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Abstract 25 

Significant errors can arise if the adjacency effect (i.e., the contribution of neighbouring pixels 26 

to the radiance of a pixel) is neglected in the interpretation of remote sensing images. For 27 

example, adjacency radiances can account for more than 30% of the signal at the top of the 28 

atmosphere (TOA) of a white sand-lined coastline (Bulgarelli and Zibordi, 2018). This paper 29 

shows that 3D radiative transfer (RT) modelling can quantify this phenomenon. It presents a 30 

new 3D Monte Carlo surface-atmosphere RT modelling in the DART RT model, and a resulting 31 

virtual 3D Earth-Atmosphere laboratory for accurate simulation of atmospheric RT, including 32 

the adjacency effect. It was first validated with the atmosphere model SMART-G for 2D scenes: 33 

relative difference is 0.20% in TOA directional reflectance of infinite black surface for solar 34 

zenith equal to 60°, and 0.03% in TOA nadir reflectance of a black disc inside infinite white 35 

Lambertian surface, for solar zenith equal to 0° and 30°. Then, the adjacency effect on the TOA 36 

radiance and TOA albedo of a 3D scene was studied for a circular city (radius 2 km) surrounded 37 

by a forest (dimension 10 km), for four Sentinel-2A bands (blue, green, red, near infrared). Its 38 

contribution to TOA nadir radiance reaches ~20% in the near infrared band, and increases with 39 

viewing zenith angle (VZA): ~60% if VZA = 80°. The 3D scene TOA albedo was calculated 40 

after adapting the DART Bidirectional Reflectance Factor (BRF) camera to simulate TOA 41 

radiance for all upward directions at any angular resolution. For Sentinel-2A’s four bands, the 42 

adjacency effect influences the TOA albedo of the circular city by up to 10% for the green band 43 

and up to 27% for the near infrared band, well above the maximum uncertainty 5% usually 44 

required in land surface applications. The adjacency effect of the city neighbourhood 3D 45 

structure was studied by replacing it by a Lambertian surface with its albedo. The city nadir 46 

TOA radiance changed by up to 1.3% with very small change in TOA albedo (< 0.5%). This 47 

new modelling greatly improves DART potential for accurate simulation of atmospheric effects. 48 

It is in the DART version freely available for research and education (https://dart.omp.eu). 49 

https://dart.omp.eu/
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1 Introduction 54 

From a remote sensing point of view, the adjacency effect is the part of the measured signal 55 

due to land surface elements outside the instantaneous field of view (IFOV). This phenomenon 56 

is one of the most challenging sources of inaccuracy in the remote sensing study of land surfaces 57 

since the advent of high-resolution Earth observation satellites (Kiselev et al., 2015; Liang et 58 

al., 2001; Ouaidrari and Vermote, 1999; Pan et al., 2022; Reinersman and Carder, 1995; Sterckx 59 

et al., 2015). It depends on many factors: the spectral domain (Dave, 1980), the atmospheric 60 

conditions (Reinersman and Carder, 1995), the heterogeneity and anisotropic scattering of the 61 

target and its neighbouring land surfaces (Bulgarelli and Zibordi, 2018), and the light source 62 

and sensor configurations (Vermote et al., 1997), etc. In the study of (Bulgarelli and Zibordi, 63 

2018) the adjacency effect reached 30% of the top of atmosphere (TOA) radiance signal at 443 64 

nm at 1 km off the coast of northern Adriatic Sea and 15% at 5 km offshore. Therefore, 65 

neglecting it can lead to very inaccurate interpretations of remote sensing images.  66 

 67 

Several methods to study and quantify the adjacency effect have been proposed since the late 68 

1970’s. They broadly belong to three groups: (1) empirical methods, (2) point spread function 69 

(PSF) based methods and (3) 3D radiative transfer (RT) modelling. Empirical methods 70 

(Minomura et al., 2001; Ouaidrari and Vermote, 1999; Richter, 1990) first derive individually 71 

the Lambertian reflectance 𝜌(𝑗)  of any pixel 𝑗  from TOA reflectance assuming an infinite 72 

homogeneous plane ground, then approximate the adjacency effect on the TOA reflectance as 73 

the product of the averaged background reflectance 〈𝜌〉  and the atmospheric diffuse 74 
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transmittance. 〈𝜌〉 is the reflectance average over a 𝑁 × 𝑁 pixel window around the pixel of 75 

interest using the previously computed reflectance 𝜌(𝑗). Being very fast, empirical methods are 76 

often used in operational atmospheric corrections (e.g., Landsat TM). They use windows whose 77 

size 𝑁 needs prior experience, mainly depending on the pixel size, the atmospheric condition, 78 

and the surface heterogeneity (Richter, 1990).  79 

 80 

In PSF-based methods, the adjacency effect is defined by the atmospheric PSF 𝑓(𝑃, 𝑃0, Ω𝑖 , Ω𝑣) 81 

that gives the scattering contribution of a land surface point 𝑃 illuminated in direction Ω𝑖 to the 82 

observed point 𝑃0  in direction Ω𝑣 . The PSF can be computed analytically using the single 83 

scattering approximation (Kiselev et al., 2015; Santer and Schmechtig, 2000) or the two-stream 84 

approximation (Mekler and Kaufman, 1980). It can also be derived using a radiosity code 85 

(Borel and Gerstl, 1992) or using a Monte Carlo code (Adler-Golden et al., 2008; Miesch et al., 86 

2005; Pearce, 1986; Reinersman and Carder, 1995). However, these methods tend to simplify 87 

the 3D RT mechanisms (e.g., multiple scattering, 3D surface architecture, atmospheric RT) that 88 

give rise to the magnitude of the adjacency radiance.  89 

 90 

A quantification of the adjacency radiance in remote sensing images needs a unified 3D RT 91 

modelling in a coupled Earth-Atmosphere system. This is increasingly possible as 92 

improvements in 3D RT modelling and computer technology reduce simulation times (Qi et al., 93 

2019; Ramon et al., 2019; Wang et al., 2022). 3D RT modelling has recently been used to 94 

quantify the adjacency effect (Bulgarelli and Zibordi, 2018; Pan et al., 2022; Sun et al., 2021).  95 

 96 

Most 3D RT models are either for the atmosphere and neglect the influence of the 3D structure 97 

and spatial heterogeneity of land surfaces (e.g., 3DMCPOL, SPARTA) (Barlakas et al., 2016; 98 

Cornet et al., 2010) or for land surfaces and neglect the influence of the atmosphere (e.g., librat, 99 
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raytran) (Govaerts et al., 1996; Lewis, 1999). Coupling a land surface RT model with an 100 

atmospheric RT model is often very approximate for simulating the adjacency effect, since it 101 

usually supposes a horizontal homogeneous land surface and atmospheric backscattering. This 102 

is why DART-FT (Flux-Tracking), the initial version of DART1 (Gastellu-Etchegorry et al., 103 

1996), included a radiative coupling mode, between the stratified atmosphere and the 3D land 104 

surface (Gascon et al., 2001; Grau and Gastellu-Etchegorry, 2013) instead of a coupling with 105 

an atmosphere model like MODTRAN (Berk and Hawes, 2017). DART-FT uses the discrete 106 

ordinates method (DOM) (Yin et al., 2013) to simulate the adjacency effect by convolving a 107 

pre-computed four-dimensional transfer function TFTOC→Z(∆𝑖, ∆𝑗, Ω, Ω
′)  that stores the 108 

incident power in direction Ω′ at three image planes Z (any altitude, TOA, and top of canopy: 109 

TOC) with ∆𝑖 line and ∆𝑗 column shifts relative to point on the TOC plane that gives rise to a 110 

unit power in direction Ω. Pre-computing TFTOC→Z avoids repeated computations. However, it 111 

is only adapted to horizontally homogeneous atmosphere. Also, its efficiency greatly decreases 112 

with the increase in the numbers of atmospheric cells, and discrete directions Ω and Ω′, whereas 113 

these numbers must be large to accurately simulate the adjacency effect, especially for high-114 

resolution remote sensing images of spatially heterogeneous landscapes. 115 

 116 

Since 2018, a Monte Carlo mode called DART-Lux has been implemented in DART to improve 117 

the accuracy and efficiency of simulations of TOC remote sensing images of large-and complex 118 

landscapes (Wang et al., 2022). Its end-to-end bidirectional path tracing algorithm samples a 119 

group of stochastic paths connecting the light source and the sensor and unbiasedly estimates 120 

radiance measurement using the weighted contribution of these path samples. DART-Lux 121 

 
1 DART (https://dart.omp.eu) is an ever-evolving radiative transfer model. It simulates the 3D radiative budget, 

including sun induced chlorophyll fluorescence, and remote sensing (RS) satellite, airborne and in-situ signals 

(spectroradiometer image, LiDAR FWF, SPL, point cloud) of natural and urban landscapes, from visible to 

thermal infrared. It is a reference tool for a wide range of RS studies (sensitivity studies, inversion of RS images, 

design of new RS sensor, etc.). Licenses are free for research and education. 

https://dart.omp.eu/
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results are consistent with those of DART-FT (relative difference < 1%) with simulation times 122 

and computer memory reduced by factors over 100 for complex landscapes (without 123 

atmosphere). Recently, (Wang and Gastellu-Etchegorry, 2021) designed a hybrid method that 124 

couples the Monte Carlo land surface RT and the DOM atmospheric RT to simulate satellite 125 

and airborne images. Although fast and accurate for relatively homogeneous land surfaces (e.g., 126 

dense forest), this method is inefficient to simulate the adjacency effect, because its DOM 127 

atmospheric RT needs small atmospheric voxels. Although usually more efficient than Monte 128 

