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Abstract

Positional games were introduced by Hales and Jewett in 1963, and
their study became more popular after Erdős and Selfridge’s first result on
their connection to Ramsey theory and hypergraph coloring in 1973. Sev-
eral conventions of these games exist, and the most popular one, Maker-
Breaker was proved to be PSPACE-complete by Schaefer in 1978. The
study of their complexity then stopped for decades, until 2017 when Bon-
net, Jamain, and Saffidine proved that Maker-Breaker is W [1]-complete
when parameterized by the number of moves. The study was then in-
tensified when Rahman and Watson improved Schaefer’s result in 2021
by proving that the PSPACE-hardness holds for 6-uniform hypergraphs.
More recently, Galliot, Gravier, and Sivignon proved that computing the
winner on rank 3 hypergraphs is in P.

We focus here on the Client-Waiter and the Waiter-Client conventions.
Both were proved to be NP-hard by Csernenszky, Martin, and Pluhár in
2011, but neither completeness nor positive results were known for these
conventions. In this paper, we complete the study of these conventions
by proving that the former is PSPACE-complete, even restricted to 6-
uniform hypergraphs, and by providing an FPT-algorithm for the latter,
parameterized by the size of its largest edge. In particular, the winner
of Waiter-Client can be computed in polynomial time in k-uniform hy-
pergraphs for any fixed integer k. Finally, in search of finding the exact
bound between the polynomial result and the hardness result, we focused
on the complexity of rank 3 hypergraphs in the Client-Waiter convention.
We provide an algorithm that runs in polynomial time with an oracle in
NP.

∗This research was partly supported by the ANR project P-GASE (ANR-21-CE48-0001-01)
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1 Introduction

Positional games were introduced by Hales and Jewett [HJ63] as a generalization
of the Tic-Tac-Toe game. These games are played on a hypergraph H = (V,E),
on which the players alternately claim an unclaimed vertex of V . The Tic-Tac-
Toe corresponds to the convention Maker-Maker: the first player who claims all
vertices of an edge of E wins. However, since the second player cannot win in
Maker-Maker games, and since Maker-Maker games are not hereditary, for the
outcome, the study quickly switched to another convention: Maker-Breaker.

In the most studied convention, Maker-Breaker, Maker (one player) tries
to claim all the vertices of an edge, while Breaker (the other player) aims to
prevent her from doing so. If not explicitly specified, we assume here that Maker
plays the first move. The study became more popular in 1973 when Erdős and
Selfridge [ES73] obtained the following criterion.

Theorem 1 (Erdős-Selfridge criterion). Let H = (V,E) be a hypergraph. If∑
e∈E

2−|e| <
1

2
,

then the position is a win for Breaker.

For the biased versions of Maker-Breaker, for example in the (1 : b) one (at
each turn Maker selects one vertex then Breaker selects b of them), one can ask
for different families of hypergraphs, what is the threshold for b which turn the
position for Breaker from loser to winner. Surprisingly, for a large number of
hypergraphs families (but not all), it has been found that the threshold for the
random game (where both players play randomly) is essentially the same as the
threshold for the optimal play. This phenomenon, known as the ”probabilistic
intuition” was first demonstrated by Chvatal and Erdős [CE78], and then fur-
ther developed in numerous papers particularly by Beck (see for example the
books [Bec02] and [HKSS14]).

Schaefer proved in 1978 that it is PSPACE-complete to determine the winner
of a Maker-Breaker game [Sch78] (the problem appears there under the name
Gpos(POS CNF)). More precisely, he shows the PSPACE-hardness even for hy-
pergraphs of rank at most 11 (i.e., such that the size of the edges is bounded
by 11). A simplified proof can be found in [Bys04]. The result was improved
in 2021 by Rahman and Watson [RW21]: the problem is PSPACE-complete for
k-uniform hypergraphs with k ≥ 6 (i.e., hypergraphs where all edges have size
exactly k). Byskoz [Bys04] also notices that deciding the winner in a Maker-
Breaker can be reduced to the same problem in the Maker-Maker convention
(up-to increasing by 1 the maximal size of its edges). In particular, deciding who
wins in a Maker-Maker game is PSPACE-complete for k-uniform hypergraphs as
soon as k ≥ 7.

On the positive side, Kutz [Kut05] proved in 2005 that the problem is
tractable for 2-uniform hypergraphs and 3-uniform linear ones1. It was improved

1Hypergraphs whose intersection of each pair of edges is of size at most one.
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recently by Galliot et al. [Gal23, GGS22]: deciding the winner is tractable for
rank 3 hypergraphs.

Since the introduction of positional games, the studies have focused on the
Maker-Breaker convention. In order to have a better understanding of this
convention, Beck [Bec02] introduced the Client-Waiter and Waiter-Client con-
ventions in 2002 under the names Chooser-Picker and Picker-Chooser. Their
current names were suggested by Hefetz, Krivelevich, and Tan [HKT16] as they
are less ambiguous. In both conventions, Waiter selects two vertices of the hy-
pergraph and offers them to Client. Client then chooses one to claim, and the
second one is given to Waiter. If the number of vertices is odd, the last vertex
goes to Client. In the Client-Waiter convention, Client wins if he claims all
vertices of an edge, otherwise Waiter wins. In the Waiter-Client convention,
Waiter wins if she claims all vertices of an edge, otherwise Client wins.

Notice that these conventions can also be seen as variations of Avoider-
Enforcer. In particular, the definition we gives for Waiter-Client is the one
which appears originally in Beck [Bec02]. But since [HKT16], Waiter-Client is
often defined following the Avoider-Enforcer convention: Waiter wins if she can
forces Client to claim a whole edge (and if the number of vertices is odd, the last
vertex goes to Waiter). One can notice that both definitions correspond in fact
to the same game. Unlike the fact that Maker-Breaker and Avoider-Enforcer
are very different games, in this “I-cut-you’ll-choose way” paradigm, since Client
picks a vertex from only two possibilities, it is symmetric to associate the chosen
vertex to Client or to Waiter.

The study of Client-Waiter and Waiter-Client games were first motivated
by its similarities to Maker-Breaker games. For example, Bednarska-Bzdȩga
(improving previous results [Bec02, CMP09]) proved that Theorem 1 also holds
in Waiter-Client convention [BB13]. Moreover, the “probabilistic intuition”
continues to work [Bec02] in these conventions. More recently, this probabilistic
method has been stated in a more general case for the biased Waiter-Client
H-game by Bednarska-Bzdȩga, Hefetz and  Luczak in 2016 [BBHL16]. This
conjecture has just been proved recently by Nenadov in 2023 [Nen23]. These
similarities led Beck [Bec02] and Csernenszky, Mándity, and Pluhár [CMP09] to
conjecture that if Maker wins in a Maker-Breaker game on some hypergraph H
going second, then Waiter wins in Waiter-Client. Notice that up to considering
the transversal of H, the conjecture also implies that a win for Breaker as a
second player implies a win for Waiter in the Client-Waiter game. But this
conjecture was disproved by Knox [Kno12] in 2012. Today however, Client-
Waiter and Waiter-Client games are studied independently of Maker-Breaker
games: Csernenszky [Cse10] proved in 2010 that 7-in-a-row Waiter-Client is a
Client win on the infinite grid, while this problem is still open in the Maker-
Breaker convention, and Hefetz et al. [HKT16] studied several classical games
in Waiter-Client convention.

In terms of complexity, only few results were known about Waiter-Client
and Client-Waiter games. In contrast to Maker-Breaker, Maker-Maker, Avoider-
Avoider and Avoider-Enforcer, which are known to be PSPACE-complete [Sch78,
Bys04, BH19, RW21, GO23], the asymmetry between the players moves in
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Waiter-Client and Client-Waiter conventions makes it more difficult to obtain
reductions. In fact, Waiter has more choices than Client in her moves, which
makes most reduction techniques fail. Both problems have been conjectured
PSPACE-complete in [CMP09]. In [CMP11], the authors show that both prob-
lems are NP-hard. However, in the Waiter-Client convention, the hypergraph
has an exponential number of edges but is given in a succint way: it is the
transversal of a given hypergraph. This leaves open the question of whether the
problem of deciding who wins a Waiter-Client game is still NP-hard when the
hypergraph is given via the list of its edges.

The study of the parameterized complexity of combinatorial games emerged
roughly together with the study of parameterized problems, and some strong
results about complexity theory are due to this study. For instance, Abra-
hamson, Rodney, Downey, and Fellows[ADF93] proved that AW [3] = AW [∗],
through the game Geography. Only few results are known on positional games
with the parameterized complexity paradigm, and only related to three con-
ventions: Maker-Breaker, Maker-Maker and Avoider-Enforcer. Their study
started by Downey and Fellows, conjecturing that Short Generalized Hex
was FPT, but it was disproved (unless FPT= W[1]) by Bonnet, Jamain and
Saffidine in 2016 [BJS16], proving its W[1]-hardness. Then, in 2017, Bonnet
et al. [BGL+17] proved that general Maker-Breaker games are W[1]-complete,
Avoider-Enforcer games are co-W[1]-complete and general Maker-Maker games
are AW[*]-complete.

