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Bio-inspiration can be used in the development of novel
dextrous and energy-efficient manipulators. This paper
focuses on planar manipulators inspired by the bird neck,
built upon stacking a series of tensegrity X-joints. The
manipulators are actuated with four tendons, have dif-
ferent numbers of modules, with or without offsets. The
objective of this work is to study the influence of offsets,
number of modules, geometry of the joints, configura-
tion at rest of the manipulators, and actuation scheme
on the size of the tension-feasible workspace (TFW). The
spring constants of the X-joints are determined so that the
configuration at rest features a desired end-effector (EE)
pose with minimal stiffness to ensure stability. Our study
demonstrates that increasing the number of modules re-
sults in a larger TFW, although the number of active ten-
dons is fixed. We find that the TFW can be maximized with
appropriate modification of the joint geometry. Addition-
ally, we explore the influence of bio-inspired approaches
on the manipulator configuration at rest and actuation
scheme in relation to the TFW. In addition, we conduct an
analysis of the EE pose stiffness, revealing that offsets de-
crease this stiffness, while an optimal number of modules
exists to achieve maximum stiffness. We observed that in-
creasing the width of the manipulator generally enhances
stiffness, while the configuration at rest and the actua-
tion has little effects. Furthermore, experiments were con-
ducted to validate the methodologies.

1 INTRODUCTION
Building modular manipulators brings many bene-

fits. The number of modules should be decided upon con-
sidering several criteria, such as the minimum number re-
quired to accomplish the task, the possibility of having re-
dundancy for a larger workspace, the cost, or the weight.
The bird neck can be a source of inspiration to build new,
light, and efficient manipulators based on tensegrity mod-
ules arranged in series [1]. The tensegrity modules used
in this paper have one degree of freedom (DoF) and are
operated by tendons in parallel with springs. An antago-
nist actuation is chosen to allow modulation of the stiff-
ness of the manipulator [2]. In this study, we are inter-
ested in planar manipulators made of several such mod-
ules arranged in series.

A large amount of research work has been devoted
to bio-inspired continuous-bodied manipulators [3]. Ex-
amples of manipulators inspired by animals are elephant-
trunk arms [4,5,6], octopus’ manipulators [7], snake-like
manipulators [8], anguilliform manipulators [9].

Among these manipulators, continuum manipulators
have been extensively developed. Detailed overviews of
their design can be found in [10, 11]. These overviews
present various types of continuum manipulators, includ-
ing concentric tube manipulators, rod-driven continuum
manipulators, fluid muscle robots, soft growing robots,
and tendon-driven continuum manipulators. Models of
these manipulators are discussed in [12, 13], with spe-



cific emphasis on tendon-driven manipulators in [14].
It is notable that while our manipulator is also tendon-
driven, it stands apart due to its composition of non-
flexible joints. Hence, its model, similar to the one ob-
tained with the finite-dimensional approximation meth-
ods outlined in [12], can be established without approxi-
mation.

Observation of musculoskeletal systems, such as the
bird neck or the human spine, suggests that increasing the
number of modules can lead to improved performance.
One of the objectives of this study is to examine whether
this hypothesis holds true for the modular manipulators
under investigation. A further aim of this research is to
investigate the effect of bio-inspired configuration at rest
and actuation scheme on this performance as well.

