If there are multiple candidate results, the one with the 
maximum number of the candidates will be selected as the best. 
Equations (10)–(12) ensures that the segmented tree shape is ratio-
nal. Equation (10) requires that the larger of the crown width in the 
X and Y directions does not exceed three times that of the smaller, 
and canopies that exceed this limit are rare in nature. The sensi-
tivity of the parameters of Equations  (11) and (12) is analyzed in 
Section 4.1.

The input parameters of our method are summarized in 
Table 4. In addition, for plantations with trees of relatively similar 
growth, we followed the postprocessing method proposed by Pang 
et al. (2021). If the distance between two adjacent individual trees 
is less than the average crown diameter of the corresponding plot 
and the elevation of these two trees is less than 10 m, they will be 
merged into an individual tree. The average crown width is calcu-
lated using the segmented point clouds by our ITS algorithm. The 
watershed algorithm and data processing also involve the corre-
sponding parameters. The sensitivity analysis of these parameters 
is not addressed in this study, as it has been previously analyzed 
by corresponding studies (Pang et al.,  2016; Wang et al.,  2004). 
Finally, each tree height and location are automatically extracted 
by calculating the height and geographical coordinates of the high-
est point.

2.5  |  Accuracy assessment

LiDAR point clouds with tree labels are output after applying the ITS 
method. Then, horizontal location and tree height are matching to the 
field reference data. The matching method started from the highest 
detected tree and searched for the reference trees that satisfied the 
height and distance criterion as match candidates. If a farther can-
didate showed a better height difference, then it became a better 
match. This process was repeated until all detected trees have been 
checked. If the closest one with the smallest height difference is the 
matched detection tree previously, these two trees will be treated as 

a matched pair (Pang et al., 2021). The matching criterion is described 
by Eysn et al. (2015). Eventually, a series of matching parameters are 
calculated. TP (true positive) is the number of correctly segmented 
trees; FN (false negative) is the number of trees not segmented but 
assigned to a nearby tree (omission error or under-segmentation); FP 
(false-positive) is the number of trees that did not exist but were seg-
mented from the point cloud (commission error or over-segmentation).

We select extraction rate (Rextraction), matching rate (Rmatch), com-
mission rate (Rcommission), omission rate (Romission), and F score (F) as 
evaluation metrics (Eysn et al., 2015; Li et al., 2012). Here are the 
expressions.

Rmatch, Rextraction, and F are the main assessment metrics, related 
to the overall accuracy, and the closer they are to 1, the higher 
the accuracy of the ITS algorithm. Romission and Rcommission are sec-
ondary assessment metrics to measure the degree of under-  and 
over-segmentation, and the closer they are to 0, the less under- or 
over-segmentation. The above metrics are used for tree top detec-
tion, and tree height estimation is evaluated by coefficient of deter-
mination (R2) and root mean square error (RMSE).

3  |  RESULTS

3.1  |  Treetop detection results

Figure 6 shows our ITS results with corresponding reference tree 
top locations of the five plots located in Saihanba. The results of P2–
P5 are visually pleasing and match well with the reference positions. 

(12)
7 × Ymin + Ymax

8
< YZ

max
<

7 × Ymax + Ymin

8
(Y − Z Plane)

(13)Rextraction =
Ndetection

Nreference

=
TP + FP

TP + FN

(14)Rmatch =
Nmatch

Nreference

=
TP

TP + FN

(15)Rcommission =
Ncommission

Ndetection

=
FP

TP + FP
= 1 −

Rmatch

Rextraction

(16)Rommission =
Nommission

Nreference

=
FN

TP + FN
= 1 − Rmatch

(17)F = 2 ×
Rmatch ×

Rmatch

Rextraction

Rmatch +
Rmatch

Rextraction

Parameter Description Purpose

Vr The vertical distance correction 
factor

Reducing the influence of incompleteness 
of the ULS/ALS point clouds in the lower 
part of the tree canopy due to occlusion.

� Empirical coefficient related to 
the Gaussian kernel

Controlling the size of the Gaussian kernel 
function when converting the distance 
matrix into the similarity matrix.

TA B L E  4 Description of two input 
parameters in our ITS method.
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10 of 17  |     LI et al.

However, for P1, it is difficult to evaluate the segmentation results 
because the tree tops of the broadleaf cannot be observed clearly 
on one hand, on the other hand, the point cloud density in this plot 
is relatively low.