Notice that the parameterized results obtained on general positional game
consider the number of moves as a parameter. This is mostly motivated by
the fact that these problems are already PSPACE-hard for bounded rank hyper-
graphs. In Waiter-Client convention however, this is not the case, and therefore,
we study the complexity of determining the winner of Waiter-Client games pa-
rameterized by the rank of the hypergraph. Note that, even if the outcome of
Client-Waiter games are hereditary (see Lemma 11), in contrast with Maker-
Breaker or Avoider-Enforcer games, when the number of moves is bounded, it
is not. Indeed, Waiter can control where Client plays, the addition of isolated
vertices can be used by Waiter to waste turns. Therefore, the number of moves
in this convention is not as relevant as in the others.

High-level description of the results.

We show that, similarly to the Maker-Breaker and Enforcer-Avoider conven-
tions, deciding the winner of a positional game in the Client-Waiter convention
is PSPACE-complete. The result was already conjectured in 2009 [CMP09].
It is an improvement of [CMP11] where the problem is shown to be NP-hard.
Moreover, we obtain the PSPACE-completeness even for 6-uniform hypergraphs.

Theorem 2. For k ≥ 6, Client-Waiter games are PSPACE-complete even re-
stricted to k-uniform hypergraphs.

The containment in PSPACE directly follows from Lemma 2.2 in [Sch78]. So
the main point is the hardness part. To prove it, we reduce the problem of
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deciding who has the win to the same problem in the following game.

Definition 3 (Paired SAT). Let φ be a 3-CNF Formula over a set of pairs of
variables X = {(x1, y1), . . . , (xn, yn)}. The Paired SAT-game is played by two
players, Satisfier and Falsifier as follows: while there is a variable that has not
been assigned a valuation, Satisfier chooses a pair of variables (xi, yi) that she
has not chosen yet and gives a valuation, ⊤ or ⊥, to xi. Then Falsifier gives a
valuation to yi. When all variables are instantiated, Satisfier wins if and only
if the valuation they have provided to the xis and yis satisfies φ.

The Paired SAT-game is a new variant of a CNF-game where the play order
is closer to the Client-Waiter convention: the first player chooses, at each turn,
which variables she plays on and which variable the second player will have to
play on.

Again, deciding who wins on this new game is PSPACE-complete. It is proved
in Section 3.1 by a reduction from the game 3-QBF (known to be PSPACE-
complete since Schaefer’s seminal work [Sch78]).

Theorem 4. Deciding who is the winner of the Paired SAT-game is PSPACE-
complete.

Then Theorem 2 is obtained by reducing the Paired SAT-game to the Client-
Waiter one. This is done by designing a gadget (given in Figure 2) which
simulates a pair of variables (xi, yi) of the Paired SAT-game. Notice that the re-
duction only creates a hypergraph of rank 6. But, similarly to the Maker-Breaker
games [RW21, Corollary 4] and the Avoider-Enforcer ones [GO23, Lemma 7],
Lemma 22 shows that the hypergraph can be turned into a 6-uniform one af-
terwards.

In the Maker-Breaker convention, as said before, it is known [RW21] that
deciding if a position is winning is PSPACE-complete over hypergraphs of rank
at most 6. On the other side, the problem is easy for hypergraphs of rank 2 since
Maker wins if and only if there are two adjacent 2-edges or the graph contains
a singleton edge (result already noticed in [Kut05]). But only recently, after a
serie of results [Kut05, RW20], Galliot, Gravier, and Savignon [Gal23, GGS22]
showed that the problem is still polynomial for hypergraphs of rank at most
3. The same question arises in the Client-Waiter convention: despite being
PSPACE-complete over hypergraphs of rank at most 6, what can we say about
the complexity of the problem for hypergraphs of low rank? For hypergraphs of
rank 2, it is easily seen that the problem is polynomial (Proposition 23). The
question is already non-trivial for hypergraphs of rank 3.

We show that the problem of deciding if a position is winning in a rank 3
hypergraph reduces to the problem of finding a specific structure (called a Tad-
pole) in a hypergraph. Tadpoles have been generalized to hypergraphs by Gal-
liot, Gravier and Sivignon [GGS22] to handle rank 3 Maker-Breaker games and
their definition is recalled in Definition 26. Intuitively, given a and b two ver-
tices of H, an ab-tadpole is given by the union of a path from a to b and a cycle
containing b such that the structure is simple (two edges intersect only if they
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are two consecutive edges of the path or the cycle, or if one is the last edge of
the path and the other an edge of the cycle containing b) and linear (the inter-
section of two intersecting edges is of size exactly 1). More precisely, we require
this structure is 3-uniform, simple and linear, which means that all edges have
size 3, the intersection of two consecutive edges has always size one, and a same
vertex can not happen at two different places of the structure. An ab tadpole
is simply called tadpole. A tadpole is said rooted in a, if it is an ab-tadpole for
some vertex b.

We consider the problem Tadpole: Given a vertex a in a 3-uniform hyper-
graph H, decide if there is in H a tadpole rooted in a.

It is easy to check that a given subhypergraph is a tadpole, so this problem
is in NP. We do not know if this problem can be tractable. We note however
that it would be sufficient to loop for all vertex b and all triples of edges of the
form {b, x1, x2}, {b, y1, y2}, {b, z1, z2} and check if there are two disjoint simple
linear paths linking the two sources a and x1 to the targets y1 and z1 (b would
be the contact between the path and the cycle). The complexity of the prob-
lem “Disjoint Connected Paths” for graphs has been a very fruitful research
topic. In the case of two sources and two targets, the problem was shown to
be tractable [Shi80, Sey80]. In fact, in their well-known result, Robertson and
Seymour [RS95] showed that the problem continues to be tractable for a con-
stant number of sources and targets. The case where the number of sources and
targets is unbounded is one of the first NP-complete problems in Karp’s list.
For 3-uniform hypergraphs, it has been just proved recently [GGS23] that the
simple linear connectivity problem (one source and one target) is tractable. A
corollary of the next theorem is that if the “Disjoint Connected Paths” prob-
lem for two sources and two targets is still tractable for 3-uniform hypergraphs,
then deciding who is winning in a Client-Waiter game on a hypergraph of rank
3 would also be tractable.

Theorem 5. The problem of deciding if a given rank 3 hypergraph is a winning
position for Client can be solved by a polynomial time algorithm which uses the
problem Tadpole as an oracle.

In particular, the problem lies in the class ∆P
2 = PNP.

In fact, during the proof of this theorem, we notice that this reduction is
necessary. The problem of detecting a Tadpole can conversely be reduced to
deciding on a winning position in a Client-Waiter game.

Proposition 6. The problem Tadpole is polynomial-time many-one reducible
to the problem of deciding if Client has a winning strategy in a Client-Waiter
game played on a rank 3 hypergraph.

Then, we focus on the second convention Waiter-Client. Surprisingly, the
complexity of deciding if a position is winning is very different in this convention.

Theorem 7. Waiter-Client is FPT on k-uniform hypergraphs.
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More precisely deciding if a hypergraph H = (V,E) is winning for Waiter
can be decided in time O(f(k)|E| log|V |) where f is a computable function, i.e.,
in linear time when k is fixed.

This result is obtained from a structural analysis of k-uniform hypergraphs,
using the famous sunflower lemma from Erdős and Rado [ER60]. This is a very
natural approach since, intuitively, a huge sunflower (edges pairwise intersecting
on a same center set) should be “reducible” in the sense that one could replace
the sunflower by a unique edge given by the center set. Indeed, if Waiter can
obtain the center and the sunflower is large enough, then she can make sure to
get a petal and so a set of the sunflower. This intuition should be valid, but
the main difficulty is to exactly state what is “huge”, as all other potentially
useful sunflowers interact. We were unable to find a simple strategy based on
these lines. Instead, we describe a kernelization type algorithm which produces
a subset of vertices (kernel) of the hypergraph H such that Waiter wins on H if
and only if Waiter wins on the trace of H on the kernel. The argument is based
on a process which ultimately reaches a fixed point, the major drawback being
that the kernel size is ridiculously large. This kernelization provides an FPT
algorithm for the Waiter-Client game on rank k hypergraphs. This also proves
that if Waiter can win, she wins using only some function of k moves. However,
the gap between the very large upper bound and the best known lower bound
(2k−1 moves, required to win on 2k disjoint edges of size k) indicates how little
we understand strategies in Waiter-Client games.

Nevertheless, the fact that Waiter-Client is FPT for rank k hypergraphs
could indicate that this convention is simpler to analyse than Maker-Breaker.
It would be interesting to revisit the classical topics in which Maker-Breaker
game was tried as a tool (for instance 2-colorability of hypergraphs or the Local
Lemma) to see if Waiter-Client could provide more insight.

Complexity results for the various conventions are summarized in the table
below.

Organization.