Carlo method for 1D surface-atmosphere coupling (i.e., spatially constant TOC upwelling and 129 

downwelling fluxes), the DOM is much less efficient for 3D radiative coupling. Therefore, 130 

there was a need to design a Monte Carlo atmospheric RT modelling in DART, in addition to 131 

the DOM atmospheric RT.  132 

 133 

This paper presents two improvements of DART-Lux to simulate remote sensing images with 134 

accurate account of atmospheric effects (e.g., adjacency effect). 1) A new representation of the 135 

Earth-Atmosphere system. 2) A generalization of our initial formulation of RT modelling 136 

(Wang et al., 2022) to scenes with surfaces and volumes. In addition, the DART tool (i.e., BRF 137 

camera) that simulates the scene TOC radiance at 1° x 1° angular resolution is adapted to any 138 

altitude level and angular resolution in order to quantify the adjacency effect on the scene 139 

radiance and albedo at TOA and TOC. Section 2 summarizes the Monte Carlo modelling of the 140 

initial version of DART-Lux for land surfaces. Section 3 presents the new representation of the 141 

Earth-Atmosphere system and the new formulation of atmospheric RT modelling. Section 4 142 

presents the accuracy assessment of the new modelling and the study of the impact of the 143 

adjacency effect on TOA radiance and albedo. Finally, section 5 presents concluding remarks.  144 

 145 
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2 Principles of DART-Lux 146 

DART-Lux is an unbiased Monte Carlo method for accurate and efficient simulation of 147 

remotely sensed images of large and complex landscapes (Wang et al., 2022). Its features useful 148 

for understanding the current work are summarized here. In DART-Lux, the 3D RT problem is 149 

described by a multi-dimensional integral and is solved with Monte Carlo integration methods. 150 

The radiance 𝐿(𝑗) measured at a pixel 𝑗 of the image is an integral over all the possible paths 𝑟̅ 151 

from the light source to pixel 𝑗: 152 

𝐿(𝑗) = ∫ 𝑓(𝑗)(𝑟̅)
𝒟

∙ 𝑑𝜇(𝑟̅) (1) 

with 𝒟 = ⋃ 𝒟𝑛
∞
𝑛=1  the path space, 𝒟𝑛 the set of paths 𝑟̅𝑛 of length 𝑛, and 𝑟̅𝑛 = 𝑟0𝑟1…𝑟𝑛 a 153 

series of vertices 𝑟𝑘=0…𝑛 on surfaces 𝑑𝐴(𝑟𝑘) of the scene with 𝑟0 on the sensor and 𝑟𝑛 on the 154 

light source. 𝜇(𝒟𝑛)=∫ 𝑑𝜇(𝑟̅𝑛)𝒟𝑛
=∫ 𝑑𝐴(𝑟𝑛)∙𝑑𝐴(𝑟𝑛-1)⋯𝑑𝐴(𝑟0)𝒟𝑛

 is the area-product of 𝒟𝑛. 155 

The term 𝑓(𝑗)(𝑟̅) represents the measurement contribution of a path 𝑟̅. For a path 𝑟̅𝑛: 156 

𝑓(𝑗)(𝑟̅𝑛) = 𝐿𝑒(𝑟𝑛→𝑟𝑛-1)∙𝐺(𝑟0↔𝑟1)∙𝑊𝑒
(𝑗)(𝑟0→𝑟1)∏𝑓(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)∙𝐺(𝑟𝑘-1↔𝑟𝑘)

𝑛

𝑘=2

 (2) 

with 𝑓(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2) the bidirectional scattering distribution function (BSDF) at vertex 𝑟𝑘-1. 157 

It is often written as 𝑓(𝑟𝑘↔𝑟𝑘-1↔𝑟𝑘-2) if there is Helmholtz reciprocity of scattering. 𝐿𝑒 is 158 

the radiance emitted by the light source and 𝑊𝑒  is the sensor importance function (cf. 159 

Appendix A in (Wang et al., 2022)) that transforms incident radiation into radiance. 160 

𝐺(𝑟𝑘-1↔𝑟𝑘) = 𝑉𝑡(𝑟𝑘-1↔𝑟𝑘)∙
cos𝜃

𝑖

𝑟𝑘-1 ∙cos𝜃𝑜
𝑟𝑘

‖𝑟𝑘-1−𝑟𝑘‖
2

 is a geometric term, with 𝑉𝑡(𝑟𝑘-1↔𝑟𝑘)  the 161 

visibility function: 𝑉𝑡(𝑟𝑘-1↔𝑟𝑘) is 1 if 𝑟𝑘-1  and 𝑟𝑘  are mutually visible, and 0 otherwise. 162 

𝜃𝑖
𝑟𝑘-1  is the incident angle at vertex 𝑟𝑘-1 and cos 𝜃𝑜

𝑟𝑘 is the exit angle at vertex 𝑟𝑘. 163 

 164 

The importance sampling method, a major variance reduction technique in Monte Carlo 165 

integration (Rubinstein and Kroese, 2016), can unbiasedly estimate 𝐿(𝑗) (Eq.) using: 166 
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𝐹(𝑗) =
𝑓(𝑗)(𝑟̅𝑛)

𝑝(𝑟̅𝑛)
 (3) 

with 𝐹(𝑗) an estimate of 𝐿(𝑗) and 𝑝(𝑟̅𝑛) the probability of a path sample 𝑟̅𝑛.  167 

 168 

Eq. (3) indicates that 𝐿(𝑗) can be efficiently derived if all paths 𝑟̅𝑛 are fast sampled and the 169 

estimate 𝐹(𝑗)  converges with less repetitive scholastic processes. DART-Lux estimates 𝐿(𝑗) 170 

with a robust and rapid bidirectional path tracing method. First, all vertices of two independent 171 

paths, one starting from the light source (𝑝̅𝑁=𝑝0, 𝑝1,…, 𝑝𝑠,…, 𝑝𝑁-1) and one starting from the 172 

sensor (𝑞̅𝑁=𝑞0, 𝑞1,…, 𝑞𝑡,…,𝑞𝑁-1),  are connected to get a group of random paths 173 

𝑟̅𝑠,𝑡=𝑝0, 𝑝1,…, 𝑝𝑠-1, 𝑞𝑡-1, 𝑞𝑡-2,…, 𝑞0  (cf. Figure 5 in (Wang et al., 2022)). Then, the multiple 174 

importance sampling (MIS) estimator, proposed by (Veach and Guibas, 1997), computes 𝐿(𝑗) 175 

using a weight 𝑤𝑠,𝑡(𝑟̅𝑠,𝑡) per path sample 𝑟̅𝑠,𝑡 (Eq. (4)). In general, a larger weight corresponds 176 

to a path sample with large probability density function (Wang et al., 2022). 177 

𝐹MIS
(𝑗)

=∑∑𝑤𝑠,𝑡(𝑟̅𝑠,𝑡) ∙
𝑓(𝑗)(𝑟̅𝑠,𝑡)

𝑝(𝑟̅𝑠,𝑡)𝑡≥0𝑠≥0

 (4) 

 178 

3 Atmospheric radiative transfer modelling 179 

The initial version of DART-Lux (Wang et al., 2022) simulated RT with a Monte Carlo method 180 

for Earth scenes (i.e., landscapes) represented by surfaces (i.e., facets), and with the DOM mode 181 

of DART-FT for the atmosphere. As it was not suitable for simulating the adjacency effect, we 182 

designed a new representation of the Earth-Atmosphere system and generalized the theorical 183 

formulation of DART-Lux to Earth scenes that contain both surfaces and volumes. 184 

3.1 New Earth-Atmosphere system 185 

The new Earth-Atmosphere scene (Figure 1) is a square cuboid that contains the atmosphere 186 

and a region of interest (ROI) at its bottom centre, surrounded by a horizontal background with 187 
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user-defined bi-directional reflectance (e.g., Lambertian, Rahman-Pinty-Verstraete (RPV), 188 

specular). The ROI is a 3D landscape that includes the observed target. Its topography is 189 

smoothly connected to the background by the Bézier triangle (Farin, 2014; Wang et al., 2020). 190 

The optical properties of foliar and soil surfaces can be defined using the DART database of 191 

optical properties, or computed by the PROSPECT / Fluspect / MARMIT modules (Bablet et 192 

al., 2018; Dupiau et al., 2022; Féret et al., 2017; Jacquemoud and Baret, 1990; Vilfan et al., 193 

2016). The atmosphere (i.e., gases and, aerosols) is made of horizontally homogeneous and 194 

vertically continuous layers with any depths, at any altitudes; default depths are 1 km from 0 to 195 

15 km altitude and 5 km from 15 to 50 km altitude. Polynomials from the spline interpolation 196 

ensure vertical continuity of optical properties (e.g., extinction coefficient) and temperature 197 

within and between layers (Wang and Gastellu-Etchegorry, 2020). Clouds can be imported as 198 

3D volumes with defined shape and homogenous properties. The scene default size is 500 km 199 

× 500 km× 50 km, which is a good approximation of infinite plane-parallel atmosphere with 200 

relative difference less than 0.1% (cf. Appendix A). The DART atmosphere database includes 201 

six standard gas models (i.e., TROPICAL, MIDLATSUM, MIDLATWIN, SUBARCSUM, 202 

SUBARCWIN and USSTD76 (Anderson et al., 1986)) and five standard aerosol models (i.e., 203 

Rural, Urban, Maritime, Tropospheric and Fog (Shettle and Fenn, 1979)). These models can be 204 

adapted and data (e.g., gas and temperature profiles) can be imported to match actual 205 

atmospheric conditions. The methods to compute the atmospheric vertical profiles are detailed 206 

in (Wang and Gastellu-Etchegorry, 2020). In this new Earth-Atmosphere scene, the sensor can 207 

be anywhere with any orientation and field of view (FOV).  208 
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 209 

