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Abstract—For the characterization of the radiated field of
antennas, the Reduced Order Model method is a simple yet
powerful numerical tool that allows to reduce significantly the
number of field samples relatively to other techniques based on
analytical signal expansions. To further improve the flexibility
and versatility of this tool, this article focuses on building a set
of multiple reduced models via subdivision of the source domain
and on applying reference point method for ROM. Validations
based on simulation and measurement data in the far field are
shown.

Index Terms—Antenna measurements, antenna radiation pat-
tern, reduced order systems.

I. INTRODUCTION

The characterization of the radiated field of antennas is
mathematically an expansion of a sampled/measured signal in
some function basis. This basis allows the interpolation of the
field between the sampling positions on the measurement sur-
face or a complete 3D reconstruction. The standard approaches
rely on analytical functions such as Spherical Waves [1] or
Plane Waves [2] for which convenient and powerful sampling
theorems exist. However, in the hope of further reducing
the measurement constraints, techniques such as optimization
algorithms or numerical models are appealing. They allow the
introduction of additional knowledge to, for example, reduce
the number of measurements samples. We may cite sparse
recovery [3], exploiting the sparsity of field expansions on
Spherical Waves, or even basis constructed by simulations of
the system to be characterized [4]. In particular, a function
basis can be deduced from the geometry of the antenna using
the equivalent surface principle and a Reduced Order Model
(ROM) approach [5], [6]. The idea of taking more geometrical
information into account was already proposed years ago in [7]
but in an analytical manner, imposing strong constraints on the
possible geometries. While losing the mathematical certainty
brought by analytical methods, the numerical basis obtained
from ROM allows for more flexibility and is intrinsically tai-
lored to both the Antenna Under Test (AUT) and measurement
surface. To continue in that direction, in this article we propose
a method, where multiple Reduced Order Models are coupled
to form our antenna characterization problem. Although the
approach is general and could be applied to both near and
far field with no restriction on the field sampling surface, the

presented studies have been carried out on the far field with a
planar equivalent surface.

The article is organized as follows: in Section II, the ROM
approach is quickly recalled and the multi-ROM method is
presented along with some basic and useful properties. In
Section III, the multi-ROM method is applied to simulated
and measured data. Finally, conclusions are drawn in Section
IV.

II. MULTIRESOLUTION STRATEGY

A. Reduced Order Model

The equivalent surface principle [8] allows to represent
any set of electromagnetic sources, in terms of radiated field,
contained in a given surface Σ by equivalent (tangential)
currents over Σ. By meshing the equivalent surface Σ and
defining observation positions, one is able to discretize the
radiation operator (between the equivalent currents and the
field at the observations positions) into a radiation matrix A.
Once this matrix is computed, the ROM is obtained from A
by performing its Singular Value Decomposition (SVD). The
truncation of this SVD to the expected accuracy level leads
to the so-called ROM. Extended details on this method can
be found in [9] and [10]. If Σ is set around the AUT and the
observation positions contain the measurement sampling on
the measurement surface S, the characterization of the radiated
field y is reduced to the resolution of a linear system

y = Uν, (1)

where U contains the said ROM, the tailored numerical basis
and ν is the unknown vector. This method has been proven
to reduce significantly the number of field samples relatively
to conventional approaches or even sparse recovery methods.
It is therefore of interest to study in depth the properties and
operations that one can perform on the basis produced by the
ROM.

B. Surface Subdivision

1) Definition: Normally, a single ROM on the complete
equivalent surface is computed. However, using multiple
ROMs for a single problem is appealing to provide a more
versatile tool, for example with adaptive orders depending
on the region of Σ, that could be of interest for embedded
antennas. In this article, a multi-ROM approach is proposed



by dividing the equivalent surface Σ into K subdomains Σk,
with k = 0, . . . ,K−1 and ∪kΣk = Σ. Thus, every subdomain
Σk possesses its own radiation submatrix Ak, and (up to a
column permutation) A =

[
A0 . . .AK−1

]
. This division can

be coupled with the ROM approach by doing:

y = Ũν̃, (2)

where Ũ =
[
U0 . . .UK−1

]
and each Uk is obtained from the

SVD of Ak.
2) Truncation Order: The main interest of the ROM is

to reduce the number of unknowns to be identified, repre-
sented by the size of ν in (1), in order to characterize the
radiation pattern of the AUT. This number of unknowns is
determined by the truncation order T of the SVD of the
radiation matrix, which is obtained by the index at which
the normalized singular value distribution of A crosses the
expected level of accuracy. In the multi-ROM approach, a
SVD is rather performed on each submatrix Ak, where each
one possesses its own truncation order Tk. Hence, the number
of unknowns in the multi-ROM approach, the size of ν̃ in (2),
is T̃ =

∑K−1
k=0 Tk.

