
HAL Id: hal-04643501
https://hal.science/hal-04643501v1

Submitted on 12 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A blockchain-based approach for service level agreement
management in cellular network

Nischal Aryal, Fariba Ghaffari, Emmanuel Bertin, Noel Crespi

To cite this version:
Nischal Aryal, Fariba Ghaffari, Emmanuel Bertin, Noel Crespi. A blockchain-based approach for
service level agreement management in cellular network. 15th International Conference on Network
of the Future (NoF), Oct 2024, Castelldefels, Spain. �hal-04643501�

https://hal.science/hal-04643501v1
https://hal.archives-ouvertes.fr

A Blockchain-based approach for Service Level
Agreement Management in Cellular Network

1, 2 Nischal Aryal, 2 Fariba Ghaffari, 1, 2 Emmanuel Bertin, 2 Noel Crespi
1 Orange Innovation, 14000 Caen, France

2 SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
{nischal.aryal, emmanuel.bertin}@orange.com, fariba.ghaffari@telecom-sudparis.eu, and noel.crespi@it-sudparis.eu

Abstract—Service Level Agreements (SLAs) serve as the cor-
nerstone of collaboration and service delivery between providers
and customers, delineating the quality of services that the
provider commits to deliver through various terms and con-
ditions. However, the complexity, manual and centralized com-
munication processes and the potential for action denial pose
challenges to the current SLA management. Moreover, while
the traditional SLA process may accommodate current nego-
tiation and contract volumes, scaling becomes problematic with
increasing numbers of providers, service types, and consumers.
Blockchain technology offers inherent features such as high
automation and scalability, transparency, trust, immutability,
and non-repudiation, which are particularly beneficial in the
context of SLA management. This paper proposes a Blockchain-
based solution for managing SLA Lifecycle using smart con-
tracts and Oracles. We primarily focus on three main phases
of this lifecycle: SLA Negotiation, SLA Violation monitoring,
and SLA Compensation through automatic cryptocurrency-based
compensation or adjustments of SLA rules based on predefined
policies established during the initial phase (service credits).
This approach streamlines the SLA agreement and compensation
processes while offering scalability, trust, transparency, and non-
repudiation. Assessments in the specific use-case of cellular
networks confirm the scalability of this solution.

Index Terms—SLA, Cellular Networks, Smart Contracts, Or-
acles, SLA Monitoring, Smart contract

I. INTRODUCTION

Due to the increasing number of users in the telecommuni-
cation network landscape, Mobile Network Operators (MNOs)
require innovative solutions to meet the diverse needs of their
customers. To achieve this, MNOs plan to integrate novel
technologies and services [1] into next-generation networks
(beyond 5G and 6G) and collaborate with other business
entities by buying or selling services. One essential require-
ment for collaboration is the establishment of a Service Level
Agreement (SLA). SLAs are agreements between two parties
that outline the type of service they anticipate from each
other, the Service Level Objectives (SLOs), and procedures to
handle service violations. SLOs are the target values for key
performance indicators (KPIs), such as uptime, response time,
and availability, and can differ based on the type of services.

Although SLAs are essential for effective collaboration,
managing them is not an easy task. SLA management in
the current cellular network is done manually. As the num-
ber of collaborations between MNOs and other businesses
(e.g., smaller connectivity providers, RAN providers, service
providers, etc.) increases, there will be a significant increase

in the number of SLAs, making manual methods of manage-
ment impractical [2]. Furthermore, SLAs encompass numerous
metrics and conditions, making manual monitoring prone to
difficulty and errors. However, a key challenge is to ensure
compliance and enforce SLA terms, especially in cases of
violation and disagreement between parties.

Any alternative providing trust, scalability, security, and a
high level of automation would be a potential solution to
address the aforementioned challenges. Blockchain technology
[3] is one such approach. It is a Distributed Ledger Technology
(DLT) containing a network of nodes that participate in the
security of the system by providing a cryptographically secure
chain of blocks where all changes in the system require the
consensus of all the eligible nodes. Thanks to their features,
such as immutability, transparency, automation, and consensus,
there is a huge research interest in using Blockchain in
different aspects of cellular network ecosystem, including
collaboration management [4]–[6].

In this work, we present a distributed SLA management
approach using Blockchain, smart contracts, InterPlanetary
File System (IPFS), and Oracles. Smart contracts handle SLA
negotiation and store the final version of encrypted SLA terms
in Blockchain. Due to storage limitations in the Blockchain,
the SLA metrics of each entity are stored off-chain, such
as in IPFS, and a hybrid cryptosystem is applied to provide
privacy for SLA terms. Oracles are the edge points allowing
the smart contracts to request and receive verified off-chain
data in the Blockchain and enabling the smart contracts to
access the metric logs. Smart contracts utilize these SLA
metrics for violation monitoring. We provide two methods to
compensate for violations: service credits and cryptocurrency-
based compensation.

The key contributions of proposed method are as follows:
1) Eliminating the need for intermediaries during SLA

negotiation, deployment, and violation check.
2) Providing a negotiation platform on Blockchain using

smart contracts to decrease the latency existing in the
manual paper-based SLA negotiation process.

3) Automating SLA Violation Check with the help of
Oracle based on the requests from each party.

4) Providing two compensation methods for SLA viola-
tions based on payment or enhancement of SLA terms.

