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Review 

A century of granular packing models 

G. Roquier * 

Université de Poitiers (ENSI Poitiers), CNRS, IC2MP, Poitiers, France   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Granular packing models developed 
over the last 100 years reviewed. 

• Roadmap summarising the shaping of 
models using interdisciplinary 
approaches. 

• Main models rewritten in terms of spe-
cific volumes for easier comparison. 

• Agreement with certain packing mech-
anisms discussed. 

• Five models analyzed on binary and 
ternary mixtures of coarse and fine 
aggregates.  
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A B S T R A C T   

This article provides a review of particle packing models. A summary roadmap shows their disciplinary genesis 
and the multidisciplinary interactions that have shaped them over a 100-year period. Described by field, their 
development has led to models that can be simple or piecewise, linear or non-linear, involving two or three 
geometric interactions, and possibly the packing process and a critical cavity size ratio. To facilitate comparisons, 
around twenty of them are rewritten in terms of specific volume. Their agreement with certain packing mech-
anisms and their extension to multi-sized mixtures are discussed. Finally, five of these non-linear packing models 
are applied to binary mixtures of aggregates. The analysis shows that they perform well, both in terms of esti-
mating minimum specific volumes and the combinations needed to achieve the optimum. Two of them stand out 
slightly from the rest. The comparison is then extended to ternary combinations of aggregates or spheres.   

1. 100 years of history 

The volume occupied by a material composed of several granular 
classes is of interest to a large number of sectors: ceramics, powders, 
chemistry, soils, sediment research, superalloys, construction materials. 
To characterize it, increasingly sophisticated packing models have been 
developed for nearly 100 years, spurred on by the pioneering work of 

Furnas in 1928 [1]. Granular packing models have reached such a de-
gree of maturity that they have contributed to the emergence of new 
composite materials, such as ultra-high performance concretes [2], 
ceramic additive manufacturing [3] or new superalloys [4]. In the 
context of optimization, as is the case for these materials, it is rather the 
packing density that is used. But other disciplines often involve void 
ratio, porosity or specific volume as part of their specific developments. 

Since the need to accurately estimate the volume occupied by a 
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granular material is a problem common to several sectors of activity, 
two major consequences have emerged over time:  

i. These models have points in common, because the problem to be 
solved is not very different from one discipline to another.  

ii. These common points are partially hidden because each sector uses 
its own language and notations to characterize the packing (packing 
density, void ratio, porosity, specific volume) and granular classes. 

The aim of this paper lies in reviewing the mathematical models 
proposed in the literature for granular packing models within a common 
framework using specific volume as a reference, thereby highlighting 
their assumptions, similarities and differences, strengths and weak-
nesses. A summarized roadmap, presented in Fig. 1, illustrates the 
disciplinary genesis of the different models and their multidisciplinary 
interactions. 

Several types of models have been proposed over the decades: basic 
models illustrating certain boundary conditions, linear packing models 
with respect to the solid volume fractions, non-linear packing models, 
piecewise models combining linear and non-linear, models based on a 
statistical or thermodynamic approach and mineralogical-inspired 
models based on elementary reference cells with the existence of cav-
ities. A careful review of all these modeling approaches is proposed in 
this study. 

However, a particular emphasis will be placed on models with 
granular interaction functions as this is the most developed version at 
present. The first models were relatively basic, involving for each 
granular class its volume fraction and a characteristic value of its 
packing. Next, the geometric interactions existing between granular 

classes were highlighted and taken into account as a function of the 
diameter ratio. In the case of binary mixtures, most of these models 
agree to distinguish the case of dominant fine particles and the case of 
dominant coarse particles, which leads to consider two different types of 
interaction functions. Finally, a further step has been taken by inte-
grating the particle shape, the packing process or an additional granular 
interaction in order to improve the estimation of packing density, 
porosity, void ratio or specific volume of the mixture. 

A table will then summarize the general organization of the main 
models presented, including their linearity or non-linearity, their 
compliance with three boundary conditions relating to binary mixtures 
of very contrasting sizes or of the same size, their parameters and their 
extension or non-extension to multi-sized mixtures. 

Finally, based on a reference publication already used twenty years 
ago for a similar purpose, five of the models meeting the above- 
mentioned boundary conditions (some under certain conditions) and 
which have not yet been evaluated on these data will be. 

The remainder of this paper is organized as follows. In section 2, the 
approaches adopted in around fifty different models are described by 
disciplinary field. The assumptions put forward are in fact closely linked 
to the history of research carried out in the same branch. However, 
transversal approaches are also favored by certain authors who thus 
scientifically enrich their work. They will be highlighted in this para-
graph. In sections 3, 4, 5, the equations of the main packing models in 
the case of binary mixtures will be presented, thus making it possible to 
clearly distinguish linear from non-linear models with respect to the 
solid volume fractions. All equations are rewritten in terms of specific 
volume in order to be able to compare them. Section 3 concerns limiting 
cases, section 4 linear packing models, section 5 non-linear packing 

Nomenclature 

List of main symbols 
a Loosening effect coefficient 
B Filling coefficient in Han’s and Wu’s models 
b Wall effect coefficient 
c Wedging effect coefficient in Kwan’s model 
Dr Relative density 
d̄ Effective dominant size in Chang’s model 
d1 Diameter of a coarse particle in a binary mixture 
d2 Diameter of a fine particle in a binary mixture 
e Void ratio 
emin Minimum void ratio 
emax Maximum void ratio 
f(r) Interaction function describing the loosening effect or the 

filling coefficient depending on the model 
g(r) Interaction function describing the wall effect or the 

embedding coefficient depending on the model 
G Parameter in the conic equation of Westman 
K Compaction index describing the packing process 

efficiency in de Larrard’s and Roquier’s models 
kd, ks Factors in Toufar’s and Goltermann’s models 
ℓ Rod length in Farr’s model 
m Number of layers of fine particles required to fill the voids 

of the coarse particles in Han’s and Wu’s models 
m Spacing factor in Dewar’s model 
n Porosity 
P2 Probability for a coarse particle to be in contact with a fine 

particle in Han’s and Wu’s models 
RN Ratio of the numbers of fine and coarse particles in Wu’s 

model 
r Fine/coarse diameter ratio 
r0 Critical ratio of entrance or critical cavity size ratio 

S(V) Configurational entropy in a given total volume 
V Specific volume 
V1 Specific volume of a binary mixture when the coarse 

granular class is dominant 
V2 Specific volume of a binary mixture when the fine granular 

class is dominant 
Х Macroscopic characterization of the state of compaction of 

a system 
y1 Volume fraction of the coarse class by reference of the total 

solid volume 
y2 Volume fraction of the fine class by reference of the total 

solid volume 
z Parameter in Toufar’s and Goltermann’s models 
z0 Parameter in Goltermann’s model 
β12 Quadratic coefficient of the binary synergism in Yu’s 

model 
γ12 Cubic coefficient of the binary synergism in Yu’s model 
η Granular activity coefficient in Chang’s model 
λ12, λ21 Crowding factors in Mooney’s model 
υ0 Initial specific volume in Yu’s model 
υ1 Specific volume of the coarse class 
υ2 Specific volume of the fine class 
v1 Virtual specific volume of the coarse class in de Larrard’s 

and Roquier’s models 
v2 Virtual specific volume of the fine class in de Larrard’s and 

Roquier’s models 
V 1 Virtual specific volume of a binary mixture when the 

coarse class is dominant in de Larrard’s and Roquier’s 
models 

V 2 Virtual specific volume of a binary mixture when the fine 
class is dominant in de Larrard’s and Roquier’s models 

ϕ Packing density  
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models. In section 6, a categorization of these mathematical models is 
provided. In section 7, five of these particle packing models will be 
compared on binary and ternary mixtures of aggregates. In section 8, a 
conclusion will be made. 

2. Development of packing models according to disciplinary 
fields 

2.1. Definitions 

Considering a total volume Vt that contains solid particles of volume 
Vs and void volume Vv such as Vt = Vs + Vv, the packing density ϕ, the 
specific volume V, the void ratio e and the porosity n are given as: 

ϕ =
Vs

Vt
(1)  

V =
Vt

Vs
(2)  

e =
Vv

Vs
(3)  

n =
Vv

Vt
(4) 

In addition, three concepts are simply introduced on a graph repre-
sentative of the specific volume of a binary mixture V as a function of the 
volume fraction of the fine class y2 (Fig. 2): the filling mechanism, the 

Fig. 1. Summarized roadmap showing the disciplinary genesis of the different packing density models and their multidisciplinary interactions over the years.  
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substitution mechanism, the total interaction. They will be explained later. 
Finally, it should be noted that the assumptions of constitution of the 

various models are provided in section 2, but that the most represen-
tative equations are approached only in section 3 for the total interaction 
and the filling and substitution mechanisms, in section 4 for linear packing 
models and in section 5 for non-linear packing models. 

2.2. Mining, ceramic, powder, industrial process 

Modern packing density models owe much of their development to 
the early work of Furnas [1,5], and Westman [6,7], which later led to the 
development of linear and non-linear packing models [8–14], the two 
being sometimes associated like that of Yu [9]. 

Furnas, who was a physical chemist with the US Bureau of Mines in 
Minneapolis, worked out mathematical relations between the specific 
volume and the size composition in systems of broken solids. The first of 
his papers deals mainly with binary mixtures while the second extends 
the proposed theory to multicomponent systems. Furnas observes that a 
mixture of spherical particles passes through a minimum of porosity 
when the composition of the mixture varies: the minimum is all the more 
pronounced as the size contrast is important. In this case, he establishes 
that the small particles fill the cavities of the coarse particles such as the 
total volume of the mixture does not increase. In the case of the domi-
nant fine particles, the principle consists in substituting some of them, 
separated by voids, by a small amount of spread coarse particles con-
sisting of matter. The specific volume curve of the mixture V expressed 
as a function of the volume fraction of one of the two classes then breaks 
down into two straight lines (Fig. 2): one corresponds to the filling 
mechanism (segment AC) when the coarse particles are dominant, the 
other corresponds to the substitution mechanism (segment CB) when the 
small particles are dominant. Note that the line AC, once extended, 
would pass through the point of coordinates (1, 0). Without being aware 
of Furnas’ publication, Westman & Hugill [6] offer an analogous 
interpretation of the observed minimum porosity. They called the 
segment AB (Fig. 2) the specific volume of the constituents before 
mixing: the interaction is said to be total. A few years later, Westman [7] 
proposed a very clever conic equation intended for binary mixtures 
allowing, thanks to a single parameter G, to cover all possible interme-
diate diameter ratios. The latter being defined by r = d2/d1 (d2 ≤ d1),G 
indeed evolves between G = 1 for r = 1 and G→∞ for 1/r→∞. In the 
first case, the specific volume of the mixture is represented by a straight 
line connecting the points representative of the specific volumes of each 
component in mono-dispersed packing state. In the second case, the 
specific volume of the mixture is represented by the straight lines cor-
responding to the substitution mechanism or the filling mechanism. Many 
years later, Yu et al. [8] will propose a general relationship between G 
and r, applicable to both binary mixtures of spherical and non-spherical 

particles. 
Nevertheless, it is another model which will constitute the most 

important contribution of Yu et al. in the field of packings: the “linear- 
mixture packing model” [9], which is a combination of a “linear packing 
model” [10] and a “mixture model” [11]. A critical cavity size ratio r0 
(called the critical ratio of entrance by Yu et al.) allows selection of the 
appropriate model. For spherical particles, r0 given experimentally by 
McGeary [12] has the value of 1/6.5 ≈ 0.154. If r ≤ r0 = 0.154, Yu et al. 
consider that the packing is formed almost exclusively by the filling 
mechanism: the “linear packing model” is then applied. Otherwise, the 
“mixture model” is used. The “linear packing model” [10] assumes that 
the specific volume of the mixture is calculated as a linear function of the 
solid volume fractions of each size class. To each granular class 
considered dominant in turn, corresponds the calculation of a specific 
volume of the mixture, the highest value obtained being the real. The 
“mixture model” [11] includes a term called synergism of the mixture 
and two coefficients which are respectively the quadratic coefficient and 
the cubic coefficient of the binary synergism. This model is inspired by 
an original approach of Marmur [13] who applied to mixtures of solid 
particles a modified and enriched thermodynamic concept of partial 
molar volume. The “mixture model” is therefore a cubic “non-linear 
packing model” with respect to the solid volume fractions. 

In 1995, Zheng et al. [14] will update the Furnas model by 
approaching the calculation of the packing density of a binary mixture 
from a new angle. Furnas indeed considers that the theoretical 
maximum packing density is the sum of two terms. The first one cor-
responds to the packing density obtained when the container is stuffed 
with the coarse class alone. The second one corresponds to the increase 
of packing density obtained with the addition of the fine particles be-
tween the large ones. It is in this second term that Zheng et al propose to 
take into account the influence of the volume fraction of fine particles y2 
and of the size ratio r via two empirical functions. 

2.3. Chemistry, crystallography, mineralogy 

Because the scientific community of chemists, crystallographers and 
mineralogists focused very early on the spatial arrangement of atoms 
with a periodic and ordered character, studies focused on reference 
geometric cells in which it was possible to carry out porosity and co-
ordination calculations. The cells are mostly spherical and sometimes 
tetrahedral. 

Manegold et al. [15] were pioneers to applying classical calculations 
of crystallography to regular stacks of spheres. Now well-known results 
on the porosity and coordination of regular packings are set out there. In 
particular, Manegold et al. highlight a different critical cavity size ratio 
than that used by Yu et al. [9] to delineate the application conditions of 
their “linear packing model” and their “mixture model”. If Yu et al. favor 
r0 = 0.154 indeed, Manegold et al. willingly refer to: r0 = 0.225. The 
explanation is as follows [16]. In the case of the two regular stacks of 
coordination 12, the twelve spheres are not arranged regularly around 
the central sphere. Two kinds of cavities exist: the ones delimited by 
four, the other delimited by six spherical surfaces. In the first case, the 
diameter d2 of the largest sphere that can pass through the restreint 
between 3 spheres of diameter d1 is characterized by r0 = 0.154. In the 
second case, the diameter of the largest sphere that can fit into a tetra-
hedral cavity is characterized by r0 = 0.225. 

