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Université Paris-Saclay, CNRS, LISN

Orsay, France
aurelie.neveol@lisn.upsaclay.fr

Abstract—The on-going environmental changes challenge the
ever-increasing use of digital technologies. Tools such as Green
Algorithms or Carbontracker provide support for estimating the
environmental impact of calculations (e.g., training a machine
learning model). However, these tools only account for the
dynamic consumption induced by calculations and only document
carbon footprint while other types of impacts, such as resource
depletion, are not evaluated. To provide a more comprehensive
assessment of machine learning impact, we propose a modeling
of graphics cards manufacturing impacts and a multi-criteria
estimation tool called MLCA that accounts for the production
impacts of hardware used to perform calculations. We evaluate
MLCA through three reproduction studies thereby showing the
validity of the assessments as well as the contribution of evalu-
ating diverse impact categories over different life cycle phases.
We hope this tool will help better understand the environmental
impacts of Machine learning as a whole.

Index Terms—Carbon Footprint, Climate change, Information
Technology, Product life cycle, Machine learning, Green comput-
ing

I. INTRODUCTION

Machine learning is a growing field in Information and
Communication Technologies (ICT), and model training alone
can have a high carbon footprint [1], [2]. Facing the ever-
increasing computation demand of Artificial Intelligence (AI)
[3], [4], researchers advocate for ”Green AI” [5] to character-
ize the impact of AI, and promote more frugal AI research.

Life Cycle Assessment (LCA) is a method accounting for
the impacts of products over their entire life cycle, from
production to use through end of life. LCA can be used
for evaluating impacts of AI solutions [6]. Following the
pioneering work of Strubell et al. [1], several tools were
developed to evaluate the environmental impacts of Machine
Learning (ML) [7]–[9]. These tools focus on evaluating the
carbon footprint of the energy consumption of the training
phase of ML models.

Impact calculation only considers the energy consumption
induced by training the models. The impacts of producing the
hardware are not addressed in spite of their significance [10].
Furthermore, the share of embodied impacts is bound to grow
with the shift towards less carbon-intensive electricity.

Limitations of LCA include the complexity of applying it
to ICT when data availability is scarce [6], [11]. In addition,
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LCA does not account for structural or societal impacts such
as rebound effect [12], [13] or ethical aspects [14]–[16].
Nonetheless, LCA offers a broad view of impacts going
beyond use phase impacts and greenhouse gas emissions.

In this work, we tackle the question of the evaluation of
the environmental impacts of ML methods. How can we ac-
curately evaluate the environmental impacts of a series of ML
experiments? How can we incorporate LCA considerations in
a tool conducting such evaluations?

We present a tool named Machine Learning life Cycle
Assessment (MLCA)1 aimed at providing researchers with
LCA estimates of computation impact that can be obtained
independently from running calculations.

The main contributions of this work are as follows:
1) A modeling of graphics cards manufacturing impacts;
2) An estimation tool named MLCA that combines our

modeling of graphics cards manufacturing and existing
tools and methodology for the evaluation of servers man-
ufacturing and energy use impacts. This tool evaluates
multiple impact categories based on multiple phases of
the equipment life cycle;

3) An evaluation of the usability and quality of MLCA.
First, Section II presents the state of the art and related work,

then Section III details the methodology used for creating
MLCA. Section IV evaluates MLCA on a series of case
studies. Lastly, Section V discusses and Section VI concludes.

II. STATE OF THE ART

This Section presents the main concepts and existing work
relevant to our study. Section II-A introduces efforts towards
carbon footprint estimation for machine learning and high-
lights the potential contributions of LCA. Section II-B de-
scribes how LCA can be adapted to evaluate the environmental
impacts of computer programs.

A. Carbon footprint of Machine Learning

After the high level of carbon emissions associated with
training Natural Language processing models was reported [1],
the community became aware of the need to report the
costs associated with training models and striving for ”Green
AI” [5], which is becoming a research field [17]. In addition,

1available under AGPL 3.0 license at https://github.com/blubrom/MLCA
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it has been suggested that evaluation should encompass ef-
ficiency as well as raw performance and propose methods to
evaluate the increase in carbon footprint per percentage of gain
in precision [18]. For instance, [19] reports that half the costs
of a state-of-the-art speech system are used to gain .3% Word
Error Rate in one particular experiment.

Tools have been developed to evaluate the carbon footprint
of computation. Surveys review the strengths and weaknesses
of each tool [7]–[9]. There are two categories of tools.
Measurement tools such as CarbonTracker [20], CodeCarbon
[21] or Experiment-Impact-Tracker [22], use Running Average
Power Limit (RAPL) tool to obtain live values for CPU and
DRAM energy consumption [23] and the NVIDIA Manage-
ment Library (NVML) tool [24] to get live consumption values
for (NVidia) GPU. Estimation tools such as Green Algorithms
[25] or ML CO2 Impact [26] model the energy consumption
of the processing units based on their Thermal Design Power
(TDP). The energy consumption of the memory allocated to
running computer programs is estimated by multiplying the
quantity of memory by a consumption/GB factor [25].

The carbon footprint is computed by all tools as follows:

GWP = CI ∗ PUE ∗ (pc + pg + pm) ∗ t

where pc, pg , and pm respectively refer to the power con-
sumption of CPUs, graphics cards, and memory. The energy
consumption of the hardware (either estimated or measured) is
multiplied by a conversion factor accounting for the consump-
tion of the rest of the datacenter, usually the Power Usage
Efficiency (PUE). Finally, the total energy consumption is
multiplied by the Carbon Intensity (CI) of the electricity pow-
ering computation, which leads to greenhouse gas emissions.
The CI of a country depends on the share of low carbon
energy sources so that the average CI in countries such as
Iceland is close to 0 gCO2 eq/kWh while it is approximately
400 gCO2 eq/kWh in the USA and can be as high as 800
gCO2 eq/kWh in the case of South Africa [25].