5) Providing privacy in terms of SLOs and the identity of
the parties using a hybrid cryptosystem, which provides

access only to the parties participating in the SLA.
6) Using a secure off-chain database (for SLOs and log

files) to improve not only the privacy of the system but
also the required storage.

The rest of this paper is organized as follows: Section II
provides a brief background, followed by a summary of the
state of the art in Section III. Section IV outlines the system
design and construction of our proposed method, followed
by the evaluation in Section V. Section VI provides our
conclusions about the proposed method as well as some future
research directions.

II. BACKGROUND

A. Blockchain, Smart Contracts and Oracles

Blockchain is a peer-to-peer distributed ledger where up-
dates can only be made by consensus among the majority
of the nodes present on the network [3]. Blockchain is
implemented in the form of a linked list, with each block
linked to the previous block by its hash. As a result, any
change in data, causing it to differ from the hash contained in
the previous block, makes Blockchain considered immutable.
When a transaction is transmitted to this distributed network,
it must be validated by the network’s participants using a
consensus mechanism.

Smart contracts are computerized transaction protocols that
execute the terms of a contract on top of Blockchain. The main
objectives of smart contracts are to satisfy common contractual
conditions, minimize malicious and accidental exceptions, and
reduce the need for trusted intermediaries. Ethereum was the
first to implement smart contracts in 2014 [7]. The most
well-known smart contract language is Ethereum’s Solidity
[8] which has a “Turing Complete” virtual machine for the
execution of smart contracts [9].

Oracles are important components in Blockchain tech-
nology that connect smart contracts to the off-chain world,
enabling them to interact with external data and systems. There
are different types of Oracles, such as software, hardware,
inbound, and outbound. In this paper, software Oracles are
used to handle the return of data from a predefined URL
connected to a database storing the SLA-related KPIs.

B. SLA Lifecycle

A SLA lifecycle consists of the following phases [10], [11]:
1) Identifying Service Provider: In this phase, the consumer

finds and selects a Service Provider (SP) that can provide
resources according to their needs.

2) Negotiation: In this phase, all the key performance met-
rics that are expected from the service are added to
the SLA in the form of SLOs. These SLOs can either
be provided by the SPs in ready-made SLAs or the
consumers can add them. This process runs in a loop
where involved parties negotiate regarding changes in
SLA. It continues until all parties reach an agreement.
The parties also discuss the compensation scheme for
handling SLA violations.

3) SLA Deployment: In this phase, both parties agree, and
the final SLOs along with the compensation strategies are
written in SLA.

4) SLA Violation Monitoring: In this phase, an entity con-
stantly monitors the performance of the service verifying
if all the requirements are met. If there is any anomaly in
the data, the entity identifies the offender and alerts both
parties of the agreement.

5) Penalty Enforcement: In this phase, the violator has to
compensate for the SLA violation. This is done through
the compensation scheme defined in the SLA. An ex-
ample of the scheme could be paying a certain amount
defined in the SLA.

6) SLA termination: In this phase, the agreement between the
two parties is canceled, and SPs stop providing services
to the consumer. This can happen due to the contract’s
expiration or through the decision of involved parties.

III. RELATED WORKS

Due to its decentralized, immutable, and transparent nature,
Blockchain technology can provide a robust solution to ensure
the integrity and accountability of SLA-related transactions
and agreements. As a result, this technology has gained sig-
nificant interest in research and businesses. Many studies have
explored this area, highlighting the different solutions for using
Blockchain to enhance SLA management. From our investi-
gation in this area, we could categorize the proposed methods
into three main groups, representing how the Blockchain can
be used for SLA management: 1) as a distributed database to
store the SLA terms; 2) as a distributed method for violation
checking; 3) as a distributed method to apply the penalty for
SLA violations.

Weerasinghe et al. [12] introduce an SLA management
system on top of Blockchain using their formally proven novel
consensus model as Proof of Monitoring (PoM) for Secure
Service Level Agreement (SSLA), in which the auditors ensure
that the service providers deliver the security-related KPIs
based on the terms of their SLA. A Blockchain-based SLA
management solution for the IoT ecosystem is introduced by
Alzubaidi et al. [13] in which they focus on SLA monitoring
and compliance assessment, believing that no single party
should solely control the SLA monitoring. To do so, they
use Blockchain to share the log files. They also compare
the performance of Ethereum’s Proof of Work (PoW) and
Hyperledger Fabric’s Practical Byazantine Fault Tolerance
(PBFT), resulting in PBFT being the preferable solution. To
automatically manage the SLAs in a fog environment, Battula
et al. [14] proposed a solution in which the entities store
the SLA terms in Blockchain, and other contracts, on an on-
demand basis, retrieve the network log from Oracles to validate
the SLA violation.

In the cloud computing environment, [10] proposed an open
cloud market and one-to-many service deployment solution us-
ing Blockchain. In this method, the authors use their proposed
SLA definition language (SLAC) to define the SLA terms in
Blockchain after off-chain negotiation. Moreover, Ranchal et

al. [15] propose SLAM, a Blockchain-based framework for
continuous SLA monitoring in a multi-cloud environment.
This system uses Blockchain to detect SLA violations and
determine their root cause across the hierarchical SLAs. A
real-time SLA monitoring solution is proposed by [16] in
which the monitoring system stores the logs in Blockchain as
a distributed and immutable database. Another method for a
cloud environment is proposed by [17] to monitor the specific
SLA violation regarding the user’s data integrity.

