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Abstract 19 

Understanding the sensitivity of remote sensing (RS) observation to land surface parameters 20 

(e.g., reflectance and temperature) is very important for estimating the accuracy of RS products 21 

and optimizing inversion algorithms. The most precise method for quantifying this sensitivity 22 

is physical modelling of derivative propagation in simulated 3D landscapes. However, to our 23 

knowledge, present land surface radiative transfer models (RTM) do not simulate derivative 24 

propagation. This paper proposes an original “differentiable radiative transfer modelling” that 25 

simulates the derivative propagation in natural and urban landscapes, for reflectance. It is 26 

integrated in the framework of DART RTM. We validated it both analytically and with a finite 27 

difference method applied to a 3D landscape. This new modelling extends the efficiency of 3D 28 

RTMs for sensitivity studies. It is implemented in the DART version freely available for 29 

research and education (https://dart.omp.eu). 30 

 31 
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 34 

1 Introduction 35 

Only remote sensing (RS) observations enable us to study land surfaces at different spatial and 36 

temporal scales. This is usually done through their inversion with radiative transfer models 37 

(RTM) as surface parameters (e.g., albedo, temperature, leaf area index) or their assimilation 38 

in land surface models (Dickinson, 2008; Liang and Wang, 2019). Quantifying their sensitivity 39 

to surface optical properties is very important to optimize inversion procedures by identifying 40 

influential parameters, optimizing cost functions (Bowyer et al., 2003; Crosetto et al., 2001; 41 

Gupta and Razavi, 2017; Ye and Hill, 2017), and also to estimate the accuracy of RS products 42 

by investigating the error propagation (Gobron et al., 2008; Vermote and Kotchenova, 2008). 43 

 44 

https://dart.omp.eu/
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An observation can be viewed as a function 𝐹=𝑓(�̂�) of parameters �̂�=[𝜋1, 𝜋2, … , 𝜋𝑘, … , 𝜋𝑁]. 45 

Its sensitivity quantification needs to know its derivatives [
𝜕𝐹

𝜕𝜋1
,

𝜕𝐹

𝜕𝜋2
, … ,

𝜕𝐹

𝜕𝜋𝑘
, … ,

𝜕𝐹

𝜕𝜋𝑁
] (Ustinov, 46 

2015). To compute them with measurements is usually very expensive, if not impossible, due 47 

to the large amount of data required. RTMs offer an alternative solution because the partial 48 

derivative of a parameter 𝜋𝑘 can be computed as 
𝜕𝐹

𝜕𝜋𝑘
=

𝑓(𝜋1,𝜋2,…,𝜋𝑘+∆𝜋𝑘,… )−𝑓(𝜋1,𝜋2,…,𝜋𝑘,… )

∆𝜋𝑘
, using 49 

two simulations with a slight shift ∆𝜋𝑘  of parameter 𝜋𝑘 . Zhen et al. (2023) used this finite 50 

difference method with the 3D RTM DART1 (Gastellu-Etchegorry et al., 1996; Wang et al., 51 

2022) to get the derivatives of Sentinel-2 signal per surface element in each pixel. Similarly, 52 

Gobron et al. (2008) estimated the uncertainty of MERIS fraction of Absorbed 53 

Photosynthetically Active Radiation (fAPAR) product by computing the partial derivative of 54 

fAPAR using a canopy and atmosphere RTM (Vermote et al., 1997). Vermote and Kotchenova 55 

(2008) estimated the error budget of MODIS surface reflectance product due to uncertainties in 56 

atmospheric parameters by simulating TOA reflectance with an atmospheric RTM for several 57 

atmospheric and geometrical scenarios. However, the use of multiple runs of a RTM has two 58 

drawbacks. (1) It is very expensive if the number of parameters is large, because the number of 59 

simulations is twice that of parameters. (2) It is noisy with small parameter shift ∆𝜋𝑘, and biased 60 

with large ∆𝜋𝑘 . A different method is therefore needed to efficiently provide accurate 61 

derivatives for sensitivity studies. 62 

 63 

In the computer graphics field, Li et al. (2018) proposed the first physically based differentiable 64 