From our observations, the multi-ROM method increases
this truncation order, i.e. T̃ ≥ T . It comes from a slower
decrease of the singular value distribution of each submatrix
Ak relatively to their maximum magnitude.

3) Conservation of the information: It is important to
characterize the impact of the subdivision of Σ on the obtained
basis in Ũ. If another SVD is applied to ŨS̃ where S̃ contains
the singular value distributions of each sub-ROM Uk, we
obtain the same distribution as if a single SVD was performed
on A, as it is shown in Section III. It indicates that the
separation of Σ with this process does not deteriorate the
amount of information contained in the original problem but
now obtained through multiple ROMs instead of a single
ROM, validating the approach from an information point
of view. Furthermore, as shown in the validation cases, the
accuracy of the characterization is preserved.

4) Reference point for multiple ROM: In the far field of
the AUT, the reference point method enables to translate
an electromagnetic source by applying a phase term to the
radiated field [11]. Since the matrices Ak father the field
radiated by the equivalent currents, our sources, these sources
can be translated as well as the ROM basis in Uk in the
same way. If the surface Σ is divided into identical regions
Σk, which are a translation of a reference region Σref , the
following holds

Uk = DUref , (3)

where D is a diagonal matrix in which the i-th diagonal
element is di = exp

(
jkδk · ri

|ri|

)
. k is the wavenumber, ri

the i-th sampling position and δk is the translation vector
transforming Σref into Σk.

III. APPLICATION AND VALIDATION

A. Methodology
The multi-ROM approach is applied to simulated and

measured data. These validations focus on several aspects to
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Fig. 1. Simulated E-plane horn: reconstruction of the far field for φ = 45◦,
(left) cross-polarization, and (right) co-polarization.

investigate the properties of the technique: the accuracy of the
reconstruction of the far field, the variation of the total order
of the model, T̃ , the impact of equivalent currents and the
application of the reference point method.

To evaluate the accuracy of the field reconstruction, a
reference radiation pattern contained in the data vector y is
compared against the reconstructed one, ỹ. The complex error
is computed point-wise by the complex error signal defined as
Error(y, ỹ) = |y−ỹ|

∥y∥∞
, where ∥·∥∞ is the maximum magnitude

contained in y. The Equivalent Noise Level (ENL) is defined
to be the mean of that signal error. Both errors are given in
dB.

B. Simulation of a E-plane Horn

In this first application, the field comes from the simulation
of a 3 GHz E-plane horn of dimensions (2, 2, 3)λ (λ = 0.1
m), according to the Euclidian antenna’s referential. The
reduced sampling has only 664 points on the hemisphere while
1326 are required for a standard spherical measurement using
spherical waves.

As Table I shows, the same error level is achieved for the
three tested decompositions: the full surface Σ and two regular
subdivisions of Σ in 2 × 2 and 3 × 3 regions. The far field
is shown on the cutting plane φ = 45◦ in Figure 1, further
indicating that very similar reconstructions are achieved.

TABLE I
RECONSTRUCTION ACCURACY OF THE FAR FIELD OF THE HORN

ANTENNA.

full plan 2× 2 3× 3 3× 3 w/ ref. point
ENL (dB) −74.0 −76.4 −74.5 −75.3

T̃ 176 311 374 374

Table I also clearly shows that T̃ ≥ T . The singular
values distributions are presented in Figure 2. It illustrates the
property evoked in the conservation of the information as the
double SVD (SVD of the multi-ROM method) leads to the
same information as the direct, complete, ROM.