In the cellular network sector, Luo et al. [18] proposed
a network slice management solution on top of Blockchain
to guarantee SLA compliance using three protocols: slice,
audit, and dispute. These protocols are used for defining SLA
and payment, monitoring SLA compliance, and handling SLA
violations based on evidence after detection, respectively. Fur-
thermore, [19] proposes a Blockchain-based solution for inter-
provider agreements in 6G networks. They use Chainlink as
the Oracle for monitoring and assessing SLA compliance; they
also provide penalty calculations. Moreover, some solutions
are providing automated compensation payments such as [20].
This method also checks the validity of the SLA based on the
number of violations and the expiration time to manage the
payment to the entities accordingly.

IV. SYSTEM OVERVIEW

In this section, we present our smart contract proposal and
explain the system design process.

A. Smart Contract Proposal

We design the following smart contracts in our proposed
approach.

1) Negotiation Smart Contract (SCNeg) is a temporary
contract that is created when one party proposes an SLA
request to the other party. The parties read and submit the
proposals to this contract. SCNeg stores the two latest
SLA proposals from each party. When both parties reach
an agreement, the final agreement is written in a new
contract (SCSLA) and this contract is destroyed (i.e.,
contract byte codes will be removed from the Blockchain
using predefined selfdestruct() function defined
by Solidity language).

2) SLA Smart Contract (SCSLA) is the final contract
that stores the final information related to the agreement,
which is accepted by both parties. Note that, the SLA
terms are not directly stored in this contract. It also
contains a violation_check() function to request
an SLA violation check. For violation check, this contract
requests SCOr to fetch SLA-related KPIs from the off-
chain database for involved parties.

3) Oracle Smart Contract (SCOr) helps other smart con-
tracts access SLA-related KPIs of involved parties, which
are stored in an off-chain database.

B. System design

This section outlines the system design according to the
primary phases of the SLA management lifecycle, including

Service Provider Identification, Negotiation, SLA Deployment,
Monitoring for SLA Violations, Enforcement of Penalties, and
SLA Termination.

1) Identifying Service Provider: In the SLA management
process, this stage relies on advertisement materials from
MNOs and service providers concerning their services or
infrastructure. For example, a provider who can deliver con-
nectivity services in remote areas can be a potential partner (or
customer) for MNO. It is important to clarify that this paper
concentrates on the contracts and agreements between entities
capable of reciprocally providing services to each other, rather
than end-users. In this paper, one party in the agreement is
the MNO, while the other party may be another provider
utilizing services offered by the MNO (e.g., storage or internet
bandwidth), providing services to MNOs (e.g., antennas or
storage), or offering services while utilizing other services
from the MNO (e.g., providing antennas and utilizing internet
bandwidth). Thus, this stage emphasizes identifying suitable
entities based on the requirements of each party.

2) Negotiation: In this step, we deploy SCNeg contract
in which two parties negotiate the services, assessment KPIs,
and compensation rules or fees through Blockchain and smart
contracts. Note that, to simplify the explanations, we entitle
one of the parties as a provider and the other as a customer. But
in a real-life scenario, these roles are fully interchangeable. To
do this, the following steps will proceed (the enumeration is
based on Fig. 1):

(N1): In the first step, the customers log into the DApp or the
web3-based website to select their requirements for the
services. This request is sent as a set of values for SLA
and compensation terms. Some examples of SLA terms
are as follows:

TermsSLA = [Uptime,MTTR, packet Loss,

CPU Capacity,Network Throughput,

Storage Capacity,MTBF]

Moreover, the compensation terms are also included in
this request. In this paper, two types of compensation
are considered: 1) upgrading the SLA plan, and 2) direct
payment.

TermsCompensation = [Penalty type,Penalty fee,

Min deposit, Penalty service]

where Penalty type can be Zero for service augmen-
tation, One for direct payment, and Two when both may
apply. Penalty fee defines the fee that the provider
needs to pay the customer in case of SLA violation (some
percentage of this fee can be defined in Min deposit);
Min deposit is the amount of fee that the provider (or
both entities) needs to deposit inside that SLA contract, so
in case of SLA violation, this fee will automatically and
directly send to the customer’s account (i.e., this money
is similar to guarantee deposit). Penalty service is the
new SLA rule that will be automatically applied in case
of SLA violation.

(N2): Using these data, one temporary smart contract, namely
SCNeg will be deployed in the Blockchain to store the
proposed SLA and compensation terms.

(N3): Once the SCNeg is deployed, an event will be emitted
to the provider informing them of the request for a new
SLA.

(N4): Provider reads the requirements and can either accept,
reject, or start a negotiation process with the following
steps: (note that the negotiation starts from Step N3, as
shown in Fig 1.)
● Accept: If the provider accepts the proposed SLA

and compensation terms, go to Step N7.
● Reject: If the provider rejects the proposed SLA or

compensation terms and doesn’t want to negotiate, the
selfdestruct() function of SCNeg will be called,
and the customer will be notified of the rejection of the
request.

● Negotiate: If the provider aims to negotiate on the
proposal, go to step N5.

(N5): provider proposes new parameters and terms for the
SLA and sends it as a transaction to the Blockchain.
As already mentioned, these negotiation SLA and com-
pensation terms are stored in a temporary SLA contract.
Similar to Step N1, these data are sent as TermsSLA and
TermsCompensation.

(N6): The proposed changes are written to SCNeg with the
provider’s signature on these changes. This signature
shows that the provider has accepted the changes.