An essential metric for quantifying manipulator per-
formance is the workspace size. [15, 16] have used it to
compare tendon-driven continuum manipulators, which
incorporate an elastic backbone, across various tendon
routing configurations with or without payload. Addition-
ally, [17] utilized this metric to compare tendon-driven
manipulators with twin-pivot compliant joints, consider-
ing different tendon routing schemes and joint geome-
tries. They examined how asymmetries in the joints can
reshape the workspace. Tendons impose positive forces
and these forces are limited by the actuators. The set of
poses that satisfy the aforementioned constraints and in
which the manipulator can balance a bounded set of ex-
ternal wrenches is called the wrench-feasible workspace
(WFW) [18]. In the literature, the WFW is most often
calculated for cable-driven parallel robots, see [18] and
references herein. In our case, the system is subject to
the forces of the springs and gravity, which must be com-
pensated for by the tensions in the tendons. Excluding
the consideration of additional external wrenches, we de-
fine the tension-feasible workspace (TFW) as the set of
poses attainable with bounded actuation forces. Continu-
ation methods have been employed to compute the WFW
of a 2-DoF tensegrity manipulator [19]. The time taken
for such computations has not been presented. A brute-
force scanning technique was utilized in [20, 1], where
a 2-dimensional (2D) scan was performed in the joint
space of 2-degree-of-freedom (2-DoF) and 3-degree-of-
freedom (3-DoF) manipulators to determine the TFW.
The technique’s limitation is that a high-resolution scan is
necessary to acquire the boundary points with enough ac-
curacy, which is impractical for manipulators with more
than three modules. Interval analysis has been used to
compute manipulator workspaces [21] of cable-driven
parallel robots [18] with guaranteed results, but the high
computational cost limits its practical implementation to
manipulators with few DoFs.

This article extends the findings presented in [22].
It comprehensively revisits the impact of offsets and the
number of modules on the TFW by adjusting the joint
range conditions and considering a broader range of ma-
nipulators with varying numbers of joints and different
offsets. This analysis elucidates how increasing the num-
ber of joints enhances the size of the TFW. Three new
studies are introduced. The first investigates the effect
of the ratio L/b and confirms the existence of an opti-
mal value for maximizing workspace. It also confirms
that adding offsets has minimal impact on the size of the
TFW. The other two new studies explore the effects of
the configuration at rest and tendon routing, respectively.
This study on the influence of the number of modules,
their geometry, the configuration at rest, and the routing
of the tendons on the TFW for tendon-driven tensegrity
manipulators has not been conducted before to the best
of the authors’ knowledge. Additionally, a study on the
end-effector (EE) stiffness of the different manipulators is
conducted with experiments, similar to the work of [23]
for a manipulator with 2 modules.

The rest of this paper is organized as follows. The
manipulators under study are described in section 2. The
calculation of the TFW is discussed in section 3. Section
4 compares different 4-tendon, fully actuated or under-
actuated manipulators on the basis of their TFW. Section
5 presents some experimental results on the TFW and on
the stiffness. The last section concludes the paper.

2 MANIPULATORS STUDIED
The manipulators studied in this paper are planar

manipulators with 4 tendons and n identical modules
(n ≥ 3) arranged in a series. When n > 3, the manip-
ulators are kinematically redundant since 3 DoFs would
be enough to control the EE motion in the plane. Note
that the tendons can only pull. Therefore, there should
be at least one more tendon than the number of modules
to control all the modules. Thus, n > 3 means that the
manipulators are also underactuated [24].

2.1 Tensegrity modules
We want to define a planar tensegrity manipulator in-

spired by the bird neck by stacking several basic mecha-
nisms or modules. These modules play the role of inter-
vertebral joints. Each module consists of articulated bars
and springs and is operated by cables. Springs and ca-
bles play the role of muscles and tendons. Tendon forces
must be positive and are bounded by the maximum forces
that the actuators can produce. Since only planar mo-
tions are involved, the relative motion between two ver-



tebrae is mainly a rotation. Both revolute joints and anti-
parallelogram joints (referred to as X-joint) can be used
to produce planar motions between two vertebrae, which
can correspond to either a pure rotation or a translation
coupled with a rotation [25]. The former generates a pure
rotation about a fixed point, while the latter has a vari-
able center of rotation. An important feature of the X-
joint is its ability to increase stiffness under an increase
in the antagonistic tendon forces, contrary to the revolute
joint [26, 27]. Thus, we decide to use X-joints (Fig. 1,
left). The ratio between the length L of the crossed bar
and the length b of the base or top bar influences the kine-
tostatic performance of the X-joint. However, the choice
of this ratio should also take into account the maximum
and minimum elongation of the springs [20]. Different
numbers of modules, with or without offsets, will be con-
sidered in this work. Figure 1 (right) shows a manipulator
built with two X-joints and offsets..