All extant tools focus on the carbon footprint incurred by the
energy needed to run a computer program. However, this does
not account for the production impacts of the hardware used
to run the program. Given that the production of hardware can
account for 40% of the total carbon footprint of a server over
its entire life cycle [2], [27], it is reasonable to assume that they
account for a similar share of the carbon footprint attributable
to training an AI model. In fact, for Facebook, hardware
production represent 30% of the total carbon footprint of
”large scale ML tasks” [10].

Furthermore, producing partial environmental assessments
may incentivize users to decrease greenhouse gas emissions
by shifting impacts, whether in terms of life cycle phases
or impact categories (reducing impacts from one category of
impacts, typically carbon footprint, by increasing the impacts
in one or multiple other categories). Impact shifting could, for
instance, happen when replacing working but older hardware
with new and more energy-efficient ones. The energy effi-
ciency gains could reduce the carbon footprint, but discarding

functional hardware increases the production of e-waste, and
manufacturing new hardware increases the consumption of
resources. In order to avoid impacts shifting, it is essential
to use a methodology accounting for diverse environmental
impacts over the whole life cycle (from production to use and
end-of-life) of products, such as LCA.

B. Life Cycle Assessment

The LCA methodology is widely recognized with ISO stan-
dards (ISO 14040 and 14044). This methodology evaluates
diverse environmental impacts over the whole life cycle of
products. Figure 1 presents different phases of the life cycle
of an item and different environmental impacts each phase can
have. LCA is a multi-criteria evaluation of the environmental
impacts (common metrics or criteria include Global Warming
Potential, Human Toxicity, Resource depletion, Water use,
Land use, Marine eutrophication, . . . ).

There are two types of LCA: attributional LCA and conse-
quential LCA. Attributional LCA seeks to explain potential
impacts attributed to a product or system. This approach
assumes a static environment, and could try to answer the
question: ”What are the impacts of transporting 10,000 people
a day by bus over 15 km?”. Conversely, consequential LCA
seeks to assess the impacts of change in a dynamic environ-
ment, with possible macro-economic responses to change. A
consequential LCA could try to answer the question: ”Given
the current bus network, what would be the impacts of adding
1,000 new passengers a day?”

[6] proposes a framework for adapting the attributional
LCA approach to evaluate AI tools. To evaluate an AI tools,
one must consider not only the energy consumption induced
by the training phase of the model but also the hardware
manufacturing needed to produce the server on which this
training phase takes place. Ideally, this analysis would also
include information about the end-of-life of the hardware used,
but this is a complex task because of the need for more
available data on ICT end-of-life.

Furthermore, one should not only evaluate the impacts of
producing an AI tool (i.e., training the model) but also consider
the other life cycle phases of the model, such as the data
collection required, the architecture search, and the inference
phase. With its Pragmating Scaling Factor, Green Algorithms
encourages its users to reflect on the production process of the
computer program being evaluated and the potential multiple
experiments needed to tune hyper-parameters of a model or to
find the neural architecture of said model.

[28] proposes the boaviztapi tool for simplified LCA of
servers2. It uses a bottom-up approach, estimating impacts
for each component and aggregating them to obtain the total
production impacts for the server. The study by Groger et
al., on which the boaviztapi tool is based, aims at creating
a methodology for evaluating the environmental performance
of Cloud services based on LCA methodology [29]. One
important missing component of this tool and methodology

2accessible at https://github.com/Boavizta/boaviztapi
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Fig. 1: Presentation of the possible scope for a LCA

is that it does not account for graphics cards being present in
servers. However, most computationally heavy tasks, such as
training machine learning models, use servers equipped with
graphics cards or specialized servers such as Google’s TPU.

Indeed, one crucial difficulty when applying an LCA ap-
proach in the ICT is the need for more available quality
data [11]. This difficulty especially manifests when looking at
graphics cards or TPUs, where no manufacturing firm provides
insights into the production impacts of these devices. [30]
conducted an LCA for comparing desktop computers with
Raspberry PI devices with centralized servers in the context of
a higher education class. To our knowledge, this LCA is the
only available LCA considering a graphics card production.

In summary, several tools exist to evaluate part of the envi-
ronmental impacts of computation. These tools are focused on
the carbon footprint of the changed energy consumption in-
duced by running a computation, which can be seen as a short-
term consequential analysis. However, such an analysis does
not account for a number of factors, such as the production
of the hardware needed to run the computation. Oppositely, a
tool such as proposed by [28] assesses the life cycle impacts
of servers on multiple environmental criteria. However, these
assessments do not include graphics cards and are unrelated to
specific tasks. By combining both approaches, we can produce
attributional LCA estimates for numerical computation.

III. DEFINING AND IMPLEMENTING AN ESTIMATION TOOL
FOR THE ENVIRONMENTAL IMPACTS OF COMPUTATION

This section describes the methodology and implementation
used to create MLCA, a tool aimed at providing researchers
with attributional LCA estimates for numerical computation.

A. Goals and Scope

The objective of MLCA is to allow ML practitioners to
estimate the environmental impacts/ benefits balance of their

experiments and decide if it is worth pursuing them. The
question MLCA tries to answer (e.g., the functional unit) is
as follows: ”What are the impacts of running program X on
the hardware Y during Z hours?” where X, Y, and Z are
parameters provided by the user. Program X can be training a
Natural Language Processing (NLP) model.