(N7): Once the provider’s changes are applied to SCNeg (or
the accept/reject response is received by Blockchain), an
event will be emitted to the customer informing them
about the request for a new SLA.

(N8): The customer reads the revised requirements and, similar
to the provider, can either accept, reject, or continue the
negotiation process with the following steps:
● Accept: If the customer accepts the proposed SLA

and compensation terms, go to Step D1.
● Reject: If the provider rejects the proposed SLA or

compensation terms and doesn’t want to negotiate, the
selfdestruct() function of SCNeg will be called,
and the provider will be notified of the rejection of the
request.

● Negotiate: If the provider aims to negotiate on the
proposal, go to step N9.

(N9): The customer gives the changes in the proposal (similar
to Step N5). After this step, the loop is continuing from
Step N3.

3) SLA deployment: When the entities reach an agreement
on the terms of SLA, this phase will manage the storage of
SLA terms in off-chain database as well as deploying SLA
contract in Blockchain. To do this, the following steps will
proceed (the enumeration is based on Fig. 1).

(D1): Customer and provider accept the SLA change by signing
the final values of the SLA. Note that, in each negotiation
step, we keep two important data: 1) two latest values of

the negotiation; and 2) the entity that proposed the values.
Indeed, the person who proposed the values has accepted
these terms, and we need the other party’s agreement on
them. Final validation will be done in the next step. The
customer and provider get informed about the acceptance
of the SLA.

(D2): To address the privacy issues related to the business of the
entities, we propose to store the SLA KPIs in an off-chain
distributed database (i.e., IPFS) instead of storing them
directly in the Blockchain that can be visible for other
players in the network. To do so, the agreed parameters
need to be added in one file (SLA) by any of the entities
(e.g., a json), and then this file has to be recorded in
the database while strictly limiting access to data. To
do so, we employed a hybrid cryptosystem for a multi-
user environment, combining symmetric and asymmetric
cryptography. So, the following steps can be executed by
the service provider:
● Generates symmetric key Ks (this key needs to be sent

to the customer using a secure off-chain channel)
● Encrypts Ks using PubC and PubSP and gets
ENKs

PubC
and ENKs

PubSP

● Encrypts SLA with Ks to get ENSLA
Ks

(D3): Service provider stores ENSLA
Ks

in IFPS and gets a
unique content identifier (CID) as an index to the
stored data. The CID (let’s call it CIDENSLA

Ks
) can

be used for further access to the data in IPFS. More-
over, the encrypted version of the Ks using the service
provider’s and the customer’s public key (i.e., ENKs

PubC

and ENKs

PubSP
) and the hash of SLA (hash(SLA)) are

stored in Blockchain.
(D4): The provider calls function acceptProposal()

from SCNeg by sending ENKs

PubC
, ENKs

PubSP
and

hash(SLA). The following verification is done by
SCNeg:

msg.sender ≡ Addprovider ∣∣

msg.sender ≡ Addcustomer

where Addprovider and Addcustomer are assigned in the
constructor() of the SCNeg and are the provider’s
and customer’s Blockchain addresses, respectively.

msg.sender /≡ Addsecond entity

That means the second entity (Addsecond entity) that
proposed the SLA terms cannot accept the proposal (i.e.,
the other entity, who has not read the SLA yet, needs to
accept).

Addfirst entity /≡ Addsecond entity

That means the first and second entities who proposed
the terms of SLA, cannot be the same. For instance, the
customer cannot change the SLA terms two consecutive
times and then accept them; finally, two of the following
conditions must be valid:

hash(TermsSLA 1) ≡ hash(SLA)

Different Providers Blockchain

LOOP

MNOs

N2. Generate negotiation contract
with anonymus identity

N4. Read consumer requirement

N6. Update SLA contract

N8. Read SLA changes

N1. Propose Requirements from provider

N3. Notify provider of request

N5. Propose SLA Changes
 [SLA KPIs, Compensation]

N7. Notify about update in SLA

D1. Accept SLA changes [SLA KPIs, Compensation]

N9. Request SLA Changes
 [SLA KPIs, Compensation]

D5. Generate SLA contract, deposit
money, record the entities and address

of encrypted SLA

D4. IPFS URI and
encrypted symmetric key

D3. Store encrypted SLA file

D1. Inform provider for the agreement

D2. Generate symmetric key,and
manage encryption steps

D2. Send symmetric key

IPFS

Fig. 1. A flow diagram representing SLA contract deployment and negotiation procedure performed through Blockchain. As defined in Section IV-B2, three
scenarios can take place during N4: acceptance, rejection, or negotiation. For acceptance, the procedure moves from N4 to D2. For rejection, the negotiation
contract gets destroyed and the process stops. For, negotiation, the process moves from N4 to N5. The blue box in the figure denotes the negotiation loop.

That means the hash of already accepted KPIs has to be
the same as the hash sent by the provider. Note that this
scenario is verifiable by the customer.

(D5): If the conditions are addressed, SCNeg deploys a new
SLA smart contract, SCSLA, and writes the SLA access
parameters in this contract.

4) SLA Violation Monitoring and Penalty Enforcement: The
main purpose of this step is to check for SLA violations upon
the request of any of the parties in SLA using the agreed KPIs.
To do this, the following steps will proceed (the enumeration
is based on Fig. 2):

(V1): The customer and provider need to periodically send the
KPI’s data to a predefined database to store it there. It is
important to mention that:
● This process is an automatic operation in which a pre-

defined API, calls the existing system in the provider’s
and customer’s sites to retrieve the data and store it in
a predefined database.