Monte Carlo ray tracer to compute derivatives over a rendered image with respect to scene 65 

 

1 DART (https://dart.omp.eu) is one of the most accurate and complete 3D radiative transfer models. It simulates 

the radiative budget and remote sensing signals of natural and urban landscapes, from visible to thermal infrared. 

https://dart.omp.eu/
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parameters such as camera pose, scene geometry, materials, and lighting parameters. Zhang et 66 

al. (2019) designed a comprehensive mathematical framework for physically based 67 

differentiable rendering that computes derivatives for arbitrary differentiable scene changes. 68 

Jakob et al. (2022) and Vicini (2022) improved computation efficiency with respect to scene 69 

parameter optimization. Present research on differentiable renderers is mostly focused on 70 

reconstructing the shape and appearance of real-world objects from very high resolution RGB 71 

images (Ichbiah et al., 2023; Jiang et al., 2020; Luan et al., 2021; Petersen et al., 2022). Salesin 72 

et al. (2024) will adapt these methods for retrieving aerosol size and refractive index in a simple 73 

atmosphere-ocean scene in the future work. However, methods proposed in graphics are usually 74 

not suited to sensitivity studies in the RS domain where the need is derivatives of multi-75 

spectral/spatial resolution remote sensing signals to surface optical and thermal properties with 76 

consideration of physical mechanisms, such as polarization and solar-induced fluorescence. 77 

 78 

To our knowledge, land surface RTMs do not simultaneously simulate the RS signal and its 79 

derivatives. This explains at least in part that RTM-based inversion methods (Liang and Wang, 80 

2019) do not use derivatives in optimization methods (Goel and Grier, 1987; Liang and Strahler, 81 

1993), LUT (Look-Up-Table) creation (Darvishzadeh et al., 2008; Weiss et al., 2000) and 82 

machine learning approaches (Abdelmoula et al., 2021; Makhloufi et al., 2021; Miraglio, 2021).  83 

 84 

This paper presents the first 3D Monte Carlo “land surface differentiable radiative transfer 85 

modelling” that directly computes derivatives for reflectance of each surface element. Section 86 

2 presents the propagation of derivatives and the new formulation of differentiable radiative 87 

transfer. Section 3 describes the implementation of this modelling in the framework of DART 88 

model. Section 4 presents the validation with an analytical method and a finite difference 89 
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method. The major factors that influence the derivative are also discussed. Finally, Section 5 90 

presents the concluding remarks and the potential applications of this new modelling.  91 

2 Principles of radiative transfer and its differentiation 92 

2.1 Radiative transfer and pixel radiance formulation 93 

The light transport equation, also called rendering equation (Kajiya, 1986), at a surface 𝛴 with 94 

bidirectional scattering distribution function (BSDF) 𝑓𝑠(𝑟, −Ω𝑖 → Ω𝑜) at position 𝑟, gives the 95 

exit radiance 𝐿(𝑟, Ω𝑜) [W/m2/sr/𝜇m] in direction Ω𝑜  as the sum of emitted radiance 𝐿𝑒  and 96 

radiance due to scattering of incident radiance in direction −Ω𝑖 (Figure 1): 97 

𝐿(𝑟, Ω𝑜) = 𝐿𝑒(𝑟, Ω𝑜) + ∫ 𝐿(𝑟, −Ω𝑖) ∙ 𝑓𝑠(𝑟, −Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑖 𝑑Ω𝑖
4𝜋

 (1) 

 98 

Figure 1. Light transport at a surface 𝛴 with normal �⃗� . 𝜃𝑖 is the angle between incident direction Ω𝑖 99 

and �⃗� , and 𝜃𝑜 is the angle between the exit direction Ω𝑜 and �⃗� . 100 

In absence of volume media, the incident radiation is the exit radiation from the previous 101 

interaction that is also described by the same light transport equation. Thus, Eq. (1) can be 102 

recursively expanded to a sum of multiple dimensional integral (Wang et al., 2022). Then, after 103 

mathematical manipulations with consideration of the optical system (sensor characteristics, 104 

pixel size, focal distance, observation geometry, etc.), for a given pixel, j, its radiance 𝐿(𝑗) can 105 

be represented as an integral function of paths �̅� connecting the light source and the sensor: 106 

