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Abstract—The determination and validation of the radiation
properties of antennas are necessary tasks in their development
It often calls for the sophisticated and costly evaluation of the
3D radiation pattern. The Reduced-Order Model (ROM) has
been successfully applied in antenna measurements to reduce
the required number of sampling points over the scan surface,
leading to faster field acquisitions. It is constructed by the
Singular Value Decomposition (SVD) of the radiation matrix
computed from the equivalent, or Huygens, surface principle,
using the method of moments. In this article, we propose several
studies aiming for a better and easier use of this technique
as it deeply relies on numerical computations. In particular,
the evaluated number of degrees of freedoms is investigated
relatively to the dimensions of the equivalent surface, the area of
the observation region and the stability with respect to various
parameters. Also, the use of the Randomized Singular Value
Decomposition (RSVD) to speed up the computation time of
the ROM is studied. Validations based on both simulation and
experimental data are shown.

I. INTRODUCTION

The characterization of antennas is an important but time
consuming task to validate the design of complex radiating
structures. The duration of the process can be mitigated by
reducing the number of field samples. The ROM approach
has already been applied successfully to this end [1] [2]. It
constructs a reduced field expansion basis tailored to both
the geometry of the Antenna Under Test (AUT) and the
measurement surface.

The common approaches to expand the sampled radiated
field uses analytical basis, like Spherical Waves (SW) [3],
planar waves [4] or Green’s functions [5]. The size of that
basis is determined by a maximum variation hypothesis, as in
the well known Nyquist sampling theorem. The properties of
these functions have been exploited to reduce the number of
sampling points in various manners, as for example by using
sparse SW reconstruction [6], [7], enabling a sample reduction
of factor 2 as compared to the so-called Nyquist sampling rate.

More recently, methods based on a numerically constructed
basis have arisen. In [8], the authors use simulations of the
same reflector antenna with slightly different configurations
to provide a tailored field expansion basis. The ROM is
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computed by the truncation of the SVD of the radiation matrix
from an equivalent surface enclosing the sources, as shown
and validated on reduced field samples in planar [1] or with
spherical [9] configurations in the near and far field. It provides
a compressed basis by harnessing the geometry of the AUT
and the distribution of the sampling points.

In this paper, the ROM approach for antenna measurements
is further developed to extend its range of application and
to improve its efficiency. The numerical basis is investigated
with a particular focus on its size, which determines the
number of sampling points, and the expected characterization
accuracy. Last but not least, the computation of the ROM
requires to perform a SVD whose computational cost may
be intractable for electrically large antennas. Therefore, an
algorithm allowing for faster, but approximate decomposition,
called the Randomized SVD (RSVD) [10], is employed and
accuracy losses are discussed.

The article is organized as follows. The construction of the
ROM is described in Section II. The studies on the truncation
order of the basis are led in Section III. The use of the RSVD
for faster ROM computations is investigated in Section IV.
Conclusions and perspectives are given in Section V.

II. CONSTRUCTION OF THE REDUCED-ORDER MODEL

A. Surface Equivalence Principle

The electromagnetic field (E,H) radiated by sources
(J,M) delimited by a closed surface ¥ can be rewritten
in terms of equivalent surface electric and magnetic currents
(Jeqs Meg), as explained in [11]. This is known as the equiv-
alent surface, or Huygens’, principle. Different formulations
exist depending on the constraints imposed on the interior part
of X. In this paper, they are left unconstrained to ease the
radiation pattern characterization, as observed in [12]. Here,
the surface ¥ is a 2D rectangle, therefore the observation
region is concentrated on one side, as in [1] and sketched
in Fig. 1.



Measurement sphere S

Fig. 1. Representation of the equivalent planar surface X, the observation
area S, a basis function f, and the observation angle 6.

B. Matrix Formulation

The aforementioned principle is used to translate the prob-
lem of characterizing the radiated field into a linear system
of equations of reduced size as compared to conventional
approaches. A more detailed description is available in [9].

1) Boundary Element Method: The electric field radiated
by the equivalent surface currents (J.q,M,) over ¥ into a
source-free homogeneous region, characterized by its perme-
ability p and permittivity € and employing the Lorenz gauge,
is given by the following integral operator

E(I‘) iju/ g(rar/)']eq(r/)dal
s
1 / . / /
-— div J. d
ng/zgradrg(r,r) iv Jeq(r')do (1)
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where w is the angular frequency and g the scalar free-space
Green function, g(r,r’) = %. The vector r is the
observation point, r’ is the integration variable over ¥ and
a positive time convention is used (e/“*). The notations grad,
and rot, mean that the derivatives are taken with respect to
the observation position r only. The equation (1) is valid for
all observation points r outside the volume V enclosed by X.