● Since the procedure automatically happens with the de-
signed API, we assume that the customer and provider
are sending integrated data to Oracle (i.e., the data is
not modified).

(V2): Upon receiving the violation check request, SCSLA trig-
gers a specific smart contract designed to connect to
Oracle to retrieve data. To do this, the off-chain APP
will automatically send a function call trigger to SCSLA.
Once SCSLA receives this trigger, it sends a request to
SCOracle by calling fetchLogFiles() function. It
is important to mention that, each party who requests an
SLA violation check, needs to retrieve the KPIs from
IPFS and send the requested parameter to verify in the
argument of their request. In this step, we assume that the
requester party is sending the original value and is not a

malicious entity. But, clearly, we can state that verifying
the correctness of this value is a straightforward task from
the other party’s side.

(V3): Assuming that the data is stored in the Oracle (i.e., a
centralized or distributed off-chain database) with the
proper timestamp, SCOracle sends a request to the
database to retrieve the data in the proper time intervals.
To do so, SCOracle emits an event to Oracle’s API by
sending the following data:

< AddSCSLA
,Addprovider,Addcustomer, nonce >

where nonce is a random id number dedicated to the
current request, and the other values are the Blockchain
address of the message sender (SCSLA), provider, and
customer, respectively.

(V4): Once the Oracle API receives the event, it fetches the
customer and the provider’s log data from the predefined
off-chain URL or database address. When the logs are
ready to send to the smart contract, the off-chain entity
calls sendLogFiles() function of SCOracle with the
following data as input:

< Logcustomer, LogProvider,AddressSCSLA
, nonce >

Once SCOracle receives the transaction on this function,
it first checks the nonce to verify that it is the request’s
destination and the ID is already on its waiting list.
The received logs will be sent to SCSLA for further
SLA violation checks if the condition is valid. To do so,
SCOracle calls function callback() from SCSLA by
sending the logs and the nonce.

(V5): By receiving the logs, SCSLA verifies the ID and checks
for violations as follows for both the provider and cus-
tomer. To do so, different policies will be verified with

the value sent by the requester as the agreed KPIs. For
instance, assume that based on requester demand, in the
SLA terms (i.e., the order defined in Step 1 IV-B2) the
provider agreed to offer the service with the following
options:

TermsSLA = [99.9,−1,−1,10,−1,1000,−1]

where −1 means that those factors are not included in the
SLA. To verify the SLA violation, SCSLA checks if in
the provider’s and the customer’s logs:

Logcustomer.Uptime >= 99.9

Logcustomer.CPU Capacity >= 10

Logcustomer.Storage Capacity >= 1000

if the conditions are valid, the SLA check is successful.
Note that, this example is the terms and conditions that
the provider needs to pass, similar policies can be applied
to the customer.

(V6): If during the SLA check, SCSLA detects that the logs
sent by any of the parties do not satisfy the SLA terms,
it sends an event to both parties informing them about the
SLA violation. The automatic compensation application
is done in the next step.

(V7): After SLA violation validation, the SCSLA will apply the
compensation based on the TermsCompensation defined
in Step 1 IV-B2. To do so the following changes will be
applied:
● if the Penalty type is 1 that indicates the direct

payment: In this case, the Min deposit that is already
stored in SCSLA by the entity in Step 12 IV-B2 will
be automatically sent to the other entities Blockchain
wallet. Moreover, the difference between Penalty fee
and Min deposit will be sent to both parties as an
event for further action and off-chain payments.

● if the Penalty type is 2 that indicates the change in
SLA or provide other services as advantage: In this
case, the SCSLA rewrites the new SLA rules in the
final accepted rules of the SLA. Note that this change
can be only done by the SCSLA and no other parties
have access to change the SLA using this function.

(V8): SCSLA informs both parties about the changes, pay-
ments, or other required information.

5) SLA termination: In this step, if the cancellation re-
quest is sent by both parties or the SLA is expired, the
selfdestruct() function of SCSLA will be called. The
amount of money blocked into the SLA contract will be sent
to the owner’s wallet and the contract code will be removed
from the Blockchain to free up resources.

V. EVALUATION

To evaluate the proposed SLA management approach, we
deploy a private Ethereum Blockchain using the Go Ethereum
(Geth) framework [21], [22]. Geth is a popular implementation
of Ethereum written in Go programming language 1. A private

1Build simple, secure, scalable systems with Go, https://go.dev/

Blockchain is a type of network developed in one organization
or test lab and only the eligible nodes, who are already authen-
ticated, can join in the consensus process. Moreover, this net-
work is not connected to the Ethereum Mainnet 2 (or other
predefined Testnets 3) and doesn’t share the same ledger.
To create the private Ethereum network, we first deployed
16 Ethereum nodes and assigned a unique chainID to the
network. This chainID is the unique identifier of the network
and ensures that nodes can only interact with other nodes with
the same ID. Next, we select ”Clique” [23] as our network’s
consensus protocol. Clique is a Proof of Authority (PoA)
consensus model [24] in which the initial set of authorized
validators is pre-configured and new validators can be added
or removed based on a voting mechanism. The validators
in PoA have formally approved accounts, and their identity
is public [25]. Finally, we save all this information along
with other network information, such as gas limits, the initial
allocation of ether, and so on. in the genesis block.
A genesis block is the very first block in the Blockchain and
we configure this using the genesis.json file. Figure 3
represents a portion of our genesis block. We developed the
smart contracts using the Solidity [26] programming language
and utilized the web3js framework to communicate with our
private Ethereum network.