The environmental impacts of running program X are con-
sidered to be those due to the hardware that it is run on, i.e.,
the impacts associated with the energy consumption of the
hardware during the Z hours of the task, but also the impacts
associated with the production of the hardware that can be
attributed to using it for Z hours. An analysis of different
phases of the life cycle of hardware Y is required to evaluate
the different impacts each considered part of the life cycle has.
Figure 1 presents different phases in the life cycle of hardware
equipment and different types of impacts each phase can have.

Table I shows existing tools and the desired features for
MLCA they take into account: Life cycle phases considered
(manufacturing, distribution,. . . ); diversity of impacts (not
focused only on carbon footprint); graphics card support (since
computing intensive programs such as training an AI uses
servers with specialized hardware such as graphics cards or
TPU). The choice for creating an estimation tool is driven
by the fact that estimation tools can be used before running
an experiment but also by the fact that estimates of the
consumption based on the TDP of the processing units used
(such as in Green Algorithms) might provide better quality
estimates of the actual consumption than software measures
(such as in CarbonTracker) [8].

Table I shows that combining Boavizta’s tool [28] with
Green Algorithm’s methodology [25] is the best match since
it allows to get both usage (Dynamic and Infrastructure)
and production impacts, multiple impact indicators, and GPU
support. Compared to Green Algorithms, ML CO2 Impacts
[26] only accounts for the energy consumption of one type



Outil
Life cycle phase considered Multiple

impacts
considered

Estimates
consumption GPU supportExt. Man. Tra. Uti. EoL.Infra. Dyn.

Green Algorithms ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓
ML CO2 Impact ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓
CarbonTracker ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓
CodeCarbon ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Boavizta ✓ ✓ ✗ ✗ ✗ ✗ ✓ - ✗

TABLE I: Feature comparison of different existing tools to study environmental impacts of running computations

of hardware, GPUs. Our tool, MLCA, is therefore based on
Boavizta’s code3 and methodology for evaluating hardware
production impacts of a server [28] and models dynamic
consumption in a similar way to [25].

In the end, the scope of MLCA spans the production and
usage of the hardware used during the execution of program
X. It does not include the distribution nor the end of life
of the hardware as production and usage have the highest
contribution to impact categories addressed in MLCA. End-of
life is difficult to account for due to lack of data on the majority
of e-waste fluxes [31]. The scope of our analysis also leaves
out network usage for cloud-based server, data acquisition and
storage as well as the storage of potential outputs of running
program X (a trained model, for instance) and anything related
to the data center building production and maintenance.

The environmental impacts are computed according to three
different metrics. First, Global Warming Potential (GWP),
measured in kgCO2 eq for the emissions of greenhouse
gas such as CO2 [32]. Second, Abiotic resources Depletion
Potential (ADP) measured in kgSb eq [33], [34], represents
the use of mineral resources. This category of impacts is
especially pertinent when considering ICT equipment since
they use an important quantity of different (rare) metals to
be manufactured. Third, for the total energy consumption,
Cumulative Energy demand or Primary Energy (PE), measured
in MJ [35]. PE can be interesting to show that some tasks, even
though they have a low carbon footprint, can necessitate an
important quantity of energy to be executed. Table II shows
the different phases of the life cycle and the different impact
categories considered in MLCA.

GWP ADP PE Human
toxicity

Water
Consumption · · ·

Production ✓ ✓ ✓ ✗ ✗ ✗
Transport ✗ ✗ ✗ ✗ ✗ ✗

Usage ✓ ✓ ✓ ✗ ✗ ✗
End of Life ✗ ✗ ✗ ✗ ✗ ✗

TABLE II: Summary of the scope of MLCA

B. Modeling of the production phase

The production phase considers the raw material extraction
and manufacturing for the servers and the graphics cards used
to run the computation. The modeling is inspired by [29] and
follows the implementation of Boavizta for the servers [28].

3accessible at https://github.com/Boavizta/boaviztapi

a) Modeling of the servers: The modeling of the servers
follows a bottom-up approach as described in [29]. A server is
modeled as the sum of its components, namely CPU(s), RAM,
SSD/HDD, Power supply, casing, and motherboard, assembled
into a server in an assembly phase. The motherboards, HDD
components, and assembly phase are supposed to have con-
stant impacts. In contrast, power supplies impacts scale with
weight; casing impacts depend on the server type (rack or
blade), and each component that includes Integrated Circuit
(IC) (CPU, RAM, and SSD) are modeled as having impacts
varying with the area of the IC (diearea) they contain. For the
RAM and SSD, the area of IC is estimated using a density
factor, giving a die area per GB.

b) Modeling of the graphics cards: The modeling of the
graphics cards adapts the modeling of CPUs from [29]. As for
CPUs, a graphics card is modeled as a GPU (modeled by its
die area), a quantity of memory and components present on all
graphics cards such as the printed circuit board (PCB), gold for
the connections, inductors, resistor, and capacitors present on
the board. This modeling is translated in the impacts evaluation
by adding together the impacts computed for the GPU die,
the impacts computed for the memory, and a base impacts to
account for all the other components as follows4:

graphics cardimpact = GPUdiesize ∗ dieimpactper−cm2

+memorysize ∗memoryimpactperGB

+ baseimpact

The impacts of the GPU die are computed using the same
impact factors per centimeter square of die as for CPUs. The
impacts of the memory are computed as the impacts of the
memory in the server, and the base impacts are obtained using
the results of [30], which is, to our knowledge, the only LCA
that comprises a graphics card.

In [30], results for scenario 2 are given for six servers. Each
server contains two graphics cards, each with a die of .81cm2.
Dividing the total results for graphics cards in this scenario by
twelve thus gives results for a single graphics card. To those
results are removed, the estimated impacts of the dies of the
GPUs using the dieimpactper−cm2 factors. Since the graphics
cards assessed in [30] do not comprise any memory, this is
sufficient to obtain base impacts. The impacts in terms of ADP
are obtained by converting Copper equivalent to Antimony
equivalent using results from [33] where it is shown that one

4where impact ∈ {ADP, PE, GWP}.
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kg of Copper is approximately equivalent in terms of ADP to
0.02 kgSb eq. Finally, since results presented in [30] do not
consider PE, the base impacts for CPU in terms of PE are
used.