The equivalent current distributions (J.q, M.,) are ex-
panded into a set of known basis functions fy,k =1,..., K
defined on a mesh over ¥

K K
Jeg(r) = D ikfi ('), Meg(r') = n) mifi(r'). @)
k=1 k=1

where the complex coefficients j,, and m; determine the
equivalent currents and consequently the radiated field. The
multiplication by the wave impedance 1 improves the condi-
tioning of the problem by equalizing the order of magnitude
of both currents, as advocated in [13].

2) Discretization of the Radiation Operator: The simulta-
neous use of the basis functions fj, and of a quadrature rule
allows for the computation of a matrix A representing the
radiation operator given in (1). In this paper, the meshes are
made of square cells and the considered basis functions fj,

in (2) are the so-called rooftops, represented in Fig. 1. The
Gauss-Legendre quadrature with 4 points is used as numerical
integration method.

3) Linear System for Characterization: Finally, the dis-
cretization of the radiation operator in (1) leads to the fol-

lowing linear system
NAM, | | ]
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where Ejy contains the #-component of E at the observation
positions, A ;4 the f-component of the electric current dis-
tribution in the equation (1) for each basis functions fj. The
other quantities are defined similarly. The radial component,
E,, is not considered since it is not measured. The vectors
j and m gather all the coefficients of the equivalent current
expansions, j,, and my. The system (3) is denoted by y = Ax
thereafter.

C. Compressed Basis by Reduced-Order Model

The radiation matrix A is poorly conditioned since a given
field in y can be described by an infinity of equivalents
currents. However, it can be approximated by a lower rank
matrix Ap, deduced from the 7' lagest singular values and
vectors computed by the SVD of A

Ar =USyVH

3
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where V¥ is the conjugate transpose of V. In particular, U
and V are unitary matrices; their columns form an orthonormal
basis of the radiated fields by the surface ¥ into the sampling
and the associated equivalent current distributions over the
equivalent surface ¥, respectively, as displayed in Fig. 2. The
matrix S is diagonal and contains the singular values, the
coupling between the modes in U and their corresponding
currents in V. The matrix St is simply S where the diagonal
elements after the 7-th entry are set to zero.

Basis of
currents

Singular
values

Basis of
radiated fields

Equivalents

Measured field
currents

Fig. 2. Physical interpretation of the SVD of the radiation operator from a
box-type equivalent surface into an hemisphere.

Since we are only interested in the radiated field, the
expansion into the modes contained in the 7' first columns
of U, written as Uy, is performed, leading to

y =Urv (&)



where v is the new unknown vector of length 7. The residual
of (5) is determined by the truncation order 7', the number
of modes. The order T is determined from the normalized
singular values as

or—1
max
T>0 0y

2 105/20’ (6)

where s is the desired dynamic range, or accuracy level, in
dB, as in [9].

ITI. TRUNCATION ORDER OF THE BASIS

The order of the model is the truncation order 7. It
corresponds to the number of degrees of freedom of the field,
as defined by Bucci in [14], given by

AX)
(A/2)°
where A(X) is the area of the equivalent surface and y an
oversampling factor. An a priori evaluation of T enables a
simple and convenient estimation of the required number of
samples M. It has been shown in [2] that for a closed

equivalent surface, such as a box, a sphere, or a cylinder, and
a full sphere measurement,

M, = x,T ®)

Tp =2x (N

where x; is an oversampling factor. In this study, the equiva-
lent surface is a plane and the observation area S is a part of
the sphere in the far field, as in Fig. 1.

A. Estimations from Geometrical and Physical Parameters

The radiation matrix A and its singular values depend
strongly on the geometry of both the observation region S and
the equivalent surface . The first one is defined by a cone
through a solid angle bounded by max(¢) and the sampling
strategy. The equivalent surface X is a plane of dimensions
(x,y) and placed at z = 0. This surface is meshed by square
cells with edge length A < %

1) Role of the maximum observation angle: The distri-
bution of the singular values is displayed for a plane of
size (z,y) = (12,12)\ and various max(#) as in Fig. 3.
The singular values decrease almost linearly after a given
index & when max () < 90°. Since the equivalent surface is
planar and the field is measured in half a sphere, constraining
one half of the space boils down to determine the field
everywhere. When max(f) > 90° a symmetry is imposed
which improves the conditioning of the problem and induces
a slower decay of the singular value distribution. However, no
degrees of freedom are added, so the criterion (7) is no longer
directly related to the accuracy of the resolution of system (5),
determined by the dynamic range s.

