
HAL Id: hal-04643176
https://hal.science/hal-04643176

Preprint submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verificarlo CI: continuous integration for numerical
optimization and debugging

Aurélien Delval, François Coppens, Eric Petit, Roman Iakymchuk, Pablo de
Oliveira Castro

To cite this version:
Aurélien Delval, François Coppens, Eric Petit, Roman Iakymchuk, Pablo de Oliveira Castro. Verifi-
carlo CI: continuous integration for numerical optimization and debugging. 2024. �hal-04643176�

https://hal.science/hal-04643176
https://hal.archives-ouvertes.fr

ParCFD2024
35th International Conference on Parallel Computational Fluid Dynamics

Sep 02-04 2024, Bonn, Germany

VERIFICARLO CI: CONTINUOUS INTEGRATION FOR
NUMERICAL OPTIMIZATION AND DEBUGGING

Aurélien Delval1,2, François Coppens1, Eric Petit3, Roman Iakymchuk4,
Pablo de Oliveira Castro1

1Université Paris-Saclay, UVSQ, LI-PaRAD, France.
Email: {aurelien.delval, francois.coppens, pablo.oliveira}@uvsq.fr

2SiPearl, France. Email: aurelien.delval@sipearl.com
3Intel Corporation, USA. Email: eric.petit@intel.com

4Ume̊a University and Uppsala University, Sweden. Email: riakymch@cs.umu.se

Key words: CI/CD, Verificarlo, numerical accuracy, high-performance computing

Abstract. Floating-point accuracy is an important concern when developing numerical
simulations or other compute-intensive codes. Tracking the introduction of numerical
regression is often delayed until it provokes unexpected bug for the end-user. In this
paper, we introduce Verificarlo CI, a continuous integration workflow for the numerical
optimization and debugging of a code over the course of its development. We demonstrate
applicability of Verificarlo CI on two test-case applications.

1 Introduction

Despite Floating-point (FP) accuracy being a known issue [3], modern tools for soft-
ware development do not provide automated numerical accuracy regression tests. To fill
this need, we propose Verificarlo CI (Continuous Integration). GitHub and GitLab are
popular platforms for developing software, and both have features for CI. CI services are
triggered on specific events, such as merging a pull request. Verificarlo CI is designed to
be integrated with them, but it can also be used with custom workflows.

To facilitate its adoption, Verificarlo CI has been designed to be easy and fast to deploy,
while still being flexible enough to be relevant for most applications. We provide the user
with a simple API to insert FP probes in their tests, execute them with Verificarlo, setup
CI Actions, and finally access and interpret the results.

Finally, we demonstrate Verificarlo CI on two use-cases: exploring reduced mixed-
precision in the Nekbone CFD proxy application; tracking numerical bugs during the
development of a the Quantum Monte Carlo Chemistry Kernel library (QMCkl).

2 Verificarlo CI for numerical correctness

Verificarlo [2] is a tool based on the LLVM compiler framework modifying at compila-
tion each floating point operation with custom operators. After compilation, the program
can be linked against various backends to explore FP related issues and optimizations.
The latest version of Verificarlo fully supports OpenMP and MPI parallel programs.

A. Delval, F. Coppens, E. Petit, R. Iakymchuk, P. de Oliveira Castro

Verificarlo computes the number of significant bits to evaluate the numerical accuracy
of a computation. It captures the number of accurate bits in the FP mantissa against
a chosen reference. Unfortunately, an exact reference value is not known beforehand
for many complex programs or intermediate computations. To overcome this problem,
Verificarlo uses Monte Carlo arithmetic (MCA) [4], a stochastic method that can simulate
numerical errors and estimate the number of significant bits directly: the result of each FP
operation is replaced by a perturbed computation modeling the losses of accuracy. From
a set of MCA samples, it is possible to estimate the significant bits of a computation,
s2 = − log2 |σ/µ|, where σ and µ are the sample’s standard deviation and mean [7].

Verificarlo includes six backends, which are extensively documented in the user manual.
The two most important backends are: the MCA backend, described previously, and the
VPREC backend that emulates the effect of using mixed-precision in a program [1].

Verificarlo CI automates numerical accuracy tests by using a separate Git branch to
store test results. Whenever users make modifications to the main branch, a remote
runner carries out predefined tests and uploads the results to the CI branch. Users can
view their results dynamically using a simple web server.