Fig. 1. X-joint tensegrity module (left) and manipulator made of
two X-joints and offsets (right). The dashed lines correspond to
the tendons in parallel with the springs. The solid lines corre-
spond to rigid bars that are articulated at pivots represented by
circles. The upper bar orientation with respect to the orientation
of the lower bar is defined by angle qi. The motion of the upper
bar also includes a translational motion since the rotation is about
the intersection of the diagonal bars and is not fixed.

2.2 Stack of modules
The manipulators at hand are composed of a stack of

modules. The stack can be built with or without offsets.
Offsets can be viewed as the possibility to adjust the di-
mensions of the vertebrae, or equivalently, the maximum
reach of the manipulator, independently of the X-joints
ratio L/b.

Let’s define the joint configuration of the manipulator
by q = [q1, q2, ..., qn]

⊤, where qi is the orientation angle

between the base and top bar of each module, and n is the
number of modules. Let X = [xn, yn, γn]

⊤ define the
pose of the EE, i.e. the coordinates of the center of the
top bar of the last module n and its orientation angle. We
have:


xn = −

∑n
i=1 sin(γi−1 +

qi
2 )

√
L2 − b2 cos2( qi2 )

−
∑n

i=1 sin(γi)ho

yn =
∑n

i=1 cos(γi−1 +
qi
2 )

√
L2 − b2 cos2( qi2 )

−
∑n

i=1 cos(γi)ho

γn = γ0 +
∑n

i=1 qi
(1)

where ho is the offset height (Fig. 1, right), γi is the ori-
entation angle of the ith module with γ0 being the orien-
tation angle of the base bar.

2.3 Tendon routing
For a planar manipulator, three DoFs are sufficient to

control its EE pose. We use nf=4 tendons with remote
motors on the base, regardless of the number of modules,
in order to reduce inertia, complexity and costs. The min-
imum number of tendons required to effectively control 3
DoFs is 4. We operate our manipulator with a long ten-
don connected to all the modules on the right side and 3
shorter tendons grouping together sub-groups of modules
(see Fig. 2, left). This choice results from a simplified im-
plementation of the muscle organization of the bird neck
with a long ventral muscle [1, 28]. However other ac-
tuation schemes will be studied in Section 4.4. With 3
modules, the system is fully actuated, and these short ten-
dons actuate each of the modules independently, like in
the prototype analyzed in [29] and in Section 5.

Fig. 2. Example of tendon routing with 6 modules: one long ten-
don on the right and three shorter tendons on the left (left). Ten-
don routing situations (center and right).



Each tendon can be routed in three different ways on
each of the modules (see Fig. 2, center and right):

- tendon j placed on the left or right of module i,
along the spring (Fig. 2, center): when this tendon
is pulled, the associated motor changes the module
orientation to reduce the tendon length on that side;

- tendon j runs along the bars of module i (Fig. 2,
right): this routing allows to reach the modules above
module i while eliminating the effect of the tendon
on that module.

We define an actuation matrix A of size (n × nf )
as follows: each column j associated with tendon j de-
scribes how that tendon passes along module i. Each en-
try A(i, j) can have three possible values 1 if the tendon
passes to the left, 2 if the tendon passes to the right, 3 if
the tendon j does not act on module i.

The unwound length of tendon j is denoted by lj .
Tendon length lj can be expressed as follows [29]:

lj = lcj +

n∑
i=1

l
A(i,j)
j (qi) (2)

where lcj is a constant. lA(i,j)
j depends on the tendon rout-

ing:


l1j =

√
L2 − b2 cos2( qi2 )− b sin( qi2 )

l2j =
√
L2 − b2 cos2( qi2 ) + b sin( qi2 )

l3j = 0

(3)

3 TENSION-FEASIBLE WORKSPACE
3.1 Static model

The static model is of primary importance for the
study of tensegrity manipulators. It allows the determi-
nation of the manipulator configuration as a function of
the tendon forces. The potential energy U of the manipu-
lator can be written as

U = Ug + Uk +

4∑
i=1

fj lj , (4)

where Ug (resp. Uk) is the contribution of gravity
(resp. of all springs), lj are the tendon lengths and fj
are the tendon forces. Each term fj lj accounts for the
potential energy associated with the tendon forces. The
equilibrium condition of the manipulator is:

dU
dq

= 0 (5)