Inspired by the work of Manegold, Ben Aim [16] stated in 1970 that 
the realization of a binary mixture whose diameter ratio r is lower than 
0.22 provides the possibility to the small grains to lodge in all the cav-
ities formed by the coarse grains. In this situation, he highlights the 
notion of eutectic by establishing a formal analogy with molecular 
structures and, in particular, with the thermodynamics of binary solu-
tions. When r is between 0.22 and 0.5, Ben Aim estimates that the 
distinction between the “dominant coarse particles” and the “dominant 
fine particles” domains is no longer so clear. However, he believes that 
the curve V vs y2 can be likened to two straight lines with an acceptable 
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Fig. 2. Illustration of the filling mechanism, the substitution mechanism, the total 
interaction on a representative diagram of the specific volume for a bi-
nary mixture. 
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error. In the field of dominant fine grains, Ben Aim then introduced the 
notion of wall effect. He assumes that when a sphere of diameter d1 is 
immersed in a bed of spheres of diameter d2, the disturbance caused by 
the wall of the coarse sphere is limited inside a spherical crown 
comprised between the spheres of diameter d1 and d1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2r

√
: this last 

limit corresponds to the contact points of the first layer of small spheres 
surrounding the coarse one. If d2≪d1, the disturbed zone by the wall 
effect has a thickness close to d2/2. Ben Aim then carries out his 
reasoning by considering that the packing of small spheres presents two 
different porosities: the first one in the spherical crown logically higher 
than the second, the bulk porosity. To summarize, Ben Aim curve V vs y2 
breaks down into two straight lines: the first one corresponds to the 
filling mechanism when the coarse particles are dominant, the second one 
takes into account the wall effect when the small particles are dominant. 

Ben Aim’s thesis also makes the link between porosity and coordi-
nation number. This is indeed a recurring concern among chemists. In 
1978, Dixmier [17] proposed, in a very rich article, a new description of 
random packings, based on the Dirac’s chord method. By applying it to 
packings of equal hard spheres, he establishes a one-to-one relation 
between the packing density and the average coordination number. In 
1980, Dodds [18] took a further step in addressing the issue by 
considering multicomponent random sphere packings. He developed a 
simple “statistical geometric model” by using tetrahedra subunits whose 
vertices correspond to the center of each spherical particle, considered 
in contact with its neighbour. However, Dodds’ gapless packing 
assumption has three undesirable consequences: too high coordination 
number for identical spheres (13.4 instead of 12 in reality), too low 
porosity in a regular tetrahedron (0.2204 while it should not be on 
average <0.2595), a model inapplicable for diameter ratios <0.154 
(restreint between three identical spheres). 

In 1985, Suzuki & Oshima [19] established a theory to determine the 
coordination number which will then lead to a model of porosity. They 
consider four cases of contact for a 2-component mixture consisting of 
coarse particles 1 and fine particles 2 : 1 − 1, 1 − 2, 2 − 1, 2 − 2. Their 
approach first uses a coarse sphere of diameter d1 surrounded by small 
ones of diameter d2. They then determine the coordination number and 
the porosity in a spherical cell whose diameter, d1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2r

√
, corresponds 

to that chosen by Ben Aim to delimit the exterior of his spherical crown. 
The porosity associated with each granular class is then calculated ac-
cording to its fractional area in the granular assembly. By multiplying it 
by the associated volume fraction and by performing the sum for all the 
granular classes, the porosity of the mixture is finally predicted. During 
the different stages, the authors take into account one parameter which 
makes it possible to calibrate the theoretical approach on experimental 
results: this is the coordination number of a monodisperse medium 
created under the same conditions of packing process. It should also be 
noted that where Ben Aim considers a wall effect in a spherical crown, 
Suzuki & Oshima perform their reasoning in a spherical cell without 
referring to any particular geometric interaction. 

Like Suzuki & Oshima [19], Ouchiyama & Tanaka’s considerations 
[20] began with a simplified model for the coordination number. They 
put forward two fundamental assumptions called uniformity assump-
tions. The first one considers that a sphere of diameter d is in contact 
with its neighbours having the average diameter d̄. The second one es-
timates that the part of the volume shared by several hypothetical 
spheres is allocated equally to each sphere, regardless of their size. 
Unfortunately, uniformization makes the overall average porosity too 
high [21]. 

In the manner of Ben Aim [16] on the one hand and Suzuki & Oshima 
[19] on the other, Clusel’s “granocentric model” (2009) [22] examines 
the complexity of the global packing from the point of view of a single 
particle, whose field of vision would be blocked by the first layer of 
particles surrounding it. In his statistical approach, Clusel is mainly 
inspired by the Dodds’ model [18] without making the restrictive 
assumption that all particles are in contact with their neighbours. The 

formation of the assumed homogeneous and isotropic packing is 
described by random processes. A maximum solid angle available 
around the central particle is introduced as an effective parameter to 
describe the geometrical congestion prevailing around it. Its value is not 
simply 4π but depends on the polydispersity and the local packing 
structure. The formation of the neighbour shell is then modeled by the 
first passage of a one-dimensional random walk, where the steps are the 
solid angle subtended by the incoming particles on the central particle. 
As in any effective model, limitations to the applicability of the gran-
ocentric theory have been identified. Especially, the polydispersity 
being the dominant source of disorder in the packing, the model can not 
be applied to highly monodisperse packings or to bidisperse packings in 
the “rattler” regime, where particles smaller than the cavities formed by 
the coarse spheres become mobile inside them. 

2.4. Thermodynamic and statistical approaches 

Very quickly, chemists who were interested in molecular packings 
established the link with the thermodynamics of binary solutions. Some 
researchers have therefore sought to transpose this powerful tool, which 
highlights the equilibrium states of matter, from physical chemistry to 
granular media. This transversal approach has become widespread be-
tween these two sectors and has given rise to clever and promising 
theories with the introduction of new concepts in granular packing such 
as those of excluded volume, eutectic, compactivity, partial particle 
volume, etc. 

Onsager [23] is an illustration of this. The 1968 Nobel Laureate in 
chemistry made a deep contribution to thermodynamics thanks to his 
entropic theory of transition to nematic order for rod-shaped colloids. 
He based his reasoning on two-particle interactions by introducing the 
notion of excluded volume around them. If two rods approach in the 
same plane in a non-parallel way, there is a minimum distance between 
their center of gravity below which the two particles cannot approach 
without changing their mutual orientation. A phase separation must 
then take place above a critical volume fraction. These are Onsager’s 
expressions for excluded volume which will later be applied to the study 
of the packing of binary particles by Brouwers. 

Ben Aim [16] has also made a noteworthy contribution to the use of 
thermodynamics concept in the field of packing. Indeed, he calls eutectic 
the cusp point corresponding to the minimum of porosity according to 
Furnas’ assumptions. He asserts that this phenomenon is analogous to 
molecular eutectics when the small molecules become lodged inside the 
pseudo-crystalline network of the coarse molecules. Ben Aim then un-
dertakes to lay rigorous mathematical foundations by defining a partial 
particle volume by analogy with the notion of partial molar volume of a 
solution. 

Marmur [13] took up this idea. He specifies the physical meaning of 
the partial particle volume: it corresponds to the increase in the total 
volume of the packing when one particle is added among many others. 
This increase in volume is, in general, different of the particle volume 
itself, since the latter either penetrates into a void or moves other par-
ticles to position itself. He also distinguishes between partial particle 
volume which counts individual particles and partial molar volume 
which relates to numbers of moles. The only unknown function in the 
exposed approach being that of the specific volume of the binary 
mixture, Marmur ends up concluding that the conical equation of 
Westman [7] is the most appropriate. 

The seminal work of Edwards & Oakeshott [24] is referenced now as 
it will be the inspiration for two packing models which will be described 
later. Based on statistical mechanics, it concerns the existence of ther-
modynamic states in a granular system. When the latter is subject to 
extensive manipulations such as vibration or shear in a given total vol-
ume V, the microscopic dynamics is controlled by its mechanically 
stable configurations which are then equiprobable according to the 
authors. The logarithm of their number is used to define a configura-
tional entropy S(V). Edwards & Oakeshott then refer to an associated 
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state variable Х , naturally defined by X− 1 =
∂S(V)

∂V
, by analogy with the 

canonical definition of temperature in systems at thermodynamic 
equilibrium. It follows that Х is a macroscopic characterization of the 
state of compaction of the system. Some successes have been recorded 
by Edwards’ theory, especially in the description of properties of a 
number of granular systems. The establishment of a phase diagram for 
jammed matter spanning from the RLP for which Х→∞ to the RCP for 
which Х = 0 testifies to this [25]. However, Edwards’ proposal requires 
several clarifications. First, the equiprobability assumption on which 
this theory is based has already been put in doubt on small systems of 
bidisperse discs [26] and generally fails at higher densities than that 
corresponding to the unjamming point for polydisperse soft repulsive 
discs [27]. Second, the construction of the statistical physics of the 
problem can be strongly affected by the presence of spatial correlations, 
sometimes extended over distances comparable to the size of the system 
[28]. 

Under the umbrella of Edwards’ statistical approach, Danisch et al. 
[29] also addressed the description of the properties of random assem-
blies of polydisperse hard spheres. Their analytical process brings 
together different observations integrating packings from RLP to RCP, 
the coordination number and the friction. The key aspect seems to be the 
dependence of the coordination numbers between the different granular 
species and their concentrations. This result is then incorporated into a 
statistical theory of volume fluctuations which calculates the free vol-
ume of a particle in terms of the coordination number. The volume 
associated with each particle is provided from a Voronoi tessellation. 
The mean Voronoi volume is calculated by involving the inverse cu-
mulative distribution of each species which is separated into two con-
tributions: a term taking into account the contact spheres and a bulk 
term. By working in the limit of a large number of particles and with 
reference to Onsager [23], Danisch et al. include an excluded volume for 
the bulk term and an excluded surface for the contact term. Their theory 
captures well the behavior of bidisperse sphere packings for size ratios r 
between 0.5 and 1. However, for r < 0.5, deviations are found indicating 
the limit of their approach, which is otherwise relatively difficult to 
grasp. 

2.5. Soils 

Whether for the study of soil settlements or to better understand 
certain mechanisms at the origin of disasters such as liquefaction phe-
nomena, the void ratio is a key parameter to be determined, in particular 
because the contracting or dilating character of a fine natural geo-
material is directly linked to its initial state. This is why soil specialists 
have deployed great efforts over the years to estimate this quantity, 
especially in the case of pure sands or sand-fines mixtures. However, in 
the field of soils, the void ratio is not unique and often refers to an in-
terval defined by a maximum and a minimum, corresponding respec-
tively to a loose or dense state. In this respect, the grain deposition 
method plays an important role, as many experts have pointed out. They 
have therefore set up elaborate experimental or simulation protocols, 
such as the controlled pluviation method, to reconstitute granular 
samples in well-defined states with the highest level of homogeneity. 
Unfortunately, packing models are not yet sufficiently refined to incor-
porate the associated controlled parameters such as the pluviation flow 
rate or the free-fall height of the grains. While they often refer to the 
deposition method, model designers have in fact preferred, over the 
course of developments, to focus on moving from linear to non-linear 
packing models to improve estimates. 

A few years after Manegold et al. [15], Graton & Fraser [30] pre-
sented an excellent review of the geometric principles related to the 
packing of spheres by defining different arrangements in strict crystal-
lographic terminology. They also meticulously analyzed the many pore 
structures to study their effects on porosity and permeability. 

Lade et al. [31], for their part, emphasized the importance of relative 

density Dr on the properties and characteristic behavior of granular 
material, Dr involving emin, emax and e, respectively the minimum, the 
maximum and the void ratio of the soil studied. After specifying that emin 
and emax should depend on the shape of the grain-size distribution curve, 
the grain shape and the deposition method, they then demonstrated 
experimentally the important role played by fines content on the 
structure of a sand, affecting its compressibility and its static liquefac-
tion potential. Referring to the idealized packings of Manegold et al. 
[15], they carried out an analytical method for estimating the minimum 
void ratio for spheres of different sizes. Lastly, they took advantage of 
McGeary’s study [12] to underline that a binary mixture is all the more 
interesting when the diameter ratio r remains lower than 0.154. This is 
why the theory they proposed is essentially adapted to mixtures with 
strong size contrast. 

From 2013 and probably well before, Chang will undertake long- 
term work on granular packings and especially sand-silt mixtures. 
Very quickly, he will focus his efforts on the notion of dominant grains 
network (2013,2015) [32,33] and on the concept of dominant size 
approached as a continuous variable (2018) [34]. Finally, he will choose 
to draw inspiration from equilibrium thermodynamics by introducing 
the concepts of “effective particle size” of the packing and “excess free 
volume potential” by considering the “interaction activity” between the 
granular species of a packing (2022) [35]. The path followed by Chang is 
described below. 

In 2013, after showing that the mechanical behavior of sand-silt 
mixtures is mainly governed by the initial void ratio, the way the soil 
was deposited and the level of effective stress applied, Chang & Meidani 
[32] distinguished three cases in the inter-granular soil mix classifica-
tion: fines content <25% where soil matrix is coarse grain dominated, 
fines content higher than 35% where soil matrix is fine grain dominated 
and an intermediate case. Expressed in terms of specific volume in a 
graph V vs y2, their approach leads to a “linear packing model” made up 
of two straight lines located respectively above AC and CB (Fig. 2). 