Figure 1. The DART-Lux Earth-Atmosphere system: square cuboid filled by the atmosphere and a 3D 210 

landscape (region of interest: ROI) at its bottom centre, surrounded by a horizontal background. 211 

The observed target is in the ROI. Default size: X × Y × Z = 500 km × 500 km × 50 km.  212 

 213 

The DART BRF camera gives the TOC radiance of the total scene at 1° x 1° angular resolution 214 

(Wang et al., 2022). It was adapted in order to give the directional radiance at any altitude from 215 

the ground to TOA, for any user-defined angular resolution and scene sub-zones. It provides 216 

the directional radiance measured from a user-defined virtual surface Σ. Figure 2 shows its three 217 

modes. In mode 1, the BRF camera provides the average directional radiance of Σ measured at 218 

Σ. In mode 2, it provides the average directional radiance at a given distance to the centre of . 219 

In mode 3, it provides the average directional radiance of  measured at a given altitude.  220 
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 221 

Figure 2. The three modes of the improved BRF camera. They give the radiance from a user-defined 222 

surface  at altitude H, for any angular resolution and range. Mode 1: average directional 223 

radiance measured at Σ. Mode 2: average directional radiance measured at a given distance to 224 

the centre of Σ. Mode 3: average directional radiance measured at any user-defined altitude.  225 

 226 

3.2 Light transport equation 227 

3.2.1 Radiative transfer equation and its formal solution 228 

Eq. (1) is not adapted to simulate the propagation of radiation in fluids (e.g., atmosphere) and 229 

vegetation volumes treated as turbid media. Then, an integro-differential equation gives the 230 

change of radiance per unit distance 
𝑑𝐿

𝑑s
 in the considered ;medium at location r in direction Ω. 231 

For fluids, this equation is: 232 

𝑑𝐿(𝑟, Ω)

𝑑𝑠
= −𝛼𝑡(𝑟)∙𝐿(𝑟, Ω) +

𝛼𝑠(𝑟)

4𝜋
∙∫ 𝐿(𝑟, Ω′)∙𝑃(𝑟, Ω′ → Ω)𝑑Ω′

4𝜋

+
𝑑𝐿𝑒(𝑟, Ω)

𝑑𝑠
 (5) 

with 𝛼𝑡 the extinction coefficient and 𝛼𝑠 the scattering extinction coefficient. 𝛼𝑡 is assumed 233 

invariant to rotation: 𝛼𝑡(𝑟, Ω)=𝛼𝑡(𝑟), as in a medium filled with microscopically isotropic 234 

and mirror-symmetric particles (Mishchenko et al., 2006). The unit normalized scattering 235 

phase function 𝑃(𝑟, Ω′→Ω) (
1

4𝜋
∫ 𝑃(𝑟, Ω′→Ω)𝑑Ω
4𝜋

=1) gives the angular distribution of the 236 

scattered power to direction Ω due to the incident power from direction Ω′. The term 
𝑑𝐿𝑒

𝑑𝑠
 is 237 

the variation of thermal radiance, i.e., the Planck function, per unit distance. The notation of 238 
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incident direction Ω′ differs for volume and surface scattering: it usually points towards the 239 

interaction location in volume scattering and usually points away from the interaction 240 

location in surface scattering. 241 

 242 

Because it is an integro-differential equation, Eq. (5) is transformed to an integral form (Eq. (6)) 243 

that a Monte Carlo algorithm can solve. Eq. (6) shows that radiance 𝐿(𝑟, Ω) at a point 𝑟 in a 244 

medium is the sum of (1) radiance 𝐿(𝑟0 , Ω) at 𝑟0 transmitted to 𝑟, and (2) cumulated scattering 245 

and thermal emission from 𝑟0 to 𝑟 (Figure 3).  246 

𝐿(𝑟,Ω)=𝐿(𝑟0,Ω)∙𝒯(𝑟↔𝑟0)+∫ [
𝛼𝑠(𝑟

′)

4𝜋
∫ 𝐿(𝑟′,Ω′)∙𝑃(𝑟′,Ω′→Ω)∙𝑑Ω′

4𝜋

+
𝜕𝐿𝑒(𝑟

′,Ω)

𝜕𝑠′
]∙𝒯(𝑟↔𝑟′)∙𝑑𝑠′

𝑠

0

 (6) 

with 𝑠=‖𝑟-𝑟0‖ the distance between 𝑟 and 𝑟0, 𝑟′=𝑟-𝑠′Ω the location at the distance 𝑠′ from 247 

𝑟  in direction Ω, and 𝒯(𝑟↔𝑟0)=exp(- ∫ 𝛼𝑡(𝑟
′)𝑑𝑠′

𝑠

0
) the transmittance from 𝑟0  to 𝑟 . The 248 

left-right arrow emphasizes the Helmholtz reciprocity principle (i.e., 𝒯(𝑟0→𝑟)=𝒯(𝑟→𝑟0)). 249 

 250 

Figure 3. Radiance 𝐿(𝑟, Ω)  at 𝑟.  It is the sum of radiance 𝐿(𝑟0, Ω)  at 𝑟0  of a surface 𝛴  that is 251 

transmitted to 𝑟, and radiance due to scattering and thermal emission along the path 𝑟𝑜𝑟⃗⃗⃗⃗  ⃗. 252 

3.2.2 Unified light transport equation for the surface and the volume 253 

In an infinite medium, Eq. (6) becomes 𝐿(𝑟, Ω)=∫
𝜕𝐿(𝑟′,Ω)

𝜕𝑠′
∙𝒯(𝑟↔𝑟′)∙𝑑𝑠′

∞

0
 with: 254 

𝜕𝐿(𝑟′, Ω)

𝜕𝑠′
= ∫ 𝐿 (𝑟′, Ω′) ∙

𝛼𝑠(𝑟
′)∙𝑃(𝑟′, Ω′ → Ω)

4𝜋
∙ 𝑑Ω′

4𝜋

+
𝜕𝐿𝑒(𝑟′, Ω)

𝜕𝑠′
 (7) 
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Eq. (7) becomes an integral over volume 𝑉 by replacing directions with pairs of vertices (e.g., 255 

Ω  (𝑟′→𝑟)), and solid angle 𝑑Ω′ by 
𝑑𝐴(𝑟′′)

‖𝑟′′−𝑟′‖2
, and using the visibility function 𝑉𝑡(𝑟

′′↔𝑟′): 256 

𝜕𝐿(𝑟′→𝑟)

𝜕𝑠′
=∫

𝜕𝐿(𝑟′′→𝑟′)

𝜕𝑠′′
∙
𝛼𝑠(𝑟

′) ∙ 𝑃(𝑟′′→𝑟′→𝑟)

4𝜋
∙
𝑉𝑡(𝑟′′↔𝑟′) ∙ 𝒯(𝑟′′↔𝑟′)

‖𝑟′′ − 𝑟′‖2
∙ 𝑑𝑉(𝑟′′)

V

+
𝜕𝐿𝑒(𝑟′→𝑟)

𝜕𝑠′
 (8) 

Since the derived volume light transport equation (Eq. (8)) and the surface light transport 257 

equation (Wang et al., 2022) have a similar formulation, a unified formulation can be used: 258 

𝐿̃(𝑟′→𝑟) = 𝐿̃𝑒(𝑟
′→𝑟) + ∫ 𝐿̃(𝑟′′→𝑟′) ∙ 𝑓𝑠(𝑟

′′→𝑟′→𝑟) ∙ 𝐺̃(𝑟′↔𝑟′′) ∙ 𝑑ℳ(𝑟′′)
ℳ

 (9) 

with ℳ a surface 𝐴 or volume 𝑉 depending on the material at the vertex. The radiance terms 259 

𝐿̃ and 𝐿̃𝑒 correspond to radiance for a surface, and radiance per unit distance for a volume: 260 

𝐿̃(𝑟′′→𝑟′) = {
𝐿(𝑟′′→𝑟′)        ∀ 𝑟′ ∈ 𝐴
𝜕𝐿(𝑟′′→𝑟′)

𝜕𝑠′′
      ∀𝑟′ ∈ 𝑉

 261 

The scattering distribution function 𝑓 is either the BSDF for a surface, or the product of the 262 

scattering extinction coefficient and the scattering phase function for a volume: 263 

𝑓𝑠(𝑟
′′→𝑟′→𝑟) = {

𝑓𝑠(𝑟
′′→𝑟′→𝑟)                             ∀ 𝑟′∈𝐴

𝛼𝑠(𝑟
′)∙
𝑃(𝑟′′→𝑟′→𝑟)

4𝜋
               ∀ 𝑟′∈𝑉

 264 

The generalized geometric term 𝐺̃(𝑟′↔𝑟′′)=𝑉(𝑟′↔𝑟′′)∙𝒯(𝑟′′↔𝑟′)∙
𝜇̃𝑜
𝑟′∙𝜇̃𝑖

𝑟′′

‖𝑟′′−𝑟′‖2
 is defined with: 265 

𝜇𝑜
𝑟′  = {cos 𝜃𝑜

𝑟′     ∀ 𝑟′ ∈ 𝐴

1,               ∀ 𝑟′ ∈ 𝑉
   and  𝜇𝑖

𝑟′′ = {cos 𝜃𝑖
𝑟′′      ∀ 𝑟′′ ∈ 𝐴

1,                ∀ 𝑟′′ ∈ 𝑉
 266 

3.2.3 Path integral formulation 267 

In an interaction, the incident radiance is the path attenuated exit radiance from a previous 268 

interaction. Therefore, Eq. (9) is iteratively expanded to an infinite sum of multidimensional 269 

integrals where each integral is the contribution of a specific scattering order to 𝐿̃(𝑟1→𝑟0): 270 