The quantitative assessment results are presented in Table  5. 
Overall, the segmentation accuracy is fine with an average match 
rate and F-score greater than 0.7. However, there is some over-
segmentation, especially in P3 and P5 with a relatively lower 
Romission. We checked ULS and TLS data carefully and found that the 
conifers in Sahanba, especially the larch, are prone to trunk bifur-
cation. A case is shown in Figure 7 to illustrate the phenomenon of 
trunk bifurcation. The phenomenon can be clearly seen in the TLS 
point clouds (Figure 7b,c). However, the tree trunk is not clearly vis-
ible through the ULS point clouds due to the occlusion issue, which 
causes it to look similar to two trees (Figure 7a).

3.2  |  Tree height accuracy evaluation

The accuracy of tree height extraction is evaluated by comparing 
the reference with the matched tree heights. As seen in Figure 8, 
all the results are well except for P1. P3 and the 14 plots of bench-
mark dataset are the best with R2 = .94, although the RMSE of the 
benchmark dataset is 1.667 m. The results for P2, P4, and P5 are 
relatively well, with R2 = .79 (.74 for P2) and RMSE < 1 m. In general, 
our method can accurately extract the tree height of coniferous and 

mixed forests. For broadleaf forests, especially on slopes, the pre-
cise extraction of tree height requires more effort.

3.3  |  Comparison with existing methods

To evaluate our approach more comprehensively, we choose three 
classical ITS methods for comparison, including the WS (Wang 
et al., 2004), mark-controlled watershed (denoted as MCWS) (Chen 
et al.,  2006), and point cloud region growing segmentation (de-
noted as PCS) (Li et al., 2012). The WS and PCS are implemented 
through the lidR tool (Roussel et al., 2020), and the MCWS imple-
mented through Digital-Forestry-Toolbox (https://mpark​an.github.
io/Digit​al-Fores​try-Toolb​ox/). Due to the high densities of the ULS 
point clouds in P2–P5, the PCS cannot be executed effectively. 

F I G U R E  6 Diagram of the tree top detection of five plots in Saihanba. The black discrete points are the reference tree top coordinates, 
and the normalized point clouds with different colors are the ITS results.

TA B L E  5 Results of treetop detection of P1–P5 using our ITS 
algorithm.

Plot Rmatch Rextraction F Romission Rcommission

P1 0.61 0.80 0.68 0.39 0.23

P2 0.75 1.24 0.67 0.25 0.39

P3 0.92 1.76 0.66 0.08 0.48

P4 0.71 0.92 0.74 0.29 0.23

P5 0.89 1.34 0.75 0.11 0.34

Average 0.78 1.21 0.70 0.22 0.33
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Therefore, only the results of P1 are available. For sample P2–5, we 
use CloudCompare software to subsample the point clouds for the 
PCS method. Table 6 shows the average ITS results of P1–P5. The 
matching rate, F-score, and ommission rate of our algorithm are most 
well compared to the WS, MCWS and PCS. The results of the MCWS 
are extremely poor, which may be due to the parameter settings, 
and the reasons are analyzed in the Section 4. The results of tree 

top detection using the four different methods in P1 are shown in 
Table 7. Compared with the other three methods, our method gives 
the best results.

Table 8 and Figure 9 show the ITS results of 14 public plots in 
the benchmark dataset. Compared with the WS, MCWS, and PCS, 
our method gives the best matching rate. Although the F-score by 
our algorithm is 0.02 lower than that by MCWS, our matching rate 

F I G U R E  7 A case of trunk bifurcation 
of the larch tree in P3 which looks like 
two trees over the top of the tree. (a) 
is the ULS point clouds and (b) is the 
corresponding TLS LiDAR point clouds. (c) 
shows the local zoom of the TLS, where 
two similar bifurcations are depicted by 
dashed lines.

F I G U R E  8 Tree height estimation results of P1–P5 and Benchmark dataset.
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12 of 17  |     LI et al.

is 0.16 higher. Our method also gives the best matching rate com-
pared to methods #1–#8 described by Eysn et al. (2015). Of these 
methods, WS, #5, #6, and ours matched more than 50%. All the 
four methods give over-segmentation result, while ours is at the 
medium level.

4  |  DISCUSSION

4.1  |  Sensitivity analysis and parameter settings

For P1, the result is relatively poor with the R2 = .5. There are three 
reasons for this: (1) the average slope of this plot is 30°, so the point 
cloud normalization will cause distortion of the trees (Khosravipour 
et al., 2015). (2) there is distortion of the trunk of birch due to the 
natural environment; (3) there is no obvious top of broadleaf trees, 
which is different from coniferous trees. So it is difficult to accu-
rately detect tree tops even visually. The above factors cause er-
rors in both field measurements and algorithm estimation. Figure 10 
shows the TLS point cloud data of P1 and clearly confirms the three 
analyses above.