We start with some preliminary results and definition in Section 2. We then
prove in Section 3 that Client-Waiter games are PSPACE-complete, even re-
stricted to 6-uniform hypergraphs. In Section 4, we focus on rank 3 hypergraph
in Client-Waiter convention and we prove that the decision problem of deter-
mining the outcome of the game is in ∆P

2 . Finally, in Section 5, we prove that
Waiter-Client games are FPT parameterized by the rank.

References to add in the introduction.

• Introduction of Maker-Breaker (dixit Galliot,Gravier,Savignon) by Beck
and Csirmaz in 82

• N: c’est pas l’introduction de Maker-Breaker (Chvatal Erdos en 1978
avaient déjà bossé sur un jeu Maker-Breaker), mais c’est l’introduction
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Rank r 2 3 4, 5 6 7+

Maker P[Folklore] P[Gal23] Open PSPACE-c PSPACE-c
-Breaker [RW21] [RW21, Sch78]

Maker P[Folklore] Open Open Open PSPACE-c
-Maker [RW21, Bys04]

Avoider PSPACE-c PSPACE-c PSPACE-c PSPACE-c PSPACE-c
-Avoider [BH19] [BH19] [BH19] [BH19] [BH19]

Avoider P [Gal23] Open Open PSPACE-c PSPACE-c
-Enforcer [GO23] [GO23]

Client P Prop 23 ∆P
2 = PNP Open PSPACE-c PSPACE-c

-Waiter Cor 5 Thm 2 Thm 2

Waiter P Prop 37 P Thm 7 P Thm 7 P Thm 7 FPT w.r.t. r
-Client Thm 7

Table 1: Complexity in the different conventions

du nom ”Maker-Breaker” avant, on disait juste 1er joueur et 2e joueur. Si
on prend également en compte les jeux pas introduits comme étant posi-
tionnels, on peut remonter encore (mettre Hex dedans serait de la triche,
mais on peut au moins mentionner le shannon switching game)

2 Preliminaries

In this section, we first introduce the context of the game by providing some
definitions, then we present some useful lemmas to handle Client-Waiter and
Waiter-Client games.

Definition 8. Let H = (V,E) be a hypergraph and let k be an integer. H is
said to have rank k if all its edges e ∈ E have size at most k. H is said to be
k-uniform if all its edges have size exactly k.

Remark that, if H is a hypergraph, if it has an edge included in another, we
can remove the largest one without changing the outcome of the game played
on H. Therefore, we can consider that all hypergraphs considered in this paper
are clutter.

Definition 9. Let H = (V,E) be a hypergraph. H is said to be a clutter if for
any edges e1 ̸= e2 ∈ E, we have e1 ̸⊆ e2 and e2 ̸⊆ e1.

Definition 10. The hypergraph H ′ = (V ′, E′) is a subhypergraph of H = (V,E)
if V ′ ⊆ V and E′ ⊆ E. If A ⊆ V , the induced subhypergraph H|A is the
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subhypergraph (A, {e ∈ E | e ⊆ A}). The trace TA(H) of H on A is the
hypergraph (A, {e ∩A | e ∈ E}).

In this section, we present some general results about Client-Waiter and
Waiter-Client games. The monotony of Client-Waiter and Waiter-Client conven-
tions is immediate and folkloric: if “Maker” player (i.e. Client in Client-Waiter
and Waiter in Waiter-Client) has a winning strategy on a sub-hypergraph, then
he has one on the general hypergraph.

Lemma 11. Let H = (V,E) be a hypergraph and let H ′ = (V ′, E′) be a sub-
hypergraph of H. If Client (resp. Waiter) wins the Client-Waiter (resp. Waiter-
Client) game on H ′, then Client (resp. Waiter) wins the Client-Waiter (resp.
Waiter-Client) game on H.

In the Client-Waiter convention, edges of length 2 are forced moves for
Waiter.

Lemma 12 (Proposition 9 from [CMP09]). Let H = (V,E) be a hypergraph.
Let a game in the Client-Waiter convention. Let W,C ⊂ V be the set of vertices
already claimed by Waiter and Client respectively. If there exists e ∈ E such
that e ∩W = ∅ and |e \ C| = 2, then an optimal move for Waiter is to propose
the two unclaimed element of e with her next move.

3 6-uniform Client-Waiter games are PSPACE-
complete

This section is dedicated to the proof of Theorem 2. As explained in the intro-
duction, we start with hypergraphs of rank at most 6:

Proposition 13. Computing the winner of a Client-Waiter game is PSPACE-
complete, even restricted to hypergraphs of rank 6.

We notice that the membership in PSPACE follows from an argument of
Schaefer [Sch78].

Lemma 14. Both Client-Waiter and Waiter-Client positional games are in
PSPACE.

Proof. Let H = (V,E) be a hypergraph. Each turn, Waiter has the choice

among at most
(|V |

2

)
moves and Client has the choice among 2 moves. Since

the game ends in at most |V | moves, it is in PSPACE using the same proof as
in Lemma 2.2 from Schaefer [Sch78].

3.1 Quantified Boolean Formula and paired SAT

The most classical PSPACE-complete problem is 3-QBF, the quantified version
of SAT. Our hardness proof is a reduction from 3-QBF, but since the roles of the
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players in Client-Waiter games are very different, we introduce an intermediate
problem Paired SAT.

First we recall the definition of 3-QBF, in its gaming version, as it was done
by Rahman and Watson [RW21], and later Gledel and Oijid [GO23] to prove
that Maker-Breaker and Avoider-Enforcer games are PSPACE-hard respectively.

Given a 3-CNF quantified formula φ = ∃x1,∀y1, . . . ,∃xn∀ynψ, where ψ is a
3-CNF without quantifier, the 3-QBF game is played by two players, Satisfier
and Falsifier. Satisfier chooses the value of x1, then Falsifier chooses the value of
y1, and so on until the last variable has its value chosen. At the end, a valuation
ν of the variables is obtained, and Satisfier wins if and only if ν satisfies ψ.

Theorem 15 (Stockmeyer and Meyer [SM73]). Determining if Satisfier has a
winning strategy in the 3-QBF game is PSPACE-complete.

The game Paired SAT is introduced in the introduction (Definition 3). This
is a variant of 3-QBF where, at each turn, Satisfier chooses an index i and
instantiates the variable xi, and then Falsifier instantiates the variable yi. The
main idea of this game is to introduce a CNF-game mimicking the fact that one
player chooses which variable the second player has to play on.

Theorem 16. Determining the winner of the Paired SAT-game is PSPACE-
complete.

Proof. Since at any moment of the game, the number of options for a player
is at most n and the game runs for at most n turns, determining the winner
of the Paired SAT-game is in PSPACE using the same proof as Lemma 2.2 from
Schaefer [Sch78].

We provide a reduction from 3-QBF. Let ψ = ∃x1∀y1 · · · ∃xn∀yn, φ be a QBF
formula. We construct an instance of the Paired SAT-game (φ′, X) as follows:

• X = {(z0, y0), (x1, t1), (z1, y1), . . . , (xn, tn), (zn, yn)}, where y0, the zis,
and the tjs are new variables.

• φ′ = φ ∧
∧

1≤i≤n

(yi−1 ⊕ ti ⊕ zi).

where ⊕ refers to the XOR operator:

a⊕ b⊕ c = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c).

We prove that Satisfier wins on ψ if and only if she wins on (φ′, X).
First note that whenever two values of a⊕ b⊕ c are known, the player who

chooses the last value can always decide to satisfy or not (a ⊕ b ⊕ c). Suppose
first that Satisfier has a winning strategy S on ψ, and consider the following
strategy for him on (φ′, X):

• Satisfier instantiates the pairs (z0, y0), (x1, t1), (x2, t2), . . . , (zn, yn) in that
order.
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• Whenever Satisfier has to choose a value for a variable xi, he follows S
with the corresponding values of the xj and yj for 1 ≤ j < i. This is
always possible as the order was given above.

• Whenever Satisfier has to give a value to a variable zi, she gives the value
so that yi−1 ⊕ ti ⊕ zi is satisfied (if i = 0 she can instantiate the variable
z0 by either ⊤ or ⊥).

Following this strategy, all the clauses (yi−1⊕ti⊕zi) are satisfied as Satisfier
always chooses the last vertex of these clauses (which appears in exactly one of
them), and as S has a winning strategy in ψ, it satisfies φ, as the variables are
chosen in the same order.

Now suppose that Falsifier has a winning strategy S on ψ, and consider the
following strategy on (φ′, X, Y ):

• While Satisfier plays the pairs following the order (z0, y0), (x1, t1), (x2, t2), . . . , (zn, yn),
Falsifier gives to the corresponding ti the value ⊥, and to yi the value given
by S.

• If Satisfier plays a pair (xj , tj) before she should, Falsifier still gives the
valuation ⊥ to tj and ignores this move while choosing the valuations of
the yi for i ≤ j.

• If Satisfier plays a vertex zj before he should, the first time it happens,
all the unplayed variables in the clause (yj−1 ⊕ tj ⊕ zj) will be played by
Falsifier. Therefore, Falsifier can just win by choosing a good valuation
for yj−1 and tj .