𝐿̃(𝑟1→𝑟0) = 𝐿̃𝑒(𝑟1→𝑟0) + ∫ 𝐿̃𝑒(𝑟2→𝑟1)∙𝑓𝑠(𝑟2→𝑟1→𝑟0)∙𝐺̃(𝑟1↔𝑟2)∙𝑑ℳ(𝑟2)
ℳ

   271 



14 

      +∫ ∫ 𝐿̃𝑒(𝑟3→𝑟2)∙𝑓𝑠(𝑟3→𝑟2→𝑟1)∙𝐺̃(𝑟2↔𝑟3)∙𝑓𝑠(𝑟2→𝑟1→𝑟0)∙𝐺̃(𝑟1↔𝑟2)∙𝑑ℳ(𝑟3)∙𝑑ℳ(𝑟2)
ℳℳ

+… 272 

Since 𝑟1→𝑟0 is the direction to the sensor, the radiance measurement 𝐿(𝑗) at pixel 𝑗 is computed 273 

by integrating 𝐿̃(𝑟1→𝑟0) weighted by the importance function 𝑊𝑒
(𝑗)(𝑟0→𝑟1) of the sensor: 274 

𝐿̃(𝑗) = ∫ ∫ 𝑊𝑒
(𝑗)(𝑟0→𝑟1)∙𝐿̃(𝑟1→𝑟0)∙𝐺̃(𝑟0↔𝑟1)

ℳ𝐴

∙𝑑ℳ(𝑟1)∙𝑑𝐴(𝑟0) (10) 

𝐿(𝑗) is a Lebesgue integral over the space 𝜇 of surfaces and volumes of the set of paths 𝒟̃:  275 

𝐿̃(𝑗) = ∫ 𝑓(𝑗)(𝑟̅) ∙ 𝑑𝜇(𝑟̅)
𝒟̃

 (11) 

𝒟̃𝑛 and 𝜇(𝒟̃𝑛) are generalized paths that intersect surfaces and volumes, with 𝒟̃𝑛 the multiple 276 

cartesian product of the space {𝐴, 𝑉}, since a vertex is either in a volume 𝑉 or on a surface 𝐴.  277 

𝒟̃𝑛 = ⋃ (𝐴 ×ℳ1 ×⋯×ℳ𝑛)

𝑐∈{0,1}𝑛

, with ℳ𝑘 = {
𝐴, 𝑐𝑘 = 0

𝑉, 𝑐𝑘 = 1
 278 

𝜇̃(𝒟̃𝑛) = ∫ 𝑑𝜇(𝑟̅𝑛)
𝒟𝑛

= ∑ ∫ 𝑑𝐴(𝑟0) ∙∏{
𝑑𝐴(𝑟𝑘),   𝑐𝑘 = 0

𝑑𝑉(𝑟𝑘),   𝑐𝑘 = 1

𝑛

𝑘=1
(𝐴×ℳ1×⋯×ℳ𝑛)𝑐∈{0,1}𝑛

 279 

with Cartesian product such that {0, 1}𝑛={(𝑐1, 𝑐2,⋯,𝑐𝑘,⋯,𝑐𝑛)|ck∈{0, 1} ∀ 𝑘∈{1,2,⋯,𝑛}}.  280 

 281 

For example, 𝒟̃1 = (𝐴 × 𝐴) + (𝐴 × 𝑉) describes a surface emission and a volume emission 282 

event. 𝒟̃2 = (𝐴 × 𝐴 × 𝐴) + (𝐴 × 𝐴 × 𝑉) + (𝐴 × 𝑉 × 𝐴) + (𝐴 × 𝑉 × 𝑉)  describes a surface 283 

emission followed by a surface scatter event, a surface emission followed by a volume scatter 284 

event, a volume emission followed by a surface scatter event and a volume emission followed 285 

by a volume scatter event, and so on. Therefore, integration over 𝒟̃𝑛 is the sum of 2𝑛 (n+1)-286 

dimensional integrals. 287 

 288 

The unified contribution function 𝑓(𝑗)(𝑟̅𝑛) uses the unified quantities for both surfaces and 289 

volumes in the formulation in Eq. (2):  290 
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𝑓(𝑗)(𝑟̅𝑛)=𝐿̃𝑒(𝑟𝑛→𝑟𝑛−1)∙𝐺̃(𝑟0↔𝑟1)∙𝑊𝑒
(𝑗)(𝑟1→𝑟o)∙∏𝑓𝑠(𝑟𝑘→𝑟𝑘−1→𝑟𝑘−2)∙𝐺̃(𝑟𝑘−1↔𝑟𝑘)

𝑛

𝑘=2

 (12) 

Thus, a unified algorithm handles surface and volume interactions. Differences are only in 291 

assessing the effective source emission, scattering distribution function, and geometric term at 292 

each vertex 𝑟𝑘 according to the material. (Regaieg, 2023) describes its adaptation to vegetation 293 

treated as turbid medium. 294 

 295 

3.3 Radiative transfer modelling 296 

As the Earth-Atmosphere system (Figure 1) has a huge size (i.e., X × Y × Z = 500 km × 500 km 297 

× 50 km) compared to ROI, the forward random walk from the light source is inefficient. For 298 

example, a ray from a source located 200 km away from the ROI has a very small probability 299 

to be scattered into the sensor FOV. In addition, its intersection with a scene element (e.g., a 300 

leaf) can be very inaccurate due to computer decimal imprecision. Therefore, because it is time 301 

consuming and inaccurate, the forward random walk is deactivated for simulating Monte Carlo 302 

surface-atmosphere RT. In short, a random virtual ray is emitted from the sensor, and is 303 

connected to the light source after each interaction with a volume or a surface, using a user 304 

defined maximal scattering order 𝑀 to limit the path length. Then, the estimator in Eq. (4) is: 305 

𝐹IS
(𝑗)
= ∑

𝑓(𝑗)(𝑟̅𝑛)

𝑝(𝑟̅𝑛)

∞

𝑛=1

 (13) 

3.3.1 Light scattering 306 

The sampling of a stochastic path 𝑟̅𝑛  and the evaluation of the path contribution 
𝑓̃(𝑗)(𝑟̅𝑛)

𝑝(𝑟̅𝑛)
 are 307 

detailed here. The scattering direction is sampled with the angular distribution of the exit power 308 

due to unit incident power. For surfaces, the probability density function (PDF) for incident 309 

direction -Ω𝑖 (minus sign as Ω𝑖 is defined from the scattering point) and exit direction Ω𝑜 is: 310 
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𝑝(Ω𝑜|-Ω𝑖) =

{
  
 

  
           𝑃∗ ∙

𝑓(𝑟, -Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑜

∫ 𝑓 (𝑟,-Ω𝑖 → Ω𝑜
′
) ∙ cos 𝜃𝑜

′
𝑑Ω𝑜

′

2𝜋

,    if (𝑛⃗ ∙ Ω𝑜) ∙ (𝑛⃗ ∙ Ω𝑖) ≥ 0

(1 − 𝑃∗) ∙
𝑓(𝑟, -Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑜

∫ 𝑓 (𝑟,-Ω𝑖 → Ω𝑜
′
) ∙ cos 𝜃𝑜

′
𝑑Ω𝑜

′

2𝜋

,   otherwise                          

 (14) 

with P∗ the reflection probability and 𝑛⃗  the surface normal. 𝑝(Ω𝑖|-Ω𝑜) is similarly defined. 311 

The conditional PDF of volume scattering (isotropic mirror-symmetric microscopic particles) is: 312 

𝑝(Ω𝑜|Ω𝑖) =
𝑓(𝑟, Ω𝑖 → Ω𝑜)

∫ 𝑓 (𝑟, Ω𝑖 → Ω𝑜
′
)𝑑Ω𝑜

′

4𝜋

=
𝑃(𝑟, Ω𝑖 → Ω𝑜)

4𝜋
 (15) 

with 𝑝(Ω𝑖|Ω𝑜) being similarly defined. 313 

Two types of atmospheric scattering implemented in DART are presented here: 314 

- Rayleigh scattering (particles with diameter d such that 0.002 <
𝝅𝒅

𝝀
< 0.2) (Petty, 2006) 315 

The Rayleigh phase function uses the phase angle 𝛾 (cos 𝛾=|Ω𝑖∙Ω𝑜|) and a depolarization 316 

factor 𝛿 to consider the influence of molecule anisotropy. 𝛿 is a spectral quantity (Bates, 317 

1984; Bucholtz, 1995) that decreases from 0.04545 at 0.2 𝜇m down to 0.02955 at 0.4 𝜇m, 318 

0.02730 at 0.8 𝜇m, and is nearly constant for longer wavelengths. Its relative influence on 319 

Rayleigh scattering phase function of dry air is smaller than 0.1% for wavelengths larger 320 

than 0.4 𝜇m. It is commonly assumed to be equal to 0.0279, as advised by (Young, 1980): 321 

𝑃(𝑟, Ω𝑖 → Ω𝑜) =
3

2
∙
1 − 𝛿

2 + 𝛿
∙ (
1 + 𝛿

1 − 𝛿
+ cos2𝛾) (16) 

- Particle scattering (particles with diameter d such that 
𝝅𝒅

𝝀
> 0.2) 322 

The double Henyey-Greenstein phase function simulates it, with asymmetry factors g1>0 323 

(forward scattering) and g2<0 (backward scattering) and ratio 𝑎 of forward scattering:  324 

𝑃(𝑟, Ω𝑖 → Ω𝑜) =
𝑎 ∙ (1 − g1

2)

(1 + g1
2 − 2g1 ∙ cos 𝛾)