𝐿(𝑗) = ∫ 𝑓(𝑗)(�̅�)
𝒟

𝑑𝜇(�̅�) (2) 
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with 𝑓(𝑗)(�̅�) the contribution function, 𝒟 = ⋃ 𝒟𝑛
∞
𝑛=1  the path space, 𝒟𝑛 the set of paths �̅�𝑛 of 107 

length 𝑛, and �̅�𝑛 = 𝑟0𝑟1…𝑟𝑛 a series of vertices 𝑟𝑘=0, ... , 𝑛 on surfaces 𝑑𝐴(𝑟𝑘) of the scene with 108 

𝑟0  on the sensor and 𝑟𝑛  on the light source (cf. Figure 2 in (Wang et al., 2022)). 109 

𝜇(𝒟𝑛)=∫ 𝑑𝜇(�̅�𝑛)
𝒟𝑛

=∫ 𝑑𝐴(𝑟𝑛)∙𝑑𝐴(𝑟𝑛-1)⋯𝑑𝐴(𝑟0)𝒟𝑛
 is the area-product of 𝒟𝑛. 110 

2.2 Differentiable radiative transfer 111 

Pixel radiance 𝐿(𝑗)(�̂�) is the result of radiation propagation in scenes with parameters �̂� =112 

[𝜋1, 𝜋2, ⋯ , 𝜋𝑘 , ⋯ ]  that can be reflectance, transmittance, emissivity, temperature, surface 113 

architecture, illumination and observation geometry, etc. The aim of differentiable radiative 114 

transfer is to estimate the partial derivative of 𝐿(𝑗) (Eq. (2)) with respect to any parameter 𝜋𝑘: 115 

𝜕𝐿(𝑗)(�̂�)

𝜕𝜋𝑘
=

𝜕

𝜕𝜋𝑘
[∫ 𝑓(𝑗)(�̅�, �̂�)

𝒟

𝑑𝜇(�̅�)] (3) 

If the integral contains parameter-dependent discontinuities or if the integration domain 𝒟 is a 116 

function of �̂� (discontinuities at boundary), the derivative operator cannot be directly moved 117 

inside the integral. Then, the parameter-dependent discontinuities must be specifically treated. 118 

The Reynolds transport theorem (Reynolds, 1983; Zhang et al., 2019) indicates that a derivative 119 

of an integral of a function 𝑓(𝑗)(�̅�, �̂�) with containing discontinuities depends on the derivative 120 

of 𝑓(𝑗)(�̅�, �̂�), the boundary motion and internal discontinuities (discontinuities of 𝑓(𝑗)(�̅�, �̂�)): 121 

𝜕

𝜕𝜋𝑘
[∫ 𝑓(𝑗)(�̅�, �̂�)

𝒟(𝜋𝑘)

𝑑𝜇(�̅�)] = ∫
𝜕𝑓(𝑗)(�̅�, �̂�)

𝜕𝜋𝑘𝒟(𝜋𝑘)

𝑑𝜇(�̅�) + ∮ ∆𝑓(𝑗)(�̅�, �̂�)∙ 〈
𝜕�̅�

𝜕𝜋𝑘
, �⃗� 〉 𝑑𝜇(�̅�)

Γ(𝜋𝑘)

 (4) 

with Γ(𝜋𝑘) ∈ 𝒟(𝜋𝑘) the union of the boundary 𝜕𝒟(𝜋𝑘) and the set of parameter-dependent 122 

interior discontinuities ∆𝒟(𝜋𝑘) , and 〈
𝜕�̅�

𝜕𝜋𝑘
, �⃗� 〉  the dot product of boundary motion and the 123 

normal direction at �̅�. ∆𝑓(𝑗)(�̅�, �̂�) is defined as: 124 

∆𝑓(𝑗)(�̅�, �̂�) = {
𝑓(𝑗)(�̅�, �̂�),                                                              �̅� ∈ 𝜕𝒟(𝜋𝑘) 

lim
𝜀→0

[𝑓(𝑗)(�̅� + 𝜀 ∙ �⃗� , �̂�) − 𝑓(𝑗)(�̅� − 𝜀 ∙ �⃗� , �̂�)] , �̅� ∈ ∆𝒟(𝜋𝑘)
 125 
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Generally, three types of parameters can change 𝒟 or cause discontinuity in 𝑓(𝑗)(�̅�, �̂�). (1) 126 