Following this strategy, if Satisfier instantiates a variable zi whereas there is
j ≤ i such that the variable xj has not yet been instantiated then Falsifier wins.
Indeed, the first time it happens, either zi−1 or xi has not been instantiated
(otherwise it already happened when Satisfier instantiated zi−1). Consequently,
Falsifier wins through the clause (yi−1 ⊕ ti ⊕ zi). Otherwise, each time Falsifier
has to choose a valuation for a variable yi, all the vertices xj with j ≤ i have
already been played and so, he can play according to S. As S is a winning
strategy, in both case, Falsifier can make a clause unsatisfied and therefore wins
the game.

3.2 Reduction to Client-Waiter games

3.2.1 Blocks in Client-Waiter games

The main tool of several reductions of positional games is pairing strategies.
However, this cannot be applied to Client-Waiter games, since only Waiter has
choices about how to make the pairs. We present blocks-hypergraphs and block-
strategies that will be used similarly to pairing strategies to ensure that client
can claim some vertices. A blocks-hypergraph is depicted in Figure 1. The
idea of blocks was already used in the NP-hardness proof from [CMP11], but

11



we present here a more formal definition of them. Intuitively, Blocks are a
generalisation of Lemma 12, which are blocks of size 2.

Definition 17 (Blocks). Let H = (V,E) be a hypergraph. A block B ⊂ V of
size 2k is a set of vertices such that |B| = 2k for some k ≥ 1, and any set of
k + 1 vertices of B is an edge.

If H can be partitioned into blocks, we say that H is a blocks-hypergraph.

Figure 1: A blocks-hypergraph. The two vertices on the left form a block. The
four on the right a second one. The hyperedge between them is in no block

Lemma 18. Let H = (V,E) be a hypergraph, and let B be a block of H. If
Waiter has a winning strategy in H, she has to offer the vertices of B two by
two.

Proof. Suppose that Waiter has a winning strategy in which she does not offer

all vertices of B two by two. Let k = |B|
2 . The first time she presents a vertex

x ∈ B with a vertex y /∈ B, Client can choose x. Then, each time Waiter offers
at least one vertex in B, Client claims it. In the end, Client will claim at least
k + 1 vertices of B and therefore wins. Thus, if Waiter has a winning strategy,
she has to offer the vertices of B two by two.

Corollary 19. Let H = (V,E) be a blocks-hypergraph. If Waiter has a winning
strategy in H, any pair of vertices she offers belong to a same block of H.

3.2.2 Construction of the hypergraph

We show now the reduction. The main idea of the reduction is that we construct
a blocks-hypergraph, such that each block corresponds to the valuation that will
be given to a variable.

Let (φ,X) be an instance of Paired SAT where X = {(x1, y1), . . . , (xn, yn)},
and φ =

∧
1≤j≤m Cj is a 3-CNF on the variables of X. We build a hypergraph

H = (V,E) as follows.
Let us define the set V of 8n vertices. Let V =

⋃
1≤i≤n Si ∪ Fi, with for

1 ≤ i ≤ n, Si = {s0i , sTi , sFi , s1i } (gadget which encodes Satisfier’s choice for the

variable xi) and Fi = {f0i , fTi , fT
′

i , fFi } (gadget which encodes Falsifier’s choice
for the variable yi).

Now we focus on the construction of the edges.

12



• The block-edges B =
⋃

1≤i≤nBi, which make each Si and each Fi a block:

Bi = {H ⊆ Si | |H| = 3} ∪ {H ⊆ Fi | |H| = 3} .

• The pair-edges P =
⋃

1≤i≤n Pi (see Figure 2):

Pi =
{
{s0i , sTi , f0i , fTi }, {s0i , fFi , fTi , sFi }, {s0i , fFi , sTi , fT

′

i }, {s0i , sFi , f0i , fT
′

i }
}
.

• The clause-edges. Each clause Cj ∈ φ is a set of three literals {ℓ1j , ℓ2j , ℓ3j}.

We define first, for 1 ≤ j ≤ m and k ∈ {1, 2, 3}, the set Hk
j which encodes

the property that the literal ℓkj is instantiated to ⊥.

Hk
j =


{{s0i , sTi }} if ℓkj = xi

{{s0i , sFi }} if ℓkj = ¬xi
{{f0i , fTi }, {f0i , fT

′

i }} if ℓkj = yi

{{fFi }} if ℓkj = ¬yi.

We define now the set of edges:

C =
⋃

Cj∈φ

Hj .

with Hj =
{
h1 ∪ h2 ∪ h3 | ∀k ∈ {1, 2, 3}, hk ∈ Hk

j

}
For example, if Cj = x1 ∨ y1 ∨ ¬y2, we have H1

j = {{s01, sT1 }}, H2
j =

{{f01 , fT1 }, {f01 , fT
′

1 }} and H3
j = {{fF2 }}. Finally, we have two edges to

encode Cj : Hj = {(s01, s
T
1 , f

0
1 , f

T
1 , f

F
2 ), (s01, s

T
1 , f

0
1 , f

T ′

1 , fF2 )}

The gadget for the pair (xi, yi) is depicted in Figure 2.
Intuitively, these edges are constructed in such a way that:

• The block-edges B force Waiter to always propose two vertices in the same
set.

• The pair-edges P force Waiter to give to Client the choice of the value of
yi after she has made her choice for xi.

• The clause-edges C which represent the clauses of φ and make the equiv-
alence between a win of Waiter and a valuation that satisfies φ.

Finally, the reduction associates to the instance (φ,X) of Paired SAT the
hypergraph H = (V,E) with E = B ∪ P ∪ C of Client-Waiter. This reduction
is polynomial as B contains 8n edges, P contains 4n edges, and C contains at
most 8m edges (where m is the number of clause of φ).

We define an underlying assignment of the variables, corresponding to the
moves on the hypergraph as follows:

• If Client claims sTi , xi = ⊥

13



s0i

sTi sFi

s1i

fTi fT
′

i

f0i

fFi

Block Si

Block Fi

Figure 2: Gadget for the vertices in Bi. A dashed set represents a block, i.e. all
hyperedges of size three are present in it.

• If Client claims sFi , xi = ⊤
• If Client claims f0i and one of fTi , fT

′

i , yi = ⊥
• If Client claims fFi , yi = ⊤

We prove in next sections (Lemmas 21 and 21) that Waiter has a winning
strategy on H if and only if Satisfier has a winning strategy on φ. Then, we
can obtain the proof of Proposition 13.

Proof of Proposition 13. First, according to Lemma 14, Client-Waiter games
are in PSPACE. We prove the hardness by a reduction from Paired SAT.

Let (φ,X) be an instance of Paired SAT. Consider the hypergraph H ob-
tained from the reduction provided in Subsection 3.2.2. It has O(|X|) vertices
and O(|X| + |φ|) edges, which is polynomial. According to Lemma 20 and
Lemma 21, Satisfier wins in (φ,X) if and only if Waiter wins in H. Therefore,
determining the winner of a Client-Waiter game is PSPACE-complete.

Moreover, as any edge of H has size at most 6, the problem is even PSPACE-
complete restricted to hypergraphs of rank 6.

3.2.3 Waiter’s winning strategy

In this section, we prove that if Satisfier has a winning strategy in φ for the
Paired SAT-game, then Waiter has a winning strategy in H for the Client-Waiter
game.

Lemma 20. If Satisfier has a winning strategy in φ, then Waiter has a winning
strategy in H.

14



Proof. Let S be a winning strategy for Satisfier, consider a strategy for Waiter
as follows. If S selects an integer 1 ≤ i ≤ n, and puts xi to ⊤ (resp. ⊥),
Waiter plays in the block Bi and selects the pair (s0i , s

T
i ) (resp. (s0i , s

F
i )). Then,

she plays the pair corresponding to the two other vertices in the block Si. To
determine the value of yi, she plays (fFi , f

T
i ) (resp. (fFi , f

T ′

i )) and finally, the
remaining pair of the block Fi. If Client chooses fFi , she considers that yi = ⊤,
otherwise, she considers that yi = ⊥ in S.

As this strategy always propose vertices in blocks, Client cannot win with
the edges in B:

• In the case Waiter offers (s0i , s
T
i ), if Client does not choose s0i , as it is in

all the edges of Pi, Waiter can not lose on Pi. Otherwise, Waiter claims
sTi , and proposes the pairs (fFi , f

T
i ) and (fT

′

i , f0i ) which cover all the
remaining edges of Pi.

• In the other case Waiter offers (s0i , s
F
i ), again if Client chooses s0i , Waiter

cannot lose on Pi. Otherwise, Waiter claims sFi , and proposes the pairs

(fFi , f
T ′

i ) and (fTi , f
0
i ) which covers all the remaining edges of Pi.