3/2
+

(1 − 𝑎) ∙ (1 − g2
2)

(1 + g2
2 − 2g2 ∙ cos 𝛾)

3/2
 (17) 
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3.3.2 Light transmission 325 

Once an exit direction Ω𝑜 is sampled at 𝑟, an intersection test along Ω𝑜 gives the intersected 326 

vertex on the nearest surface (Figure 4). If there is no medium in the line of sight, the process 327 

continues by sampling the next scattering direction at the intercepted vertex. Otherwise, a free 328 

path 𝑆  in the medium is sampled according to the path PDF 𝑝(𝑠)  and the cumulative 329 

distribution function 𝑃𝑆(𝑠) (i.e., ℙ(S ≤ 𝑠)):  330 

𝑃𝑆(𝑠) = ℙ(𝑆 ≤ 𝑠) = 1 − 𝒯(𝑠)   and   𝑝(𝑠) =
𝑑𝑃𝑆(𝑠)

𝑑𝑠
= 𝛼𝑡(𝑠) ∙ 𝒯(𝑠) (18) 

with 𝒯(𝑠)  the transmittance from 𝑟  to 𝑟 + 𝑠∙Ω𝑜  along Ω𝑜  and 𝛼𝑡(𝑠)  the extinction 331 

coefficient at 𝑟 + 𝑠∙Ω𝑜 . If the signal is modelled for a series of spectral bands, 𝛼𝑡  is an 332 

average extinction coefficient for all spectral bands. 333 

 334 

Figure 4. Distance sampling schema. 𝑠 is the distance from the start location 𝑟 to the current location 335 

𝑟+𝑠∙Ω𝑜 in direction Ω𝑜. 𝛴 is the nearest surface in the direction of propagation. 336 

The probabilistic free path 𝑆  is derived from a random variable 𝜉 ∈ [0, 1) and an inversion 337 

function 𝑆 = 𝑃𝑆
−1(𝜉). For a homogeneous medium (i.e., constant 𝛼𝑡 in the line of sight):  338 

𝑆 = 𝑃𝑆
−1(𝜉) = −

ln(1 − 𝜉)

𝛼𝑡
 (19) 

Usually, 𝛼𝑡 varies in the line of sight, and 𝑆 cannot be derived analytically. Then, the medium 339 

is represented by discrete volumes and the free path is sampled with the Regular Tracking 340 

method (Amanatides and Woo, 1987). For example, for a series of homogeneous segment 341 

medium along the line of sight, each one with extinction coefficient 𝛼𝑖 and segment length ∆𝑠𝑖: 342 
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𝑝(𝑠) = 𝛼𝑖∙𝑒
-[∑ 𝛼𝑘∙∆𝑠𝑘

𝑖−1
𝑘=0 +𝛼𝑖∙(𝑠-∑ ∆𝑠𝑘

𝑖−1
𝑘=0 )]  

𝑃𝑆(𝑠) = 1 - 𝑒-[∑ 𝛼𝑘∙∆𝑠𝑘
𝑖−1
𝑘=0 +𝛼𝑖∙(𝑠-∑ ∆𝑠𝑘

𝑖−1
𝑘=0 )] 

∀ 𝑠 ∈ [∑ ∆𝑠𝑘
𝑖−1
𝑘=0 , ∑ ∆𝑠𝑘

𝑖
𝑘=0 ]      (20) 

The free path equation 𝑆 = 𝑃𝑆
−1(𝜉) is solved recursively until the path optical depth gives the 343 

randomly sampled value -ln(1 - 𝜉):  344 

-ln(1 - 𝜉) = ∑ 𝛼𝑘∙∆𝑠𝑘
𝑖−1
𝑘=0 + 𝛼𝑖∙(𝑆 - ∑ ∆𝑠𝑘

𝑖−1
𝑘=0 )  345 

Once sampled, if the free path 𝑆 is less than the distance 𝑠 to the nearest surface (Figure 4), it 346 

defines the next scattering event in the medium. If 𝑆 ≥ 𝑠, the sampled vertex is on the nearest 347 

surface and the path probability density is multiplied by the probability 348 

ℙ(𝑆≥𝑠)=∫ 𝑝(𝑠)𝑑𝑠
∞

𝑠
=𝒯(𝑠) that the ray will be intercepted by the nearest surface. 349 

3.3.3 Measurement evaluation 350 

Starting from the sensor, a complete path is created by repeatedly sampling a vertex and free 351 

path. In detail, a vertex 𝑟0 on the lens and an emitted virtual ray direction Ω0 are first sampled 352 

using sensor characteristics. Then, a vertex 𝑟𝑘 is created by sampling a stochastic exit direction 353 

Ω𝑘-1 at the vertex 𝑟𝑘-1. This sampling depends only on the local incident direction 𝑟𝑘-2 → 𝑟𝑘-1. 354 

The free path is always sampled after each bounce. Finally, the last vertex 𝑟𝑛 on the light source 355 

is generated by uniformly sampling the solid angle subtended by the light source at the previous 356 

vertex 𝑟𝑛-1. Here the free path is not sampled. Instead, we force the radiation to connect the 357 

light source to increase the efficiency. The path PDF is evaluated by: 358 

𝑝(𝑟̅𝑛) = 𝑝(𝑟0)∙𝑝(𝑟1|𝑟0)∙∏𝑝(𝑟𝑘|𝑟𝑘−1, 𝑟𝑘−2)

𝑛−1

𝑘=2

∙𝑝(𝑟𝑛|𝑟𝑛−1) =∏𝑝⃖(𝑟𝑘)

𝑛

𝑘=0

 (21) 

Eq. (22) shows the expression of PDF 𝑝(𝑟𝑘|𝑟𝑘-1, 𝑟𝑘-2, … , 𝑟0)≡𝑝⃖(𝑟𝑘) for 1<𝑘<𝑛 with a reverse 359 

arrow to indicate that it is for backward light transport (cf. Appendix C in (Wang et al., 2022)). 360 

PDFs 𝑝(𝑟0)≡𝑝⃖(𝑟0), 𝑝(𝑟1|𝑟0)≡𝑝⃖(𝑟1) and 𝑝(𝑟𝑛|𝑟𝑛-1)≡𝑝⃖(𝑟𝑛) can be derived in a similar way. 361 
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𝑝⃖(𝑟𝑘) =

{
 
 

 
 𝑝(Ω𝑘−1) ∙

𝒯(𝑟𝑘−1↔𝑟𝑘)∙cos 𝜃𝑜
𝑟𝑘

‖𝑟𝑘−1 − 𝑟𝑘‖2
   𝑟𝑘 ∈ 𝐴

𝑝(Ω𝑘−1) ∙
𝛼𝑒(𝑟𝑘)∙𝒯(𝑟𝑘−1↔𝑟𝑘)

‖𝑟𝑘−1 − 𝑟𝑘‖2
     𝑟𝑘 ∈ 𝑉

 (22) 

The contribution function 𝑓(𝑗)(𝑟̅𝑛) is computed as in Eq. (12): 362 

𝐹IS
(𝑗)
=∑

𝐿̃𝑒(𝑟𝑛→𝑟𝑛-1)∙𝐺̃(𝑟0↔𝑟1)∙𝑊𝑒
(𝑗)(𝑟0→𝑟1)

𝑝⃖(𝑟0) ∙ 𝑝⃖(𝑟1)
∙∏

𝑓(𝑟𝑘↔𝑟𝑘-1↔𝑟𝑘-2)∙𝐺̃(𝑟𝑘-1↔𝑟𝑘)

𝑝⃖(𝑟𝑘)

𝑛

𝑘=2

∞

𝑛=1

 (23) 

Eq. (23) is analysed in Appendix B for a semi-infinite plane parallel atmosphere, illuminated 363 

by parallel sunlight and observed by a TOA orthographic camera. Results are consistent with 364 

the familiar Single Scattering Albedo (SSA) method (Spada et al., 2006).  365 

 366 

4 Model assessment and application  367 

DART-Lux already proved to be accurate (Wang et al., 2022) for land surfaces, as compared 368 

with Monte Carlo models in the RAMI experiment (Widlowski et al., 2007), and remote sensing 369 

and in-situ measurements (Malenovsky et al., 2023, Liu et al., 2023). For example, (Landier et 370 

al., 2018) noted a urban TOC albedo (ratio of upward exitance and downward irradiance) 371 

relative difference  2.5% between in-situ measurements and simulations using satellite-derived 372 

optical properties of urban elements. This section presents the assessment of DART accuracy 373 

for the adjacency effect modelling, including a quantitative study on this effect.  374 

4.1 Accuracy assessment 375 

DART accuracy in atmospheric RT modelling, in particular the adjacency effect, was assessed 376 

with the Monte Carlo atmospheric model SMART-G (Ramon et al., 2019), already validated 377 

with the reference MYSTIC model in the International Polarized Radiative Transfer (IPRT) 378 

intercomparison study (https://www.meteo.physik.uni-muenchen.de/~iprt/doku.php). SMART-379 

G is developed by HYGEOS (https://www.hygeos.com) for the French space agency (CNES) 380 
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to simulate light propagation in the atmosphere and oceans. Our assessment consists of two 381 

phases using atmospheric parameters of case B2 (https://www.meteo.physik.uni-382 

muenchen.de/~iprt/doku.php?id=intercomparisons:b2_absorption) of the IPRT study (Emde et 383 

al., 2015). This atmosphere has 30 equal-thickness (1 km) layers, with given absorption and 384 

scattering optical thickness per layer. Table 1 shows the DART and SMART-G configurations. 385 