Instrument configuration (e.g., camera position, field of view). (2) Illumination configuration 127 

(e.g., light position, light size). (3) Land surface architecture (e.g., shape, position). In the 128 

context of RS applications, our objective is to compute the derivatives of RS image radiance to 129 

surface optical and thermal properties (e.g., reflectance, transmittance, emissivity, temperature) 130 

for a given illumination and observation geometry and land surface architecture. Then, 131 

discontinuity in the integrand and boundary of the integration domain will not be affected by 132 

�̂�. Consequently, we can reduce Eq. (4) to Eq. (5). 133 

𝜕

𝜕𝜋𝑘
[∫ 𝑓(𝑗)(�̅�, �̂�)

𝒟

𝑑𝜇(�̅�)] = ∫
𝜕𝑓(𝑗)(�̅�, �̂�)

𝜕𝜋𝑘𝒟

𝑑𝜇(�̅�) (5) 

2.3 Physical interpretation  134 

Eq. (5) implies that partial derivatives can propagate in the scene as radiance. This is shown by 135 

differentiating light transport equation (Eq. (1)), then reformulating is it as:  136 

�̇�(𝑟, Ω𝑜) = �̇�𝑒(𝑟, Ω𝑜) + ∫ �̇�(𝑟, −Ω𝑖) ∙ 𝑓𝑠(𝑟, −Ω𝑖 → Ω𝑜) ∙ cos 𝜃𝑖 𝑑Ω𝑖
4𝜋

 (6) 

with �̇�𝑒(𝑟, Ω𝑜) and �̇�(𝑟, −Ω𝑖) separately defined as: 137 

�̇�𝑒(𝑟, Ω𝑜) =
𝜕𝐿𝑒(𝑟, Ω𝑜)

𝜕𝜋𝑘
+ ∫ 𝐿(𝑟,−Ω𝑖) ∙

𝜕𝑓𝑠(𝑟, −Ω𝑖 → Ω𝑜)

𝜕𝜋𝑘
∙ cos 𝜃𝑖 𝑑Ω𝑖

4𝜋

 138 

�̇�(𝑟, −Ω𝑖) =
𝜕𝐿(𝑟, −Ω𝑖)

𝜕𝜋𝑘
                                                                                          139 

The transport of derivative (Eq. (6)) has two parts: (1) the emitted differential radiance �̇�𝑒(𝑟, Ω) 140 

when emission and BSDF change with parameter 𝜋𝑘; (2) the scattering of differential radiance 141 

�̇�(𝑟, Ω) as radiometric quantities. Note that the BSDF must be differentiable. Eq. (6) shows that 142 

the differentiable light transport equation has the same form as Eq. (1), which implies that the 143 

transport of radiation and derivative can be evaluated simultaneously.  144 
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3 Implementation in DART 145 

The bidirectional path tracing algorithm (Eq. (7)) unbiasedly estimates Eq. (5) for path length 146 

n from 1 to infinite (i.e., all scattering orders contribute). In short, a light sub-path �̅�𝑠 =147 

𝑝0, … , 𝑝𝑠, … starting from the light source and a sensor sub-path �̅�𝑡 = 𝑞0, … , 𝑞𝑡, … starting from 148 

the sensor lens are coupled to generate a group of end-to-end paths, and the derivative estimates 149 

associated to each path are weighted to evaluate the total derivative measurement. 150 

𝜕𝜋𝑘
𝐹𝑀IS

(𝑗)
= ∑ ∑ 𝑤𝑠,𝑡(�̅�𝑠,𝑡) ∙

𝜕𝑓(𝑗)(�̅�𝑠,𝑡)/𝜕𝜋𝑘

𝑝(�̅�𝑠,𝑡)