Once the production impacts of the hardware used are eval-
uated, they need to be allocated to the task under consideration
(e.g., the training of the model).

C. Attribution of hardware production impacts to a specific
computation

The results of the attribution of the total production impacts
for a specific task are called embodied impacts. It is supposed
that entire server modules are used for the task, meaning
that the allocation only depends on use time and not on
requested resources (number of CPU cores, for instance). The
embodied impacts are computed by uniformly distributing
impacts over the lifespan of the hardware, meaning that each
hour of use is allocated the same share of the production
impacts. The lifespan of the hardware consists of the total
number of hours it can be used before it needs replacement.
Base values from the Jean Zay cluster are used [2]. With
a replacement rate of 6 years and 85% average usage, the
total number of available hours are computed as follows:
ht = 365 ∗ 24 ∗ replacement rate ∗ average usage.
For a task spanning hu hours, embodied impacts are then
obtained with the formula

Embodiedimpact = Productionimpact
hu

ht

where impact ∈ {ADP, PE, GWP}.
Once the embodied impacts are evaluated, the use phase

needs to be assessed.

D. Modeling of the use phase

The use phase consists of the energy consumption of the
server for the task called dynamic energy consumption, to
which is added the consumption of the data center used to
render the server operational for the task. The dynamic energy
consumption is assessed as in Green Algorithms [25] with
modeling based on the TDP of the processing units. For a task
spanning hours usage with np processing units and average
usage of processing units up, dynamic energy consumption is
assessed as follows:

Edynamic = hours usage ∗
∑

p∈{CPU,GPU}

(np ∗ up ∗ TDPp)

+ memorysize ∗ PowerperGB

In the same spirit as using a PUE to account for the
server’s energy efficiency (accounting for the infrastructure
that allows the server to run our specific task), the dynamic
energy consumption is multiplied by a dynamic ratio to obtain
the total energy consumption E.

E = Edynamic ∗ dynamic ratio ∗ 10−3

The multiplication by 10−3 converts from Wh to kWh.
This dynamic ratio is set to a default value calculated from
the data gathered on the Jean Zay supercomputer in [2].
When running a series of experiments, they observed that
the energy consumption was distributed as follows: 27kWh in
”Infrastructure” mode (computing node off but the rest of the
infrastructure running), 64 kWh in ”Idle” mode (computing
nodes and the rest on but no jobs running) and 109 kWh in
”Production” mode (jobs running) for a total consumption of
200kWh. The dynamic ratio corresponds to the total consump-
tion divided by the consumption in Production mode.

dynamic ratio =
TOTAL

Production
≃ TOTAL∑

j∈Jobs(Edynamic)j

≃ 1.834

This dynamic ratio corresponds to the average energy over-
heard for running the computing node. Its definition is really
close to the definition of the PUE [36], [37], but it accounts
for the fact that all of the work performed by the data center is
not productive work (e.g., some of the work by the datacenter
is only to keep the devices on).

In the end, energy-related impacts are computed as follows:

Energyimpact = E ∗ impactperkWh

where impact ∈ {ADP, PE, GWP}. where, for instance, the
impactperkWh corresponds to the CI if impact corresponds to
GWP.

The total impacts evaluated by MLCA are then embodied
impacts + energy impacts. In order to render the results of the
evaluation understandable, they need to be put in perspective.

E. Putting impacts in perspective

While results are often put in perspective with the impacts
of car or plane travel, Rasoldier et al. and Hauschild have
highlighted the importance of putting environmental impact
measurements in perspective with global sustainability ob-
jectives [13], [38]. This perspective allows to engage in a
discussion on the ”absolute” environmental sustainability of
the solution under assessment [39] and emphasizes questioning
whether an optimization effort is sufficient or not, or, as
Hauschild puts it in [38], a new solution might be ”Better,
but is it good enough?”

Global sustainability objectives can come from the Plan-
etary Boundaries (PB) framework [40], [41] or from in-
ternational targets such as the Paris Agreements. There are
multiple ways to divide a global objective [39]; among them,
a uniform distribution, which supposes that every human being
is allocated the same share of the global objective, was used as
it is the simplest to compute and understand even if it supposes
a uniform responsibility between countries. The results of the
evaluation are therefore put in perspective with the an objective
of reducing the average annual gross carbon footprint per
capita to 2tCO2 eq by 2050 to limit global warming to 1.5°C
with no overshoot in 2100 (2t) [42], and with PB as devised
in [41]. Results are presented in annual person consumption



in these two scenarios, meaning that if the evaluation leads
to an estimate of 59tCO2 eq for GWP and 1.2kgSb eq, it is
also indicated as the annual emissions of 29 people (2t), or
the annual emissions of 59 people (PBGWP) and the annual
resource extraction of 38 people (PBADP)

F. Database

Since the estimates are based on the hardware configuration
inputted by the user and in order to provide sensible estimates,
one needs to be able to input the exact hardware configura-
tion used by their experiments. To this end, a database was
assembled, containing the specifications of over 150 CPUs
and around 30 graphics cards. This database is based on the
databases from Green Algorithms and Boaviztapi. Considering
that Green Algorithms’ database is mainly based on Tech-
PowerUP databases5 and presents CPUs (and) graphics cards
by their names and TDP, and considering that the database
from Boaviztapi is mainly based on the Wikichips website6

and presents CPUs by their die size and architecture, these two
sources of data were used to create a new and unified database
for CPUs. Graphics card information is entirely based on the
TechPowerUP database for graphics cards.