 386 

Table 1. Simulation configurations for Phase 1 and Phase 2 comparisons. 387 

 Phase 1 Phase 2 

Atmosphere model IPRT case B2 IPRT case B2 

Land surface  Infinite black surface Black disc (R = 2 km) + 

Infinite white environment 

Solar direction SZA = 60° 

SAA = 0° 
SZA = 0° and 30° 

SAA = 270° 

Sensor altitude 30 km (TOA) 30 km (TOA) 

Output 
Directional reflectance for: 

VZA 0° – 80° with 5° step 

VAA 0° – 180° with 5° step 

Nadir image of the disc: 

Spatial resolution: 10 m 

Image size: 400 × 400 

 388 

In phase 1, DART and SMART-G agree (Figure 5): the relative root mean square difference 389 

εDART
SMART-G = 0.20% for 629 upward viewing directions (Table 1), by considering 390 

εmodel
reference=

√∑ (ρmodel(i)-ρreference(i))
2N

i=1

√∑ ρreference(i)
2N

i=1  

(Emde et al., 2015). This small value is mainly due to Monte 391 

Carlo noise and rounding errors in calculations. The squared-average TOA reflectance 392 

√∑ (ρSMART-G(i))
2N

i=1

N
 is 0.04866, with maximum standard deviation σMax

SMART-G=1.1×10-5  and 393 

σMax
DART=3.8×10-5. It gives composed standard deviation 𝜎Max

tot =√(𝜎Max
SMART-G)2+(𝜎Max

DART)
2
=4.0×10−5 394 

and maximum tolerated relative difference 
3×𝜎tot

0.04866
=0.25%, which is a probability of 99.7% the 395 

https://www.meteo.physik.uni-muenchen.de/~iprt/doku.php?id=intercomparisons:b2_absorption
https://www.meteo.physik.uni-muenchen.de/~iprt/doku.php?id=intercomparisons:b2_absorption
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relative difference εDART
SMART-G lies in 0.25%. Compared to the proposed reference model MYSTIC 396 

in IPRT program, the relative differences are εDART
MYSTIC = 0.21% and εSMART-G

MYSTIC = 0.013%. 397 

 398 

In phase 2, we determined the horizontal profiles of average TOA reflectance of the black disc2 399 

from its centre to its edge, with a step of 0.1 km, for two solar directions3 (SZA = 0° and SZA 400 

= 30°) (Figure 6). The adjacency effect clearly increases from the centre to the edge of the disc. 401 

The relative root mean square difference is 0.033% for SZA = 0° and 0.032% for SZA = 30°. 402 

These small differences are due to Monte Carlo noise and rounding error in calculations. Indeed, 403 

the average TOA nadir reflectance of the disc is 0.137 for SZA = 0° and 0.114 for SZA = 30°, 404 

while DART and SMART-G maximum standard deviations are σMAX
SMART-G = 6 × 10−6  and 405 

𝜎MAX
DART = 1.8 × 10−5. Then, composed standard deviation 𝜎MAX

tot = √(𝜎MAX
SMART−G)

2
+ (𝜎MAX

DART)2 = 1.9 ×406 

10−5 and maximum tolerated relative difference 
3×𝜎tot

0.114
= 0.05%.  407 

 408 

DART SMART-G DIFF 

   

Figure 5. DART and SMART-G TOA directional reflectance and difference in phase 1, from left to 409 

right. Simulation parameters are indicated in Table 1. 410 

 
2 In phase 2, DART simulates a nadir 400 x 400 image with spatial resolution of 10 m while SMART-G simulates 

1.6 x 105 sensors that are positioned at each pixel center of the image. 
3 The solar direction in DART is defined as a vector in local coordinates pointing towards the sun. Azimuth is 

measured from the north-south axis in an anticlockwise manner. 
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 411 

SZA = 0° SZA = 30° 

  

  

Figure 6. DART and SMART-G TOA reflectance value and difference from centre to edge of black 412 

disc for sun zenith angle (SZA) = 0° and 30°. Simulation parameters are in Table 1. 413 

 414 

4.2 3D modelling of the adjacency effect  415 

4.2.1 The experiment 416 

The influence of the adjacency effect on target radiance and albedo is shown for four Sentinel-417 

2A bands: blue (B: 𝜆=0.4924 𝜇m, ∆𝜆=0.066 𝜇m), green (G: 𝜆=0.5598 𝜇m, ∆𝜆=0.036 𝜇m, 418 

red (R: 𝜆=0.6646 𝜇m, ∆𝜆=0.031 𝜇m) and near infrared (NIR: 𝜆=0.8328 𝜇m, ∆𝜆=0.106 𝜇m). 419 

The atmosphere is defined by the USSTD76 gas model, and the Rural aerosol model. Table 2 420 

gives its vertical scattering and absorption optical depth per band. Solar zenith and azimuth 421 

angles are 𝜃𝑠=30° and 𝜑𝑠=270°, respectively. The target is a circular city with a 2 km radius 422 

in a 3D neighbourhood of 10 km sides inside a 500 km square Lambertian plane background 423 

(Figure 7). The city has 55828 houses in regular rows (tiled roofs, concrete wall) and streets 424 

(asphalt roads), with optical properties of urban materials (e.g., asphalt, concrete, tile) from the 425 
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SLUM (http://www.met.reading.ac.uk/micromet/LUMA/SLUM.html) and ECOSTRESS 426 

(https://speclib.jpl.nasa.gov) libraries. Two cases are considered (Figure 8): 427 

- 3D case (Figure 8): the neighbourhood is a 10 km × 10 km 3D forest with 1553504 nearly-428 

randomly located Tilia cordata trees at five growing stages, with homogeneous understory. 429 

The tree models and optical properties, including those of the understory, are from the 430 

RAMI experiment (https://rami-benchmark.jrc.ec.europa.eu/_www/index.php). 431 

- 1D case: the neighbourhood is a 10 km x 10 km Lambertian plane with the TOC albedo of 432 

the forest. DART computes the TOC albedo of the forest and city for subzones (1 km × 1 433 

km at city centre and 2 km × 2 km in top-left forest, in Figure 7). 434 

Table 2. Atmosphere vertical scattering and absorption optical depth (OD), and city and forest TOC 435 

albedos, for four Sentinel-2A bands. 436 

Band Wavelength Scattering OD Absorption OD City TOC albedo Forest TOC albedo 

B 0.4924 𝜇m 0.501 0.030 0.06 0.03 

G 0.5598 𝜇m 0.392 0.058 0.07 0.07 

R 0.6646 𝜇m 0.286 0.036 0.010 0.03 

NIR 0.8328 𝜇m 0.189 0.045 0.100 0.42 

 437 

http://www.met.reading.ac.uk/micromet/LUMA/SLUM.html
https://speclib.jpl.nasa.gov/
https://rami-benchmark.jrc.ec.europa.eu/_www/index.php
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a) b)  438 

Figure 7. 3D case. a) Target: circular city of 2 km radius with 55828 houses spaced 15 m apart in a 10 439 

× 10 km forest with 1553504 quasi-randomly distributed Tilia cordata trees at five growing 440 

stages, spaced   5 m apart). b) DART created house. b) Example of Tilia cordata: TICO 5. 441 

a)
  

b)
  

Figure 8. Two cases: city (i.e., target) in a neighbourhood that is a forest (a: 3D case) or a Lambertian 442 

plane with the forest TOC albedo (b: 1D case). The two cases have the same background.  443 

4.2.2 Adjacency effect on TOA nadir radiance 444 

The adjacency effect is evaluated as the difference of two simulations, one with the 1D/3D 445 

neighbourhood and the background and the other one with the neighbourhood and background 446 

as flat black surfaces. Figure 9 shows the TOA nadir adjacency NIR radiance 𝐿adj(𝑥, 𝑦) and 447 

𝐿adj(𝑟) of the city with 1D (a) and 3D (b) neighbourhood, with 𝑟 the distance from the city 448 
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centre to the edge (𝑟 = 2 km). 𝐿adj  increases from the city centre. It is larger for the 3D 449 

neighbourhood than for the 1D neighbourhoods, although both have the same TOC albedo. This 450 

is mostly due to the forest anisotropic reflectance. 451 

 452 

Figure 9. Adjacency radiance 𝐿adj in the nadir TOA images for the 1D (a) and 3D (b) neighbourhoods 453 

at NIR band. 𝐿adj(𝑟) greatly increases with distance 𝑟 from the city centre to the edge. 𝐿adj(𝑟) 454 

is the average for all pixels 𝐿adj(𝑥, 𝑦) in the ring [𝑟, 𝑟+∆𝑟] with ∆𝑟=0.1 km (Table 3). 455 

Table 3 shows nadir 𝐿adj at city centre and edge, and its relative contribution 𝜁𝐿adj=𝐿adj/𝐿TOA 456 

to TOA radiance for four Sentinel-2A bands. 𝐿adj is  2 – 3 times larger at the edge of the city 457 

than at its centre, for all bands. It reaches ~20% in the NIR band. 𝐿adj and 𝜁𝐿adj  increase with 458 

the neighbour TOC albedo and the importance of atmospheric scattering. For example, 𝜁𝐿adj  is 459 

more than 5 times larger in NIR band than in the red band because the forest TOC albedo is 460 

more than 12 times larger in the NIR band than in the red band. Also, 𝜁𝐿adj  is more than 1.5 461 

times larger in the blue band than in the red band, although the TOC albedo of the forest is 462 

similar, because the atmosphere scatters more in the blue band than in the red band (cf. 463 

atmospheric scattering optical depth in Table 2). The study of adjacency effect under different 464 

aerosol loadings in the Appendix C confirms this point. We also note that the impact of 3D 465 
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structure on the adjacency radiance is maximal in the NIR band, the 𝜁𝐿adj  values of the 1D and 466 