In 2015, Chang et al. [33] proposed a slight variation on the previous 
theory. The packing model is always linear but the analysis of the two 
equations obtained indicates that they are made up of a common trunk 
constituted of the terms of the equation representing the upper limit 
called the total interaction (AB, Fig. 2). On the coarse grain dominant 
side, a term proportional to a parameter called the filling coefficient is 
then substracted. On the fine grain dominant side, a term proportional to 
a parameter called the embedment coefficient is substracted. The nov-
elty lies mainly in the use of two power functions expressed as a function 
of the size ratio r to describe the granular interaction coefficients. The 
filling exponent p and the embedment exponent s are determined from 
test results. 

In 2018, Chang & Deng [34] reached a new milestone by introducing 
the concept of effective dominant skeleton. In a “linear packing model” 
for binary mixture, the dominant packing skeleton is composed of par-
ticles of size d1 on the side of the dominant coarse grains and particles of 
size d2 on the side of the dominant fine grains. In their “non-linear 
packing model”, Chang & Deng assumed that the mixture is composed of 
a multitude of particle classes ranging in diameter between d2 and d1. 
Only these two extreme sizes correspond to real granular classes. The 
others are fictitious, which means that their solid volume fraction is 
zero, but they nevertheless interact with each other via the granular 
interaction coefficients always in power-law. The dominant size ̄d is then 
effective and can be treated as a continuous variable. d̄ is determined by 
writing that the derivative of the specific volume or the void ratio of the 
mixture is zero with respect to this variable. 

In 2019, Liu et al. [36] developed an alternative “non-linear packing 
model”. In reality, it consists in a piecewise model based on an ideal 
scenario and a general scenario. The ideal scenario corresponds to that 
of Furnas [1]. The general scenario considers that the specific volume is 
a quadratic function of the solid volume fraction of each granular class. 
For a multi-sized mixture, each component successively acts as the 
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dominant size class while the others are non-dominant. To each attempt 
corresponds a specific volume of the mixture, the real value being the 
highest. Like Chang et al. [33,34], the granular interaction coefficients 
are termed as filling and embedment coefficients. They are depicted by a 
power function of the size ratio r but they require the calibration of four 
parameters: A, B, p, s, the last two being respectively the filling and 
embedment exponents. 

Finally, in 2022, Chang & Deng [35] completely redefined their 2018 
packing model [34] on a thermodynamic basis, limiting themselves 
however to binary mixtures. They used the partial particle volume 
introduced by Ben Aim [16] and taken up by Marmur [13], that they 
called volume potential. An “excess free volume potential” is defined for 
each granular species and makes it possible to deduce that of the bi- 
dispersed packing. The granular interaction coefficients and the filling 
and embedment exponents p and s of the 2018 packing model are 
respectively replaced by granular activity coefficients and material ex-
ponents η1 and η2 in the 2022 packing model. The effective particle size d̄ 
is considered as an internal state variable representative of the packing 
configuration. By considering η = η1 = η2, the principle of minimum 
excess free volume potential is used to determine the activity co-
efficients. As for the 2018 packing model, the approach amounts to 
finding the value of d̄ for which the derivative of the specific volume of 
the mixture is zero. 

2.6. Sediment research 

The reasons that led to the need to estimate the porosity of sediments 
have evolved over the years. Historically, it was directly linked to the 
sedimentation engineering which had to convert mass to volume for 
sediment deposits. At the time of energy challenges, it can also have a 
direct relationship with the extraction and/or storage of fluid or gas in 
carbonated sediments. 

As Manegold [15] four years before him, Fraser [37] began by 
studying the ideal packings of spheres. He refers in particular to the 
critical ratio of entrance, which will then be taken up by Yu & Standish 
[9,11], before focusing experimentally in two-component and in multi- 
component systems. Above all, he is one of the first to study the impact 
on porosity of the deposition method with or without compaction. 

In 1963, Colby [38] took another step by proposing a method for 
calculating the porosity of sediment mixture by dividing it into multiple 
granular classes. Expressed in terms of specific volume, it corresponds to 
the upper limit eq. AB (Fig. 2), already described by Westman & Hugill 
[6]. 

In 1979, Clarke [39] developed a reasoning based on porosities 
varying linearly with solid volume fractions and therefore on specific 
volumes varying non-linearly with them. However, a comparison of 
experimental data to estimations shows an underestimation of porosity 
for all sediment mixtures [40]. 

This is why Koltermann & Gorelick [40] developed the “Fractional 
Packing Model”. When the fine volume fraction is lower than the coarse 
class porosity, they consider that a fraction of fine grains are distributed 
in the pore space of the coarse skeleton, while the other fraction dis-
places the coarse particles. Similarly, when the fine volume fraction is 
greater than the coarse class porosity, the mixture porosity value is 
greater than that estimated by the ideal model [39]. In both cases, they 
include a new coefficient called y which translates the relative pro-
portions of coarse and fine packings. y depends of ymin which is the y 
value occuring when the fine volume fraction equals the porosity of the 
coarse component. Values of ymin are provided in a table by the authors 
as a function of a confining pressure. However, the “Fractional Packing 
Model” has three drawbacks. First, it assumes that the fines grains are 
smaller than the cavities of the coarse skeleton, which is too restrictive 
as assumption for most natural sediments. Second, the physical meaning 
of y is not very clearly spelled out. Third, the minimum porosity does not 
occur at ymin as it should, when the latter is very small [41]. 

Kamann et al. [41] proposed an evolution of the previous model 
which led to a piecewise-linear function for the porosity. This one in-
volves the porosities of the coarse and the fine components, the pre- 
mixed fine volume fraction, the fine volume fraction which coincides 
with the porosity of the coarse component and the corresponding min-
imum porosity. However, the “piecewise-linear model” for porosity does 
not perform better than the “Fractional Packing Model” for mixtures 
with low fine fractions [42]. 

Zhang et al. [43], meanwhile, chose to use Clarke’s ideal-mixture 
equations [39] as a starting point. They completed their reasoning by 
defining two additional types of mixtures based on porosity: zero-mixing 
when the two components are packed without mixing with each other 
and partial mixing which is an intermediate between zero-mixing and 
Clarke’s ideal mixing. They then introduced a mixing coefficient λ which 
varies between 0 for zero-mixing and 1 for ideal mixing. The value of λ, 
determined experimentally, is dependent on the mixing condition. In 
terms of porosity, each curve provided by the model is composed of two 
segment lines, one decreasing and one increasing, separated by a point 
representative of the minimum porosity. Zhang’s model was validated 
on binary mixtures composed of a filtration sand as fine component and 
glass beads as coarse component. The size ratio range tested [43] varies 
between r = 0.0035 and r = 0.3, which means that the span between 0.3 
and 1 is not explored. 

Only two years after Clarke [39], Han et al. [44] opened a new 
original path. They developed a “random filling theory”, based on 
configurations in 2D and in 3D. The equation proposed by Han involves 
a filling coefficient B which represents the proportion of the coarse class 
participating in the increase of packing density. B is expressed as a 
function of two terms: P2 raised to the power m+ 1. P2 corresponds to 
the probability for a coarse particle to be in contact with a fine particle in 
3D. m corresponds to the number of layers of fine particles required to 
fill the voids enveloping the coarse particles in 2D. 

In 2017, Wu & Li [42] opted for Han’s “random filling theory” 
framework [44]. They adapted the B term to a 3D configuration, the 
centers of the coarse spheres being located at the vertices of tetrahe-
drons. m is expressed as an affine function of the size ratio r. The filling 
condition is respected when r ≤ 0.225 which is consistent with the 
concept of tetrahedral cavity. According to the authors, the covering 
probability of a coarse particle by finer ones is expressed as the ratio of 
the number of small particles available to the required one. However, 
when the first number is greater than the second, an upper bound Bmax is 
set for B. In this case indeed, the coarse particles begin to be dispersed 
among the small ones. The theory would like B to reach the maximum 
value of 1 but the authors prefer to set a limit located around Bmax =

0.85. Wu & Li [42] applied their model to sand-clay and pebble-sand 
mixtures, each of them presenting very contrasting sizes since r varies 
between 0.007 and 0.06. 

In 2022, Perera et al. [45] proposed to improve the previous model 
by extending it to more general packings, without limiting them to the 
concept of filling. In particular, they consider that the model must 
include rearrangement of all the particles in the mixture and must be 
extended to trimodal mixtures, by focusing on a semi-empirical 
approach. The filling coefficient B and the packing model become 
respectively the packing coefficient and the “random particle packing 
model”. B involves now P2, m, the fraction of coarse particles and two 
coefficients λ and μ, related to the size ratio r. m is determined as the 
same way as [42], but now has a lower bound at 0.5 when r > 0.225. λ 
and μ are respectively expressed as a function of aλ, bλ and aμ, bμ. These 
four coefficients are obtained by regression analysis on different types of 
particles. The analysis of the packing function B as a function of r reveals 
three categories of filling efficiency: r ≤ 0.1 : filling without loosening of 
the coarse skeleton; r > 0.225 : no filling; 0.1 < r ≤ 0.225 : transition 
between filling and no filling. Trimodal mixtures consisting of fine F, 
medium M, coarse C particles are treated using three approaches. The 
first two consider that two classes form clusters before interacting with 
the third: CM-F and FM-C approaches. The third one considers that all 
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classes randomly interact with each other: F-M-C approach. It is found 
that the F-M-C and the FM-C approaches are the better. 

Xie & Hu [46] then extended the “random particle packing model” to 
multi-sized mixtures by developing a multi-stage normalization. The 
basic idea consists in combining multiple particle size groups into binary 
and ternary subsystems. Each of them is then converted into a set of 
representative data including fraction, particle size and porosity. This 
representative information is then used as initial data for the next stage. 
The particle size groups are continuously reduced in number until the 
target porosity is achieved. 

2.7. Suspension viscosity 

The rheological modeling of concentrated suspensions often calls 
upon the concept of relative viscosity in a Newtonian solvent. Its 
mathematical expression takes into account the divergence of the vis-
cosity which occurs when the solid volume concentration reaches the 
most compact packing. A liquid – solid transition occurs and the sus-
pension becomes a packing. This is why specialists in the viscosity of 
concentrated suspensions were very early confronted with the problem 
of estimating the packing density of mixtures with several particle sizes. 
Some models even conceal little treasures. 

It seems the case with Mooney’s viscosity model (1951) [47] which 
contains a packing model that went unnoticed at first sight. Mooney 
introduced crowding factors in a self-consistent model. They are deno-
ted: λ12 and λ21. For spheres of very contrasting sizes d1≫d2, the sus-
pension of the small spheres in the liquid between the coarse ones 
behaves towards these latter as a homogeneous liquid of increasing 
viscosity. Therefore, the coarse elements are not disturbed by the small 
ones. Mooney therefore writes λ12 = 0. By elsewhere, by reasoning in a 
total volume unity, the volume accessible to the fine fraction ϕ2 is equal 
to: 1 − ϕ1, where ϕ1 corresponds to the volume fraction of the coarse 
class. Mooney then deduces: λ21 = 1. He makes no attempt to determine 
the functions λ12(r) and λ21(r) but he proposes a curve shape represen-
tative of λ as a function of the logarithm of the size ratio r. In terms of 
specific volume of a binary mixture, Mooney’s theory provides a curve V 
vs y2 which breaks down into two straight lines : the equations involve 
λ12 and λ21 respectively. 

Sixty years later after Mooney, Faroughi & Huber [48] took up the 
crowding factor concept in order to study interfering size ratios. They 
define power-law interaction functions of particle size ratio r, that they 
called contracting factors. Without necessarily establishing a direct link, 
functions of the same type will be taken over by Chang et al. [33–35]. 

Farr & Groot [49], for their part, developed a theory for the close 
packing density of hard spheres of arbitrary size distribution, based on a 
clever mapping onto a 1D problem. They constructed a normalized 
distribution P1D(ℓ) of rod lengths ℓ from any number-weighted diameter 
distribution P3D(d). P1D(ℓ) dℓ represents the number fraction of rods 
with lengths between ℓ and ℓ+ dℓ. From this distribution, a set of rods 
are placed sequentially on a line, from the longest on the left to the 
shortest on the right. They do not touch each other, but are positioned so 
as to provide a space whose length is at least equal to a fraction f =
0.7654 of the shorter of the two rods concerned. This value has been 
selected because it leads to a packing density of 0.6435 for monodisperse 
spheres. In the sequence, the longest remaining rod is inserted into the 
largest gap available, which may require widening the latter by moving 
all the rods to the right of the space. If more than one placement option is 
available, the position chosen is the leftmost one. In this process, peri-
odic boundary conditions in 1D are maintained. At the end, the rods 
occupy a length fraction ϕRP on the line. The RP estimate is considered to 
be the actual RCP volume fraction of the original spheres in space. This 
model was then tested on extensive simulations for mixtures of elastic 
spheres with hydrodynamic friction. For the distributions studied, the 
authors obtained an excellent agreement between theory and simula-
tion. The fact remains that it is above all an algorithm reserved for 
spherical particles. 

2.8. Building materials 

The construction sector has contributed to the evolution of packing 
density models thanks in particular to the appearance of high- 
performance concrete. Until then, concretes were formulated using 
reference granular curves. But the addition of a supplementary constit-
uent, silica fume, made some of the latter obsolete and was at the origin 
of new studies on granular packings. 

Toufar et al. [50] were pioneers in the field of non-linear packing 
models. They consider the following three limiting cases: r→1, r→0 on 
the side of the dominant coarse grains, r→0 on the side of the dominant 
fine grains, before using a single specific volume equation which is 
suitable for diameter ratios r > 0.22. This formula is that of the total 
interaction reduced by a term taking into account two parameters. The 
first kd takes into account the fact that fine particles are too large to fit 
into the available caverns without loosening the coarse particles: kd 
must therefore depend on the particle size ratio. The second ks is a 
statistical factor taking into account the probability linked to the amount 
of interstitial sites available in the coarse granular skeleton and by 
considering that each fine particle is surrounded by four coarse particles. 