Let G =
dUg

dq + dUk

dq and Z(q) = − dl
dq , where

l = [l1, l2, l3, l4]
T and f = [f1, f2, f3, f4]

T . The above
equation can be written as:

G(q) = Z(q)f (6)

The associated linearized model is written:

(
dG(q)

dq
− dZ(q)f

dq

)
δq = Z(q)δf (7)

An equilibrium is stable if its stiffness matrix is defi-
nite positive:

K =
d2U

dq2
> 0 (8)

3.2 TFW calculation
3.2.1 Joint space scanning

A simple approach to calculate the TFW is to scan the
joint space as suggested in [1]. The model (6) is solved
to determine a force vector f . If the number of tendons
nf is greater than the number of modules n, there are in-
finitely many solutions and one can choose the solution
with minimum norm such that 0 < fj < fmax. This
method cannot be used in our case for two main reasons.
First, the computational cost increases exponentially with
the number of modules, and second, it does not work
for underactuated manipulators (i.e. when n > nf ). In
fact, for the latter, the static model allows solutions only
if rank([G(q),Z(q)]) = rank(Z(q)).

3.2.2 Force space scanning
Scanning the force space is more tractable, since we

have only 4 forces, regardless of the number of modules.
For each f it is then necessary to solve Eq. (6) to find the
equilibrium configuration qe. We then calculate the EE
coordinates using Eq. (1).

As observed in [2, 20], several equilibrium solutions
qe can be obtained under two conditions: (i) the X-joints
can reach a configuration close to their flat singularities
and (ii) the gravity effects are dominant. In our case, the



spring effects are very large to ensure the stability of the
equilibrium at rest compared to gravity. Moreover, since
we impose limited tendon forces, the X-joints always re-
main far from their flat singularities. We then assume that
there is only one stable feasible solution to Eq. (6). For
a given set of input forces fe, we search for the solution
qe that minimizes ||G(qe)−Z(qe)fe||, using a Newton-
Raphson approach. Starting from a configuration qep,
this method consists in writing the linearized model (7) in
the neighborhood of this configuration. We compute the
variation that tends to nullify ||G(qe) − Z(qe)fe||. The
joint solution is updated as follows:

qe = qep−
(

dG(qep)

dq
−

dZ(qep)fe

dq

)−1

(G(qep)− Z(qep)fe)

(9)
The solution is updated until:

||G(qe)− Z(qe)fe|| < ϵ (10)

where ϵ is a decision parameter, which we take here to
be ϵ = 10−6. The matrix to be inverted in (9) is actually
the stiffness matrix K defined in Eq. (8). Thus, con-
vergence is usually guaranteed whenever the equilibrium
configurations are stable. On the other hand, the springs
are chosen such that the equilibrium configuration at rest
is stable (see below). Thus, we verify that a stable equi-
librium solution is found. Unstable configurations will be
discarded. The convergence speed depends on the initial
configuration qep, which must be close to qe. We start
scanning the force space at f = 0, which is the stable
equilibrium configuration at rest. Thereafter, We com-
pute the equilibrium state qe for the different f using one
of two methods: iterating from a previous equilibrium qe,
or starting from a gravity-free equilibrium where the sys-
tem behaves almost linearly. The selection of the method
depends on the convergence behavior of the algorithm for
the different cases studied. The TFW is then constructed
in 3D (xn, yn, γn) space after computing the EE pose as-
sociated with each equilibrium configuration.

The force and workspace sampling data used are
as follows. The maximum forces are set to fmax =
140 N. Nature often relies on frugality. Accordingly,
our goal is to move with minimum actuation forces,
as it minimizes the work during the movement and
the material stress in the components. Since we are
interested in poses that can be reached with small
forces, we choose a non-regular sampling to explore
more values for small forces. The tested forces are
0, 1, 2, 3, 5, 7, 9, 12, 16, 20, 25, 30, 35, ...130, 135, 140 for
each tendon. To plot the TFW, we define a regular grid
along the coordinates xn, yn and γn. The grid is built in

a box defined by ±1.1h along xn and yn and γ0 ± nπ
along γn, where h is the manipulator height in its vertical
straight configuration and γ0 is the orientation of the base
bar of the first module. A TFW cell is declared reachable
as soon as a pose of the EE belongs to it.