The performance analysis of the suggested design is done
in three parts: (1) Comparison with existing state of the
art, (2) Evaluating the latency of the negotiation process,
and scalability of the system in terms of increasing number
of concurrent SLA violation check requests, and (3) Gas
consumption of different on-chain processes.

A. Comparison with Existing work

Table I compares the proposed method with other state-
of-the-art in providing Blockchain-based SLA management
solutions in different sectors. To the best of our knowledge,
almost no work addresses the reciprocal or mutual SLA in
which both parties in the agreements are providing service for
each other. In the future generation networks, it is required
for MNOs to not only provide service for many businesses
but also to receive different types of services from them. So,
To address the existing challenge in collaboration management
in current cellular networks, we need to provide the possibility
of automated reciprocal SLA management.

As shown in Table I, providing the possibility of nego-
tiation through Blockchain is rarely provided by the other
methods, while due to the possibility of digital signature
and non-repudiation, blockchain-based negotiation can de-
crease the manual negotiation time. Moreover, the privacy of
the entities regarding the SLA KPIs is another subject that
is hardly addressed by the other works. Indeed, providing
SLA management in an open network such as Blockchain

2The ”Mainnet” is the Blockchain’s fully implemented and operational
public network; e.g., Bitcoin, Ethereum

3The ”Testnet” is deployed for development and testing uses rather than
for real-value transfers and transactions; So, the users can create, design, and
test their projects without unnecessary costs.

Different Providers MNOs Oracle SCSLA

V1. Store log files

 V1. Store log files

V2. Violation check
triggered by requester

V3. Request log files

V4. Receive consumer and
 provider log files

V5. Check for
violation

V6. Find contract
violator

YES

V7. Apply compensation
agreementV8. Notify parties of violation

 and compensation

SCOracle

V2. Violation check request,
KPIs

Fig. 2. A flow diagram representing SLA violation check operated by SLA contract through Blockchain using designed Oracles.

TABLE I
COMPARISON WITH EXISTING SOLUTIONS

Ref. [13]§ [12] [14] [10] [15] [16] [18] [20] This
work

Properties

Domain IoT CSP** Fog com-
puting Cloud Multi-

Cloud Cloud Telecom Telecom Telecom

Scalability - ✓ - - - ✗ ✓ - ✓
SLA negotiation in Blockchain ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Reciprocal SLA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Using Oracle for logs ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓
Privacy-preserving - ✗+ ✗ ✗ - - ✗ ✗ ✓
Blockchain Type++ - P P - - P P P P
Blockchain role* 4 1,2,3 1,4 1,2,4 1,2,4 4 1,2,3,4 1,3 1,2,3
Consensus model - PoM PoW - - - - - PoA
* (1) distributed database to store the SLA terms; (2) distributed method for violation checking; (3) distributed method to apply the penalty
for SLA violations, (4) Storing and sharing the log files.
** Communication Service Providers (CSP)
+ In this method some nodes monitor the traffic between the clients and providers to access the SLA’s violation.
++ P: Permissioned (private or Consortium), PL: Permission-less (Public).
§ This method does not have implementation.

{
"config": {
"chainId": 769599,
"homesteadBlock": 0,
"eip150Block": 0,
"eip155Block": 0,
"eip158Block": 0,
"byzantiumBlock": 0,
"constantinopleBlock": 0,
"petersburgBlock": 0,
"istanbulBlock": 0,
"berlinBlock": 0,
"clique": {
"period": 5,
"epoch": 30000

}
},
"difficulty": "1",
"gasLimit": "8000000“

Fig. 3. Configuration of genesis block in the system setup

brings the concern of revealing the KPIs of SLA between
competitors. To address this issue, instead of storing the
KPIs directly on the smart contract, we refer to the secure
link to an off-chain database where the encrypted data is
stored, and they are only available for the two entities of
the agreement. In Table I, compared to the works that use

PoW, PoS, or PBFT consensus models, our proposed model
can provide higher scalability, is more efficient, and provides
higher performance regarding latency. Furthermore, several
methods are using Blockchain for storing the SLA monitoring
logs; Since Blockchain is an append-only environment, the
storage limitation is an ever-existing challenge. So, due to this
challenge, our method—using Oracles to connect to the off-
chain storage for the log files—can bring higher efficiency
regarding storage and log management. Moreover, providing
the possibility of automated violation monitoring as well as
handling the penalties can not only remove any single point
of failure but also decrease the latency of doing the same
process in a manual manner.

B. Performance

We evaluate the performance of our proposed system based
on two key phases: SLA creation and SLA violation check.

1) SLA Creation phase: In this phase, we calculate the
average time taken to establish an SLA contract. It has 3
main steps: (1) SLA proposal, (2) Negotiation, and (3) SLA
acceptance. In an SLA proposal, the consumer generates an

TABLE II
TIME TAKEN BY PROCESSES IN PROPOSED METHOD

Process Description Abbr Time
Taken

On-chain

Create Oracle contract TSCO
5.53 sec

Create SLA contract TSCSLA
4.49 sec

Create Negotiation contract TSCNeg
4.49 sec

Read SLA request/changes made TRead 13.26 ms
Propose changes to SLA TChange 5.03 sec
SLA Accepted by both parties TAccept 5.02 sec
Violation check request TCheck 1.12 sec
Oracle requests for data TRequest 9 ms
Sending data to Oracle TResponse 4.99 sec
Read violation check result TResult 3 ms

Off-chain Fetch requested data TFetch x*

Note: The time taken for fetching requested data (TFetch) depends
on the type of data, where the data is stored, how it will be retrieved,
and the Internet connection. So, we denote it by x.