In 1997, Goltermann et al. [51] proposed to make a minor correction 
to the previous model in the ks expression after noting that the packing 
density of a sample composed of coarse particles does not increase suf-
ficiently when a small quantity of fine particles is added. 

Dewar [52], for his part, focused on the formulation of concretes by 
developing a general theory of particle mixtures involving the analysis 
of void ratios. His approach encompasses five main steps. First, he cre-
ates a 3D composite element consisting of a particle and a void associ-
ated with it, both of which are modeled by cubes. Second, by keeping the 
same pattern, he considers that a binary mixture of fine (dimension d2) 
and coarse (dimension d1) particles dilates the structure of the latter, 
each coarse particle being separated from a congener by a distance equal 
to m d2 where m is a spacing factor. Third, he assumes that the evolution 
of the void ratio of a binary mixture as a function of the volume fraction 
of the fine particles y2 can be represented by six points, denoted from A 
to F, connected by a series of straight lines with change of slopes rather 
than with a curve. Fourth, each of the six points is associated with a 
particular value of m. Fifth, besides the available space within the 
dilated structure of the coarse particles, an additional space due to 
particle interference is added and calculated thanks to a factor Z. The 
latter is a function of the size ratio, of the void ratio of the coarser ma-
terial and of two empirical constants, kint and kp, the values of which 
depend upon the change point B, C, D or E under consideration. 

In parallel with Dewar in the United Kingdom, de Larrard in France 
developed a scientific approach of the concrete mixture proportioning 
[53] based on packing density models: firstly the Linear Packing Density 
Model (LPDM) designed in collaboration with Stovall and Buil [54], and 
then the Compressible Packing Model (CPM, 1999) [53]. In 1986, Sto-
vall et al. [54] elaborated a linear model partially contained in the 
Mooney’s viscosity model and based on crowding restrictions. Indeed, 
certain mathematical quantities involving geometric interaction func-
tions fSTO(r) and gSTO(r) in the LPDM can be assimilated to the crowding 
factors λ12(r) and λ21(r) defined by Mooney. But the latter does not give 
them an explicit form while Stovall et al. provide mathematical ex-
pressions for fSTO(r) and gSTO(r), respectively in the large sphere packed 
region and in the small sphere packed region. It can also be noted that 
the linear packing models of Stovall et al. [54] on the one hand and of Yu 
& Standish [10] on the other hand have the same form with different 
interaction functions. However, they have the disadvantage of esti-
mating, near the optimum, too high packing density. This is why, from 
1999, de Larrard [53] chose to consider the latter as a virtual packing 
density, intrinsic to the mixture, accessible only by placing each grain in 
its ideal location, but inaccessible to experimentation which depends on 
the chosen packing process. Thus, the Compressible Packing Model 
(CPM) makes it possible to determine the real packing density of the 
mixture thanks to an implicit equation involving a compaction index K 
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which is a scalar representative of the packing process. By analogy with 
certain viscosity models including that of Mooney, the compaction index 
is obtained by the sum of the partial indices relating to each granular 
class. Each of them involves the virtual packing density of the mixture 
when the considered class is dominant and the real packing density of 
the mixture sought. To each value of K can only correspond one and only 
one real packing density of the mixture. In the CPM, the interaction 
coefficients linked to the wall effect and the loosening effect were cali-
brated by de Larrard on crushed and rounded aggregates. 

In 2012, Fennis [55] developed an extension of the CPM to optimize 
the particle packing of powders in ecological concrete: the Compaction- 
Interaction Packing Model (CIPM). The presence of surface forces indeed 
requires advanced interaction equations including the additional effects 
of agglomerating particles on the wall and loosening effects. Indeed, due 
to agglomeration, the loosening effect increases and the wall effect de-
creases when the small particles start to stick to the coarser particles. 
The new interaction equations involve the size ratio and a maximum 
range of loosening effect and of wall effect. 

As Fennis’ work illustrates, the Dutch concrete school has greatly 
contributed to the evolution of this material towards a more ecological 
design [55]. Since 2006, Brouwers [56–58] gave it considerable impetus 
by carrying out studies on the packing density of polydisperse particles 
[56], of binary crystalline structures, of bimodal randomly placed 
spheres [57], of trimodal spheres and of binary similar particles with 
size ratios from 0.4 to 1 [58]. In [56], he demonstrated that a bimodal 
discrete packing contains important information in regard to the 
discrete and continuous geometric distributions of the power-law type 
with a distribution modulus q. According to Brouwers, in the limit r→1 
implying a continuous distribution, the maximum packing density is 
obtained for q = 0. For discretely sized particles, the distribution 
modulus is positive and varies between 0 < q < 0.37. In [57], his paper 
reveals that the packing density of bimodal random arrangements of 
spheres with a size ratio r↑1 can be described with a similar model as for 
crystalline arrangements. The closed-form equation contains the solid 
volume fraction of one of the two components, the size ratio, and de-
pends on the monosized packing density and on a packing parameter 
with a prescribed, therefore non-adjustable, value. Finally, in [58], 
Brouwers revisited the excluded volume model for spherocylinders and 
cylinders by Onsager [23] and employed it to derive an asymptotically 
expression for two equally shaped (similar) particles of different sizes, i. 
e. with the same length/diameter ratio. From a second order perturba-
tion, he shows that the variation from the monosized packing density 
amounts a quantity which is proportional to the square of the relative 
size difference 1/r − 1. No adjustable parameter has been introduced 
into the equations, the governing parameters being namely all physi-
cally defined. 

If the advent of high-performance concretes, their formulation and 
the influence of the latter on their ecological impact constituted major 
research themes for de Larrard on the one hand, Fennis and Brouwers on 
the other, the same applies for Kwan who undertook a scientific and 
pragmatic approach to the “concrete-system”. Kwan et al. [59,60] 
emphasize that, depending on the objectives, packing density is a key 
concept that must be maximized or optimized. They postulate that the 
overestimation, by linear models, of the packing density near the opti-
mum is due to an additional geometric interaction, the wedging effect, 
which would not be taken into account in the calculations. The wedging 
effect would occur both in the domain of dominant coarse grains and in 
the domain of dominant fine grains. In the first case, fine particles would 
be trapped between coarse particles which would move apart: the latter 
would interact with the finer ones through loosening (coefficient a) and 
wedging (coefficient c) effects. In the second case, the fine particles 
would not be able to completely envelop the coarse particles: the first 
ones would interact with the second ones through wall (coefficient b) 
and wedging (coefficient c) effects. The packing model thus developed is 
a non-linear model called the 3-parameter particle packing model 
(3PPM). The interaction coefficients a, b, c are expressed as a function of 

the size ratio r and are calibrated for spherical particles, uncompacted 
angular particles and compacted angular particles. Where the CPM 
considers that an ideal packing density is not achieved because the 
packing process resulting from an action external to the mixture (vi-
bration, compaction, etc) is not optimal, the 3PPM considers a geometric 
interaction intrinsic to the mixture influenced by the packing process 
only for angular particles. One of the particularities of the 3PPM is 
nevertheless that the granular interactions are less strong in “uncom-
pacted” conditions than in “compacted” conditions, which can generate 
higher packing densities in the first case. The strategy adopted in the 
CPM and in the 3PPM, regarding the number of interaction functions to 
adopt depending on the type of materials encountered, also differs. 
Either the model is adapted for a particular type of material, requires 
few interaction functions but lacks versatility: this is the case of the CPM 
with 2 interaction functions adapted for aggregates. Either the model is 
versatile but requires a large number of interaction functions: this is the 
case of the 3PPM with 9 interaction functions. 

In relation to this situation, another option chosen by Roquier 
[61,62] consists of individualizing the quantification of the granular 
interactions characterized by a and b. The framework of the model, 
called the Theoretical Packing Density Model (TPDM), consists of the 
CPM with theoretical loosening effect and wall effect coefficients. Each 
calculation of a and b is a particular case which takes into account: the 
size ratio r, the shape and surface roughness of the particles via the 
critical cavity size ratio r0 from which the loosening effect occurs, the 
packing density or the specific volume of each granular class and the 
packing process via the compaction index K. Inspired by the work of Ben 
Aim [16], the methodology is based on the study of a sphere belonging 
to the dominated class (the intruding sphere), surrounded by spheres 
belonging to the dominant class. For both types of interactions, a 
spherical reference cell, concentric with the intruding sphere, makes it 
possible to calculate the packing density in the disturbed volume by the 
wall effect or the loosening effect and to deduce a and b. The use of the 
compaction index K ensures that a more efficient packing process results 
in an increase in the packing density of the mixture. The use of the 
critical cavity size ratio r0 guarantees the taking into account of an 
insertion mechanism even if the size ratio does not tend towards 0, for 
both disordered or ordered packings. Thus, by revisiting the CPM and by 
exploiting a modified Ben Aim’s cell, the TPDM offers a generic and 
accurate packing model, applicable to size ratios between 0 and 1, to all 
packing processes (from pouring to perfectly ordered) and all particle 
shapes (from spherical particles to rough and angular particles). It has 
been validated for a wide range of particle varieties (glass beads, steel 
balls, micropowders, soils, rounded sand, crushed aggregates) [61–64], 
for mixtures with a number of granular classes between two and ten, for 
various particle-size distributions (power-laws, truncated power-laws, 
uniform by volume, fractal models) [62], for high performance con-
crete [63] and for asphalt mixtures [64]. Despite a larger number of 
equations making it possible to individualize the estimation of the 
interaction coefficients, the TPDM is based on a scientific corpus and is 
entirely characterized by parameters with physical significance. r0 and K 
are now calibrated and are no longer considered adjustable: the TPDM 
became a closed-form packing model. 

2.9. High technology 

Some materials used for very specific applications like gas turbine 
discs require mechanical properties far superior to those obtained by 
conventional industrial processes. These specifications are a combina-
tion of both high strength and high creep resistance at high temperatures 
[4]. When using powder metallurgy, the sintering ability of the latter is 
closely linked to its packing density, the estimation of which is then 
necessary to optimize the particle size distribution of the powder before 
sintering. 

In this context, Ye et al. [4] developed a second-order packing den-
sity theory based on the Linear Packing Density Model (LPDM) [54]. In 
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the domain of dominant fine grains, the authors consider that the void 
caused by the wedging effect occurs when two coarse grains contact and 
that this probability is proportional to the square of the solid volume 
fraction of coarse particles. Likewise, in the domain of dominant coarse 
grains, they consider that the additional void is proportional to the 
square of the solid volume fraction of fine particles. Finally, the peak 
observed at the junction between the two domains on the curve repre-
senting the packing density as a function of the solid volume fraction of 
one of the two components is attenuated. 

3. Limiting cases: Filling mechanism, substitution mechanism, 
total interaction 

The following equations relate to the specific volume of a binary 
mixture made up of coarse particles 1 and fine particles 2. The volume 
fractions by reference of the total solid volume are respectively noted: y1 
and y2, the specific volumes of granular classes are: υ1 and υ2. 

3.1. Furnas (1928) 

In 1928, Furnas [1] provided the mathematical expressions for the 
filling mechanism (Eq. (5)) and the substitution mechanism (Eq. (6)). They 
are materialized by the segments AC and CB in Fig. 2. 

V1 = υ1 y1 (5)  

V2 = y1 + υ2 y2 (6) 

Both cases are characterized by an absence of interaction. 

3.2. Westman & Hugill (1930), Colby (1963) 

Westman & Hugill [6] connect the points A and B (Fig. 2) by a 
straight line which they describe as the specific volume of the constit-
uents before mixing, without giving its equation. It was not until 1963 
that Colby [38] introduced the following formula: 

V = υ1 y1 + υ2 y2 (7) 

The expression proposed to qualify this equation is that of total 
interaction as opposed to the absence of interaction. 

4. Linear packing models with respect to the solid volume 
fractions 

The linear packing models are presented by chronological order. The 
equations are expressed in terms of specific volume to facilitate com-
parisons. The size ratio is defined by r = d2/d1 (d2 ≤ d1). The critical 
cavity size ratio from which the loosening effect occurs or the critical 
ratio of entrance is noted: r0. 

4.1. Mooney (1951) 

Mooney [47] indirectly developed a packing model to study the 
relative viscosity of a concentrated suspension in a Newtonian solvent. 
When the coarse and the fine particles are respectively dominant, the 
equations are the following: 

V1 = υ1 y1 + λ12(r) y2 (8)  

V2 = λ21(r) y1 + υ2 y2 (9) 

Mooney did not provide equations for λ12(r) and λ21(r) but he spec-
ifies the following limits: lim

r→0
λ12(r) = 0, lim

r→0
λ21(r) = 1, which allow to 

find Eqs. (5) and (6) when they are verified. Moreover, he highlights 
that: lim

r→1
λ12(r) = lim

r→1
λ21(r) = 1/α, α being the packing density of spher-

ical particles in a monodispersed packing state. One therefore find Eq. 
(7) when r→1 only if the condition ν1 = ν2 = 1/α is satisfied. 

4.2. Ben Aim (1970) 

Ben Aim [16] distinguishes two cases: the mixture comprises either 
an excess of coarse spheres (Eq. (10)), either an excess of small spheres 
(Eq. (11)), compared to the eutectic: 

V1 = υ1 y1 (10)  

V2 =

{

1 +
5
16

[
(1 + 2 r)(3/2)

− 1
]}

y1 + υ2 y2 (11) 

For r ≤ 0.2, Ben Aim proposes to replace Eq. (11) with Eq. (12): 

V2 = (1 + 0.9 r) y1 + υ2 y2 (12) 

For r = 0, Eqs. (5) and (6) are respected. On the other hand, Eq. (7) is 
not satisfied for r = 1. It should however be remembered that Ben Aim 
has primarily focused on mixtures with high size contrast. 