We now consider the clause-edges:
Let Cj be a clause of φ. It is sufficient to prove that there exists 1 ≤ k ≤ 3

such that Waiter claims a vertex in Hk
j . As S is a winning strategy for Satisfier

in φ, there exists, at the end of the game, an index 1 ≤ k ≤ 3 such that the
assignment of the literal ℓkj satisfies Cj .

• If ℓkj = xi, by construction of the strategy, Waiter offers the pair (s0i , s
T
i ),

therefore she claims a vertex in Hk
j .

• If ℓkj = ¬xi, by construction of the strategy, Waiter offers the pair (s0i , s
F
i ),

therefore she claims a vertex in Hk
j .

• If ℓkj = yi, by construction of the strategy, Waiter has considered that yi
was put to ⊤ according to the choices of Client, which corresponds to the
case where Client has chosen fFi . Therefore, she has claimed two of the

three vertices {f0i , fTi , fT
′

i }, and so has a vertex in each set of Hk
j .

• If ℓkj = ¬yi, by construction of the strategy, Waiter has considered that yi
was put to ⊥ according to the choice of Client, which corresponds to the
case where Client has not chosen fFi , therefore Waiter has claimed it, and
thus has a vertex in Hk

j .

Finally, Client can not fill up an edge in Hj for any 1 ≤ j ≤ m. So the
described startegy is winning for Waiter.

3.2.4 Client’s winning strategy

We prove now the other direction.
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Lemma 21. If Falsifier has a winning strategy in φ, then Client has a winning
strategy in H.

Proof. Suppose now that Falsifier has a winning strategy S in φ. We provide a
strategy for Client.

First, notice that, as H is a blocks-hypergraph, we can suppose that Waiter
always offer vertices in blocks, according to Corollary 19. Moreover, since each
block has size 4, once the first pair of a block is offered, Client knows that the
second pair will be proposed at some point and can already decide her move
on this second pair. Therefore it is sufficient to have a winning strategy when
Waiter always offers simultaneously the two pairs of a same block.

Let 1 ≤ i ≤ n be an integer, and suppose that Waiter offers two disjoint
pairs of a block Si or Fi.

• If the pairs are in Si, Client can ensure to claim s0i and one of sTi and sFi .
If he has claimed sFi , he considers that Satisfier has instantiated xi to ⊤
and if he has claimed sTi , he considers xi has been instantiated to ⊥.

– Assume Client claims s0i and sTi . Since {s0i , sTi , fTi , f0i } is a edge of

Pi, by Lemma 12 Waiter will offer the pairs {fTi , f0i } and {fT ′

i , fFi }.

Client can follow S by picking f0i and fT
′

i if S instantiates yi to ⊥,
and by picking fTi and fFi otherwise.

– If Client claims s0i and sFi , the result is similar by switching the roles

of fTi and fT
′

i .

• If the pairs are in Fi, as Fi is a block of four vertices, Waiter has only
three possible ways to pair them.

– If the pairs are {f0i , fTi } and {fFi , fT
′

i }, Client will claim either the

two vertices (fTi , f
F
i ), or the two vertices (f0i , f

T ′

i ). In both cases,
Waiter will have to offer the pairs {s0i , sFi } and {sTi , s1i }, and Client
will claim s0i and sFi . This case is already described above, and so

the choice of the claiming pair (fTi , f
F
i ) or (f0i , f

T ′

i ) can be done as
previously in following S.

– If the pairs are {fTi , fT
′

i } and {f0i , fFi }, Client can still claim either

(fTi , f
F
i ), or (f0i , f

T ′

i ) and the case is identical.

– Otherwise the pairs are {fTi , fFi } and {f0i , fT
′

i }. Client will claim

either (fT
′

i , fFi ), or (f0i , f
T
i ). In both cases, Waiter will have to offer

the pairs {s0i , sTi } and {sFi , s1i }, and Client will claim s0i and sTi . This
is again a case described above.

Following this strategy until the end, the underlying valuation of the claimed
vertices is the one obtained by S in φ. By hypothesis, there exists a clause
Cj ∈ φ in which all literals are set to ⊥. Thus Client wins by filling up the edge
Hj .
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3.3 Reduction to 6-uniform hypergraphs

As it is done by Rahman and Watson for Maker-Breaker games [RW21], or
by Gledel and Oijid for Avoider-Enforcer games [GO23], Proposition 13 can be
strengthen by transforming the hypergraph of rank 6 into a k-uniform one (with
k ≥ 6). We achieved this with the following lemma:

Lemma 22. Let H = (V,E) be a hypergraph of rank k. Let m = mine∈E(|e|).
If m < k, there exists a hypergraph H ′ = (V ′, E′) of rank k where mine∈E(|e|) =
m+ 1, having |E′| ≤ |E|+

(
2k−2

k

)
and |V ′| ≤ |V |+ 2(k− 1) such that Client has

a winning strategy in the Client-Waiter game on H if and only if he has one in
H ′.

Proof. Let H = (V,E) be a hypergraph of rank k. We construct the hypergraph
H ′ = (V ′, E′). Let A = {a1, . . . , a2(k−1)} be 2(k − 1) new vertices, and set
V ′ = V ∪ A. We make A a block, i.e. we define the set U = {B ⊂ A | |B| = k}
of edges. Then, we introduce L = {e ∪ {a1} | e ∈ E and |e| = m}. Finally, we
define our edges as follows:

E′ = {e ∈ E | |e| ≥ m+ 1} ∪ L ∪ U.
The construction is depicted in Figure 3.
Client wins in H if and only if he wins in H ′. Indeed, suppose that Client

wins in H, as A is a block, Waiter will have to offer the vertices of A two by two.
Therefore, Client can claim a1 when it will be proposed and apply the strategy
for H on vertices of V . Then, if Client fills up an edge e ∈ E with |e| = m,
he also fills up e ∪ {a1} in H ′, and if she fills up e ∈ E with |e| ≥ m + 1, she
also fills up e in H ′. Reciprocally, if Waiter has a winning strategy in H, she
can offer the same pairs in H ′ and the vertices of A two by two. Then, for any
edge e ∈ E′, if e ∈ E or e \ {a1} ∈ E, Waiter has claimed a vertex of it by her
winning strategy in H. Otherwise, e ∈ U , and she claims one vertex of it since
she claims k − 1 vertices of A.

Hence, we obtain Theorem 2 by combining Proposition 13 and Lemma 22.

Proof. The hypergraph obtained in the proof of Proposition 13 has rank 6.
Therefore, by applying k− 1 times Lemma 22, with m = 1, . . . , k− 1, we obtain
a k-uniform hypergraph having at most 2(k−1)2 more vertices and (k−1)

(
2k−2

k

)
more edges. Thus, when k is fixed, this construction is still polynomial, and the
hypergraph obtained is k-uniform.

4 Rank 3 Client-Waiter equivalent to the prob-
lem of detecting a tadpole

Similarly to Maker-Breaker, the PSPACE-hardness of Client-Waiter games re-
stricted to 6-uniform hypergraphs leads us to consider smaller rank hypergraphs.
In this section, we first provide a linear time algorithm to compute the winner
in rank 2 hypergraphs, then we prove that rank 3 hypergraphs are in ∆P

2 .
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⇒
a1

a2

a3a4

Figure 3: The construction of Lemma 22 with k = 3 and m = 2. The dashed set
is a block and contains the four hyperedges of size 3. The resulting hypergraph
is 3-uniform

4.1 Rank 2 games

Let us start with the easier case of rank 2 hypergraphs. We prove that Client-
Waiter games are tractable restricted to them.

Proposition 23. Let H = (V,E) be a rank 2 hypergraph. The winner of a
Client-Waiter game played on H can be computed in linear time.

Proof. We prove that Client wins on H if and only if there exists an edge of size
1, or if two edges intersect. The result directly follows since these properties
can be checked in linear time.

• If H has an edge {x} of size 1, when Waiter proposes the vertex x, Client
can claim it and win. As the last vertex goes to Client if the number of
vertices if odd, Client can ensure to get x and win.

• If there exist two edges {a, b} and {a, c} which intersect, Client applies
the following strategy:

– Whenever Waiter offers two of these vertices, Client claims one of
them, and he takes a if it is available.

– If Waiter offers one of these vertices with any other, Client claims
the one in {a, b, c}.

– Otherwise, Client takes any vertex.

Following this strategy, Client claims a and at least one vertex from {b, c}.
Therefore, he wins. Once again, even if the number of vertices is odd, this
strategy can be applied.

Reciprocally, if all edges have size 2 and do not intersect (H is in fact a
graph, and even a matching), by always selecting a pair (a, b) such that (a, b) is
an edge, Waiter gets one vertex from each edge and wins.
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4.2 Rank 3 games

We now focus on Client-Waiter games restricted to rank 3 hypergraphs. We
show that testing if a position is winning for Client in a hypergraph H of rank
3 reduces to the problem of searching two structures (the a-snakes and the
ab-tadpoles) in H. We start by defining them.