3D cases differ by 0.3% at the city centre and by 1.3% at the city edge. 467 

Table 3. Adjacency radiance 𝐿adj (W/m2/sr/𝜇m) and its relative contribution 𝜁𝐿adj = 𝐿adj/𝐿TOA (%) to 468 

total TOA nadir radiance at the city centre and edge, for the four Sentinel-2A bands.  469 

 1D neighbour 3D neighbour 

 Centre Edge Centre Edge 

 𝐿adj 𝜁𝐿adj  𝐿adj 𝜁𝐿adj  𝐿adj 𝜁𝐿adj  𝐿adj 𝜁𝐿adj  

B 1.4 2.2% 2.5 4.2% 1.4 2.3% 2.8 4.7% 

G 1.8 3.6% 3.9 8.0% 1.9 3.9% 4.4 9.0% 

R 0.4 0.9% 1.1 2.5% 0.4 1.0% 1.2 2.8% 

NIR 1.7 5.5% 6.1 17.5% 1.8 5.8% 6.6 18.8% 

 470 

4.2.3 Adjacency effect on directional radiance and albedo 471 

The TOA albedo of the city centre and the edge are simulated using the BRF camera (Figure 2) 472 

in mode 3, for a user-defined plane (∆𝑥=∆𝑦=100 m) with altitude H=15 m, mode 3 to obtain 473 

the TOA signal and mode 1 to obtain the TOC signal. Figure 10 shows the directional 474 

distributions of TOA radiance 𝐿TOA, adjacency radiance 𝐿adj and its relative contribution 𝜁𝐿adj. 475 

at the city centre and edge, for the NIR band. 𝐿TOA tends to be larger in the backward directions 476 

due to the hot-spot effect of the 3D land surface and is smaller in the forward directions due to 477 

the observation of the shadows of the city buildings. 𝐿adj increases with the obliquity of the 478 

observation directions. For example, 𝜁𝐿adj  can be as high as 60% for directions with VZA = 80°, 479 

because increasing the “sensor-city” path (i.e., larger atmospheric optical depth for observation) 480 

decreases the city signal and increases the city neighbourhood signal by atmospheric scattering. 481 
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 482 

TOA exitance MTOA  is the hemispherical integral of the directional average upward TOA 483 

radiance of a surface at TOC level. TOA albedo 𝒜TOA is the ratio of TOA exitance MTOA to 484 

TOA irradiance ETOA. Table 4 shows the contribution 𝒜adj
Z  (altitude level Z can be TOC or 485 

TOA) due to the adjacency effect and its relative importance 𝜁𝒜adj
Z =𝒜adj

𝑍 /𝒜Z at the city centre 486 

and edge, for the four Sentinel-2A bands. 𝜁𝒜adj
TOA is usually larger than 5%, the maximum TOC 487 

albedo uncertainty advised by the Global Climate Observing System (GCOS: 488 

https://gcos.wmo.int/en/essential-climate-variables/albedo/). Therefore, the adjacency effect 489 

can be a significant source of uncertainty for the interpretation of TOC albedo from RS images 490 

if they are not corrected by the atmospheric correction algorithm. Here, the large TOC albedo 491 

of the neighbour forest in the NIR can increase 𝒜adj
TOA up to 0.035 (i.e., 28.1% of the total TOA 492 

albedo). Although it impacts the directional radiance, the 3D structure of the neighbourhood 493 

only slightly influences 𝒜adj
TOA: the difference of 𝒜adj

TOA between 1D and 3D neighbour case is 494 

less than 0.8% for all four bands. 495 
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Figure 10. Angular plots of TOA total radiance 𝐿TOA, radiance 𝐿adj due to the adjacency effect, and 497 

relative contribution 𝜁𝐿adj  at the city centre and edge. NIR band. a) 1D neighbour. b) 3D 498 

neighbour.  499 

Table 4. Adjacency TOA albedo 𝒜adj
TOA and its percentage contribution 𝜁𝒜adj

TOA=𝒜adj
TOA/𝒜TOA (%) to 500 

total TOA albedo at the city centre and edge, for four Sentinel-2A bands.  501 

 1D neighbour 3D neighbour 

 Centre Edge Centre Edge 

 𝒜adj
TOA 𝜁𝒜adj

TOA  𝒜adj
TOA 𝜁𝒜adj

TOA  𝒜adj
TOA 𝜁𝒜adj

TOA  𝒜adj
TOA 𝜁𝒜adj

TOA  

B 0.004 3.8% 0.006 4.9% 0.005 3.9% 0.007 5.2% 

G 0.008 7.4% 0.010 10.1% 0.008 7.6% 0.011 10.6% 

R 0.003 2.6% 0.004 3.9% 0.003 2.6% 0.004 4.1% 

NIR 0.021 18.6% 0.033 27.3% 0.022 19.0% 0.035 28.1% 

 502 

The influence of the adjacency effect is smaller on the TOC irradiance and TOC exitance than 503 

on the TOA exitance. Its relative contribution to local TOC albedo 𝒜TOC  is even smaller 504 

because it contributes in a similar way to TOC exitance MTOC and irradiance ETOC: it is only 505 

about 0.13% at NIR band, 0.01% at the red band, 0.03% at the green band and 0.03% at the 506 

blue band. Table 5 shows MTOC , ETOC  and 𝒜TOC  at NIR band as well as their respective 507 

increases Δadj
TOC due to the adjacency effect, at the city centre and edge, for 1D and 3D neighbour 508 

cases. The ratio of the components Δadj
TOC  to MTOC  and ETOC  is close to 𝒜TOC  (i.e., Δadj

MTOC/509 

Δadj
ETOC≈𝒜TOC). 510 
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Table 5. TOC exitance MTOC (W/m2/𝜇m), irradiance ETOC (W/m2/𝜇m) and albedo 𝒜TOC at NIR band 511 

as well as their component Δadj
TOC due to the adjacency effect. ETOC is the integral of directional 512 

radiance captured by a fisheye camera looking upward and placed at the city centre and edge. 513 

 1D neighbour 3D neighbour 

 Centre Edge Centre Edge 

 Total Δadj
TOC Total Δadj

TOC Total Δadj
TOC Total Δadj

TOC 

MTOC 87.67 0.92 87.87 1.06 87.67 0.91 87.88 1.07 

ETOC 857.99 8.90 858.24 9.26 858.03 8.94 858.33 9.35 

𝒜TOC 0.1022 0.0000 0.1024 0.0001 0.1022 0.0000 0.1024 0.0001 

 514 

5 Concluding remarks 515 

This paper presents the new 3D Monte Carlo modelling of surface-atmosphere RT in DART as 516 

an extension and adaptation of the initial light transport theory to scenes that comprise surfaces 517 

and volumes. It also presents a new Earth-Atmosphere system. It is designed to simulate 518 

accurate remote sensing observations and their atmospheric contributions, including those due 519 

to the adjacency effect. The default setting of this Earth-Atmosphere system (i.e., X × Y × Z = 520 

500 km × 500 km × 50 km) is consistent (relative error < 0.1%) with a quasi-infinite parallel 521 

atmosphere. Its dimensions can be easily adapted to any experimental context. Its atmospheric 522 

RT modelling has been successfully evaluated with SMART-G with an atmosphere defined in 523 

the IPRT program. The relative root mean square difference of TOA reflectance is 0.20% for 524 

629 upward viewing directions from VZA = 0° to 80° for infinite black surface, and 0.03% for 525 

the points on the radius of a black disc inside infinite white environment. These differences are 526 

mainly due to Monte Carlo noise and the roundoff error of computing. 527 

 528 
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This new DART modelling is very well adapted to study the influence of the adjacency effect 529 

on remotely sensed radiance of land surfaces at any altitude. We studied this influence for a 530 

scene made up of a target city (radius 2 km) surrounded by a forest (dimension 10 km), for four 531 

Sentinel-2A bands (blue, green, red, NIR). Results allow one to quantify the increase of the 532 

adjacency effect with larger TOC albedo of the neighbouring forest and atmospheric scattering. 533 

In our experiment, the adjacency effect contributes up to ~ 5.5% at the city centre and up to 534 

~20% at the city edge to the TOA nadir NIR radiance, which is more than 5 times larger than 535 

that at red band (~1% at the city centre and ~3% at the city edge). It is explained by the fact 536 

that the forest TOC albedo at NIR band is more than 12 times larger than in the red band. The 537 

adjacency effect in the blue band is 1.5 times larger than that of the red band at the city centre 538 

and edge although forest TOC albedo is similar in the blue and red bands, because the 539 

atmosphere scatters more in the blue band than in the red band. The 3D structure of the 540 

neighbouring forest also plays a role because it drives the angular distribution of the radiation 541 

scattered by the neighbourhood of the city. Compared to the 1D Lambertian neighbour case, it 542 

can induce a difference of adjacency contribution up to 1.3% for the edge of the city for the 543 

NIR band.  544 

 545 

The BRF camera of DART has been adapted to the new Earth-Atmosphere system in order to 546 

simulate the hemispherical distribution of the upward radiance, then to compute the 547 

corresponding albedo at a given altitude, a key parameter reflecting the radiative balance. 548 

Results show that the adjacency contribution increases if the observing direction is more 549 

inclined. In our virtual experiment, at observing zenith equal to 80°, the adjacency contribution 550 

in the NIR band can represent up to 60% of the TOA radiance. The increased TOA albedo due 551 

to adjacency effect for the four Sentinel-2A bands considered is generally larger than the 552 

required maximum TOC albedo uncertainty 5% in applications as reported in GCOS. For 553 



33 

example, the proportion of adjacency albedo in total TOA albedo can reach 10% in the green 554 

band and 27% in the NIR band. The anisotropic reflectance of the forest that surrounds the city 555 

influences the TOA radiance of the city, but only slightly influences the TOA albedo of the city. 556 