3.3 Example: a manipulators with 6 modules
In this section, we describe the case of a 6-X manip-

ulator without offsets (shown in Fig. 2, left) to provide
some additional information. The modules are similar to
those used in the prototypes studied in [29, 30], with bar
lengths of b = 0.05 m and L = 0.1 m. The corresponding
module height is hm = 0.0866 m, with a total height in
a straight vertical configuration of h = 6hm = 0.516 m.
The module mass is 0.214 kg, distributed along the mod-
ule bars. For a module, 3/11 of the mass is in the top bar
and 4/11 is in the diagonal bars.

An essential element for the dimensioning of our ma-
nipulators is the choice of springs. The springs make it
possible to define the equilibrium configuration at rest.
The stiffer the springs, the higher the forces required to
move the manipulator and, for the same maximum forces,
the more the TFW is reduced. On the other hand, the role
of the springs is to ensure the stability of the manipulator.
It is particularly important that the equilibrium configura-
tion at rest be stable. This allows the manipulator to re-
main in this configuration under small perturbations and
without any actuation. The springs are thus chosen on the
basis of the following two requirements:

- impose a desired EE pose at rest for a given base bar
orientation;

- ensure stability at rest. We impose a positive stiff-
ness via the smallest eigenvalue of the stiffness ma-
trix K, which must be greater than a prescribed min-
imal value, chosen here as Km = 1 Nm/rad.

We want to limit the spring stiffnesses while satis-
fying the above constraints. The difference in stiffness
between the two opposite springs in a module will mod-
ify the equilibrium configuration at rest, while the average
value of the springs will contribute to the X-joint stiffness.

We first determine the equilibrium configuration qe

that will allow us to achieve the desired EE positions xd
n

and ydn and orientation γd
n while minimizing the norm of

the joint configuration vector:

qe = minq||q||
s.t. [xn(q), yn(q), γn(q)]

⊤ = [xd
n, y

d
n, γ

d
n]

⊤

(11)



We then calculate the spring constants as follows:

[k⊤
l ,k

⊤
r ]

⊤ = min||kl + kr||

s.t.

{
G(qe) = 0

min(eig(K(qe))) ≥ Km

(12)

where kl (resp. kr) is a vector containing the spring con-
stants on the left (resp. right) side of the manipulator.

In the example, the base of the first module of the
manipulator has an initial orientation of π/4. The EE
pose at rest is xd

n = 0, ydn = 0.9h and the orientation
of the top bar is γd

n = −π/4. The spring constants are
calculated to satisfy (12) for springs with a free length of
l0 = L − b. This value is chosen so that each spring is
in tension for each orientation qi of the module. The cor-
responding spring constants are kl=[2859, 2780, 2401,
1825, 1190, 676]⊤ Nm−1 and kr=[5258, 4692, 3851,
2832, 1813, 1027]⊤ Nm−1. The resulting manipulator
configuration at rest is shown in Fig. 2 (left).

Fig. 3. TFW in (xn, yn, γn) for a 6-X manipulator. The ori-
entation of the EE varies significantly with its position, but for a
given pose the orientation range is limited.

Figure 3 shows the 3D TFW. Its shape looks like a
twisted banana. This shows that the position and orien-
tation coordinates are strongly coupled. Moreover, the
banana is rather flat, which shows that the EE orientation
range is limited at each position. Therefore, the manip-
ulator is more suitable for positioning tasks. For now,
the TFW will be analyzed mainly in terms of the point-
reachable workspace, namely as the set of points associ-
ated with at least one feasible EE orientation [31]. Figure
4 shows the resulting 2D TFW. The TFW was calculated