Definition 24. Let H = (V,E) be a hypergraph and a, b ∈ V .
A sequence of edges of H, P = (e1, . . . , et), is an ab-path if a ∈ e1, b ∈ et,

and for 1 ≤ i ≤ t − 1 the edges ei and ei+1 intersect. The number of edges t
is called the length of P. An a-cycle is an aa-path of length at least two. An
ab-path is said linear if the size of the intersection of two consecutive edges is
always one. An a-cycle of length at least 3 is linear if the aa-path is linear and
if the intersection of the end edges is exactly {a}. We continue to call linear
an a-cycle (e1, e2) of length 2 if |e1 ∩ e2| = 2. An ab-path is said simple if a
appears only in e1, b appears only in et, and if whenever ei and ej intersect,
then |i− j| ≤ 1. Similarly, an a-cycle is simple if whenever ei and ej intersect,
then |i− j| ≤ 1 or {i, j} = {1, t}.

An ab-path is also called an a-path or a path. A cycle is a-cycle for some a
in V .

Definition 25. Let a be a vertex of H. An a-snake is an a-path (e1, . . . , et)
with t ≥ 1 such that for all 1 ≤ i ≤ t− 1, ei has exactly size 3, and et has size
at most 2.

Definition 26. Let H = (V,E) be a hypergraph and a, b ∈ V . If a ̸= b, an
ab-tadpole is a sequence of edges T = (e1, . . . , es, f1, . . . , ft) where:

• a belongs to e1 and no other edge;
• b belongs to es, f1, ft and no other edge;
• (e1, . . . , es) is a 3-uniform simple linear ab-path PT ;
• (f1, . . . , ft) is a 3-uniform simple linear b-cycle CT ;
• b is the only vertex which appears both in PT and CT .

If a = b, an ab-tadpole is just a 3-uniform simple linear a-cycle. When T is an
ab-tadpole, we may simply say T is an a-tadpole, or even just a tadpole.

We consider the problem Tadpole: Given a vertex u in a 3-uniform hyper-
graph H, decide if there is a u-tadpole in H.

We denote by o(H) the outcome of an optimal Client-Waiter game on the
hypergraph H. We will write o(H) = W when Waiter has a winning strategy
on H, and o(H) = C otherwise.

Let u be a vertex of H, we consider the following family u-FH of subhyper-
graphs of H:

T ∈ u-FH ⇐⇒

{
T is a u-snake

or T is a u-tadpole.

Notice that 3-uniform simple linear u-cycles are particular cases of u-tadpoles,
so such subhypergraphs are also in u-FH . When the hypergraph H is known,
we will simply write u-F .
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We notice that Waiter has a winning strategy in H = (V,E) which starts
by offering a pair {u, v} if and only if Waiter has a winning strategy in both
trace hypergraphs H1 = TV \{u,v}(H|V \{u}) and H2 = TV \{u,v}(H|V \{v}). So to
simplify notations, we will write H+v for the trace TV \{v}(H) and H−v for the
induced subhypergraph H|V \{v}. In particular, we can just write H1 = H+v−u

and H2 = H+u−v.

Lemma 27. Let u be a vertex of H hypergraph of rank 3 and let T ∈ u-F .
Then o(T+u) = C.

Proof. We do the proof by induction on the size (number of edges) of T . By
definition, each subhypergraph of u-F contains at least one edge.

Assume that T contains exactly one edge. It means that T is a u-snake of
length 1, i.e., one edge of length at most two. Since T+u is an edge of size at
most one, it is a winning position for Client.

Assume otherwise that T has at least two edges. Three cases can happen.

• T is a u-snake of length at least two. So T is a sequence of the form
({u, v, w}, {v, x, y}, e3, . . . , eℓ) where eℓ has size at most 2 and the other
edges have size 3. Assume o(T+u) = W, then by Lemma 12, there is a
strategy for Waiter which starts with the pair {v, w}. However, if Client
selects v, then ({v, x, y}, e3, . . . , eℓ) is a v-snake of size smaller than T ,
and so the position is winning for Client by induction hypothesis. Hence
o(T ) = C.

• T is a 3-uniform simple linear u-cycle. So T is of the form ({u, v, w}, {v, x, y}, e3, . . . , eℓ)
where ({v, x, y}, e3, . . . , eℓ) is a 3-uniform simple linear path of positive
length and eℓ contains u. The conclusion is similar to the previous case.
Indeed, if in T+u Waiter offers the pair {v, w} and Client picks v, we
obtain a v-snake of size smaller than T .

• T is a u-tadpole which is not a cycle. So T is a sequence of the form
({u, v, w}, {v, x, y}, e3, . . . , eℓ, e′1, . . . , e′t) where eℓ contains a vertex b such
that ({u, v, w}, {v, x, y}, e3, . . . , eℓ) is a 3-uniform simple linear ub-path,
and (e′1, . . . , e

′
t) is a 3-uniform simple linear b-cycle. Assume o(T ) = W,

then by Lemma 12, there is a strategy for Waiter which starts with the pair
{v, w}. However, if Client selects v, then ({v, x, y}, e3, . . . , eℓ, e′1, . . . , e′t)
is a v-tadpole of size smaller than T , and so the position is winning for
Client by induction hypothesis. Hence o(T ) = C.

We consider the set of vertices which are reachable from u by a simple linear
path.

Definition 28. Let H be a hypergraph and u be a vertex of H. Let us denote
by CLH(u) the induced subhypergraph of H+u on the set of the vertices which
are reachable from u by a simple linear path.

Notice that it is possible that v is reachable from u by a linear path and
by a simple path with no simple linear path between u and v (see for example
Figure 4).
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Figure 4: The vertices u and v are connected by the linear path e1e2e3e4e5 and
by the simple path e1e5 but no simple linear path connects them.

Definition 29. Two vertices v and w are called siblings with respect to u if
they are reachable from u by a simple linear path, but any such path to one of
these vertices contain the other one. More formally, v ∼u w if and only if

v ∈ CLH(u) \ CLH−w(u) and w ∈ CLH(u) \ CLH−v (u).

Notice that siblings happen only by pairs in rank 3 hypergraphs.

Proposition 30. Let H be a rank 3 hypergraph. Assume that both pairs (v, w1)
and (v, w2) are siblings with respect to u. Then w1 = w2.

Proof. Let P be a smallest simple linear path from u to v. Since, v is not in
CLH−w1 (u) ∪ CLH−w2 (u), it means that w1 and w2 have to appear in P. If
w1 ̸= w2, then either w1 or w2 appears before the last edge in P. It contradicts
the fact w1 and w2 do not belong to CLH−v (u).

Definition 31. Let u be a vertex of H hypergraph of rank 3. We extend the
hypergraph CLH(u) by adding, for each pair of siblings v ∼u w, a new edge
{v, w}. We call this hypergraph CCLH(u) the completed of CLH(u).

Lemma 32. Let u be a vertex of H hypergraph of rank 3. Then, u-F is non
empty if and only if o(CCLH(u)) = C.

Proof. If T ∈ u-F , then T+u is a subhypergraph of CLH(u) ⊆ CCLH(u). Then
Lemmas 11 and 27 imply that o(CCLH(u)) = C.

We prove that if u-F is empty then o(CCLH(u)) = W by induction on the
number of vertices of CLH(u). If CLH(u)) = ∅, then necessarily o(CCLH(u)) =
W. Otherwise, the number of vertices of CLH(u) is a positive integer. It means
that CCLH(u) contains an edge e, which is the trace of an edge {u} ∪ e of H.
If e has size at most 1, then {u} ∪ e is in u-F . So e = {v, w}.

We have a first fact.

Fact 33. Any vertex of CLH+u−w(v) is already present in CLH(u).
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Proof. Let x be a vertex of CLH+u−w(v). It means there is an almost simple
linear path P in H−w from v to x where only the vertex u can be repeated. If
P contains u, then, starting by its last occurrence, it contains a simple linear
path from u to x. Otherwise, the concatenation of ({u, v, w}) with P is simple
and linear. In both cases, we have that x is a vertex of CLH(u).

Consequently, every vertex of CCLH(u) is neighbour of u or appears in
some CCLH+u−w(v) for such a couple of vertices (v, w). Given such a (v, w), we
show, that there is a winning strategy on CCLH+u−w(v) for Waiter, such that
if this strategy is played on CCLH(u)+v−w, the resulting hypergraph G is a
subhypergraph of CCLH(u)+v−w and so of CCLH(u). The result of the lemma

follows by repeating the argument for each such couple (v, w) (G∩CCL+u−w′

H (v′)

is a subhypergraph of CCL+u−w′

H (v′) and so the strategy can be done on G by
Lemma 11).

So let us fix such couple (v, w). Since v and w are vertices of CLH(u) \
CLH+u−w(v), the number of vertices of CLH+u−w(v) is strictly smaller than the
one of CLH(u).

Fact 34. If u-FH is empty, then v-FH+u−w is also empty.

Proof. Let us show the contrapositive. Let T ∈ v-FH+u−w .