4.3. Stovall, de Larrard, Buil (1986) 

In 1986, Stovall et al. [54] proposed the linear packing density model 
of grain mixtures. The established formulas are as follows, respectively 
for the dominant coarse and fine particles: 

V1 = υ1 y1 + υ1 y2 (1 − fSTO(r) ) (13)  

V2 = [υ2 − (υ2 − 1) gSTO(r) ] y1 + υ2 y2 (14) 

The interaction functions in the coarse sphere packed region and in 
the small sphere packed region are respectively: 

fSTO(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 −

[

1 −
(

r0
r

)3
]

{[
(υ1 − 1)

υ1

[
1 − r3

0

]
− 3 r3

0

]

(1 − r) +
(
1 − r3

0

)
} r > r0

1 r ≤ r0

(15)  

gSTO(r) = 1 − r (16)  

where r0 ≈ 0.2 for spheres [54]. It can be noticed that: fSTO(r ≤ r0) =

gSTO(0) = 1 : the filling and substitution mechanisms are then active. 
However, it can be observed that: fSTO(1) = gSTO(1) = 0, which gener-
ates respectively V1 = υ1 in the coarse dominant zone and V2 = υ2 in the 
fine dominant zone: the total interaction condition is only satisfied when 
υ1 = υ2. The notion of dominant granular class is thus particularly 
highlighted in the case r = 1. 

4.4. Yu, Standish (1987) 

Yu & Standish [10] resulted in the following two equations in the 
domains of coarse dominants and fine dominants for their “linear 
packing model”: 

V1 = υ1 y1 +

(

υ1 −
(υ1 − υ12(r) )

y12(r)

)

y2 (17)  

V2 =

(

υ2 −
(υ2 − υ21(r) )

y21(r)

)

y1 + υ2 y2 (18)  

where υ12 = υ21 is the minimum specific volume of components 1 and 2 
and y12 or y21 is the corresponding solid volume fraction: 

y12(r) = 1 −
(1 − r2)
(

2 − 1
υ0

) and y21(r) =
(1 − r2)
(

2 − 1
υ0

) (19)  
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υ12(r) = υ21(r) =

⎧
⎪⎪⎨

⎪⎪⎩

υ0{

1 +

(

1 −
1
υ0

)
(
1 − 2.35 r + 1.35 r2)

} r ≤ 0.741

υ0 r > 0.741
(20) 

υ0 is called the initial specific volume. By considering υ0 = υ1 y1 +

υ2 y2, the filling and substitution mechanisms and the total interaction 
condition are satisfied when υ1 = υ2 and almost respected when υ1 ∕= υ2. 

4.5. Yu, Zou, Standish (1996) 

In 1996, the precedent version has been improved to fit both 
spherical and non-spherical particles [65], respectively for the dominant 
coarse particles and the dominant fine particles: 

V1 = υ1 y1 + υ2 y2 (1 − fYU(r) ) (21)  

V2 = [υ1 − (υ1 − 1) gYU(r) ] y1 + υ2 y2 (22) 

The interaction functions fYU(r) and gYU(r) are respectively, for 
spherical particles only: 

fYU(r) = (1 − r)3.3
+ 2.8 r (1 − r)2.7 (23)  

gYU(r) = (1 − r)2.0
+ 0.4 r (1 − r)3.7 (24) 

Note that the linear model equations (Eqs. (21) and (22)) of Yu et al. 
[65] are not identical to those (Eqs. (13) and (14)) of Stovall et al. [54]. 
Indeed, certain indices related to the specific volumes of the granular 
classes have been modified by Yu et al. Thanks to the chosen interaction 
functions, the filling and substitution mechanisms and the total interaction 
criterion are satisfied. 

4.6. Chang, Wang, Ge (2015) 

The formulas in the dominant coarse and dominant fine domains are 
as follows [33]: 

V1 = υ1 y1 + υ2 y2 (1 − fCHA(r) ) (25)  

V2 = (υ1 − (υ1 − 1) gCHA(r) ) y1 + υ2 y2 (26) 

The filling coefficient fCHA(r) and the embedding coefficient gCHA(r)
are respectively: 

fCHA(r) = (1 − r)p (27)  

gCHA(r) = (1 − r)s (28) 

It can be noticed that:  

- fCHA(0) = gCHA(0) = 1 and fCHA(1) = gCHA(1) = 0 which allows to 
check Eqs. (5) to (7) respectively.  

- Eqs. (25) and (26) are similar to Eqs. (21) and (22) respectively. Only 
the interaction functions change.  

- The filling coefficient and the embedding coefficient are a power 
function of size ratio r.  

- Two parameters, p and s, are required to estimate the specific volume 
of the binary mixture.  

- p evolves between 1.20 for steel shots and 3.86 for a sand-silt mixture 
called Ottawa mixture [33].  

- s evolves between 1.40 for concrete mixes and 2.89 for Ottawa 
mixture [33]. 

5. Non-linear packing models with respect to the solid volume 
fractions 

The non-linear packing models are also presented by chronological 
order and are written in terms of specific volume to facilitate 

comparisons. 

5.1. Westman (1936) 

Westman [7] developed the following very clever conic equation: 
{
(V − υ1 y1)

υ2

}2

+ 2 G
{
(V − υ1 y1)

υ2

} {
(V − y1 − υ2 y2)

(υ1 − 1)

}

+

{
(V − y1 − υ2 y2)

(υ1 − 1)

}2

= 1
(29) 

For G→∞, Eq. (29) takes the form of Eq. (30). It means that V = υ1 y1 

in the coarse dominant zone and V = y1 + υ2 y2 in the fine dominant 
zone. The filling and substitution mechanisms are thus satisfied. 
{
(V − υ1 y1)

υ2

} {
(V − y1 − υ2 y2)

(υ1 − 1)

}

= 0 (30) 

For G = 1, Eq. (29) resolves itself into the linear equation of Eq. (31). 
The solution is: V = υ1 y1 + υ2 y2 which means that the total interaction 
occurs. 

(V − υ1 y1)

υ2
+
(V − y1 − υ2 y2)

(υ1 − 1)
= 1 (31) 

Yu et al. [8] proposed, for the coefficient G, a general relation whis is 
given by the following equation: 

G− 1 =

{

1.355 r1.566 r ≤ 0.824
1 r > 0.824 (32) 

Marmur [13], for his part, recommends the following formula: 

G− 1 = 0.585 r (33) 

The condition G = 1 for r = 1 is therefore not satisfied with Eq. (33). 

5.2. Toufar, Born, Klose (1976) 

In 1976, the model of Toufar et al. [50] estimates the specific volume 
of a binary mixture as: 

V = υ1 y1 + υ2 y2 − y1 (υ1 − 1) kd ks (34) 

Eq. (34) is therefore established from Eq. (7), representative of the 
total interaction, with an additional term taking into account two factors. 
kd determines the influence of the size ratio while ks is a statistical factor 
involving the volume fractions and the specific volumes of each granular 
class: 

kd =
(1 − r)
(1 + r)

(35)  

ks = 1 −
(1 + 4 z)
(1 + z)4 with z =

(
y2

y1

)
υ2

(υ1 − 1)
(36) 

When r = 1, Eq. (7) holds. When r = 0, Eqs. (5) and (6) are not 
satisfied. In the latter case however, as the volume fraction of fine par-
ticles increases, ks gradually tends towards 1 and since kd = 1, the 
substitution mechanism becomes active. 

5.3. Han, Wang, Xiang (1981) 

The main equation (Eq. (37)) proposed by Han et al. [44] is relatively 
close to that established by Toufar et al. (Eq. (34)): 

V = υ1 y1 + υ2 y2 − y1 (υ1 − 1) B (37) 

However, where Toufar et al. [50] separate the effect of the size ratio 
and the effect of the volume fractions of each component into two terms 
(kd and ks) multiplied by each other, Han et al. [44] associate them more 
intimately. The corresponding equation (Eq. (38)) is based on geometric 
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considerations in 3D concerning the probability P2 for one coarse par-
ticle to come into contact with a fine particle and in 2D for the number of 
layers m (Eq. (39)) of fine particles needed to fill the void corresponding 
to each coarse particle (Fig. 2 in [42]). 

B = Pm+1
2 =

(
y2

y1 r + y2

)m+1

(38)  

m =
1
2
+

(
2 −

̅̅̅
3

√ )
(1 + r)

2 r
̅̅̅
3

√ (39) 

When B = 0, Eq. (37) reduces to Eq. (7). This case corresponds to 
y2 = 0, that is to say a monodisperse packing. However, in the case of a 
binary mixture consisting of two granular classes with the same diam-
eter (r = 1) but with different specific volumes (υ1 ∕= υ2), the condition 
of total interaction is not satisfied, that is to say that the representative 
points are not located on the segment AB (Fig. 2). 

When B = 1, Eq. (37) reduces to Eq. (6). However, this case is 
incompatible with Eq. (38). Indeed, r→0 generates P2→1 and m→∞, 
which leads to an indeterminate form for B. Concretely, the substitution 
mechanism tends to be active only if the volume fraction of fine particles 
y2 becomes relatively large when r→0. 

When B = z =

(
y2
y1

)
υ2

(υ1 − 1), Eq. (37) reduces to Eq. (5). The filling 

mechanism is active only in this particular case when r→0 and therefore 
cannot be generalized to other volume fractions of the components. It 
should also be noted that for very strong size contrasts and for low 
volume fractions of fine particles, the specific volume of the mixture 
may be less than the lower limit provided by Eq. (5). 

5.4. Yu, Standish (1988) 

As mentioned above, the “mixture model” [11] proposed by Yu & 
Standish is a cubic “non-linear packing model” with respect to the solid 
volume fractions: 

V = υ1 y1 + υ2 y2 + β12 y1 y2 + γ12 y1 y2 (y1 − y2) (40) 

β12 and γ12 are respectively the quadratic and the cubic coefficients of 
the binary synergism. υ0 is the initial specific volume.  

Compliance with the principle of total interaction is easily verifiable 
insofar as, for r ≥ 0.741, β12 = γ12 = 0 which makes it possible to find 
Eq. (7) from Eq. (40). As Yu & Standish reserve this model for mixtures 
with a size ratio r >0.154, verification of the insertion and substitution 
mechanisms is not of great interest. 

5.5. Yu, Standish (1991), Yu, Zou, Standish (1996) 

The “linear-mixture packing model” proposed by Yu et al. [9,65] 
combines their “linear packing model” and their cubic non-linear 
“mixture model”. When binary mixtures of particles are considered, 
two packing effects are observed according to Yu et al. (1991) [9]: the 
filling mechanism and the occupation mechanism. The critical cavity size 
ratio r0 = 0.154 may be used to specify whether a binary mixture of 
particles is mainly characterized by filling (unmixing effect) or by 
occupation (mixing effect). 

If r ≤ r0 = 0.154, the packing is predominantly characterized by 
filling and Yu et al. (1996) [65] call upon their “linear packing model”: 

V = max{υ1 y1 + υ2 y2 (1 − fYU(r) ) ; [υ1 − (υ1 − 1) gYU(r) ] y1 + υ2 y2 }

(43) 

The interaction functions are given by Eqs. (23) and (24). 
If r > r0 = 0.154, the packing is predominantly characterized by 

occupation and Yu et al. call upon their “mixture model” (1991) [9]: 

V = υ0 + β12 y1 y2 + γ12 y1 y2 (y1 − y2) (44)  

where υ0 is a weighted-average initial specific volume of the two com-
ponents, provided by: 

υ0 = υ1 y1 + υ2 y2 (45) 

The combination of Eqs. (44) and (45) gives Eq. (40). β12 and γ12 are 
provided by Eqs. (41) and (42). Thanks to the “linear-mixture packing 
model”, the filling mechanism (Eq. (5)), the substitution mechanism (Eq. 
(6)) and the total interaction (Eq. (7)) criteria are all met. However, there 
may be a slight discontinuity in the estimated packing densities when 
switching from the linear model to the non-linear model for the size ratio 
of 0.154. 

5.6. Zheng, Carlson, Reed (1995) 

Inspired by the ideal particle packing of Furnas, Zheng et al. (1995) 
[14] developed the following empirical equation: 

V = υ1

{

1 +
(υ1 − 1)

υ2
(e y2 ln(y2) )

1.25 υ1 exp( − 4 r)
}− 1

(46)  

where e is the base of a natural logarithm. The volume fractions of the 
constituents and the size ratio are therefore taken into account sepa-
rately. The authors mainly use their model for r between 0.1 and 0.5 and 
did not attach particular importance to mixtures with high size contrast 
or single size for which Eqs. (5) to (7) are not satisfied. In particular, 
when r→0, the representative points of the specific volume of the 
mixture can be located below the segments AC and CB (Fig. 2). 

β12 =

{
0 r ≥ 0.741

10.288 × 10− 1.4566
υ0
{
− 1.0002 + 0.1126 r + 5.8455 r2 − 7.9488 r3 + 3.1222 r4} r < 0.741

(41)   

γ12 =

⎧
⎪⎨

⎪⎩

0 r ≥ 0.741
{

− 1.3092 +
15.039

υ0
−

37.453
υ2

0
+

40.869
υ3

0
−

17.110
υ4

0

}
{
− 1.0029 + 0.3589 r + 10.97 r2 − 22.197 r3 + 12.434 r4} r < 0.741

(42)   
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5.7. Goltermann, Johansen, Palbøl (1997) 

In 1997, Goltermann et al. [51] proposed to make a minor correction 
to the Toufar’s model [50] by introducing a modification to the ks 
expression (Eq. (36)): 

ks =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z
z0

k0 z < z0

1 −
(1 + 4 z)
(1 + z)4 z ≥ z0

(47)  

where z0 = 0.4753 and k0 = 0.3881. If z < z0, Eq. (34) becomes linear: 

V = υ1 y1 + υ2 y2

(

1 − kd
k0

z0

)

(48) 

The conclusions stated for the Toufar’s model remain valid for the 
Goltermann’s model. 