𝑛+1

𝑠=0 

∞

𝑛=1

 (7) 

with 151 

𝑤𝑠,𝑡(�̅�𝑠,𝑡) =
(𝑝(�̅�𝑠,𝑡))

2

∑ (𝑝(�̅�𝑠′,𝑡′))
2

𝑛+1
𝑠′=0,𝑡′=𝑛−𝑠′+1 

 152 

Here, the sum of number of vertices of light and sensor sub-paths always verifies 𝑠 + 𝑡 = 𝑠′ +153 

𝑡′ = 𝑛 + 1. This algorithm is detailed in (Wang et al., 2022).  154 

 155 

Automatic differentiation (Kahrimanian, 1953; Wengert, 1964) is commonly used to evaluate 156 

the partial derivative of a function 𝐹: ℝ𝑛 → ℝ𝑚. The key idea is to decompose calculations of 157 

𝐹 into elementary operations (e.g., addition, subtraction, multiplication) to automatically and 158 

accurately evaluate the partial derivatives of m outputs with respect to n inputs (Eq. (8)) through 159 

the chain rule. Appendix A illustrates an example of automatic differentiation. 160 

𝐽𝑓 =

[
 
 
 
 
𝜕𝐹1

𝜕𝜋1
⋯

𝜕𝐹1

𝜕𝜋𝑛

⋮ ⋱ ⋮
𝜕𝐹𝑚

𝜕𝜋1
⋯

𝜕𝐹𝑚

𝜕𝜋𝑛]
 
 
 
 

 (8) 

 161 

Differentiable radiative transfer modelling is a calculation of kind 𝐹: ℝ𝑛 → ℝ1 for each spectral 162 

band. Prior knowledge in Monte Carlo radiative transfer modelling enables us to optimize 163 
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conventional automatic differentiation. For example, the final radiance estimate is the sum of a 164 

series of products, i.e., only addition and multiplication operations are concerned. We can 165 

therefore calculate the partial derivatives of each product and add them together (cf. Appendix 166 

A). For each product, zero derivatives can be known in advance and only non-zero derivatives 167 

are propagated in the scene (cf. Appendix A). In addition, for each product, a change in the 168 

order of computation will not affect the final result. This is a very useful feature, as it allows us 169 

to adapt the automatic differentiation in the framework of bidirectional path tracing.  170 

 171 

Figure 2 illustrates our procedure for computing the derivatives 〈𝜕𝐿/𝜕𝜌𝑣〉 and 〈𝜕𝐿/𝜕𝜌𝑠〉 of a 172 

Monte Carlo radiance estimate 〈𝐿(𝑐, 𝜌𝑣 , 𝜌𝑠)〉 = 𝑐𝐿𝑒𝜌𝑣
3𝜌𝑠  for a specific stochastic path in a 173 

schematic landscape with two elements (tree and soil). Estimates will converge to the true 174 

derivatives after sufficient sampling. Here, 𝑐  is a geometric connection factor, 𝐿𝑒  is light 175 

emission, 𝜌𝑣  is vegetation reflectance and 𝜌𝑠  is soil reflectance. A ray starts from the light 176 

source and is scattered at points 𝑝1 and 𝑝2 (light sub-path), a second ray starts form the sensor 177 

and is scattered at points 𝑞1 and 𝑞2 (sensor sub-path). Next, the two sub-paths are connected to 178 

generate a complete path linking the sensor and the source. Note that the connection factor 𝑐 is 179 

zero if two vertices are not mutually visible; only complete paths contribute to derivative and 180 

radiance computation. Intermediate radiance and derivative values are computed at each vertex, 181 

with the exact partial derivative being 3𝑐𝐿𝑒𝜌𝑣
2𝜌𝑠 for 𝜌𝑣 and 𝑐𝐿𝑒𝜌𝑣

3 for 𝜌𝑠 after the connection. 182 

This optimized procedure has been implemented in DART with pixel derivative computed for 183 

each user-defined material (i.e., optical property).  184 

 185 
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 186 

Figure 2. Adapted bidirectional derivatives and radiance computation. 𝐼 is an intermediate estimate of 187 

the radiance measurement updated after each interaction. 𝐼𝜕𝑋 is an intermediate estimate of 188 

the derivative with respect to variable X. The product rule (
𝑑(𝑢∙𝑣)