SLA contract and proposes it to the provider. Then both
parties enter the negotiation phase, where each proposes some
changes to the contract. Once both parties are satisfied with the
changes, they accept and finalize the SLA. Table II contains
the time taken by each different procedure in the SLA creation
phase. We can see that the time required for this phase is
dependent on the number of negotiation steps. So, following
formula is used to get the average time for the SLA creation.

TCreate = TSCNeg
+ TRead + n ∗ TChange + TAccept

+ TSCSLA
+ y

≈ 14.013 sec + n ∗ 5.03 sec + y

where n is the number of negotiations, and y is the time
when parties do not respond to SLA proposal request.

Concurrent Requests

La
te

nc
y

(m
s)

0

20

40

60

80

100 200 300 400 500

1 node 8 nodes 12 nodes 16 nodes

Fig. 4. Scalability of SLA Violation check procedure.

2) SLA violation Check phase: In this phase, we analyze
the scalability of our method to handle concurrent requests.
For this, we consider the scenario where an automatic request
is triggered to check if SLA violation has occurred. Once
the SLA contract receives this request, it requests that the
Oracle contract fetch the consumer and provider log files.
Upon receiving the log files, the SLA contract decides the
violation results and notifies the entities. For analysis, we
send a different number of concurrent requests (each request
represents the scenario mentioned above) to the Blockchain

TABLE III
GAS CONSUMPTION OF PROCESSES IN PROPOSED METHOD

Process Transactions Gas
Used

Contract
deployment

SCO 525083
SCSLA 1840037

Read SLA Read SLA request/changes made by each
entity

0

Propose SLA
changes

Write changes to SLA 99342

Finalize SLA SLA is approved by both entities 31686

Check for
Violation

Violation check request 91663
Oracle requests for data 0
Sending data to Oracle 25519
Read violation check result 0

with different number of nodes (1, 8, 12, 16). Figure 4 shows
the result of our analysis. The result shows that starting
from 400 concurrent requests, Blockchain with 8, 12, and
16 nodes gives stable latency while Blockchain with 1 node
starts to act as a centralized system. Note: The higher latency
during small number of concurrent requests can be credited to
the time required to setup the system, which becomes less
significant as the number of requests increases. Thus, our
method showed scalability by increasing the number of nodes
in the Blockchain.

C. Gas Consumption

This section evaluates the GAS consumption of different
function calls and contract deployments. The GAS is the
fee that the sender must pay to submit transactions to the
Ethereum network. The cost that is mentioned in this part
is the cost of sending a transaction of a contract to the
Ethereum blockchain (i.e., transaction cost) [27]. The GAS
cost is defined in Gwei (i.e., as 10(−9)ETH). Table III shows
the GAS cost in different processes. It is important to mention
that in private or consortium Blockchains, the price of sending
or processing the transaction is based on the agreement among
all participating entities, and no currency is mandatory [25].

VI. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we propose a system using Blockchain
technology for SLA management in cellular networks. We
present a time-saving solution for conducting SLA-based
negotiations using smart contracts. To address the storage chal-
lenges in Blockchain, the proposed method stores the SLA-
related performance metrics data in an off-chain database and
accesses it using Oracles. We also provide two compensation
mechanisms, i.e., service credit and financial compensation,
to address any SLA violation. The proposed method aims to
provide a flexible, automated, and scalable solution for SLA
management in the cellular network in which the MNOs have
reciprocal agreements with other providers.

We simulated the proposed method by setting up a private
Ethereum Blockchain containing a maximum of 16 full nodes

(which could represent either service provider or consumer
nodes within the Blockchain). Evaluating the scalability of
the system involved varying the number of full nodes up to 16
and simulating up to 500 users with concurrent requests. Our
findings show that the latency of the system remains largely
consistent (i.e., around 20ms as shown if Figure 4) even as
the number of nodes and/or requests increase, proving that our
system is highly scalable.

However, to put our proposed system into practice, several
questions need to be addressed; two of the most important
ones are to define the role of different actors in the system
and to establish who owns the Blockchain in real-world
scenarios. The key players in this system are the mobile
network operators (MNOs) and service providers. The real-
world Blockchain in this scenario, can be configured as a con-
sortium involving MNOs and service providers, determining
transaction costs (if applicable), consensus models, storage,
and related parameters.

Our work also provides some promising research directions.
From a business standpoint, we require comprehensive re-
search to analyze the compatibility of Blockchain technology
with the market’s diverse SLA requirements. This analysis will
help to improve our understanding of industry requirements
and assist in the gradual integration of Blockchain into the ex-
isting economy, avoiding abrupt shifts and disruptive changes.