Verificarlo CI offers a command-line interface that helps configuring the CI pipeline on
a given application and hooks it up to a GitLab or GitHub repository : it automatizes
the initial setup by creating both the CI pipeline and the dedicated results branch. Users
are then free to further customize their pipelines.

Developers use a dedicated C or Fortran API to include probes in their code. Each
probe is associated with a test and a variable name. During testing, the probe measures
the accuracy of a chosen variable. Optionally, an alert can be triggered if the relative
or absolute error exceeds a user-set threshold. In the below C example, the probe is
identified by the "test"/"var" couple, and an absolute error threshold is set to 0.01:

vfc_probe_check(probes , "test", "var", var , 0.01);

In order to be able to run the tests, Verificarlo CI requires a description of the tests and
backends to run. It is specified in a JSON configuration file which supports complex test
setups. The test results are exported to an HDF5 file, a hierarchical format commonly
used in HPC applications. Test results are stored on the dedicated CI branch, allowing
robust archival. The HDF5 files can optionally embed the raw test results. In the default
CI workflow, this raw data is stored as a job artifact and accessible for a limited time,
to enable user defined additional analysis. Finally, Verificarlo CI analyzes the data and
generates dynamic reports organized into different views: temporal, cross-test, or cross-
variable comparisons and accuracy violations.

3 Mixed-precision for Nekbone proxy application

Nek50001 is a high-order solver for Computational Fluid Dynamics (CFD) based on the
Spectral Element Method (SEM) that solves the Navier-Stokes equation for incompressible

1https://nek5000.mcs.anl.gov/ and https://github.com/Nek5000/Nekbone

2

https://nek5000.mcs.anl.gov/
https://github.com/Nek5000/Nekbone

A. Delval, F. Coppens, E. Petit, R. Iakymchuk, P. de Oliveira Castro

-20

-10

0

10

0 10 20 30 40 50
precision (bits)

lo
g
1
0
(r
es
id
u
al
)

10

20

30

40

50
elements

Figure 1: Examining precision needs in Nek-
bone for various numbers of elements: the resid-
ual (L2 norm) in CG.

flow. Nekbone is a proxy application for
Nek5000 that focuses on important computa-
tional and scaling aspects of the entire solver.
We used the VPREC backend to examine preci-
sion appetites in Nekbone using the polynomial
degree of 10 and different number of elements.
The results of tracking the residual of the Con-
jugate Gradient (CG) solver, see Figure 1, sug-
gest a possibility of using as little as 16 bits
of mantissa (the beginning of the plateau) and
still being able to converge, while the original
version relies on FP64 (double precision) with
52 bits of mantissa. We verified this assump-
tion with the MCA backend, confirming such a
possibility for the precision reduction to single
in the CG solver on CPUs. Recently, following
this precision inspection, we modified Nekbone
to support mixed single-double precision and
we were able to reduce the time-to-solution by
34%. Once a suitable precision is found, a Verificarlo CI probe can be inserted in the
code, to automatically monitor the residual error of each subsequent code version.

4 Tracking accuracy in the QMCkl library

The Sherman-Morrison-Woodbury (SMWB) kernel was developed as part of the QM-
Ckl library 2, an open-source library of highly-optimized building blocks for implementing
Quantum Monte Carlo methods in the TREX European Center of Excellence.

Given a matrix A and its inverse A−1, Sherman-Morrison (SM) is a formula to efficiently
compute the inverse after a rank-1 update uvT on A:

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(1)

This formula can be generalized for rank-k updates using the Woodbury (WB) formu-
lation [8]. In WB, the denominator of SM is replaced by the inverse of a small square k×k
matrix. For k = 2 and k = 3, WB is expected to be faster than iterating 2 or 3 times with
SM. QMCkl implements different algorithms to apply SM with a set of updates (uj, vj),
for j = 1, ...,m. The naive approach, SM1, applies these updates in sequence.

Depending on the updates ordering, the SM denominator can be close to zero, meaning
that the matrix A becomes singular. This makes the method numerically unstable. A
refined algorithm using Slagel splitting [6] is called SM2. Below a minimum threshold for
the denominator, the update is split in two, the first half is applied, and the second half
enqueued with remaining updates.

2https://github.com/TREX-CoE/qmckl

3

https://github.com/TREX-CoE/qmckl

A. Delval, F. Coppens, E. Petit, R. Iakymchuk, P. de Oliveira Castro

SM1 SM2 SMWB

0

20

40

dataset 4263

s 2

Figure 2: Significant bits of Frobenius norm, for
all datasets and algorithm combinations, for com-
mit 6f282, grouped by algorithms. SMWB fails
catastrophically in some cases.