• Assume first that T is reduced to one edge e. If e is an edge of H, then
({u,w, v}, e) is a u-snake of H. Otherwise e is the trace of an edge e′

of H of the form e′ = {v, x, u} where x ̸= w (e′ can not be of length 2
since it would be contained in {u, v, w} but H is a clutter). In particular,
({u,w, v}, {v, x, u}) is a 3-uniform simple linear u-cycle of length 2 and so
a u-tadpole in u-F .

• Assume then that T is a subhypergraph of H. In particular it is a v-
tadpole in H−w which does not contain u. Adding the edge {u, v, w} at
the beginning of T gives a u-tadpole in u-FH .

• Otherwise, T is a v-snake (e1, . . . , ep) such that ep is the trace of an edge
e′ = ep ∪ {u} in H. So adding {u, v, w} in front of T and replacing ep by
e′ gives a u-tadpole (in fact a u-cycle) in u-F .

By the second fact v-FH+u−w is empty and so by induction hypothesis Waiter
has a winning strategy S in CCLH+u−w(v). So the first fact ensures that Waiter
can simulate the strategy S on H ′ = CCLH(u)+v−w = (V ′, E′). After playing
S, we obtain a new hypergraph G (depending on Client’s choices). Let VW and
VC be the sets of vertices claimed respectively by Waiter and Client during this
phase. So G is the trace on V ′ \(VW ∪VC) of the hypergraph H ′

|V ′\VW
. We show

that G is a subhypergraph of H ′ (i.e., there is no edge in H ′
|V ′\VW

intersecting

both VC and V ′ \ (VW ∪ VC)).
Suppose there exists e an edge of H ′

|V ′\VW
such that x ∈ e∩VC and y ∈ e\VC .
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• If e = {x, y} or if e = {x, y, z} with z not in VC , then any simple linear
path from v to x can be extended to a simple linear path from v to y by
adding the edge e, which is impossible.

• Otherwise, e = {x, y, z} with z ∈ VC . It implies that x and z are siblings
with respect to v in H+u−w (otherwise y would also be reachable from v).
Then, there is an edge {x, z} in CCLH+u−w(v). But having x and z in VC
contradicts the fact that S is winning in CCLH+u−w(v).

In particular, Proposition 6 is a direct consequence of Lemma 32.

Corollary 35. Let u, v be vertices of H hypergraph of rank 3 such that u-FH−v

and v-FH−u are empty. If o(H) = W, then Waiter has a winning strategy on
H which starts with the pair {u, v}.

Proof. Indeed, Waiter starts offering the pair {u, v}. Assume that Client picks u
(the other case is symmetric). By hypothesis, u-FH−v is empty. By Lemma 32
Waiter has a winning strategy S in CCLH−v (u). Waiter can play in H+u−v

according to S.

Claim 36. At the end of the strategy S, the obtained hypergraph is a subhyper-
graph of H.

Proof of the claim. Assume that e is an edge of H+u−v where none of its vertices
are claimed by Waiter and where x ∈ e is a vertex claimed by Client. Assume
furthermore that there is y ∈ e which is unclaimed, i.e., it does not belong to
CLH−v (u). Two cases can happen.

1. Assume first that e = {x, y} or e = {x, y, z} where z does not belong to
CLH−v (u) too. Since, x ∈ CLH−v (u), there exists a simple linear path P
from u to x. Adding e at the end of P gives a simple linear path from u
to y which is impossible.

2. So x and z belong to CLH−v (u). If one vertex of {x, z} is reachable from
u in H−v by a linear simple path which does not contain the other vertex,
it would again contradicts the fact that y /∈ CLH−v (u). So x and z are
siblings with respect to u. Again, this is impossible since {x, z} would be
a winning edge claimed by Client. ⋄

The new hypergraph is a subhypergraph of H which is winning for Waiter by
hypothesis. By Lemma 11, the new hypergraph is still winning for Waiter.

Theorem 5 follows from Corollary 35. Indeed, it suffices to test if there is a
couple of vertices (u, v) such that u-FH−v and v-FH−u are empty. If it is not the
case, it is a win for Client by Lemma 32. If such couple is found, Corollary 35
ensures, we lose nothing by starting with this couple, and we can redo the test
for the smaller hypergraph.
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5 Waiter-Client games are FPT on k-uniform hy-
pergraphs

In Oijid’s thesis [Oij24], it is proved that if Waiter can win a rank 2 Waiter-
Client game, she has a winning strategy in at most three moves. This leads to
the following result:

Proposition 37 (Theorem 1.70 from [Oij24]). Let H = (V,E) be a rank 2
hypergraph. The winner of a Waiter-Client game played on H can be computed
in polynomial time.

We here extend this result, by proving that for any k ≥ 1, the winner of
a Waiter-Client game on a rank k hypergraph can be computed in FPT time
parameterized by k. This result is a far-reaching generalization of the following
easy fact: if a rank k hypergraph has 2k disjoint edges, it is Waiter’s win.

Let H = (V,E) be a k-uniform hypergraph. We call ℓ-sunflower a set S
of ℓ ≥ 1 edges of H pairwise intersecting on a fixed set C called center of S.
When the center is empty, the sunflower simply consists of disjoint edges. We
call petal of S every set s \ C where s ∈ S. We authorize multisets in the
definition, in particular, any edge e of H can be considered as an ℓ-sunflower for
every ℓ ≥ 1 (the emptyset being a petal). Such a sunflower with empty petals
is called trivial. The celebrated Sunflower Lemma from Erdős and Rado [ER60]
asserts that every k-uniform hypergraph with at least k!(ℓ− 1)k distinct edges
contains a non trivial ℓ-sunflower. We first show that the number of inclusion-
wise minimal centers is bounded in terms of k and ℓ. This is the first step of
the FPT algorithm for the Waiter-Client game.

We say that an ℓ-sunflower S of H is minimal (with respect to inclusion) if
no ℓ-sunflower of H has a center strictly included in the center of S. Let Y be a
subset of vertices of H, we say that S is outside Y if all petals of S are disjoint
from Y . In particular, every edge e ∈ E forms a trivial ℓ-sunflower outside Y
for every subset Y ⊆ V .

Lemma 38. There exists a function mck for which every k-uniform hypergraph
H has at most mck(ℓ) distinct centers of minimal ℓ-sunflower. Moreover, there
exists a function omck such that whenever Y is a subset of vertices of size y, H
has at most omck(ℓ, y) distinct centers of minimal ℓ-sunflower outside Y .

Proof. We focus on the existence of mck, and postpone the outside case omck
to the end of the proof.

We just have to show that if C1, . . . , Ct are distinct centers of size c of a
family of minimal ℓ-sunflowers S1, . . . , St, then t is bounded in terms of k and
ℓ. Indeed, this implies the first part of the lemma since mck(ℓ) will be at most
k times this bound. Let us fix t′ = 2k(ℓ − 1) + 1. We denote by P j

i the jth

petal of Si. If t is large enough, we can extract a subfamily of t′ sunflowers from
S1, . . . , St which, free to reorder, is assumed to be S1, . . . , St′ with the following
additional properties:

• all (distinct) centers C1, . . . , Ct′ form a sunflower with center X.
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• for all 1 ≤ j ≤ ℓ, all petals P j
1 , . . . , P

j
t′ form a sunflower with center Qj .

Indeed, we just have for this to iterate ℓ+ 1 extractions using the Sunflower
Lemma, one for the centers, and ℓ for the petals. To conclude, we now extract
an ℓ-sunflower S centered at X in H. This is indeed a contradiction to the
minimality of centers Ci. A simple greedy argument suffices for this.

Let us say that Bi := Ci \ X and Dj
i := P j

i \ Qj . With this notation, the

jth edge of the sunflower Si is X ∪Bi ∪Qj ∪Dj
i .

Our first edge e1 of S is the first edge of S1, that is C1∪P 1
1 . Observe that e1

intersects at most k of the (disjoint) subsets Bi and also at most k of the subsets
D2

i . Since t′ > 2k, there is an index a such that e1 is disjoint from Ba ∪ D2
a

(notice that a is automatically distinct from 1 since e1 is disjoint of Ba). We
pick the edge e2 as the second edge of Sa, that is X ∪ Ba ∪ Q2 ∪ D2

a. Since
all edges of S1 intersect on C1, the edge e1 is disjoint from Q2. In particular
e1 ∩ e2 = X. By a similar argument, since t′ > 4k, there is an index b such that
e1∪e2 is disjoint from Bb∪D3

b . We now pick the edge e3 as the third edge of Sb.
Iterating the process leads to an ℓ-sunflower S centered on X, a contradiction.

The proof for sunflowers outside some set Y is similar, but we have to take
care of the fact that the final sunflower S must have its petals outside Y . This is
granted for the subsets Qj and Dj

i , which are petals of the original ℓ-sunflowers
S1, . . . , St outside Y . But the (disjoint) sets Bi can intersect Y . Observe that
this happens at most |Y | times. Hence, choosing t′ = |Y | + 2k(ℓ− 1) + 1 leads
to a contradiction.