5.8. De Larrard (1999) 

The Compressible Packing Model (CPM) of de Larrard [53] is an 
evolution of the Stovall’s model (1986) [54]. Designed for granular 
mixtures, the CPM takes into account the packing process via a 
compaction index K. When the packing process is perfect, i.e. when each 
particle is positioned at its ideal location, the packing is said to be vir-
tual, K→∞, and the specific volume of the binary mixture (V 1 in the 
field of dominant coarse grains and V 2 in the field of dominant fine 
grains) is calculated using the improved Stovall’s model so that the total 
interaction condition is satisfied. 

V 1 = v1 y1 + v2 y2 aLAR(r) (49)  

V 2 = [1+(v1 − 1) bLAR(r) ] y1 + v2 y2 (50)  

where v1 and v2 are the virtual specific volumes of the coarse and fine 
granular classes respectively. Calibrated on crushed and rounded ag-
gregates, the loosening effect coefficient aLAR(r) and the wall effect co-
efficient bLAR(r) are respectively: 

aLAR(r) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (1 − r)1.02
√

(51)  

bLAR(r) = 1 − (1 − r)1.5 (52) 

The compaction index K has a mathematical structure analogous to 
certain viscosity models, such as that of Mooney [47]. Its function is 
determined by writing the self-consistency of the system which leads to: 

K = K1 +K2 =
v1 y1

(V − V 1)
+

v2 y2

(V − V 2)
(53) 

The specific volume of the binary mixture V is determined implicitly 
by Eq. (53) in which V 1 and V 2 are calculated by Eqs. (49) and (50). K 
is a strictly decreasing function of V which means there is a unique value 
of V that satisfies Eq. (53) for any positive value of K. For a single grain 
size, K becomes: 

K =
1

(
υ
v
− 1
) (54)  

where v and υ are respectively the virtual and the real specific volumes of 
the single granular class. The virtual specific volumes of the coarse and 

fine granular classes, respectively v1 and v2 (Eq. (55)), are obtained from 
their real specific volume, respectively υ1 and υ2, from Eq. (54): 

v1 = υ1
K

(1 + K)
; v2 = υ2

K
(1 + K)

(55) 

The calibration procedures carried out with the CPM on different 
packing processes have led to the values of K given in Table 1. 

It can be noticed that:  

- a(r) = 1 − f(r) and b(r) = 1 − g(r), f(r) and g(r) being interaction 
functions used in other models. De Larrard indeed prefers to consider 
that the interaction coefficients are equal to 0 in the absence of 
interaction (d1≫d2) and to 1 in the case of a total interaction (d1 =

d2).  
- The structure of Eq. (49) is therefore identical to that of Eq. (21) (Yu 

et al. [65]) and Eq. (25) (Chang et al. [33]). Likewise, the structure of 
Eq. (50) is identical to that of Eqs. (22) and (26).  

- The formulas aLAR(r) and bLAR(r) have been chosen so as to verify the 
continuity of the functions representative of the specific volume of 
the binary mixture and of their derivatives when d1 = d2 = d, which 

implies: aLAR(1) = bLAR(1) = 1 and 
⃒
⃒
⃒
⃒
∂aLAR(r)

∂r

⃒
⃒
⃒
⃒
r=1

=

⃒
⃒
⃒
⃒
∂bLAR(r)

∂r

⃒
⃒
⃒
⃒
r=1

= 0. 

The total interaction (Eq. (7)) criterion is satisfied. The filling mecha-
nism (Eq. (5)) and the substitution mechanism (Eq. (6)) are active when 
K→∞. 

5.9. Kwan, Chan, Wong (2013), Kwan, Wong, Fung (2015) 

The 3-parameter particle packing model (3PPM), developed by Kwan 
et al. [59,60], incorporates an additional geometric interaction. Besides 
the loosening effect coefficient a and the wall effect coefficient b, the 
authors indeed consider the wedging effect coefficient c both when 
coarse particles (Eq. (56)) and fine particles (Eq. (57)) are dominant. 

V1 = υ1 y1 + υ2 y2 {1 − (1 − aKWA(r) ) (1 − cKWA(r) (3.8y2 − 1) ) } (56)  

V2 = υ1 y1

{

1 − (1 − bKWA(r) )
(

υ1 − 1
υ1

)

(1 − cKWA(r) (2.6y1 − 1) )
}

+ υ2 y2

(57) 

The mathematical expressions of the three interaction parameters 
are as follows: 

aKWA(r) = 1 − (1 − r)a0 − a1 r (1 − r)a2 (58)  

bKWA(r) = 1 − (1 − r)b0 − b1 r (1 − r)b2 − b3 (1 − r)b4 (59)  

cKWA(r) = c0 tanh(c1 r) (60) 

The coefficients involved in the formulas of the interaction param-
eters are provided in Table 2. 

It can be noticed that: 

Table 1 
Summary of K values in the CPM.  

Packing 
Process 

Pouring Sticking 
with a rod 

Vibration Vibration +
compression 

Perfect 

K 4.1 4.5 4.75 9 ∞  

Table 2 
Summary of coefficients involved in the 3PPM.  

Subscript 0 1 2 3 4 

Spheres 
a 3.3 2.6 3.6   
b 1.9 2 6 0 0 
c 0.322 11.9    

Uncompacted angular particles 
a 5 1.9 3.1   
b 1.9 2.1 10.5 0.2 7.6 
c 0.335 26.9    

Compacted angular particles 
a 7.1 1.9 3.1   
b 2.2 0.7 9.3 0.2 10.6 
c 0.335 26.9     
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- The packing process is taken into account directly in the interaction 
functions since Kwan et al. distinguish compacted and uncompacted 
angular particles in Table 2.  

- aKWA(1) = bKWA(1) = 1 which allows to verify Eq. (7): the total 
interaction condition is respected.  

- aKWA(0) = cKWA(0) = 0 which allows to verify Eq. (5): the filling 
mechanism is satisfied.  

- For spheres, bKWA(0) = cKWA(0) = 0 which allows to verify Eq. (6): 
the substitution mechanism is satisfied.  

- For angular particles, bKWA(0) = − 0.2 which does not allow to verify 
Eq. (6): the substitution mechanism is not satisfied. On the side of the 
dominant fine grains, the curve representing the specific volume of 
the binary mixture for strong size contrasts is even below the straight 
line provided by Eq. (6). 

5.10. Roquier (2016,2024) 

The Theoretical Packing Density Model (TPDM) [61,62] takes root in 
the Compressible Packing Model (CPM) [53] with innovative wall effect 
and loosening effect coefficients bROQ(r) (Table 3) and aROQ(r) (Table 4). 

V 1 = v1 y1 + v2 y2 aROQ(r) (61)  

V 2 = [1+(v1 − 1) bROQ(r) ] y1 + v2 y2 (62)  

v1 = υ1
K

(1 + K)
; v2 = υ2

K
(1 + K)

(63)  

K = K1 +K2 =
v1 y1

(V − V 1)
+

v2 y2

(V − V 2)
(64) 

υ1 and v1 are respectively the real and the virtual specific volumes of 
the coarse class, υ2 and v2 the real and the virtual specific volumes of the 
fine class, V 1 and V 2 the virtual specific volumes of the binary mixture 
in the field of dominant coarse grains and in the field of dominant fine 
grains, K the compaction index. The real specific volume of the binary 
mixture V is calculated thanks to the implicit Eq. (64). 

The calibration procedures carried out with the TPDM on different 
packing processes have led to the values of K given in Table 5. The 
interaction coefficients aROQ(r) and bROQ(r) are determined in such a way 
as to involve not only the size ratio r but also the real specific volumes of 
each granular class, the compaction index K and the possibility, or not, 
for a fine particle to fit into an available cavity without modifying the 
skeleton of coarse particles thanks to the critical cavity size ratio r0. 

It can be noticed that:  

- The wall effect (Table 3) is considered located in a spherical crown 
delimited by two spheres of diameters d1 and dhyp. The latter (Eq. 
(66)) is calculated for respecting the boundary condition bROQ(1) =

1.  
- The loosening effect occurs if r > r0 (Table 4). In this case, the 

structure of coarse particles decompacts around each small particle. 
The “local” volume of coarse particles is calculated in the spherical 
cell of diameter dhyp (Eq. (72)) to ensure the continuity between the 
two geometric interactions.  

- To calculate the packing density of the particles of the dominant class 
in the areas disturbed by the wall effect or the loosening effect, the 
coordination number is determined by Eqs. (67) and (73) which 
reveal two remarkable results: Ndense

12 (1) = Ndense
21 (1) = 12 and 

Ndense
21 (0.225) ≈ 4. The first one corresponds to the kissing number 

problem in 3D, the second one to the critical cavity size ratio r0 =

0.225 highlighted by Manegold [15].  
- By analogy to molecular eutectics for which small molecules come to 

lodge inside the pseudo-crystalline lattice of coarse molecules [16], a 
reasoning at the “eutectic” point [61,62] allows to find Eqs. (76) to 
(78) (Table 4). The transition from the local scale of the spherical cell 
to the global scale of the packing is carried out using Eq. (76). The Ta
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latter makes it possible to verify that the optimal volume fraction of 
each granular class tends towards 0.5 when r→1. The reasoning is 
carried out by considering v1 = v2. In this case, aROQ(1) = 1 and the 
total interaction criterion is satisfied.  

- aROQ(r ≤ r0) = bROQ(0) = 0. For K→∞, the filling mechanism is active 
when r ≤ r0 and the substitution mechanism occurs when r = 0.  

- The theory developed for spheres adapts to other types of particles 
thanks to r0 (Table 6). r0 evolves between 0.0001 for rough and 
angular particles to 0.20 for frictionless spherical particles.  

- Finally, only two parameters having a physical meaning, K (Table 5) 
and r0 (Table 6), are necessary to estimate the specific volume of the 
binary mixture. 

5.11. Wu, Li (2017) 

Wu & Li [42] refer to the work of Han et al. [44]: 

V = υ1 y1 + υ2 y2 − y1 (υ1 − 1) B (79) 

However, where Han et al. used a simplified 2D packing arrange-
ment, Wu & Li favor a 3D packing of spheres. Concerning the filling 
coefficient B, they consider the ratio between the number of fine parti-
cles available and the number of fine particles needeed to cover the 
surface of coarse particles in a sediment mixture: 

B = min
(

P2 RN

m Nc
,Bmax

)

(80)  

where P2 is the probability for a coarse particle to contact with a fine 
particle, RN the ratio of the numbers of fine and coarse particles in the 
sediment mixture, m the number of layers of fine particles needed to 
completely fill the voids of the coarse particles and m Nc the number of 

fine particles needed to completely fill the void of a coarse particle: 

m =
1
r

( ̅̅̅
6

√

4
−

1
2

)

≈
0.1124

r
(81)  

Nc =
2 π

(
arcsin

(
r

1+r

))2 ̅̅̅
3

√ (82)  

P2 RN =

(
y1

y2
r3
(

1 + r
y1

y2

))− 1

(83) 

The authors introduced the limit Bmax (Eq. (80)) for B because they 
consider that an ideal filling is difficult to achieve. Bmax is equal to 0.85 
for pebble-sand mixtures, 0.65 − 0.80 for sand-clay mixtures under 
confining hydrostatic pressures and 0.65 for sand-clay mixtures in 

Table 6 
Critical cavity size ratio r0 for different types of particles in the TPDM.  

Critical cavity 
size ratio 

Spherical particles Crushed particles 

Frictionless With 
friction 

Rough or 
angular 

Rough and 
angular 

r0 0.20 0.17 0.03 0.0001  

Table 7 
Parameters p and s for different materials according to Chang & Deng [34].   

Sand-silt Steel shots Steel ball bearings Glass beads Washed sand 

p 3.50 2.00 2.40 3.08 2.53 
s 1.60 1.70 1.50 1.88 2.30  

Table 4 
Determination of the loosening effect coefficient aROQ.  
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(76)   

ϕ*
2(r) = β2 + ((1 − β2) (1 − bROQ(r) ) − 1 ) β′

1(r) ≥ 0 
(77) 

aROQ(r) =

(
β1 − β′

1(r)
)

ϕ*
2(r)

if r ≥ r0 and aROQ(r) = 0 if r ≤ r0  (78)  

Table 5 
Summary of K values in the TPDM.  

Packing 
Process 

Pouring Tapping Vibration or compaction Vibration + compression Optimized filling + vibration + compression Crystalline 
structures 

Perfect 

K 3 to 4 4.75 5.6 9 15 100 ∞  
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rivers. It can be noticed that Eqs. (5) to (7) are not satisfied. 

5.12. Chang, Deng (2018) 

Chang & Deng [34] developed the concept of effective dominant 
skeleton to refine the estimates near the optimum. According to them, 
the dominant packing skeleton is represented by an effective dominant 
size. The latter, instead of being a constant as d1 or d2 in a classical linear 
packing model, is an effective value d̄ between d1 and d2 and can be 
expressed as a continuous variable with respect to y2. The authors model 
a binary mixture as a special case of n-component mixtures in which 
(n − 2) fictitious particles interact with others while their solid volume 
fraction is equal to zero. The equations are the following: 

V(d̄) = y1 [υ1 − (υ1 − 1) fCHA(d̄) ] + υ2 y2 (1 − gCHA(d̄) ) (84) 

The filling-mechanism coefficient fCHA(d̄) and the embedment- 
mechanism coefficient gCHA(d̄) are respectively: 

fCHA(d̄) =
(

1 −
d̄
d1

)p

(85)  

gCHA(d̄) =
(

1 −
d2

d̄

)s

(86) 

According to the authors, given a mixing process, many possible 
packing states of the dominant packing skeleton exist. The one most 
likely to occur corresponds to the condition of minimum required work 
which corresponds to: 

∂V(d̄)
∂d̄

= 0⟹ −
p
d1

(

1 −
d̄
d1

)p− 1

(υ1 − 1) y1 + s
d2

d̄2

(

1 −
d2

d̄

)s− 1

υ2 y2 = 0

(87) 

d̄ is calculated thanks to Eq. (87). The specific volume of the binary 
mixture is then deduced from Eqs. (84) to (86). The calibration pro-
cedures carried out by Chang & Deng [34] on different materials have 
led to the values of p and s given in Table 7. 