The retrieved equivalent currents on Σ for a 3× 3 decom-
position where the multi-ROM method is obtained with or
without transition currents between the domains are shown
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Fig. 2. Simulated E-plane horn: (top) distribution of normalized singular
values for each set of decomposition, and (bottom) comparison between a
single SVD on A and double SVD for 2× 2 and 3× 3 decomposition.
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Fig. 3. Simulated E-plane horn: modulus of the retrieved equivalent currents
on Σ, (a) with interconnected domains and (b) without. In both cases, a multi-
ROM has been applied.

in Figure 3. Simply putting disconnected current distributions
next to each other is not enough to retrieve the expected,
continuous, currents. However, with the proposed approach,
the correct behavior is observed. Finally, the reference point
method is used to to compute the multiple ROMs for a 3× 3
decomposition. The middle square is used as our reference,
providing Uref in (3) to deduce the 8 other ones. As shown
by the cutting planes of the field reconstruction in Figure
4, and by the ENL in Table I, the same reconstruction is
achieved while only one SVD of a significantly smaller region
is computed.
C. Patcharray

The second benchmark is a 3 × 3 array of rectangular E-
plane patches at 10 GHz of dimensions (3, 3, 1)λ (λ = 0.03
m). The reduced sampling has 656 points on the hemisphere
while 1225 are required for a standard spherical measurement
using spherical waves.
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Fig. 4. Simulated E-plane horn: reconstruction of the far-field using the
standard ROM approach or a 3 × 3 decomposition coupled with reference
point method at φ = 0◦.
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Fig. 5. Simulated patch array: Reconstruction of the field for φ = 45◦.

The accuracy of far-field reconstructions are presented in
Table II. They demonstrate the same behaviour as for the E-
plane horn in terms of the total order T̃ . In this case, a better
accuracy is achieved for a finer subdivision of Σ. This can
be explained by the introduction of more degrees of freedom
relatively to the number of unknowns. The reconstructions of
the field presented in Figure 5 show similar error signal levels
for each subdivision of Σ.

The distributions of the singular values are also detailed in
Table II and have the same shape as in Figure 2, where T̃
is larger for smaller decompositions of Σ. The information is
still retained during the SVD process, with the singular values
distributions for the SVD of the complete radiation matrix A
and the double SVD for 2× 2 and 3× 3 decompositions.

Finally, the reference point approach is also used and the
results are presented in Figure 6 and the ENL is reported in
the Table II. The reconstruction is again as good as in the case
of the multi-ROM approach with one SVD per subdomain.

TABLE II
RECONSTRUCTION ACCURACY OF THE FAR FIELD OF THE PATCHARRAY.

full plan 2× 2 3× 3 3× 3 w/ ref. point
ENL (dB) −52.7 −60.8 −60.4 −60.3

T̃ 197 351 498 498
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Fig. 6. Comparison between the classical ROM approach and a 3 × 3
decomposition with reference point at φ = 45◦.
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Fig. 7. Measured horn antenna: reconstruction of the field for φ = 45◦.

D. Measured Horn

To conclude, a measured 26 GHz horn antenna of di-
mensions (4, 4, 5)λ (λ = 0.011 m) is studied. The reduced
sampling has 2550 points on the hemisphere while 2736 are
required for a standard spherical measurement using spherical
waves. As Table III shows, the same kind of difference
between each truncation order as for the simulated cases is
obtained. The main difference is in the accuracy of the far-
field reconstruction, where the impact of the redundancies in
the retained informations during the SVD process is more
important in a measured case, hence a better ENL for the full
plan domain, or for the reference point approach. As Figures
7 and 8 show, in every studied case, the multi-ROM approach,
and in particular with the reference point method, leads to very
good reconstructions.

TABLE III
RECONSTRUCTION OF THE FAR FIELD, MEASURED HORN ANTENNA.

full plan 2× 2 3× 3 3× 3 w/ ref. point
ENL (dB) −53.2 −49.0 −47.4 −53.5

T̃ 438 715 984 984

IV. CONCLUSION

The use of several ROMs on the same planar equivalent
surface has been investigated. It has been shown that this
approach does not deteriorate accuracy as compared to using
a single ROM. Moreover, this approach offers some flexibility
by adapting the order of each ROM to the complexity of
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Fig. 8. Comparison between the classical ROM approach and a 3 × 3
decomposition with reference point at φ = 45◦.

equivalent currents, which may differ a lot depending on the
region around the antenna under test.
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