We now turn to the key-definition. Given some integer ℓ, we say that a set
K ⊆ V is an ℓ-kernel of H if for every edge e ∈ E, there exists C ⊆ e ∩K and
an ℓ-sunflower S outside K centered at C. Note that we can assume that S is
minimal outside K. Observe that the union of all edges of H is an ℓ-kernel for
every ℓ, and that if H has ℓ disjoint edges, then ∅ is an ℓ-kernel. We now show
that there is always a bounded size kernel.

Theorem 39. There exists a function fk such that every k-uniform hypergraph
H has an ℓ-kernel of size at most fk(ℓ), for every integer ℓ.

Proof. Let X0 = ∅ and ℓ be some integer. We denote by C0 the set of all centers
of minimal ℓ-sunflowers, which is bounded by mck(ℓ) by Lemma 38. We then
set X1 :=

⋃
C0 and start to define our sequence (Xi) as follows: Once Xi is

defined, we denote by Ci the set of all centers of minimal ℓ-sunflowers outside
Xi and set Xi+1 := (

⋃
Ci) ∪ Xi. Our goal is to show that there exists a step

i, bounded by a function on k and ℓ, such that Xi+1 = Xi. Observe that when
this step is reached, Xi is an ℓ-kernel. Indeed, let e ∈ E be an edge. Note that
e by itself is a trivial ℓ-sunflower outside Xi, hence there is a C included in e
which is the center of a minimal ℓ-sunflower outside Xi. By definition of Xi+1,
we have C ⊆ Xi+1 = Xi, and therefore C ⊆ Xi ∩ e, implying that Xi is an
ℓ-kernel.

To reach our conclusion, we need to show that the size ofXi is upper bounded
by some fixed function g(i) (depending on k and ℓ). For this, we just have to
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bound the size of Xi+1 in terms of the size of Xi. This is easily obtained by
Lemma 38, since the total number of minimal ℓ-sunflowers outside Xi is at most
omck(ℓ, |Xi|).

Let us now denote, for every i, the sequence si = (t0(i), t1(i), . . . , tk(i)) where
tc(i) denotes the number of distinct centers C of size c of minimal ℓ-sunflowers
outside Xi. If Xi ̸= Xi+1, we claim that si+1 is lexicographically smaller than
si. To see this, assume that c is minimum such that tc(i) ̸= tc(i+1) and suppose
for contradiction that tc(i) < tc(i+1). This means that there is a set C of size c
which is the center of a minimal ℓ-sunflower outside Xi+1, but not the center of
a minimal ℓ-sunflower outside Xi. In particular, C strictly contains C ′ which is
the center of a minimal ℓ-sunflower outside Xi, but not the center of a minimal
ℓ-sunflower outside Xi+1 (by minimality of C). Since t|C′|(i) = t|C′|(i + 1),
there is a set C ′′ of size |C ′| which is the center of a minimal ℓ-sunflower outside
Xi+1, but not the center of a minimal ℓ-sunflower outside Xi. This process
always find a smaller center which is minimum outside Xi+1 but not Xi. This
is a contradiction.

Note that the previous argument moreover shows that if si = si+1, then the
centers of minimal ℓ-sunflowers outside Xi and outside Xi+1 are the same, thus
Xi = Xi+1.

Therefore, we just have to show that the sequence (si) is ultimately constant
after some fixed number of steps. Let us examine for this how the sequence (si)
evolves from i to i + 1. At each step, the minimum index coordinate tc which
differs in si and si+1 decreases. Meanwhile, the coordinates tc′ where c′ > c
can change in an arbitrary way, but no more than some fixed amount since the
size of Xi+1 is bounded by g(i+ 1) (a crude upper bound for the increase of tc′

would be for instance omck(ℓ, g(i + 1))). In all, this process terminates before
some fixed number of steps depending on k and ℓ.

Kernels are relevant for Waiter-Client games. Indeed, if K is a 2k-kernel of a
k-uniform hypergraph H = (V,E) and TK(H) is the trace hypergraph on vertex
set K and edge set EK = {e ∩K : e ∈ E}, we have the following equivalence:

Lemma 40. H is Waiter win if and only if TK(H) is Waiter win.

Proof. Since TK(H) is obtained by reducing the size of some edges of H (and
deleting isolated vertices), if Waiter has a winning strategy on H, it has one on
TK(H).

Now assume that TK(H) is Waiter win. Waiter can play her strategy on
TK(H) in order to select a set of vertices which contains some e ∩K for e ∈ E.
Since K is a kernel, there exists a 2k-sunflower S outside K with center C ⊆
e ∩K. Now Waiter just has to play outside K to select one of the 2k petals of
S and win the game.

We can now prove Theorem 7, asserting that Waiter-Client is FPT on k-
uniform hypergraphs.
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Proof. Let H be some input k-uniform hypergraph on n vertices and m edges.
We first describe an algorithm running in time O(h(k).(n+m)2) which decides
if H is Waiter-win.

The strategy is to compute a 2k-kernel K as in Theorem 39 which size
only depends on k. Then, by Lemma 40, we just have to (brute force) test in
O(BF (k)) time if HK is a Waiter win. The only point to check is how efficiently
one can compute the sequence (Xi) as in the proof of Theorem 39.

As the argument is similar for getting Xi+1 from Xi, we just describe how to
compute X1, that is the set of centers of minimal 2k-flowers. An easy algorithm
consists in (bottom up) testing all 2km subsets included in some edge of H and
determine which ones are centers of 2k-sunflowers (this single test being done in
linear time, the computation of all centers can be achieved in quadratic time).
Once computed, determining which centers are minimal can be done in linear
time by dynamic programming. In all, each Xi can be computed in quadratic
time, and the number of steps is bounded in terms of k.

To improve the complexity of the above algorithm to linear, we need to show
that, while reading all edges of H, we can only keep constant size information
for each possible center C to determine if it is the center of a 2k-sunflower. For
this, observe that whenever we have read k!(k2k − 1)k edges containing C, then
there is a non trivial k2k-sunflower S centered at C ′ containing C. Now we can
replace all edges in S by C ′ since the existence of a 2k-sunflower centered at C
is left unchanged. We can then compute in linear time all the centers C, and
proceed as previously.

6 Open problems

A reasonable guess is that Waiter-Client game is NP-hard when the set of edges
is explicit, i.e. the size of the input is the sum of the sizes of edges. This is
our first open problem. This would highlight the fact that Fixed Parameter
Tractability is probably the best one can expect, leaving open the order of
magnitude of the complexity in k. Observe that the proof of Theorem 7 shows
in particular that the minimum number of moves in an optimal winning strategy
for Waiter is at most some value os(k). Proposition 37 gives os(2) = 3. Alas,
we have no decent bound to propose for os(3), and a very optimistic analysis of
the bound provided by Theorem 39 already gives an Ackermann type bound for
os(k). We believe that a much more reasonable upper bound can be achieved
for os(k).

The relationship between positional games and hypergraph colorability has
driven a lot of research in Maker-Breaker. This is also the case here: Is it possible
that Waiter’s win in Clien-Waiter implies that the hypergraph is 2-colorable?

27



References

[ADF93] Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows.
Fixed-parameter intractability ii (extended abstract). In P. Enjal-
bert, A. Finkel, and K. W. Wagner, editors, STACS 93, pages 374–
385, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[BB13] Ma lgorzata Bednarska-Bzdȩga. On weight function methods in
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par Duchêne, Eric et Parreau, Aline.

[RS95] Neil Robertson and Paul D Seymour. Graph minors. xiii. the disjoint
paths problem. Journal of combinatorial theory, Series B, 63(1):65–
110, 1995.

[RW20] Md Lutfar Rahman and Thomas Watson. Tractable unordered 3-cnf
games. In Latin American Symposium on Theoretical Informatics,
pages 360–372. Springer, 2020.

[RW21] Md Lutfar Rahman and Thomas Watson. 6-uniform maker-breaker
game is pspace-complete. In Proceedings of the 38th International
Symposium on Theoretical Aspects of Computer Science (STACS),
2021.

[Sch78] Thomas J. Schaefer. On the Complexity of Some Two-Person
Perfect-Information Games. Journal of computer and system Sci-
ences, 16:185–225, 1978.

[Sey80] Paul D Seymour. Disjoint paths in graphs. Discrete mathematics,
29(3):293–309, 1980.

[Shi80] Yossi Shiloach. A polynomial solution to the undirected two paths
problem. Journal of the ACM (JACM), 27(3):445–456, 1980.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring
exponential time (preliminary report). In Proceedings of the fifth
annual ACM symposium on Theory of computing, pages 1–9, 1973.

30


	Introduction
	Preliminaries
	6-uniform Client-Waiter games are PSPACE-complete
	Quantified Boolean Formula and paired SAT
	Reduction to Client-Waiter games
	Blocks in Client-Waiter games
	Construction of the hypergraph
	Waiter's winning strategy
	Client's winning strategy

	Reduction to 6-uniform hypergraphs

	Rank 3 Client-Waiter equivalent to the problem of detecting a tadpole
	Rank 2 games
	Rank 3 games

	Waiter-Client games are FPT on k-uniform hypergraphs
	Open problems