It can be noticed that: 

- The filling mechanism, the substitution mechanism and the total inter-
action criteria are satisfied.  

- Only two parameters p and s (Table 7) are necessary to estimate the 
specific volume of the binary mixture.  

- Eq. (87) can admit several solutions of d̄ in the interval [d1; d2]. 

5.13. Liu, Ye, Zhang, Wang, Chen, Cui (2019) 

Liu et al. [36] perfected a piecewise model intended primarily for 
soils. Two scenarios were elaborated by the authors: an ideal scenario 
and a general scenario. In the first one, they distinguish the coarse 
dominant field and the fine dominant field where the filling mechanism 
and the substitution mechanism are respectively active. In the second one, 
the void volume of the mixture is expressed as a quadratic non-linear 
model with respect to y1 and y2. 

If r ≤ r0, the equations of the ideal scenario are Eqs. (5) and (6). 
If r > r0, the equations of the general scenario are the following: 

V1 =1+(υ1 − 1) y1
2 − (υ2 − 1) y2

2 + 2 (υ2 − 1) y2 − fLIU(r) [2 υ2 − 1
− (υ2 − 1) y2 ] y2

(88)  

V2 = 1+(υ2 − 1) y2
2 − (υ1 − 1) y1

2+2 (υ1 − 1) y1 − gLIU(r) (υ1 − 1) [2 − y1] y1

(89) 

The filling coefficient fLIU(r) and the embedment coefficient gLIU(r)
are respectively: 

fLIU(r) = A (1 − r)p (90)  

gLIU(r) = B (1 − r)s (91) 

The values of p, s, A, B are provided for different materials in Table 8 
[36]. 

It can be noticed that: 

- Thanks to the piecewise model, the filling mechanism and the substi-
tution mechanism are satisfied. However, no value of r0 (called R in 
[36]) is provided by the authors.  

- The total interaction criterion is satisfied when υ1 = υ2.  
- Four parameters A, B, p and s (Table 8) are necessary to estimate the 

specific volume of the binary mixture. 

5.14. Chang, Deng (2022) 

Chang & Deng solved the problem of fictitious granular classes 
interacting with each other [34] by appealing to concepts from ther-
modynamics [35]. The notions of filling-mechanism and embedment- 
mechanism coefficients are replaced by those of activity coefficients 
and the equations become the following: 

V(d̄) = y1 [υ1 − (υ1 − 1) α1(d̄) ] + υ2 y2 (1 − α2(d̄) ) (92)  

where d̄ is a scaler with a unit of length called the effective particle size. 
According to the authors, the bidisperse packing is then considered as a 
monodisperse packing with particle size d̄. 

The activity coefficients are respectively: 

α1(d̄) =
(

1 −
d̄
d1

)η

(93)  

α2(d̄) =
(

1 −
d2

d̄

)η

(94) 

In Eqs. (93) et (94), the particle volume potentials of the two species, 
analogous to the chemical potentials between species, are governed by ̄d 
which must be constrained so that the equilibrium of the two potentials 
is achieved. The excess free volume potential, in analogy to the Gibbs 
excess free energy, must be minimized at system equilibrium which 
leads to: 

∂V(d̄)
∂d̄

= 0⟹ −
η
d1

(

1 −
d̄
d1

)η− 1

(υ1 − 1) y1 + η d2

d̄2

(

1 −
d2

d̄

)η− 1

υ2 y2 = 0

(95) 

It can be noticed that: 

- The filling mechanism, the substitution mechanism and the total inter-
action criteria are satisfied.  

- Only one parameter η (Table 9) is necessary to estimate the specific 
volume of the binary mixture.  

- Eq. (95) can admit several solutions of d̄ in the interval [d1; d2]. 

6. General organization of the particle packing models 

Table 10 organizes the particle packing models discussed above in 
this paper according to: 

Table 8 
Parameters p, s, A, B for different materials according to Liu et al. [36].  

Materials fLIU gLIU 

A p B s 

Glass beads 0.670 2.508 0.700 2.065 
Silica sand 0.820 2.039 0.681 2.190 
Crushed granite 0.622 3.198 0.552 2.832 
GMZ pellets 0.718 2.384 0.654 2.233  
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i. Their linearity or non-linearity with respect to the solid volume 
fractions.  

ii. The respect of the filling mechanism (Eq. (5)), the substitution 
mechanism (Eq. (6)) and the total interaction (Eq. (7)).  

iii. Their parameters and leverage.  
iv. Their extension to the multi-sized mixtures (>3 sizes). 

Analysis of Table 10 shows that relatively few particle packing 
models respect the equations for filling, substitution and total interaction 
mechanisms: Mooney (without providing equations for λ12(r) and λ21(r)), 
Stovall, Westman, Yu, de Larrard, Kwan, Roquier, Chang (2018 and 
2022) and Liu, some of them conditionally. Three of them, however, 
have not yet been extended to multi-sized mixtures: that of Westman 
(1936), that of Chang (2022) and that of Kwan (except in Wong’s PhD 
Thesis [66]). 

7. Comparison of five particle packing models for binary and 
ternary groups 

In 2002, in order to optimize concrete mixes by minimizing voids, 
Jones et al. [67] selected four particle packing models to compare their 
predictive qualities: Goltermann (i.e. modified Toufar, 1997) [51], 
Dewar (1999) [52], Stovall (LPDM, 1986) [54] and de Larrard (CPM, 
1999) [53]. They applied them to both an aggregate phase and a cement 
phase. It appeared that each model had a certain size ratio range for 
which it is in agreement with the test results but that the CPM, modified 
with a differently calibrated compaction index (modi-CPM), was slightly 
more relevant (Table 5 in [67]). The experimental data used in this study 
will now be partially reinvested to make it possible to compare the 
models already tested in [67] with more recent or unexploited models. 

7.1. Experimental data 

The materials concerned are briefly described here (Table 11) but the 
interested reader can find additional information in the original publi-
cation. They are: (i) a gravel G20, a gravel G10 and a sand called Sand 1 
from Jones et al. [67], (ii) smooth wooden spheres of 12.7 mm, 9.6 mm 

Table 9 
Summary of η values as a function of particle shape in the model of Chang & Deng [35].  

Coarse particles Glass beads Angular Subangular to angular Sharp edges, cubical Angular to subrounded Subrounded to rounded 

Fine particles Glass beads Angular Subangular to angular Angular, subangular Thin Subangular to angular 

η 2.4 2.4 2 to 3 4.2 4.3 2.6 to 5.5  

Table 10 
General organization of the particle packing models (L: linear, NL: non-linear).  

Ref Authors L or NL Filling mechanism Substitution mechanism Total interaction Parameters and leverage Multi-sized 

[47] Mooney (1951) L Yes Yes Yes if ν1 = ν2  Yes 
[16] Ben Aim (1970) L Yes Yes No  No 
[54] Stovall (1986) L Yes Yes No  Yes 
[7] Westman (1936) NL Yes if G → ∞ Yes if G = 1 G No 
[50] Toufar (1976) NL No No Yes  No 
[44] Han (1981) NL No No No  No 
[9,65] Yu (1991, 1996) NL Yes Yes Yes Piecewise model Yes 
[14] Zheng (1995) NL No No No  No 
[51] Goltermann (1997) NL No No Yes  No 
[53] De Larrard (1999) NL Yes if K → ∞ Yes K Yes 
[59,60] Kwan (2013, 2015) NL Yes Yes Yes 9 interaction functions No 
[61,62] Roquier (2016, 2024) NL Yes if K → ∞ Yes if ν1 = ν2 K, r0 Yes 
[42] Wu (2017) NL No No No  No 
[34] Chang (2018) NL Yes Yes Yes p, s Yes 
[36] Liu (2019) NL Yes Yes No p, s, A, B & piecewise model Yes 
[35] Chang (2022) NL Yes Yes Yes η No  

Table 11 
Material parameters.  

Materials and Models Data from Jones et al. [67] Data from Standish & Borger [68] recalled in [67] Data from Goltermann et al. [51] recalled in [67] 

Gravel G20 Gravel G10 Sand 1 12.7 mm 9.6 mm 6 mm 8–16 mm 2–8 mm 0–2 mm 

Packing process Loose bulk density – BS 812–2:1995 Hand mix + piston + vibration 30 fall cycles of 9 mm of fall height 
Type of particles Natural gravel and sand Smooth wooden spheres Crushed Crushed Natural deposit 

Characteristic diameter 14.6 6.76 0.339 12.7 9.6 6 12.6 5.4 0.45 
Specific volume 1.686 1.689 1.695 1.724 1.786 1.724 1.559 1.700 1.470  
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Fig. 3. Relation between reciprocal of parameter G and diameter ratio for 
experimental data obtained by Westman [7]: comparison with Eq. (32) from Yu 
et al. [8], Eq. (33) from Marmur [13] and Eq. (96) (bounded sigmoid). 
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and 6 mm from Standish & Borger [68] (recalled in [67]), (iii) 8–16 mm, 
2–8 mm aggregates and 0–2 mm natural deposit from Goltermann et al. 
[51] (recalled in [67]). 

The characteristic diameters (Table 11) corresponding to each 
granular range are respectively d50 (50% residue) for the natural gravel 
and sand of Jones et al. (Table 1 in [67]) and d63.2 (36.8% residue) for 
the crushed aggregates of Goltermann et al. (Table 1 in [51]). With re-
gard to the latter, the authors [51] in fact consider that many crushed 
particles follow particle size distribution curves of the Rosin-Rammler- 
Sperling-Bennett (RRSB) type, characterized by the sieve size on 
which the residue is equal to 36.8%. 

The data concerning mixtures of cement, slag, ash and filler will not 
be used because the packing density gains obtained with them remain 
low, in particular due to an unfavorable overlap of their granular 
distributions. 

7.2. Particle packing models tested in the present article 

The particle packing models that will now be tested are the 
following:  

i. Chang (2022) [35] by analogy with chemical thermodynamics.  
ii. Kwan (2013,2015) [59,60] with the 3-parameter Particle Packing 

Model (3PPM).  
iii. Westman (1936) [7] with a new mathematical relation between 

G and r.  
iv. Liu (2019) [36] with the Non-Linear Particle Packing Model 

(NLPPM) for multi-sized granular soils. 
v. Roquier (2016,2024) [61,62] with the Theoretical Packing Den-

sity Model (TPDM). 

7.3. Westman model (1936): proposal of a new relation between G and r 

The Westman conic equation (Eq. (29)) involves a parameter G 
whose relation between its reciprocal and the size ratio r has been 
established experimentally by its author in 1936 for mixtures of sand 
and lead shot (Fig. 4 in [7]). However, Westman does not offer an 
equation. Many years later, Yu et al. [8] and Marmur [13] each proposed 
a mathematical relation (respectively Eqs. (32) and (33)) shown in 
Fig. 3. By comparison with these experimental data, it can be seen that 
Marmur’s proposal is only effective in the size ratio range that he 
explored, i.e. for r between 0 and 0.16. Yu’s formula, for its part, un-
derestimates the results for size ratios around 0.5. The proposal made by 
the author of the present article consists of a bounded sigmoid equation 
with an inflection point for r = 0.45 but, however, without horizontal 
asymptotes: 

G− 1 = 1+ exp( − 8 (r − 0.45) ) (96) 

This new formula will be applied in the Westman conic equation. 

7.4. Particle packing model parameters 

The particle packing model parameters are provided in Table 12. 

Westman’s model involves the new eq. (96). Kwan’s model, for its part, 
uses interaction functions for spheres in order to study the natural gravel 
and sand of [67] and the smooth wooden spheres of [68] and interaction 
functions for compacted angular particles intended for the crushed ag-
gregates of [51]. Roquier’s model involves r0 = 0.20 for natural aggre-
gates and for spheres, r0 = 0.03 for crushed aggregates, K = 4.75 for the 
loose bulk density and K = 9 for a packing process by piston + vibration 
or by fall cycles. Liu’s model, for its part, was subject of a calibration for 
four specific materials in Table 8 but preliminary work showed that the 
one carried out for the spheres was the most suitable in all cases. Finally, 
Chang’s model recommends η = 2.4 for glass-beads/glass-beads and 
angular/angular particle mixtures (Table 9). This is the value that will 
be adopted with one exception, as a preliminary study has shown that it 

Table 12 
Particle packing model parameters for aggregate.  

Materials and Models Data from Jones et al. [67] Data from Standish & Borger [68] recalled in [67] Data from Goltermann et al. [51] recalled in [67] 

Gravel G20 Gravel G10 Sand 1 12.7 mm 9.6 mm 6 mm 8–16 mm 2–8 mm 0–2 mm 

Westman (1936) G− 1 = 1+ exp( − 8 (r − 0.45) )
Kwan (2015) 3 interaction functions for spheres 3 interaction functions for spheres 3 interaction functions for compacted angular particles 
Roquier (2016) K = 4.75, r0 = 0.20 K = 9, r0 = 0.20 K = 9, r0 = 0.03 

Liu (2019) 
2 interaction functions for glass beads with 4 parameters: 
A = 0.670, p = 2.508, B = 0.700, s = 2.065 

Chang (2022) 
η = 2.4 for G20/G10, 8–16/2–8, 2–8/0–2, 8–16/2–8/0–2, 12.7/9.6/6 mixtures 
η = 4 for G10/Sand1 mixture  
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Fig. 4. Comparison of different particle packing models to obtain minimum 
specific volumes with (a) a combination G20/G10 and (b) a combination 
G10/Sand1. 
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is preferable to select η = 4 for the G10/Sand1 mixture. 