2) Role of the expected dynamic range s: The truncation
index T given by (6) for several square equivalent surfaces
of dimensions (z,y) are shown relatively to the expected
accuracy level s in Fig. 4. It can be observed that the truncation
index T' grows linearly according to A(X) and decreases
almost linearly with respect to s, corresponding to the linear
decrease of the singular values in Fig. 3.
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Fig. 3. Normalized singular value distributions of the radiation matrix from
a square planar surface of side 12\ relatively to the observation region given
by max(6).
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Fig. 4. Truncation order 7" for several equivalent surfaces ¥ and criterion s,
with A = 0.01, A = 0.004 and max(6) = 80°

3) Comparison with the analytical criterion: Finally, the
computed truncation index 7" given by the equation (6) and
the estimation 7z given by the equation (7) are compared in
Fig. 5. Our numerical approach retrieves the results predicted
in the analytical work of Bucci ef al. [14]. It must be added that
the numerical criterion (6) is mostly valid for sufficiently large
antenna. Therefore larger oversampling factors y are required
when the domain is small. Also, the aspect ratio of the planar
domain ¥ has an important role in the estimation of 7' as
shown in Table I, with s = —50 dB. A possible explanation
can be formulated as follows: the theory of antenna arrays
claims that, for a given area, the complexity of the radiation
pattern in a fixed cutting plane plane depends on the unit
elements distribution. On the other hand, the igloo sampling
provides an almost uniform distribution on the observation
region. It implies that some part of the sphere might be
oversampled/undersampled, and therefore induces different
singular value behaviors. This point is under investigation and
will be discussed in future works.

B. Validations with Simulation Data

1) Reconstruction accuracy: To evaluate the quality of the
reconstructions, the comparison between the radiation pattern
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Fig. 5. Comparison of the truncation order 7" given by the numerical (6),
in green and blue, and the analytical (7), in red, criteria for z = 10\ and a
maximal angle max(#) = 80° as a function of the size y.

TABLE 1
TRUNCATION ORDERS T FOR A(X) = 642
(z,y)/A | (1,64) | (2,32) | (4,16) | (8,8)
T 1214 936 796 726

of reference y and the reconstructed one y is achieved point-
wise by the complex error signal defined as

ly — ¥

[ee]
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The equivalent noise level (ENL) is defined as the mean of
that signal error. Both errors are given in dB.

2) Methodology: The radiation matrix A is computed on
a dense igloo sampling for max(f#) = 80°. Two reduced
basis sizes are deduced from the analytical criterion Tz in
(7) and the numerical one based on singular value inspection
(6). A subsampling whose size is determined by (8) is used
to emulate a reduced measurement set. For both basis, the
corresponding linear system (5) is solved. Finally, the field is
reconstructed on the initial dense sampling and comparisons
with simulation data are performed. An oversampling factor
Xs = 1.2 is chosen.

3) Applications: The approach and the observations are
validated through simulations of two antennas in the far
field. The first antenna is an E-plane horn simulated at 3
GHz, with ¥ = (1.5,2.25)), and the second antenna is
a metasurface antenna [15] simulated at 30 GHz (Fig. 6),
with ¥ = (12,12)\. The observation region is given by
max(#) = 80°. Reconstructions for the metasurface antenna
are shown in Fig. 7 and ENL values in Table II.

The results in Table II confirm that the analytical estimation
Tp in (7) is inappropriate for the horn antenna because of its
small size whereas it provides a sufficient a priori estimation
for the metasurface antenna, which is electrically larger. The
truncation order (6) allowed for accurate reconstructions in
all cases. For the sake of completeness, two discretization
steps (square cell width) are considered. For a small spatial
step of discretization A = A/4, the approximation has a

120.00 mm

120.00 mm

Fig. 6. Metasurface type antenna [15] of dimension 12X\ at 30 GHz.

TABLE II
COMPARISON OF THE ANALYTICAL AND NUMERICAL TRUNCATION
ORDERS 7.
Horn antenna
Ts (7) T (6)
T (A=)\/4 70 100
T (A=)\/8) 70 112
ENL (A =)\/4) [dB] | —22.49 | —65.05
ENL (A =)\/8) [dB] | —24.17 | —67.52
Metasurface antenna
T (7) 1 (6)
T (A=) 1382 1296
T (A=)\/8) 1382 1312
ENL (A =)\/4) [dB] | —69.43 | —56.29
ENL (A =)\/8) [dB] | —70.08 | —57.37

good accuracy, which is not improved if a smaller step (e.g.
A = \/8) is chosen.

IV. FAST MODEL COMPUTATION

The ROM approach requires the computation of the SVD
of the radiation operator. Computing the complete SVD is not
only computationally demanding but also not necessary, since
only the 7" dominant modes are kept with the ROM approach.
For that purpose, a partial SVD can be approximated using
the RSVD based on the a priori truncation index T in eq.
).

For m sampling points and n square cells, the radiation
matrix A has 2m lines (2 polarizations per sampling point)
and 2(2n) columns (2 directions per cell for both types of
currents). Consequently, the SVD of A has a complexity of
O(m?*n), which is larger than 4zy/\ for A < \/2. For the
metasurface antenna, the matrix has a size of 8660 x 9024 for
A = )\/4 representing O(6 x 10'!) operations.