P1 was the most complex plot in this study, with complex topo-
graphic conditions, the highest tree stem density, irregular canopy 
shape, and relatively low point cloud density. Therefore, it was used 
for the sensitivity and parameter settings analysis. For the optimized 
CCE, the optimal clustering scale is determined by Equations (10)–
(12). With Equation (10), it is ensured that the shape of the canopy 
is reasonable and unreasonably flattened canopy is removed. With 
Equations  (11) and (12), the distance between the top and edge is 
determined by projection in two directions, and then, the minimum 
distance threshold is set to ensure that the top is located near the 
center of the canopy. Table 9 demonstrates the effect of the mini-
mum distance threshold setting on the results in P1. If no minimum 
distance is set (or a small value, e.g., 1/16 crown diameter), over-
segmentation will be very serious. However, if this threshold is set 
too large (e.g., 1/4 crown diameter), many trees will not be segre-
gated, especially for broadleaf forests with inconspicuous tree tops. 
Therefore, this threshold was set to 1/8 crown diameter to ensure its 
applicability in both coniferous and broadleaf forests.

There are two input parameters in our algorithm. The vertical 
distance correction factor, Vr, is to be considered for ULS/ALS point 
cloud clustering. In our study, Vr is set to 1/6 according to the best 
results given by Pang et al. (2021). The empirical coefficient related 

TA B L E  6 Tree top detection results of P1–P5 using three 
different methods.

Method Rmatch Rextraction F Romission Rcommission

WS 0.74 1.11 0.70 0.26 0.28

MCWS 0.34 0.48 0.46 0.66 0.16

PCS 0.57 0.58 0.71 0.43 0.02

Ours 0.78 1.21 0.70 0.22 0.33

Bolded values show optimal results.

TA B L E  7 Tree top detection results of P1 using four different 
methods.

Method Rmatch Rextraction F Romission Rcommission

WS 0.43 0.49 0.57 0.57 0.13

MCWS 0.20 0.20 0.33 0.80 0.00

PCS 0.38 0.38 0.55 0.62 0.00

Ours 0.61 0.80 0.68 0.39 0.23

Bolded values show optimal results.

TA B L E  8 Tree top detection results of 14 public plots in Europe 
using four different methods.

Method Rmatch Rextraction F Romission Rcommission

WS 0.52 1.28 0.47 0.48 0.47

MCWS 0.21 0.35 0.28 0.79 0.23

PCS 0.38 0.50 0.50 0.62 0.19

Ours 0.56 1.41 0.48 0.44 0.50

Bolded values show optimal results.

F I G U R E  9 Tree top detection results of 14 public plots in Europe using our and other eight methods. #1–#8 correspond to the methods 
described by Eysn et al. (2015).
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    |  13 of 17LI et al.

to the Gaussian kernel, σ, is was analyzed in our study. The variation 
of extraction rate, matching rate, commission rate, omission rate, 
and F score with σ2 is shown in Figure 11. It can be seen that these 
five evaluation metrics are very stable, indicating that our algorithm 
is robust.

To fairly compare various ITS methods, the same canopy struc-
ture related parameters were set in all test plots (Table 10). These 
parameters are either program default parameters or determined 
by reference to previous studies. For the parameter related to the 

point cloud density, that is, the resolution of the CHM, we set this 
parameter to 0.2 m for ALS generation and 0.1 m for ULS gener-
ation. For the MCWS, the relationship between tree height and 
canopy radius is required. However, field measurements are diffi-
cult to obtain sufficient accuracy and enough data, so we refer to 
the formulas by Popescu and Wynne (2004) (See Table 10). In the 
previous section, the MCWS gave poor results in many plots. This 
is due to the inappropriate relationship between the tree height 
and crown radius within the plots, and not the algorithm itself. 
The properties of different types of trees should be complex, but 
due to field measurements constraints, only three fixed formulas 
are given for broadleaf, coniferous, and mixed forests (Popescu & 
Wynne, 2004).