From a technical standpoint, there are several fascinating
areas to explore, such as integration with AI/ML solutions,
storage/latency optimization, and privacy. Our Blockchain-
based system could integrate with AI/ML solutions capable
of predicting SLA violations. This integration could shift the
violation check from being requested by an SLA party to
checks that occur on a situational basis. Given the significance
of storage complexity and system latency in various use
cases, some research could focus on efficient storage/latency
optimization methods, such as Layer2 solutions [28] and chain
sharding [29]. Furthermore, there could be some research re-
lated to developing lightweight and secure encryption solutions
for communicating with off-chain distributed databases, and
trustworthy methods to access SLA-based information.

Finally, a future study could focus on developing a con-
sensus model specific to SLA management, as done by the
authors in [12]. This achievement could assist in meeting
the objectives of various system requirements, including low
energy consumption, higher scalability, strong privacy, and
efficient resource utilization.

REFERENCES

[1] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis,
and P. Fan, “6G wireless networks: Vision, requirements, architecture,
and key technologies,” IEEE Vehicular Technology Magazine, vol. 14,
no. 3, pp. 28–41, 2019.

[2] F. Ghaffari, “A novel blockchain-based architecture for mobile network
operators: Beyond 5G,” Ph.D. dissertation, Institut polytechnique de
Paris, 2023.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[4] I. Bashir, Mastering Blockchain: Distributed ledger technology, decen-
tralization, and smart contracts explained. Packt Publishing Ltd, 2018.

[5] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Senevi-
ratne, “Blockchain for 5G and beyond networks: A state
of the art survey,” Journal of Network and Computer
Applications, vol. 166, p. 102693, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804520301673

[6] K. Yue, Y. Zhang, Y. Chen, Y. Li, L. Zhao, C. Rong, and L. Chen, “A
survey of decentralizing applications via blockchain: The 5G and beyond
perspective,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4,
pp. 2191–2217, 2021.

[7] “Ethereum Whitepaper.” [Online]. Available: https://ethereum.org
[8] “Solidity.” [Online]. Available: https://docs.soliditylang.org/en/v0.8.17/
[9] G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[10] R. B. Uriarte, R. De Nicola, and K. Kritikos, “Towards distributed
sla management with smart contracts and blockchain,” in 2018 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 2018, pp. 266–271.

[11] B. Koller, “Enhanced sla management in the high performance comput-
ing domain,” 2011.

[12] N. Weerasinghe, R. Mishra, P. Porambage, M. Liyanage, and M. Yliant-
tila, “Proof-of-monitoring (PoM): A novel consensus mechanism for
blockchain-based secure service level agreement management,” IEEE
Transactions on Network and Service Management, 2023.

[13] A. Alzubaidi, E. Solaiman, P. Patel, and K. Mitra, “Blockchain-based
SLA management in the context of iot,” IT Professional, vol. 21, no. 4,
pp. 33–40, 2019.

[14] S. K. Battula, S. Garg, R. Naha, M. B. Amin, B. Kang, and E. Aghasian,
“A blockchain-based framework for automatic SLA management in
fog computing environments,” The Journal of Supercomputing, vol. 78,
no. 15, pp. 16 647–16 677, 2022.

[15] R. Ranchal and O. Choudhury, “SLAM: A framework for SLA manage-
ment in multicloud ecosystem using blockchain,” in 2020 IEEE Cloud
Summit. IEEE, 2020, pp. 33–38.

[16] K. M. Khan, J. Arshad, W. Iqbal, S. Abdullah, and H. Zaib, “Blockchain-
enabled real-time SLA monitoring for cloud-hosted services,” Cluster
Computing, pp. 1–23, 2022.

[17] A. Alzubaidi, K. Mitra, and E. Solaiman, “A blockchain-based SLA
monitoring and compliance assessment for IoT ecosystems,” Journal of
Cloud Computing, vol. 12, no. 1, p. 50, 2023.

[18] X. Luo, K. Xue, J. Li, R. Li, and D. S. Wei, “Make rental reliable:
Blockchain-based network slice management framework with SLA
guarantee,” IEEE Communications Magazine, vol. 61, no. 7, pp. 142–
148, 2023.

[19] F. Javed and J. Mangues-Bafalluy, “Blockchain-based SLA management
for 6G networks,” Internet Technology Letters, p. e472.

[20] E. J. Scheid, B. B. Rodrigues, L. Z. Granville, and B. Stiller, “Enabling
dynamic SLA compensation using blockchain-based smart contracts,”
in 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). IEEE, 2019, pp. 53–61.

[21] “Go ethereum (Geth),” https://geth.ethereum.org/, accessed: 2024-04-07.
[22] “Go ethereum - github,” https://github.com/ethereum/go-ethereum, ac-

cessed: 2024-04-07.
[23] “Clique PoA protocol rinkeby PoA testnet,”

https://github.com/ethereum/EIPs/issues/225, accessed: 2024-04-07.
[24] S. D. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and

V. Sassone, “PBFT vs Proof-of-Authority: Applying the CAP Theorem
to Permissioned Blockchain,” p. 11.

[25] F. Ghaffari, E. Bertin, N. Crespi, and J. Hatin, “Distributed
ledger technologies for authentication and access control in
networking applications: A comprehensive survey,” Computer
Science Review, vol. 50, p. 100590, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013723000576

[26] C. Dannen, Introducing Ethereum and solidity. Springer, 2017, vol. 1.
[27] G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[28] C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain
scaling: A survey,” arXiv preprint arXiv:2107.10881, 2021.

[29] G. Kaur and C. Gandhi, “Scalability in blockchain: Challenges and so-
lutions,” in Handbook of Research on Blockchain Technology. Elsevier,
2020, pp. 373–406.