We have presented MLCA, a tool providing ML practition-
ers LCA estimates for their experiments. In the next section,
we evaluate the quality of the estimates this tool produces,
its sensitivity to parameter changes, and the pertinence of the
new information MLCA brings over previous analyses.

IV. EVALUATION

In order to evaluate the estimations produced by MLCA,
its production impacts assessments are first compared with
LCA of Dell servers. Then, results from the whole tool are
compared with results from the assessment of the BLOOM
model. Finally, experiments from the work of Strubell and
colleagues on the impacts of NLP are re-explored to evaluate
the pertinence of the new information provided by MLCA.

A. Evaluating estimations of the production impacts

In order to validate the embodied impact estimations,
MLCA produces, its assessments of the production impact
of servers in terms of GWP are compared with LCA results
presented by Sphera for Dell on the R6515, R7515, R6525,
and R7525 servers [43] 7. Since there are few configuration
differences between the R6515 and R7515 and between the
R6525 and R7525, only the R6515 and R6525 servers are
evaluated. For the manufacturing of the R6515, an estimate of
1200 kgCO2 eq is obtained when the expected results stand at
1343 kgCO2 eq. For the R6525, an estimate of 1600 kgCO2 eq
is obtained when the expected result stands at 1709 kgCO2 eq.

Figure 2 provides a component-wise comparison of the
estimation produced by MLCA with the expected results from

5https://www.techpowerup.com/
6https://en.wikichip.org/wiki/WikiChip
7All Product Carbon Footprint and LCA produced on the different Dell

products can be found at https://www.dell.com/fr-fr/dt/corporate/social-imp
act/advancing-sustainability/sustainable-products-and-services/product-carbo
n-footprints.htm#tab0=3

the Dell LCA. It can be seen that MLCA underestimates
the SSD impacts and produces a close estimate of the total
manufacturing GWP impact. It can also be noted that a lower
estimate that counterbalances the overestimate for the other
components is obtained for the mainboard. This experiment
confirms the adequacy of the results MLCA produces with
expected results about the production impacts of a server in
terms of GWP.

B. BLOOM carbon footprint estimates

After validating the assessment of production impacts pro-
duced by MLCA, we compare MLCA results on the evaluation
of the training impacts of the BLOOM language model with
the results from Luccioni et al. [2].

1) Gathering information about the setup: To replicate the
experiments, we collect information on the duration of the
training and hardware setup for the training phase from the
paper [2]. According to Table 1, the training phase lasted for
118 days, 5 hours, and 41 minutes for a total of 1,082,990 GPU
hours. Subsection 4.1 states that training used, on average, 48
computing nodes with eight graphics cards each. Combining
this information with the real training duration, an estimate of
the GPU time (1,089,670.4 hours) can be obtained, which is
very close to the actual measured GPU time.

It is written in the paper that training took place on the Jean
Zay supercomputer, using an HPE Apollo 6500 Gen10 Plus
server8. The website of HPE indicates that this server uses
AMD EPYC 7000 Series CPUs. Combining this information
with information about the Jean Zay supercomputer obtained
on the website of the IDRIS9, it can be seen that only the gpup5
partition uses such CPUs. For each of the 48 used nodes, the
server configuration is thus:

• 2 CPUs : AMD Milan EPYC 7543
• 512 GB of Memory
• 8 NVIDIA A100 SXM4 80Go

2) assessment of the production impacts :
a) Comparing the estimated server footprint with the

used value: It is indicated in [2] that a GWP of 2500 kgCO2 eq
is used in the BLOOM analysis, coming from the Product
Carbon Footprint sheet of the closest found server, the HPE
ProLiant DL345 Gen10 Plus server 10. Table III presents the
GWP production impact for the HPE’s Apollo 6500 Gen10
Plus server estimated by MLCA. It can be seen that the value
of 2,300 kgCO2 eq is close to the value used in [2].

Indicator GWP PE ADP
Unit kgCO2 eq MJ kgSb eq

Production 2,300 29,000 0.17

TABLE III: Estimated production impacts for the HPE’s
Apollo 6500 Gen10 Plus, computed by MLCA

8https://buy.hpe.com/fr/fr/compute/apollo-systems/apollo-6500-system/ap
ollo-6500-system/hpe-apollo-6500-gen10-plus-system/p/1013092236

9http://www.idris.fr/jean-zay/cpu/jean-zay-cpu-hw.html#gpu p13
10https://www.hpe.com/psnow/doc/a50005151enw

https://www.techpowerup.com/
https://en.wikichip.org/wiki/WikiChip
https://www.dell.com/fr-fr/dt/corporate/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm#tab0=3
https://www.dell.com/fr-fr/dt/corporate/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm#tab0=3
https://www.dell.com/fr-fr/dt/corporate/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm#tab0=3
https://buy.hpe.com/fr/fr/compute/apollo-systems/apollo-6500-system/apollo-6500-system/hpe-apollo-6500-gen10-plus-system/p/1013092236
https://buy.hpe.com/fr/fr/compute/apollo-systems/apollo-6500-system/apollo-6500-system/hpe-apollo-6500-gen10-plus-system/p/1013092236
http://www.idris.fr/jean-zay/cpu/jean-zay-cpu-hw.html#gpu_p13
https://www.hpe.com/psnow/doc/a50005151enw


Fig. 2: Component-wise comparison of the GWP of manufacturing for the Dell R6515 (left) and R6525 servers (right)

b) Comparing the graphics card footprint with the cho-
sen value: In subsection 4.1 of [2], it is stated that a value of
150 kgCO2 eq for producing one graphics card is arbitrarily
chosen. Given that in [30], a small graphics card production
is estimated at emitting around 30 kg CO2 eq, one could hy-
pothesize that larger graphics card production impacts would
be in the order of 50 to 150 kg CO2 eq.