for the minimum forces: the orientation was then fixed by
the minimum forces at each point. The colors indicate the
maximum values of the force vector. The asymmetry in
the workspace relative to the x = 0 axis is notable. This
is due to the non-symmetric configuration at rest, which
requires stiffer springs on the right side. The impact of
the configuration at rest will be discussed in Section 4.3.
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Fig. 4. TFW projected on (xn, yn). The minimum forces have
been considered at each point and the colors indicate the maxi-
mum norm of the force vector (dark blue: ||f ||∞ ≤ 10 N, blue:
10 < ||f ||∞ ≤ 50 N, green: 50 N < ||f ||∞ ≤ 100 N, yellow:
100 N < ||f ||∞ ≤ 140 N). The manipulator shown in the mid-
dle is in its configuration at rest. At the EE poses [−0.45, 0]⊤

and [0.24, 0.2]⊤, the manipulator is shown with its EE orienta-
tion corresponding to minimal forces.

The purpose of this manipulator is to carry objects
or exert forces in any direction while manipulating tools.
The EE pose stiffness matrix can be expressed, with

Jxy =
[
∂xn

∂q

⊤
, ∂yn

∂q

⊤]⊤
, by [32]:

Kxy =
(
JxyK

−1J⊤
xy

)−1
(13)

To evaluate the ability of a manipulator to exert
forces, this matrix can be analyzed. In a given EE po-
sition, the stiffness λ is such that λm < λ < λM , where
λm (resp. λM ) is the smallest (resp. highest) eigenvalue
of Kxy . Figure 5 (resp. 6) depicts the distribution of λm

(resp. λM ) in the TFW with minimal forces shown in Fig.
4. It is evident that for this manipulator, λm peaks in the
right part of the TFW (which is the largest part), while
λM is lowest in this region. Therefore, in this part of the
TFW, the stiffness is the most uniform in any direction,



enabling the manipulator to exert similar forces in any di-
rection for a given maximal EE deflection. It is notewor-
thy that, for a given pose, higher tendon tensions result in
increased EE pose stiffness, in accordance with the prop-
erties of X-joints presented in Section 2.1. The following
sections will focus primarily on the smallest eigenvalue,
as it represents the minimum stiffness in any direction.
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Fig. 5. Distribution of λm (in N/m) in the TFW in position with
minimal forces
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Fig. 6. Distribution of λM (in N/m) in the TFW in position with
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4 TFW COMPARATIVE ANALYSIS
4.1 Influence of the offsets and number of modules.

The purpose of this section is to compare manipula-
tors with different numbers of modules, with or without
offsets. For more realistic comparisons, we impose simi-
lar features on all the manipulators studied:

- all modules in a given manipulator are identical with
symmetric joint ranges ±π;

- all manipulators have the same height h in their
straight vertical configuration;

- all manipulators have the same width b;
- all manipulators have the same mass mtot. We im-

pose that each module has the same mass and that
within a module, the mass is distributed between the
offset and the rest of the joint proportionally to their
height at qi = 0.

- all manipulators have the same EE pose in their rest
configuration;

- the stiffness in the rest configuration is greater than
a given minimum value Km = 1 N.m/rad to ensure
stability.

A first objective is to study the effect of offsets and
module height on the TFW size for fully actuated ma-
nipulators, i.e. with three modules. The bird neck con-
tains a large number of vertebrae. However, it is not
clear whether manipulators with a large number of mod-
ules would be the right choice, since the actuation system
of our manipulators is a highly simplified implementa-
tion of the complex muscle organization of the bird neck.
Therefore, a second objective is to study the effect of the
number of modules on the size of the TFW.

4.1.1 Manipulators compared
For given module dimensions L and b, the module

height in its zero orientation is hm =
√
L2 − b2. We fix

the height of all manipulators to be the same as in the ex-
ample of Section 3.3, which is h = 0.516 m. If there is an
offset of height ho, the total height of a module becomes
h1 = ho + hm, while the total height of the manipulator
remains fixed at h = n.h1. This implies that hm varies
with ho.