𝑑𝑥
= 𝑢

𝑑𝑣

𝑑𝑥
+ 𝑣

𝑑𝑢

𝑑𝑥
) is applied in 189 

the connection to get final derivatives. 190 

4 Validation and discussion 191 

We have validated our modelling using an analytical method and a finite difference method for 192 

a 3D urban scene with 7 scene elements (tree, grass, ground, road, wall, roof, water), for solar 193 

direction (zenith angle 𝜃𝑠 = 30°, azimuth angle 𝜑𝑠 = 225°), nadir viewing direction, and 1m 194 

spatial resolution. Material optical properties are from the DART database (Figure 3). The 195 

DART optical property of any scene element can be spatially variable. Here, it is spatially 196 

constant (Figure 3) to simplify understanding of our derivative computation. Below, the term 197 

"Jacobian" refers to derivative radiance and derivative reflectance products. 198 
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 199 

(a)  (b)  

Figure 3. a) 3D urban model (200 × 200 m) with 7 elements: tree, grass, ground, road, wall, roof, and 200 

water. Reflectance (𝜌) and transmittance (𝜏) are indicated. b) 1m spatial resolution nadir image.  201 

4.1 Comparison with the analytical method 202 

The comparison is done for single scattering, because the analytical computation of RS radiance 203 

derivatives with respect to optical properties is only possible for single scattering. For a flat 204 

Lambertian surface (reflectance 𝜌, normal Ω̅𝑛) and direct sunlight (horizontal irradiance 𝐸𝑠, 205 

direction Ω̅𝑠(𝜃𝑠, 𝜑𝑠)),  the single scattered radiance in viewing direction Ω𝑣  is 206 

𝐿(Ω𝑣)=
𝜌∙𝐸𝑠|Ω̅𝑠.Ω̅𝑛|

𝜋 cos𝜃𝑠
, and 

𝜕𝐿(Ω𝑣)

𝜕𝜌
=

𝐸𝑠|Ω̅𝑠.Ω̅𝑛|

𝜋 cos𝜃𝑠
, which is 

Observed radiance

Parameter of interest
. The parameter of interest is 207 

the reflectance for an opaque material. For translucent materials (e.g., foliar element), it is the 208 

sum of reflectance and transmittance (i.e., single scattering albedo). The analytical Jacobian 209 

reflectance image is 
DART single scattering Bidirectional Reflectance Factor (BRF) image

Parameter of interest
=

|Ω̅𝑠.Ω̅𝑛|

cos𝜃𝑠
. We 210 

verified the equality of the analytical and DART Jacobian reflectance images. Figure 4 shows 211 

the analytical and DART Jacobian reflectance images for the roof, tree, and ground scene 212 

elements, and Figure 5 shows their pixelwise comparison: coefficients of determination = 1 and 213 

RMSE = 0 for all scene elements.  214 

𝜌ground = 0.11 

𝜌roof = 0.50 

𝜌wall = 0.20 

𝜌leaf = 0.07 

𝜏leaf = 0.08 

𝜌grass = 0.10 

𝜏grass = 0.09 
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 215 

Figure 4. Single scattering analytical (left) and DART (right) Jacobian roof, ground and tree 216 

reflectance images. Roof Jacobians depend on the configuration {roof slope, sun direction}.  217 

 218 

 219 

Figure 5. Pixelwise comparison between single scattering DART and analytical Jacobian reflectance 220 

images for roof, ground and tree. Coefficients of determination are indicated.  221 
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4.2 Comparison with the finite difference method 222 

Derivatives of full radiative transfer modelling with single and multiple scatterings cannot be 223 

computed analytically due to the complex formulation of light transport equation in 3D scenes. 224 