Indicator GWP PE ADP
Unit kgCO2 eq MJ kgSb eq

Production 330 3,900 0.027

TABLE IV: Estimated production impacts for the NVIDIA
A100 SMX4 80GB graphics card, computed by MLCA

Table IV presents the estimated production impact for the
specific model used, the ”NVIDIA A100 SMX4 80GB”.
MLCA estimates 330 kgCO2 eq for the GWP of this graphics
card’s production. This estimate is mainly influenced by the
quantity of memory on the graphics card with a carbon
footprint of 290 kgCO2 eq, leaving 40 kgCO2 eq for the rest
of the graphics card. This estimate of 40kgCO2 eq for the
graphics card without any memory is consistent with the values
provided in [30]. The importance of the memory present on the
GPU in its production impacts shows the need for an LCA of a
modern graphics card used for High Performance Computing
(HPC) to obtain good quality estimates.

3) Estimating the total impacts: Table V presents the
estimated impacts of training the BLOOM model. In total,
training the BLOOM model once is estimated to as much
GWP as the annual emissions of 29 people (2t), or the annual
emissions of 59 people (PBGWP) and the annual resource
extraction of 38 people (PBADP). Comparing the evaluation
of embodied impacts in terms of GWP with the results from
[2] (7.6tCO2 eq for the servers and 3.6 tCO2 eq for the
graphics cards), it can be concluded that the main difference
comes from the difference in graphics card production impact
assessment. Indeed, MLCA evaluates the production of one
NVIDIA A100 SMX4 80GB graphics card to 330 kgCO2 eq
in terms of GWP while a value of 150 kgCO2 eq was chosen
in [2]

For the dynamic consumption, an estimate of 23.7tCO2 eq

Indicator
GWP PE ADP

(tCO2 eq) (MJ) (kgSb eq)

E
m

bo
di

ed Servers 7 90,000 0.52

Graphics cards 8.1 96,000 0.65

Total 15 190,000 1.2

D
yn

am
ic Servers 1.35 297,000 0.00128

Graphics cards 22.4 4,920,000 0.0212

Total 23.7 5,220,000 0.0225

Infra Total 19.8 4,350,000 0.0187

Total 59 9,800,000 1.2

TABLE V: Estimated production impacts for training the
BLOOM model, computed by MLCA. Rows Dynamic
presents the dynamic energy consumption related impacts,
while row Infra presents the estimated impacts from the energy
consumption of the infrastructure

in terms of GWP is obtained, mainly due to the graphics
cards (accountable for 22.4t; the only difference with the figure
obtained in the paper being the slightly off conversion from
real time to GPU hours) while the memory, not accounted for
in the paper brings another 1.35tCO2 eq.

Figure 3 compares the results MLCA produces with the
results from [2]. As we can see, results for each stage are pretty
similar, even if a higher estimate is obtained for embodied
emissions due to a higher estimate of the production impacts of
a graphics card. More surprisingly, one can note a significant
difference in the infrastructure consumption-related impacts
while the same figures should have been used to compute the
infrastructure energy consumption in function of the dynamic
energy consumption. This difference can be explained by
the fact that the manuscript presents results on only a part
of the infrastructure consumption (only the ”Idle” mode is
presented, and the ”Infrastructure” mode, earlier mentioned in
the manuscript, is omitted).

C. Impacts of Natural Language Processing

This section studies the training impacts of the models
presented by Strubell et al. in [1]. As it is complex to find
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Fig. 3: Comparison of GWP estimations produced by MCLA
(Estimated) with the estimated impacts presented in table 3
of [2] (Expected) over the different sources of emissions

data regarding the hardware used in TPUs, the experiments
done with Google’s TPU will not be included. After presenting
information about the setup of the experiments, the first section
will compare the results obtained on the energy consumption
and related global warming potential only by MLCA with the
results presented in [1]. A second section will integrate life
cycle considerations and detail the full results obtained by
MLCA.

1) Experiments setup and description: In [1], a PUE of
1.58 and a Carbon Intensity of 0.954 pounds CO2 eq/kWh
for American electricity production, which is equivalent to
432.72 gCO2 eq/kWh, are used. Only the graphics card used
is detailed for each model.

a) Hardware description: The papers do not detail the
hardware for the ELMo and Transformer case. Only the used
graphics cards are indicated for the transformer models. The
following hypotheses on the hardware used for training these
models are made:

• 32GB memory are required to train ELmo11.
• 32GB memory should also suffice to train a Transformer

with 65M parameters, and 64GB memory should be
enough to train a Transformer with 213M. parameters12

• for the CPU, a CPU used in servers from the same period
will be used. In particular, the CPU used in the Nvidia
DGX-2H server that was used to train BERT in the
experiments described in [1]: two Intel Xeon Platinum
8174.

• For the remaining hardware, the default values of MLCA
are used.