The adjacency effect changes TOC irradiance but hardly changes the TOC albedo since the 557 

adjacency effect increases both the TOC irradiance and exitance.  558 

 559 

This work expands the potential of DART to study and correct atmospheric effects in remote 560 

sensing images through the consideration of realistic landscapes with their spatial heterogeneity, 561 

3D architecture, topography, etc. It also helps quantifying the error in the fast methods that 562 

estimate approximately the adjacency effect. 563 

 564 
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Appendix A. The default atmosphere dimension 569 

The default parameters (e.g., 50 km altitude, 500 km × 500 km atmosphere horizontal dimension) 570 

of the new Earth - Atmosphere system (cf. section 3.1) were derived from sensitivity studies in 571 

order to be optimal in usual configurations. For example, larger dimensions improve accuracy 572 

but increase simulation time. The optimal altitude was determined using MODTRAN as a 573 

reference. Considered an atmosphere characterized by the USSTD76 gas model and the Rural 574 

aerosol model, TOC albedo equal to 0.5, 2721 bands from 0.32 to 2.5 𝜇m, nadir solar and 575 

viewing directions, and sensors at 40 km, 45 km, 50 km, 55 km, 60 km and 70 km altitudes. 576 

The relative differences  between sensor and MODTRAN spectra are very small and decrease 577 

with altitude (Figure A.1, Table A.1). For the selected 50 km altitude  = 0.07%.  578 

 579 

Figure A.1. MODTRAN TOA radiance spectra at seven sensor altitudes (40 km, 45 km, 50 km, 55 km, 580 

60 km, 70 km, 100 km). TOC albedo is 0.5. USSTD76 atmosphere model with rural aerosols. 581 

 582 

Table A.1. Mean relative error 𝜀 of radiance spectra at six sensor altitudes (Figure A.1) compared to 583 

the reference radiance spectrum of a sensor at 100 km altitude. 584 

Sensor altitude 40 km 45 km 50 km 55 km 60 km 70 km 

𝜀 0.17% 0.07% 0.07% 0.06% 0.03% 0.01% 

 585 
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The optimal horizontal dimension D𝑋𝑌 of the atmosphere volume was studied using a DART 586 

simulation with D𝑋𝑌  = 10000 km as a reference, for a TOC albedo equal to 0.5, an atmosphere 587 

characterized by the USSTD76 gas model and rural aerosol model, and nadir solar and viewing 588 

directions. D𝑋𝑌 was set to 20 km, 50 km, 100 km, 200 km, 500 km, and 10000 km. Figure A.2 589 

shows that a small D𝑋𝑌 value (e.g., 20 km) leads to a large underestimate of TOA reflectance 590 

in the visible domain. Table A.2 shows the average relative error  for each D𝑋𝑌 value. D𝑋𝑌  = 591 

500 km is a good approximation for an infinite parallel atmosphere because =0.08%. 592 

 593 

Figure A.2. DART TOA nadir reflectance for five atmosphere horizontal dimensions D𝑋𝑌 (20 km, 50 594 

km, 100 km, 200 km, 500 km). TOC albedo is 0.5. USSTD76 atmosphere model with rural 595 

aerosols. The reference is for D𝑋𝑌=10000 km.  596 

 597 

Table A.2. The mean relative error 𝜀  of all DART TOA nadir reflectance spectra (Figure A.2) 598 

compared to the reference spectrum simulated with D𝑋𝑌 = 10000 km. 599 

D𝑋𝑌 20 km 50 km 100 km 200 km 500 km 

𝜀 7.74% 3.59% 0.55% 0.45% 0.08% 

  600 
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Appendix B. Radiance estimate for a semi-infinite atmosphere 601 

For the semi-infinite plane-parallel atmosphere, illuminated by parallel sunlight and observed 602 

by an orthographic camera, the radiance estimate 𝐹IS
(𝑗)
=∑ [

𝐿̃𝑒(𝑟𝑛→𝑟𝑛−1)∙𝐺̃(𝑟0↔𝑟1)∙𝑊𝑒
(𝑗)(𝑟0→𝑟1)

𝑝⃖(𝑟0)∙𝑝⃖(𝑟1)
∙∞

𝑛=1603 

∏
𝑓̃𝑠(𝑟𝑘→𝑟𝑘−1→𝑟𝑘−2)∙𝐺̃(𝑟𝑘−1↔𝑟𝑘)

𝑝⃖(𝑟𝑘)
𝑛
𝑘=2 ] (Eq. (23)) can be simplified since all vertices, except those at 604 

the light source and sensor, are in the medium, we have: 605 

𝐺̃(𝑟0 ↔ 𝑟1) ∙ 𝑊𝑒
(𝑗)(𝑟0 → 𝑟1)

𝑝⃖(𝑟0) ∙ 𝑝⃖(𝑟1)
=

𝒯(𝑟0 ↔ 𝑟1) ∙
cos𝜃𝑖

𝑟0

‖𝑟0 − 𝑟1‖
2 ∙
𝛿(Ω0 − Ωd)

𝐴img
1

𝐴img
∙
𝛿(Ω0 − Ωd)
‖𝑟0 − 𝑟1‖

2 ∙ 𝛼𝑒(𝑟0 → 𝑟1) ∙ 𝒯(𝑟0 ↔ 𝑟1)
=

1

𝛼𝑒(𝑟0 → 𝑟1)
 606 

𝑓𝑠(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)∙𝐺̃(𝑟𝑘-1↔𝑟𝑘)

𝑝⃖(𝑟𝑘)
=

𝛼𝑠(𝑟𝑘→𝑟𝑘-1)∙
𝑃(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)

4𝜋
∙
𝒯(𝑟𝑘-1↔𝑟𝑘)

‖𝑟𝑘-1−𝑟𝑘‖
2

𝑃(𝑟𝑘→𝑟𝑘-1→𝑟𝑘-2)

4𝜋
∙
𝛼𝑒(𝑟𝑘-1→𝑟𝑘)∙𝒯(𝑟𝑘-1↔𝑟𝑘)

‖𝑟𝑘-1−𝑟𝑘‖
2

 =
𝛼𝑠(𝑟𝑘→𝑟𝑘-1)

𝛼𝑒(𝑟𝑘-1→𝑟𝑘)
 607 

Besides, the direct connection of the light source indicates: 608 

𝐿̃𝑒(𝑟𝑛 → 𝑟𝑛−1) ∙ 𝑓𝑠(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2) ∙ 𝐺̃(𝑟𝑛−1 ↔ 𝑟𝑛)

𝑝⃖(𝑟𝑛)
609 

=
𝐸𝑠 ∙ 𝛿(Ω𝑛−1 − Ω𝑠) ∙ 𝛼𝑠(𝑟𝑛 → 𝑟𝑛−1) ∙

𝑃(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2)
4𝜋 ∙

𝒯(𝑟𝑛−1 ↔ 𝑟𝑛)
‖𝑟𝑛−1 − 𝑟𝑛‖

2

𝛿(Ω𝑛−1 − Ω𝑠) ∙
cos 𝜃𝑜

𝑟𝑛

‖𝑟𝑛−1 − 𝑟𝑛‖
2

610 

= 𝐸𝑠 ∙ 𝛼𝑠(𝑟𝑛 → 𝑟𝑛−1) ∙ 𝒯(𝑟𝑛−1 ↔ 𝑟𝑛) ∙
𝑃(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2)

4𝜋
 611 

with 𝐸𝑠 the solar constant at TOA, and Ω𝑠 the solar direction.  612 

 613 

Assuming that atmospheric constituents are isotropic, extinction coefficients depend only on 614 

location. After a few mathematical manipulations, we obtain a form consistent with the SSA 615 

method in (Spada et al., 2006): 616 

𝐹IS
(𝑗)
= ∑ [𝐸𝑠 ∙ 𝒯(𝑟𝑛 ↔ 𝑟𝑛−1) ∙

𝑃(𝑟𝑛 → 𝑟𝑛−1 → 𝑟𝑛−2)

4𝜋
∙∏

𝛼𝑠(𝑟𝑘)

𝛼𝑒(𝑟𝑘)

𝑛−1

𝑘=1

]

∞

𝑛=1

 617 

  618 
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Appendix C. Adjacency effect under different aerosol loadings 619 

The adjacency effect is mostly due to scene elements at short distance if the aerosol optical 620 

depth (AOD) is high, and at greater distances if the AOD is small (Houborg and McCabe, 2016). 621 

Here, we consider TOA reflectance for different AODs. The scene is a black disc with radius 622 

equal to 2 km surrounded by an infinite white environment. The atmosphere is characterized 623 

by a USSTD76 gas model and a Rural aerosol model. SZA = 30° and SAA = 270°. Figure C.1 624 

shows the TOA adjacency reflectance of the disc as a function of distance from the disc centre 625 

to edge for four different AODs. The AOD in DART was scaled by a so-called multiplicative 626 

factor applied to the aerosol vertical profile. For example, a factor equal to 0.5 means the 627 

resulted AOD is the AOD of Rural aerosol model multiplied by 0.5. Four factors were 628 

considered: 0, 0.5, 1 and 5. Figure C.1 shows that the adjacency effect decreases at the disc 629 

centre if AOD increases. The trend is more complex on the disc border: an AOD increase leads 630 

to an increase of the adjacency effect if AOD is low (i.e., factor less or equal to 1), and to a 631 

decrease of the adjacency effect if the AOD is very high (i.e., factor 5).  632 

 633 

 634 

Figure C.1. TOA adjacency reflectance from the centre to border of the black disc, for four 635 

different aerosol loadings. 636 

  637 
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