As already stated, the finite difference (FD) method can provide approximate partial derivatives: 225 

𝜕𝑓(𝜋1, 𝜋2, 𝜋3, … )

𝜕𝜋1
=

𝑓(𝜋1 + ℎ𝜋1, 𝜋2, 𝜋3, … ) − 𝑓(𝜋1 − ℎ𝜋1, 𝜋2, 𝜋3, … )

2ℎ𝜋1
 (9) 

Here, ℎ = 10%. It is a compromise, because a large ℎ value tends to induce a biased derivative 226 

while a small ℎ value tends to induce a noisy derivative with Monte Carlo noise close to the 227 

term 𝑓(𝜋1+ℎ𝜋1, 𝜋2, 𝜋3, … ) − 𝑓(𝜋1-ℎ𝜋1, 𝜋2, 𝜋3, … ). Fourteen simulations were run to compute 228 

the FD Jacobians of the seven scene elements using Eq. (9). The resulting FD and DART 229 

reflectance Jacobian images appeared to be very close (cf. Figure 6 for roof, ground and tree).  230 

   231 

Figure 6. Roof, ground and tree FD (left) and DART (right) reflectance Jacobian images.  232 
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 233 

The pixelwise comparison of the FD and DART Jacobian reflectance images (Figure 7 and 234 

Table 1) stresses a very good agreement: coefficients of determination above 0.9995, and 235 

relative RMSE of derivatives for all scene elements visible to sensor below 0.02%, except for 236 

walls (relative RMSE = 0.4%), which is explained by the fact that they are not directly visible 237 

in nadir images. The small differences are mostly due to (1) the Monte Carlo noise in DART 238 

Jacobian images and (2) the approximation of the FD method.  239 

 240 

Figure 7. Pixelwise comparison of roof, ground and tree D ART and FD Jacobian images. Coefficients 241 

of determination are indicated.  242 

Table 1. RMSE and relative RMSE of DART and FD Jacobian images. 243 

Element Roof Ground Tree Grass Road Wall Water 

RMSE 0.0012 0.0048 0.0005 0.0014 0.0006 0.0101 0.0018 

rRMSE 0.001% 0.005% 0.010% 0.013% 0.002% 0.400% 0.003% 

 244 

4.3 Discussion  245 

Which factors do impact pixel derivatives? Figure 6 highlights three major factors: surface 246 

orientation, masking effect, and multiple scattering. Examples are presented below. 1) Although 247 

all roofs have the same optical properties, the sunny roofs (i.e., roofs orientated towards the sun) 248 

have larger derivatives than less sunny roofs. Values in Figure 4 are in agreement with the 249 

single scattering derivative expression 
|Ω̅𝑠.Ω̅𝑛|

cos𝜃𝑠
 of plane Lambertian surfaces with orientation Ω̅𝑛. 250 
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Indeed, most sunlit roofs have the highest |Ω̅𝑠. Ω̅𝑛|. 2) All ground surfaces have the same 251 

orientation, but those below grass and tree crowns has lower derivatives. 3) Multiple scattering 252 

explains that ground pixels close to 3D scene elements (e.g., walls or tree crown) tends to have 253 

larger derivatives. Figure 8 illustrates this. It shows Jacobian images due to multiple scattering 254 

(i.e., difference of full and 1st scattering Jacobian images in Figure 6 and Figure 4, respectively). 255 

Here, multiple scattering can increase derivatives by as much as 20%, especially for less sunny 256 

areas. Furthermore, being the original mechanism of the Jacobian image for "walls" and 257 

majority source of non-linearity of parameter and observation, it implies the large relative error 258 

between DART and FD Jacobian images for walls (Table 1). 259 

 260 

 261 

 262 

Figure 8. Roof, ground and tree DART Jacobian images due to multiple scattering (MUL_SCAT) (top) 263 

and relative error (%) of single scattering DART Jacobian (bottom).  264 

 265 
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Can single scattering Jacobian be useful? It is very interesting in terms of computation 266 

efficiency, but is exact only for a theoretical flat landscape (Figure 4). The relative difference 267 

of DART full and single scattering Jacobians images (Figure 8) is less than 5% for most roof 268 

and ground pixels, and very large (> 50%) for shaded areas and also ground under vegetation 269 

because vegetation attenuates and scatters the ground signal. The relative error is also around 270 