7.5. Comparison of particle packing models for binary groups of 
aggregates 

Figs. 4 and 5 compare the specific volumes measured and estimated 
by the five different models for combinations of fine and coarse 
aggregates. 

Fig. 4(a) concerns the mixture G20/G10. It can be seen that the 
Westman and Chang models overestimate the specific volumes while 
Kwan’s model suggests that a higher coarse fraction is required to ach-
ieve the minimum specific volume. The other models lead to good 
agreement between measured and calculated values. 

In Fig. 4(b), the mixture results in a combination between G10 and 
Sand 1. Chang’s model provides good estimates, even if a “sharp” curve 
emerges with a fraction of sand underestimated at the optimum. These 
latter trends are found in Kwan’s model which underestimates the spe-
cific volumes at the optimum and on the side of the dominant coarse 
particles. Liu’s model is overall too optimistic whereas Roquier’s model 
demonstrates a certain efficiency, albeit slightly attenuated on the side 
where G10 is dominant. Finally, Westman’s model seems most suited to 
studying the specific volume of this mixture. It can be noticed that only 
the latter two models predict a smooth evolution around the optimum. 

Fig. 5(a) concerns the combination of 8–16 mm and 2–8 mm ag-
gregates from Goltermann et al. [51]. Liu’s model is the one that best 
targets the value of the minimum specific volume of the mixture while 

managing to approximate the fractions of the constituents at optimum 
relatively well. Chang and Kwan’s models are reliable on the side where 
the 8–16 mm aggregate is dominant. Westman and Roquier’s models 
provide very similar estimates but they sin near the optimum. 

The process is repeated with the combination of 2–8 mm aggregate 
and 0–2 mm sand in Fig. 5(b). Chang and Liu’s models provide a curve 
made up of two straight sections. The first model is over-optimistic in 
terms of estimates of specific volume in the vicinity of the optimum, 
whose composition is imprecisely targeted by the second. Kwan, 
Roquier and Westman’s models are the best suited, the last two 
achieving an even higher degree of precision. 

7.6. Analysis of particle packing models for binary groups of aggregates 

Fig. 6 provides an analysis of the difference between the measured 
and calculated minimum specific volumes for each of the different 
models (Fig. 6(a)) and the difference in the amount of smaller particles 
at the optimum (Fig. 6(b)). The particle packing models tested per-
formed well. Chang and Kwan’s models have in common that they un-
derestimate the amount of fine elements at the optimum, the former 
proving slightly better than the latter at predicting the minimum specific 
volume of the mixture. Liu’s model is effective on both the criteria 
tested, despite a tendency to form peaked curves, which may be slightly 
offset from the optimum. Roquier and Westman’s models are the most 
reliable on the mixtures tested, with a special mention for the latter, 
both for its ingenuity and its simplicity. 

In Fig. 7, an overall comparison of the differences between measured 
and calculated specific volumes and void ratios (for comparison with 
[67]) has been plotted. The mean deviations for void ratio vary between 
2.1% and 4.2%, demonstrating reasonable accuracy (in [67], with a 
supplementary “cement-sized” particle packing, the variation is between 
2.4% and 5.5%). According to this criterion, the performance of the 
Chang, Kwan and Liu models on the one hand (mean deviations for void 
ratio between 3.7% and 4.2%) and the Westman and Roquier models on 
the other hand (mean deviations for void ratio equal to 2.7% and 2.1%) 
are very close. The latter two benefit from less dispersion at low specific 
volumes, i.e. high packing densities. 

7.7. Comparison of particle packing models for ternary groups of 
aggregates 

The study is now extended to three different particle groups. West-
man’s model has never been developed for mixtures with three particle 
sizes and will therefore not be considered in this paragraph. 

Fig. 8 shows the packing densities obtained by Goltermann et al. [51] 
for ternary combinations of 8–16 mm, 2–8 mm and 0–2 mm for which 
the maximum packing density equal to 0.82 is obtained for volume 
fractions of 50%, 10% and 40% respectively. From the ternary diagrams 
and the supplementary table provided, it can be seen that Chang and 
Liu’s models slightly overestimate this maximum packing density, while 
Kwan and Roquier’s models target it well. However, none of them is able 
to estimate the ideal combination, three of the four models even 
favouring a mixture with only the two extreme grain sizes in order to 
achieve the most compact mixture. 

Fig. 9 shows porosities measured by Standish & Borger [68] on 
combinations of three series of perfectly monosized smooth wooden 
spheres of 12.7 mm, 9.6 mm and 6 mm. As these diameter values are 
relatively close, experience shows that the intermediate size must be 
omitted to achieve the minimum porosity, which is confirmed by all the 
models. However, only two of them, Chang and Roquier’s models, agree 
with the experimental volume fractions of the extreme granular classes 
at optimum. It can be seen that three models significantly overestimate 
porosities. Only Roquier’s model manages to provide isoporosity curves 
close to reality and to approximate the minimum porosity. It should be 
noted that the mixing process used by Standish & Borger [68] was 
particularly elaborate, with hand mix, piston and vibration until the 
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height of the mixture was completely stabilised. In this respect, the use 
of a compaction index makes it possible to adapt more effectively to the 
packing process adopted. 

8. Conclusion 

In this paper, a review of particle packing models is presented over a 
100-year period. Some estimate porosity, others the void ratio, packing 
density or specific volume of mixtures. The choice made in this paper 
was to rewrite all the models in terms of specific volume for two reasons. 
Firstly, the limiting cases can be expressed by straight line equations: the 
filling mechanism, the substitution mechanism and the total interaction. 
Secondly, the similarities and differences between models are easier to 
highlight. 

The 100-year history of packing models shows that their design is 
influenced by their authors’ field of research, but that cross-disciplinary 
approaches have developed over the years. Symbolizing this multi-
disciplinarity approach, Westman, an eminent chemistry specialist 
whose research ranged from coal processing to phosphate glasses and 
ceramic clays, proposed a conical equation in 1936 that remains a 
benchmark almost a century later. More generally, chemists and crys-
tallographers have focused on the regular packing of spheres, the 

coordination number and the notion of insertion and filling. Very 
quickly, they established the link between molecular packings and 
thermodynamics of binary solutions. New concepts based on chemistry 
and thermodynamics were then developed for granular packings: 
eutectic, compactivity, excluded volume, statistical approach, etc. In the 
field of sediments, Han’s (1981) precursor model involves both 
randomness and filling. In the field of soils, Chang (2022) introduced the 
notion of minimum excess free volume potential for finding an effective 
particle size of a mixture. Another area of chemistry, that of suspensions, 
has also contributed to our understanding of granular interactions. By 
focusing on concentrated suspensions, Mooney (1951) took into account 
a first-order interaction described as a crowding effect and introduced 
crowding factors. Expressed differently, the latter lead to Stovall’s 
(1986) geometric interaction functions (wall effect and loosening ef-
fect), who developed one of the first efficient packing density models. In 
parallel with Stovall, Yu (from 1987 to 1996) designed several genera-
tions of models, finally combining two of them to create a piecewise 
model, one of which was inspired by the work of Westman (1936) and 
Marmur (1985). This idea of piecewise model was taken up by Liu 
(2019) in the field of soils, who proposed simpler equations. Stovall’s 
model was improved by de Larrard (1999) who, as a concrete specialist, 
introduced the notion of packing process via a compaction index that 
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was much simpler to use than the concept of compactivity. But whereas 
de Larrard considers that the positioning of the particles in the packing is 
not perfect because the way in which the mixture is set up is not optimal 
(external action), Kwan (2013) believes that the problem is intrinsic to 
the mixture and introduces an additional geometric interaction 
(wedging effect). Finally, Roquier (2016, 2024) considers it preferable 
to retain the compaction index introduced by de Larrard. He advocates 
an individualized calculation of each granular interaction (wall effect, 
loosening effect) involving the size ratio, the specific volume of each 

granular class, the packing process and the shape and surface roughness 
of the particles. The latter are taken into account via a critical cavity size 
ratio, which determines whether the insertion of fine particles into the 
coarse particle skeleton is possible without loosening it. 

The particle packing models can be distinguished according to their 
type (simple or piecewise), their formulation (linear or non-linear with 
respect to the solid volume fractions), the consideration of (i) two or 
three (with wedging effect) geometric interactions, (ii) a packing pro-
cess, (iii) a critical cavity size ratio or a critical ratio of entrance, the 
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respect of (i) the filling mechanism, (ii) the substitution mechanism, (iii) the 
total interaction criterion, the physical significance of the parameters 
taken into account, their generalisation to multi-sized mixtures. 
Table 10 organizes the main packing models discussed in this paper 
according to the characteristics listed above. 

Five models were then analyzed on binary combinations of coarse 
and fine aggregates: those of Chang, Kwan, Westman, Liu, Roquier. The 

Westman model is tested with a new equation (Eq. (96)) linking G and 
the size ratio r. Data come from the study by Jones et al. [67], which had 
already made it possible to compare the estimates of four other models. 
The analysis shows that the new particle packing models are effective in 
predicting both the minimum specific volumes and the material com-
binations leading to these optimum mixtures. Two models nevertheless 
stand out slightly from the crowd: Roquier’s and, above all, Westman’s 
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Fig. 8. Comparison of measured (a) packing densities obtained for ternary combinations of 0–2 mm, 2–8 mm and 8–16 mm with those calculated using (b) Chang, (c) 
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for its ingenuity and simplicity. 
The comparison was then extended to ternary combinations of con-

crete aggregates on the one hand and spheres on the other. Westman’s 
model has not been used in this section, as it has not been developed for 
ternary mixtures. With regard to the experiments carried out with ag-
gregates by Goltermann et al. [51], the analysis shows that Kwan’s and 

Roquier’s models perform best for estimating the maximum packing 
density. However, none of the four models succeeded in finding the ideal 
combination. With regard to the experiments carried out with spheres by 
Standish & Borger [68], the porosities are difficult to predict for two 
reasons: the three particle sizes are relatively close, and the mixtures are 
very carefully placed in the test cylinder. In the end, of the four models 

0,35

0,40

0,41

0,40

0,36

0,37

0,39

0,38

0,38
0,39

0,00 0,25 0,50 0,75 1,00
0,00

0,25

0,50

0,75

1,00
0,00

0,25

0,50

0,75

1,00

9,6
m

m

6
m

m

12,7 mm

0,34

0,35

0,36

0,38

0,39

0,40

0,42

0,43

0,44
(a) EXP

0,43

0,40

0,42

0,41

0,00 0,25 0,50 0,75 1,00
0,00

0,25

0,50

0,75

1,00
0,00

0,25

0,50

0,75

1,00

9,6
m

m

6
m

m

12,7 mm

0,34

0,35

0,36

0,38

0,39

0,40

0,42

0,43

0,44
(c) KWAN

0,43

0,40

0,42

0,41

0,41

0,00 0,25 0,50 0,75 1,00
0,00

0,25

0,50

0,75

1,00
0,00

0,25

0,50

0,75

1,00

9,6
m

m6
m

m

12,7 mm

0,34

0,35

0,36

0,38

0,39

0,40

0,42

0,43

0,44
(d) LIU

0,36

0,42

0,37

0,41

0,40

0,38

0,39

0,39

0,40

0,00 0,25 0,50 0,75 1,00
0,00

0,25

0,50

0,75

1,00
0,00

0,25

0,50

0,75

1,00

9,6
m

m6
m

m

12,7 mm

0,34

0,35

0,36

0,38

0,39

0,40

0,42

0,43

0,44
(e) ROQUIER

Volume fractions at optimum
12.7 mm 9.6 mm 6 mm Porosity

Measured 0.60 0.00 0.40 0.347
Chang 0.60 0.00 0.40 0.397
Kwan 0.40 0.00 0.60 0.395

Liu 0.40 0.00 0.60 0.395
Roquier 0.60 0.00 0.40 0.356

0,40

0,43

0,42

0,00 0,25 0,50 0,75 1,00
0,00

0,25

0,50

0,75

1,00
0,00

0,25

0,50

0,75

1,00

9,6
m

m6
m

m

12,7 mm

0,34

0,35

0,36

0,38

0,39

0,40

0,42

0,43

0,44
(b) CHANG
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tested, only the one using a compaction index (Roquier’s model) pro-
vides reliable estimates. 

Overall, most of the granular packing models presented in this article 
have great potential given all the factors actually involved. Neverthe-
less, some of them deserve to be valued because of their original design, 
pioneering character, performance, flexibility, simplicity or strong 
disciplinary impact:  

i. Westman’s model for its subtlety in the study of binary mixtures. 
With a single parameter, he manages to respect all the boundary 
conditions and to cover all possible diameter ratios. The only 
major drawback is that this model cannot be extended to multi- 
sized mixtures.  

ii. Mooney’s model for its pioneering character. Although integrated 
into a viscosity model, this was the first packing model to take 
granular interactions into account (without their equations, only 
with their boundary conditions) that could be generalized to 
multi-sized mixtures.  

iii. Yu’s models and Chang’s models because they have enabled 
considerable progress in two sectors of global importance: the 
powder industry and geosciences respectively. Yu’s models have 
contributed to significant advances in the understanding of 
powder and particle stacking, a parameter of critical importance 
in high-value-added scientific sectors such as process engineer-
ing, metallurgy and chemical or pharmaceutical engineering. 
Chang’s models, for their part, have made it possible to progress 
in the estimation of the jamming density and therefore in the 
identification of a crucial point in soil mechanics: the phase 
transition point that can lead to rock avalanches or landslide 
instabilities.  

iv. de Larrard’s model and Kwan’s model because they have 
contributed to a scientific formulation of concrete, until then 
essentially empirical, by integrating the packing process in two 
different ways. De Larrard’s model is particularly flexible thanks 
to its compaction index.  

v. Liu’s model that combines simplicity and precision.  
vi. Roquier’s theoretical model for its versatility and for the high 

accuracy of its estimates. 
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