We consider several manipulators, each composed of
n = 3 modules with offsets such that ho/h1 varies be-
tween 0 and 0.8. Additionally, we examine several offset-
free manipulators with varying numbers of modules rang-
ing from 3 to 42, ensuring that n is a multiple of 3. All
manipulators are actuated with one long cable on the right
and three cables on the other sides, pulling the same num-
ber of successive modules. In all cases tested, the config-
uration at rest is defined with the same EE pose and base
bar orientation as the example in Section 3.3. The choice
of these data allows the manipulators to feature a C-shape
equilibrium configuration at rest. Although the rest con-
figuration of the bird neck has a S-shape [28], this shape
is difficult to achieve for manipulators with only 3 mod-
ules. In a C-shape configuration, the manipulator is not in
a singularity and can therefore move more easily in all di-
rections than in an I-shape configuration. Finally, to have
a stable configuration, we impose a minimum stiffness at
rest.



4.1.2 Comparison results
Figure 7 illustrates the TFW of several manipulators,

including those without offsets and those with offsets.
The TFW plots are arranged in a table with four rows
and two columns. In the first column, all manipulators
have 3 modules. The first (resp. second, third, fourth)
has no offsets (resp. ho/h1 equal to 1/2, 2/3 and 3/4).
The manipulators in the second column have no offsets,
the first (resp. second, third, fourth) has 3 (resp. 6, 9, 12)
modules. Thus, in each of the four rows, the manipulators
have the same module ratio L/b.
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Fig. 7. Influence of the presence of offsets (first column) and of
the number of modules (second column) on the TFW shape and
size. The same TFW has been reproduced in the first row.

Figure 8 shows the TFW surface for several bounds
on the forces. It is clear that the TFW surface increases
with the value of fmax. For manipulators with 3 mod-
ules, the evolution of the TFW surface in function of the

Fig. 8. Evolution of the TFW surface for manipulators with 3
modules as a function of the module ratio L/b (left) and for ma-
nipulators without offset as a function of the number of modules
(right). Plots are provided for 4 maximum actuation forces.

offset height was not clear however looking at the evo-
lution as function of the ratio L/b, it appears that larger
TFWs are obtained when L/b equal to 2 for maximal ten-
sion of 100 and 140 N or equal or less of 1.5 for tension
lesser than 50 N. It is interesting to note that this ratio of
L/b = 2, is the one that provides the smallest ratio be-
tween minimum and maximum spring elongation, while
providing the largest rotational range [20]. This study was
conducted again with larger manipulators such that, with-
out offset, the ratio L/b is equal to 2. It was observed that
increasing the offset height directly diminished the TFW
surface for maximum forces equal to or greater than 50
N. Therefore, the ratio L/b seems more significant for
the TFW surface than the offset height. For manipula-
tors with n > 3 modules, the TFW size increases with
the number of modules. There is a significant increase in
the TFW surface between 3 and 6 modules, after which
the rate of increase diminishes with the number of mod-
ules. This can be explained by the fact that L/b = 2
for 6 modules. However, the observation that the TFW
surface still increases with the number of modules, even
when L/b ̸= 2, suggests that having more modules is
more influential for the TFW surface. However, it is not
possible to increase the number of modules indefinitely,
as the spring constants increase and the free lengths de-
crease, as represented in Table 1, leading to springs that
are not technologically feasible.

For the different manipulators, the distribution of λm

is similar to that depicted in Fig. 5, as shown by a se-
lection of examples in Fig. 9. The stiffness peaks in the
center of the right part of the TFW. However, the magni-
tude of this distribution varies between the manipulators.
Figure 10 illustrates this variation by showing the maxi-
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n kmax (N/mm) kaverage (N/mm) l0 (m)

3 3.8 2.1 1.3.10−1

6 5.3 2.6 5.0.10−2

12 7.9 3.8 1.6.10−2

42 21.2 10.0 1.5.10−3

Table 1. Evolution of the spring constants and free lengths with
the number of modules. kmax = max(kl(i), kr(i)), i =
1, ..., n and kaverage = mean(kl(i), kr(i)), i = 1, ..., n.
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Fig. 10. Evolution of the maximum and mean λm and the min-
imum λM across the TFW for manipulators with 3 modules as
a function of the offset height (left) and for manipulators without
offset as a function of the number of modules (right).

mum and mean λm, and the minimum λM for all manip-
ulators considered. The mean λM is not computed due
to its tendency to approach infinity at singularities. Ini-
tially, both the maximum and mean λm and the minimum
λM increase with the number of modules. However, after
reaching 6 modules for the mean value and 12 modules
for the maximum value, the increase stops. Conversely,
the maximum λM decreases when the number of mod-
ules exceeds 6. Therefore, there appears to be an optimal
range of 6 to 12 modules for achieving higher EE pose

stiffness, particularly in the central right part of the TFW
where λm is maximum and λM is minimum.