A. Randomized Singular Value Decomposition

To compute the SVD of large matrices, an efficient algo-
rithm is the RSVD computation method proposed in [10] with
a complexity of O(T 71t +T?(m+n)), with 7., the cost
of a matrix-vector multiplication, and 7" the truncation order



(6). With a priori estimations m = Mg, and n = T, we have
a complexity of O(T 7 + T2(xs + 1)). After that partial
SVD, another truncation is performed at index 7" given by the
criterion (6).

B. Numerical Performances

The execution time (in seconds) of RSVD and SVD meth-
ods and their corresponding field reconstruction performances
are compared. On the one hand, the whole SVD of A is
computed, and Uy is derived with T" given by the numerical
criterion (6). On the other hand, we use the a priori estimation
of Tp given analytically by eq. (7) to perform the RSVD
algorithm, and the resulting matrices are truncated according
to criterion (6), if 7' < T. Simulations have been performed
on an Intel Xeon CPU E5-2620 v4 2.10GHz x 32 processor,
the SVD algorithm comes from the scipy linalg library, and
the RSVD algorithm from the sklearn library, with Python.
In that simulation, the radiated matrix A is computed over a
dense igloo sampling of size 8660 containing the measurement
sampling of size M, = 2194. We study three different mesh
refinements A. The results are summarized in Table III.

For a coarse discretization, A roughly smaller than \/2, the
RSVD reduces the execution time but introduces significant
errors in the ENL. The interest of the RSVD arises for finer
discretizations. Indeed, when A = \/4, the ENL is the same
for both methods but the computational time is already 4
times smaller for the RSVD approach. The corresponding
reconstructions are shown in the cutting plane in Fig. 7. For
a very small discretization step A = 0.00125 = \/8, the
execution time reduces drastically from 796 to 136s. There is
no significant gain in accuracy. It clearly illustrates the savings
in computational efforts provided by the RSVD.

TABLE III
COMPARISON OF RSVD TIME FOR THE METASURFACE TYPE ANTENNA (IN
SECONDS).
| | RSVD | SVD |
A =0.004 = \/2
Execution time (s) 20 31
ENL (dB) —37.53 | —47.15
A =0.0025 = \/4
Execution time (s) 59 257
ENL (dB) —48.42 | —48.42
A =0.00125 = \/8
Execution time (s) 136 796
ENL (dB) —50.41 | —50.42

C. Experimental validation

The considered antenna is a pillbox antenna issued from a
collaboration between IETR and KTH [16] and measured in
the M2ARS facilities of IETR, represented in Fig. 8. It consists
of a electrically large square with slots operating around 230
GHz whose beam can be scanned in the elevation plane. An
equivalent surface ¥ = (20,20)\ with a discretization step
A between A\/2 and A\/3 is considered. The standard SVD
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Fig. 7. Metasurface antenna at 30 GHz: reconstruction of the field for ¢ = 0°

is performed in 225s and the RSVD in 138s, for an ENL of
—49.78 dB for both methods. Finally, reconstructions of the
main cutting planes for both polarizations are shown in Figs.
9 and 10. Approximation given by classical SVD is better
because of the electrical size of the antenna and its pointing
direction according to the planar domain ¥. That case will be
investigate further to improve the method.

Fig. 8. Pillbox type antenna, by IETR and KTH [16] operating at 230 GHz.

V. CONCLUSION

The use of the Reduced-Order Model approach has been
investigated to speed up antenna measurements and improved
with respect to previously existing works. The number of
modes required for the radiated field expansion has been
related with the planar surface dimensions and the observation
region. It has also been compared to an existing analytical
criterion. A method for a partial Singular Value Decomposition
has been used successfully and has been shown to greatly



o+ ROM w/ RSVD
""" ROM w/ SVD
10— == Ref
) +— Error RSVD
= «— Error SVD
@
°
3
2 ! ('] 74 TN
o ¥ 4 44 F
Z .V\ VA . ‘ " f’ \
t ' \ ﬂ’hj{-t ,. #
} ,? , l g;,
i'h‘ #‘ﬁ*‘ 124 ’
0 60 120 180 240 300 360
o)
(a) Polarization Eg
0 ROM w/ RSVD
- ROM w/ SVD
-10 Ref
Error RSVD
=20

Error SVD  °

Magnitude (dB)
A %
o (=]

-504

—60

180
()

(b) Polarization E,

Fig. 9. Pillbox type antenna at 230 GHz: reconstruction of the field for
0 = 68°

reduce the computationnal cost of the procedure, enabling the
characterization of electrically larger radiating structures..
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