For the BERT model, it is stated in [1] that it was trained
using four Nvidia DGX-2H servers13, with each server com-
prising two Intel Xeon Platinum 8174 CPU and 1.5TB memory

11https://docs.deeppavlov.ai/en/0.9.0/apiref/models/elmo.html
12https://www.trentonbricken.com/TransformerMemoryRequirements/
13the specifications are available https://www.nvidia.com/conteat:nt/dam/e

n-zz/es em/Solutions/Data-Center/dgx-2/dgx-2h-datasheet-us-nvidia-84128
3-r6-web.pdf

b) Approximating the GPU usage factor: In order not to
overestimate the energy consumption, GPU usage factors are
deduced from the power consumption indications provided in
[1]. Using the ratio of average measured power consumption
to total TDP of the used graphics cards, an approximation of
the GPU usage factors can be deduced. These usage factors
are presented in table VI (assuming that the vast majority of
power draw comes from the GPUs)

model estimated GPU usage
Transformerbase 0.70
Transformerbig 0.76
ELMo 0.69
BERTbase 0.75

TABLE VI: Estimated GPU usage factor when training the
different models under consideration

2) Results:
a) Comparison with expected results: Table VII com-

pares the results of the estimates produced by MLCA on
two different scenarios with the results from [1]. The first
scenario (match) uses the same PUE and CI as presented
in [1] while the second (base) uses the base values of MLCA
for the dynamic ratio and CI of the USA. Using the GPU
usage ratio estimated in the previous section, the estimated
energy consumptions (and thus carbon footprints of energy-
related emissions) are very close to the expected values in
the match scenario. Using the base values for MLCA yields
a higher estimated energy consumption because it uses a
dynamic ratio of 1.83 instead of a value of 1.58 when using
the PUE. However, as the used CI is lower in the MLCA
database than the value used in [1], this difference in estimated
energy consumption does not lead to a higher estimated
carbon footprint. It can be noted that adding the embodied
impacts leads to a significant increase in the total estimated
carbon footprint, especially on larger models that require more
hardware to be run.

b) Integrating Life cycle considerations to previous anal-
yses: To test the sensitivity of the results to changes in
different parameters, variations of servers’ lifespan and usage
ratio, memory density, and location are explored. An interval
of the possible output values is produced for the lifespan
and usage ratio, as these parameters are easily bounded. It
is assumed that no servers have a mean lifespan of less than
one year and no more than eight years, and suppose that
the servers never have a usage ratio of less than 10% and
never have a higher ratio than 95%. Results will, therefore,
be compared when using the default value and the values
producing the highest (lowest lifespan and usage) and lowest
(highest lifespan and usage) impacts. A scenario using the
lifespan (3 years) and usage ratio (50%) of machine learning
servers at Facebook described in [10] will also be explored.

For the sensitivity to changes in the estimated memory
density, one scenario using the memory density used [29]
will be tested. Memory density estimates can be an important
factor when estimating the production impacts of servers
using a considerable amount of memory. Memory density

https://docs.deeppavlov.ai/en/0.9.0/apiref/models/elmo.html
https://www.trentonbricken.com/TransformerMemoryRequirements/
https://www.nvidia.com/conteat:nt/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/dgx-2h-datasheet-us-nvidia-841283-r6-web.pdf
https://www.nvidia.com/conteat:nt/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/dgx-2h-datasheet-us-nvidia-841283-r6-web.pdf
https://www.nvidia.com/conteat:nt/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/dgx-2h-datasheet-us-nvidia-841283-r6-web.pdf


model expected estimated estimated expected estimated estimated estimated
energy energy match energy base GWP GWP match GWP base GWP total
(kWh) (kWh) (kWh) (kgCO2 eq) (kgCO2 eq) (kgCO2 eq) (kgCO2 eq)

Transformerbase 27 27 31 11.79 11 11 12
Transformerbig 201 203 235 87.09 87 87 90
BERTbase 1507 1500 1750 652.17 651 646 830
ELMo 275 281 326 118.84 122 121 130

TABLE VII: Comparison of the measures presented in [1] with estimates produced by MLCA. The base scenario uses the
default dynamic ratio and CI for the USA in MLCA. The match scenario uses the PUE and CI presented in [1]. The GWP total
presents results including embodied emissions in the base scenario while the other columns only include energyemissions.

is used to estimate the needed surface of IC to produce a
fixed amount of memory. The default value of MLCA uses a
high estimate, while the value used in [29] results in lower
estimated memory production impacts. Sensitivity to changes
in location is explored trough two different scenarios, one in
France and one in the USA.

Figure 4 presents the results of the previously described
experiments. As expected, changing the location to a country
with a lesser CI can lead to significant reductions in terms
of GWP. However, this does not hold for ADP, where the
embodied impacts represent the vast majority of impacts.
Neither does this hold for PE as changing location does not
change the energy draw. These observations highlight the
importance of using a multi-criteria approach to prevent impact
shifting. The vast difference between the evaluation with the
base parameters and the evaluation maximizing the embodied
impacts allocation (top of error bars) shows the importance of
keeping hardware for a long time and increasing server usage
over buying new servers when trying to lower environmental
impacts, especially in terms of resource depletion (ADP).

V. DISCUSSION

A. About the validity of the tool

Our evaluation of MLCA showed the validity of the esti-
mates of the production impacts of servers in terms of GWP
(section IV-A), of estimates of the energy consumption in
the use phase (section IV-C) and of the overall assessment
(section IV-B). The sensitivity of MLCA to diverse parameter
changes has been explored in section IV-C. These diverse
experiments demonstrate the validity and usability of MLCA
in diverse scenarios.

The results produced by MLCA are put in perspective with
global sustainability scenarios to place computing activities
within limits on their environmental impacts. This perspective
highlights that continued slow growth, stagnation, or even a
slight decrease of the impacts over time are not sustainable
trajectories for ML.

Furthermore, proposed methods for stabilizing the carbon
footprint of ML rely on frequent hardware updates to increase
energy efficiency [44]. These methods will inevitably generate
impacts shifting from the use phase to the production and
end-of-life phases with more hardware being produced and
decommissioned, but also from the global warming impact
category to impacts categories like resource depletion or

toxicity. A multi-criteria, multi-life-cycle phases analysis as
implemented in MLCA highlights such impacts shifting.