7b
9b
1

e3
dc
3
f6
f8
7
6f
28
2
67
f5
3

61
df
6

c3
09
6

4f
0a
a

0

20

40

commits

s 2 SM1
SM2

SMWB

Figure 3: Significant bits of Frobenius norm, for our
different algorithms, over commits for dataset 4263.
SMWB’s accuracy improves after the fix.

To implement the Woodbury formula, blocks of rank-3 and rank-2 updates are built.
If the intermediate matrix update is singular, the corresponding updates are split with
SM2. This method is called SMWB. Since SMWB changes the order of operations, one
must ensure that the numerical accuracy is preserved compared to SM2.

To track the accuracy of these algorithms during development with Verificarlo CI,
we use a large number of datasets from a QMC=Chem [5] use case on Benzene. All
datasets are run with all algorithms in MCA mode. The main development branch in
the repository was instrumented with probes identified with dataset number / algorithm
couples allowing a factored analysis in the dynamic reports. Finally, we set up a CI branch
using the command-line helper to track accuracy on the main development branch, from
which Figures 2 and 3 were generated.

During the development of SMWB, the run inspection report, reproduced in Figure 2,
highlighted some outputs for which SMWB fails with a high error under the MCA backend.
After investigation, we discovered that in the initial implementation of SMWB, delayed
updates were directly applied after each WB step. This reduces the numerical stability
because it increases the probability of producing singular intermediate matrices. It was
fixed in commit 67f53 by moving all the updates to the very end of the update queue as
shown in Figure 3, obtained from the temporal view.

5 Conclusion

Verificarlo CI automates numerical accuracy tests within a continuous integration work-
flow: it grants users the ability to define such tests. It provides an easy way to visualize
results throughout the development process of a code. Better integration of numerical
checks in the CI process saves developers precious time to focus on their area of expertise.

Verificarlo CI has been used in the context of TREX and CEEC EuroHPC JU Centers
of Excellence to detect numerical regressions, pin-point faulty commits, and predict the
effect of mixed-precision. A tutorial demonstrating its use is available at https://gith
ub.com/verificarlo/vfc_ci_tutorial. Furthermore, we believe that using such a
tool as a part of the regular CI/ CD process would help for early stage identification of

4

https://github.com/verificarlo/vfc_ci_tutorial
https://github.com/verificarlo/vfc_ci_tutorial

A. Delval, F. Coppens, E. Petit, R. Iakymchuk, P. de Oliveira Castro

numerical bugs and re-ensuring numerical reliability of codes.
Acknowledgements This work was partially supported from EC by EuroHPC Cen-

ters of Excellence TREX (952165) and CEEC (101093393), as well as by the French
National Agency for Research via the InterFLOP project (ANR-20-CE46-0009).

REFERENCES

[1] Y. Chatelain, E. Petit, P. de Oliveira Castro, G. Lartigue, and D. Defour. Automatic
exploration of reduced floating-point representations in iterative methods. In Euro-
Par, 2019.

[2] C. Denis, P. de Oliveira Castro, and E. Petit. Verificarlo: Checking floating point
accuracy through monte carlo arithmetic. In ARITH, 2016.

[3] D. Goldberg. What every computer scientist should know about floating-point arith-
metic. ACM Comput. Surv., 1991.

[4] D. Stott Parker. Monte carlo arithmetic: exploiting randomness in floating-point
arithmetic. (CSD-970002), 1997.

[5] A. Scemama, M. Caffarel, E. Oseret, and W. Jalby. Qmc=chem: A quantum monte
carlo program for large-scale simulations in chemistry at the petascale level and be-
yond. In VECPAR, 2012.

[6] J. T. Slagel. The sherman morrison iteration. Master’s thesis, Virginia Tech, 2015.

[7] D. Sohier, P. de Oliveira Castro, F. Févotte, B. Lathuilière, E. Petit, and O. Jamond.
Confidence intervals for stochastic arithmetic. ACM TOMS, 47(2), 2021.

[8] M. A. Woodbury. Inverting modified matrices. Princeton University, 1950.

5

	Introduction
	Verificarlo CI for numerical correctness
	Mixed-precision for Nekbone proxy application
	Tracking accuracy in the QMCkl library
	Conclusion