4.2  |  Efficient implementation

With the development of LiDAR hardware technology, high quality 
and density ULS/ALS LiDAR point clouds are emerging. Therefore, 
ITS algorithms are also expected to be able to process data effi-
ciently. Thanks to the initial segmentation using the watershed and 
the mean shift voxelization, the execution speed of the CCE algo-
rithm has been greatly improved. The processing speed of the im-
proved CCE algorithm was tested with the configuration of a Core 
Intel(R) Core(TM) i7-8700 CPU@3.20GHz Processor, 40 GB RAM, 
an NVIDIA GeForce GTX 1660 graphics card and the Microsoft 
Windows 10 operating system. The results are shown in Table 11. 
We did not compare the original CCE algorithm because there 

Top-edge min. distance Rmatch Rextraction F Romission Rcommission

1/4 crown diameter 0.44 0.51 0.59 0.56 0.13

1/8 crown diameter 0.61 0.80 0.68 0.39 0.23

1/16 crown diameter 0.79 1.39 0.66 0.21 0.43

No limitation 0.95 1.99 0.64 0.05 0.52

Bolded values show optimal results.

TA B L E  9 Setting of the minimum 
distance threshold from the top to the 
edge for the trees in P1.

F I G U R E  11 Variations of the tree top 
detection assessment metrics with σ2.

F I G U R E  1 0 Side view of the TLS point cloud data of P1.
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14 of 17  |     LI et al.

was not enough memory in the device we used for the method to 
run successfully. For the P3 with 50 × 50 m with a density of over 
1500 pts/m2, the time to run the algorithm is within 6 min. Our ITS 
method has the potential to meet the upcoming era of massive 
point clouds.

4.3  |  Future prospects

By segmenting the ULS/ALS point clouds, each tree coordinates, 
height, and crown width can be further extracted. The open 
source code we provide already enables this function. The ac-
curacy of tree top detection and tree height extraction has been 
demonstrated and discussed in this study. However, the accuracy 
of crown width estimation is lacking. This is due to the difficulty 
in finding a valid and accurate method for crown width measure-
ment. We have tried to manually extract the crown width of each 
tree from the TLS LiDAR point clouds. However, this attempt 
failed because it was so time-consuming and labor-intensive, and 
in many cases, it was impossible to distinguish each tree manually. 
Perhaps in the future, the enhancement of TLS ITS algorithms and 
open source of the code will facilitate the research of crown width 
estimation. In addition, the method process can be further opti-
mized in the future, for example, tree-top detection is added to 
the CCE method. Currently, we have not found a method that can 
handle complex-shaped canopies on a large scale. Therefore, we 
use the simple qualifications of Equations (10)–(12). In the future, 

it is necessary to improve the accuracy in complex forest and ter-
rain conditions.

5  |  CONCLUSION

Individual tree segmentation using ALS or ULS data is still a chal-
lenge due to the complexity of forest structure. In this paper, we 
proposed a new individual tree segmentation method, which con-
sists of the WS algorithm, and the optimized CCE algorithm. We op-
timized the CCE algorithm to make it more efficient, and the optimal 
segmentation scale can be determined automatically by taking into 
account the structural characteristics of the canopy. The new ITS 
method can take full advantages of the efficient of the WS and the 
accuracy of CCE algorithm. Additionally, the new method is robust 
for the complex plots and insensitive for the parameters. Tree coor-
dinates and heights are extracted and output directly automatically.

Validation at five different forest types of plots in China and 14 
public plots in Europe showed the accuracy of both treetop detec-
tion and tree height estimation. Compared with the other 11 indi-
vidual tree segmentation methods, our method gives better results. 
Through sensitivity analysis for input parameters, we find that the 
algorithm is robust. Efficient processing speed enables it to meet 
the high-density point clouds of 4000 pts/m2. Our method is both 
practical and applicable and can be used to extract the structural pa-
rameters of individual trees over large areas for forest management, 
carbon stock estimation, and habitat mapping.

TA B L E  1 0 Parameter setting in different methods used for comparison. h stands for tree height.

Algorithms Parameters Values Explanation

PCS Zu 15 [m] Height threshold

dt1 1.5 [m] Spacing threshold when tree height > Zu

dt2 2 [m] Spacing threshold when tree height < Zu

R 2 [m] Search radius

WS Tolerance 1 [m] The min height of a tree between its top and 
another tree

Ext 2 [pixel] The radius of the neighborhood in pixels for 
detection of neighboring

MCWS Search radius (3.09632 + 0.00895 * h2)/2 Deciduous forest

(3.75105–0.17919 * h + 0.01241 * h2)/2 Coniferous forests

(2.51503 + 0.00901 * h2)/2 Mixed forests

Ours Vr 1/6 Vertical distance correction factor

σ
√
30 Gaussian kernel

Plot P1 P2 P3 P4 P5

Point density(pts/m2) 298 3295 1636 1473 3976

Size (m2) 900 900 2500 900 900

Cost time (s) 8.439 192.340 357.954 87.199 231.257

Bolded values show optimal results.

TA B L E  11 Program runtime in 
different plots.
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