Still, our tool and methodology have some limitations and
uncertainties. First, the evaluation methodology was unable to
validate results on indicators other than GWP as no known
previous work explored the impacts of AI systems in terms
of ADP or PE. Second, there are some limitations and un-
certainties in the assessments produced by MLCA, ranging
from uncertainties and data quality to limitations of scope and
methodological limitations.

B. Limitations and uncertainties

a) Uncertainties and data quality: Production impacts of
IC have been shown to vary with the technological node, with
smaller nodes (≤ 14nm) having increasing impacts [45]. Since
GPUs tend to be produced with smaller nodes, their impacts
might be higher than the ones currently evaluated in MLCA.
Still, the order of magnitude of the impacts remains consistent
with current data.

The sensitivity analysis shows that the used memory density
factor can significantly impact the results. Adapting density
factors based on memory technology (the memory embedded
in the graphics card does not use the same technology as
DRAM) would help improve the precision of production
impacts estimates. Estimates of graphics card production im-
pacts could also be much more precise if LCAs for modern
graphics cards were available. Then, it might also be possible
to differentiate between graphics cards using PCIe connectors
and those using SXM modules.

b) Limitations of the scope: The analysis conducted in
MLCA does not include the distribution or the end-of-life of
the hardware. Distribution is often not considered because it
has only minor impacts relative to the other phases. For the
end-of-life, this phase is frequently omitted as it is supposed
that it does not emit many greenhouse gases. However, the
end of life can also have major impacts in terms of toxicity,
for instance [46]. The significant challenge to considering the
end of life is the lack of available information. The lack of
available data also prevented using other impact metrics, such
as water consumption.

Data storage is not included, but as it is mostly independent
of computation, combining MLCA with another tool special-
ized for this task seems to be the best possible solution.
Data transfers are not currently included as their impacts
are expected to be small compared with the impacts of the
computation themselves. Datacenter building, maintenance,
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Fig. 4: Evaluation of the impacts of training NLP models on GWP, PE, and ADP. Scenario ’Base’ uses MLCA default parameters
with a US location. Scenario ’Changed density’ uses memory density from [29] instead of MLCA’s default value. Scenario
’Changed location’ uses the default parameters with a location in France. The value interval represents the variation due to
the possible range of embodied impacts, with the mark Facebook corresponding to a scenario in Facebook’s data centers.

and cooling equipment production are also not included, but
these are shared with many servers, leading to a minimal
contribution per task.

c) Limits of Life Cycle Assessment: Conducting an at-
tributional LCA does not allow to explore all of the possible
impacts of the considered solution. Indeed, it cannot explore
the social consequences and ethical challenges a solution
poses. Such social consequences and ethical challenges are
explored in [14]–[16], [47]. LCA also cannot explore the
changes induced by introducing the new solution, such as the
rebound effect that are frequent in ICT [48], [49].

It has been proposed that the impacts of data centers
are already negligible since big companies buy and produce
’green’ energy to power their data centers and offset their
carbon emissions [44]. While LCA is great at highlighting
the impacts of other phases of the hardware life cycle than
the use phase, its results can greatly vary depending on the
chosen impact factors. For instance, choosing the impact factor
of the bought ’green’ energy over the impact factor of the
local electricity mix puts forth the assumption that renewable
energy can be primarily used by digital companies over
other activities. Furthermore, including carbon offsetting in
the analysis dramatically lowers the assessed carbon footprint.
However, the true potential of carbon offsetting14 and the
relevance of removing carbon offset from carbon emissions
accountability have been criticized [49].

The results of LCA depend on a multitude of hypotheses
and might greatly differ depending on the scope of the
analysis, rendering these results difficult to exploit in compar-
ison studies [50]. Furthermore, while feedback from impacts
assessment studies may induce small changes to the system,
there is a need to associate these assessments with proactive
alternatives to the growth paradigm.

14https://www.theguardian.com/environment/2023/jan/18/revealed-forest-c
arbon-offsets-biggest-provider-worthless-verra-aoe

VI. CONCLUSION AND FUTURE WORK

This paper addressed the evaluation of the environmental
impacts of ML applications. We introduced a tool named
MLCA to support researchers in estimating the impacts of
computations. MLCA can contribute to cost/benefit analysis.
This tool leveraged existing methodologies and tools to inte-
grate LCA considerations for a more comprehensive estimate
of carbon footprint, as well as other environmental impacts
such as resource depletion.

A series of case studies assessed the quality of MLCA
estimates, including independent reproduction of prior experi-
ments. The tool and code for all the experiments presented in
this paper are available at https://github.com/blubrom/MLCA.

Our experiments suggest that the bigger the trained models,
the bigger the required quantity of hardware to train the
model, leading to higher shares of embodied impacts. This
observation, combined with the growing size of models [4]
and shift towards less carbon-intensive energy sources for
data centers, indicate embodied emissions constitute an in-
creasingly significant portion of the environmental impacts of
ML. Results also suggest that multi-criteria impact evaluation
can highlight impact shifting as common strategies that reduce
carbon emissions also increase metal depletion.

Future work should strive to include additional indicators,
such as water consumption or human toxicity, as well as an
assessment of hardware end-of-life impacts. This inclusion
will require efforts towards collecting dedicated data, which is
currently unavailable for specialized hardware such as graphic
cards.

Finally, the availability of a tool for impact assessment for
a specific application paves the way for an assessment at the
scale of a field in order to align with global sustainability ob-
jectives, such as the planetary boundaries. Such an assessment
must be combined with a broader reflection on the role of ICT
in a sustainable society.

https://www.theguardian.com/environment/2023/jan/18/revealed-forest-carbon-offsets-biggest-provider-worthless-verra-aoe
https://www.theguardian.com/environment/2023/jan/18/revealed-forest-carbon-offsets-biggest-provider-worthless-verra-aoe
https://github.com/blubrom/MLCA
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