20% for tree crown derivatives. These errors are even larger if scene elements have larger 271 

optical properties, which is commonly the case in the near infrared domain, especially for 272 

vegetation. Therefore, the single scattering Jacobian is not suitable for most sensitivity studies.  273 

5 Conclusions and perspectives 274 

This paper presents the first differentiable land surface 3D RTM. It computes Jacobian radiance 275 

and reflectance images and has been implemented in the framework of DART model. We have 276 

validated it by both an analytical method and a FD method for a schematic urban scene with 277 

trees, buildings, grass, etc. Results show very good agreement (i.e., coefficient of determination 278 

< 0.9995, relative RMSE < 0.02%) for scene elements directly visible in a nadir image. We 279 

showed that surface orientation, shadow and multiple scattering impact derivatives and 280 

estimated the accuracy of single scattering derivatives. By computing Jacobian images during 281 

the run of the RTM, our modelling avoids running multiple times the RTM and reduces Monte 282 

Carlo errors compared to the FD Jacobian modelling, which offers new avenues in sensitivity 283 

and inversion methods. One particular example is the significant acceleration of DART 3D 284 

RTM-based inversion procedure proposed in (Zhen et al., 2023). It also enables us to calculate 285 

the error propagation from surface optical properties to simulated RS signals, and to estimate 286 

the uncertainty of RS products through back propagation of derivatives if the sensor 287 

uncertainties are known. We note that although this paper presents the reflectance case, the 288 

proposed theory and derivative propagation can also be used for computing derivatives of many 289 
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other parameters than reflectance. For example, we recently extended DART differentiable 290 

modelling to compute Jacobian images for emissivity and temperature. 291 
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Appendix A. Automatic differentiation and DART implementation 376 

 377 

Figure A.1. Wengert list: graphical representation of the elementary operations for a single Monte 378 

Carlo radiance estimate, with indication of the vertices V1-11. Here, a ray starts from the camera, 379 

is scattered successively at surfaces with Lambertian reflectance values 𝜌1, 𝜌2, 𝜌1, 𝜌3. A second 380 

ray is sent to the light source from each interaction, with connection factors 𝐶1, 𝐶2, 𝐶3, 𝐶4 that 381 

represent the radiation of the light source and the illumination geometry. 382 

 383 

Automatic differentiation computes the partial derivative automatically through the chain rule. 384 

The first step is to decompose the calculation into elementary operations. The Wengert list 385 

presented in Figure A.1 illustrates all computations for a single radiance estimate 〈𝐿〉 = 𝐶1𝜌1 +386 

𝐶2𝜌1𝜌2 + 𝐶3𝜌1
2𝜌2 + 𝐶4𝜌1

2𝜌2𝜌3 in Monte Carlo radiative transfer. Then, starting from the first 387 

vertex 𝑉1, the automatic differentiation calculates for each vertex 𝑉𝑖 the derivative  388 

�̇�𝑖 = 𝜕𝑉𝑖 𝜕𝜌⁄ = ∑
𝜕𝑉𝑖

𝜕𝑉𝑝
∙
𝜕𝑉𝑝

𝜕𝜌𝑝∈sons(𝑖)
 389 

for each vertex. Here, 𝑝 ∈ sons(𝑖) means all son vertices of 𝑉𝑖, i.e., all vertices 𝑉𝑝 that are used 390 

to compute the value of vertex 𝑉𝑖. A step-by-step calculation from the first to the last vertex is 391 

shown below. This procedure also works reversely. In DART differentiable radiative transfer 392 
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modelling, only non-zero derivatives are computed and propagated, which avoids many 393 

redundant computations compared to the classic automatic differentiation. Derivatives 394 

computed in DART modelling are indicated in blue. In this demonstration case, only 13 395 

derivatives over 23 are computed.  396 
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