Regarding the influence of the offset height, these
quantities generally decrease as the offset height in-
creases.

4.2 Effect of the ratio L/b

To assess the impact of the L/b ratio, this section
focuses on varying the width of the modules, b, while
maintaining the same height in its zero orientation. First,
this quantity will affect the contribution of the springs to
the stability of the static equilibrium, since the lever arm
of the spring action is directly affected by it. Similarly,
the torque produced by the contribution of the actuation
forces will increase or decrease with this quantity (the
terms of Z are linear with respect to b for q = 0 [2]).
Changing this parameter alone is not technologically re-
alistic, since an increase in manipulator width must be
accompanied by an increase in moving mass. We assume
that the moving mass is well distributed along the pla-
nar manipulator, and therefore we adjust the weight of
the manipulator proportionally to its width, keeping the
same distribution assumptions along the bars (for a mod-
ule, 3/11 of the mass in the top bar and 4/11 in the diag-
onal bars). We study the case of manipulators with 6 or
9 modules of constant height h = 0.516 m. The mod-
ule width varies from b = 0.01 m to b = 0.2 m in both
cases. The manipulators with b = 0.05 m are the same as
in the previous section with the same mass. The springs
are redefined for each design.

Figure 11 presents examples of some of the TFWs
for different L/b ratios for manipulators with 6 modules
and their corresponding stiffness distribution. Figure 12
shows the evolution of the TFW surface as a function of
the ratio L/b for the manipulators with 6 and 9 modules.
In each case it can be observed that there is a ratio value
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Fig. 11. Influence of the ratio L/b for a manipulator with 6 mod-
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The TFW are plotted on the left, and their corresponding distribu-
tions of λm are plotted on the right.

Fig. 12. Evolution of the TFW surface for manipulators with 6
modules (left) and 9 modules (right) as a function of the module
ratio L/b. The height of the manipulator is fixed, the weight of
the manipulator is proportional to its width.

that maximizes the TFW. This ratio evolves with the max-
imal forces in the tendons. For fmax = 140 we obtain a

value of approximately 2 for 6 modules, whereas for 9
modules it is around 1.7.

Therefore, it can be concluded that the TFW can be
influenced by the manipulator geometry. The optimal
value for L/b varies with the number of modules and
fmax.

For the EE pose stiffness, Fig. 11 shows a similar
distribution of λm for different values of b, but with dif-
ferent amplitudes. The evolution of the maximum and
mean λm and the minimum λM with respect to L/b for
manipulators with 6 and 9 modules is shown in Fig. 13.
It can be seen that in both cases the maximum and mean
values of λm initially increase as L/b decreases, until this
ratio approaches the geometric limit of 1, where it starts
to decrease. This decrease starts around L/b = 1.2 for 6
modules and around L/b = 1.1 for 9 modules. The mini-
mum λM , on the other hand, always increases as L/b de-
creases, tending to infinity as L/b approaches one. Thus,
the stiffness of the EE pose generally increases as the ra-
tio L/b decreases (i.e. as the width of the manipulator
increases).

In the following, the value L/b = 2 will be retained
because it is suitable in many cases to achieve a large
TFW.
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Fig. 13. Evolution of the maximum and mean λm and the min-
imum λM across the TFW as a function of L/b for manipulators
with 6 modules (left) and 9 modules (right).

4.3 Choice of the configuration at rest
Based on the previous analysis, a manipulator with

numerous modules and 4 tendons provides a large
workspace. This architecture is also suitable for draw-
ing inspiration from birds, as the number of vertebrae in
their necks typically ranges from 9 to 26. Birds prefer a S-
shape configuration at rest and an actuation scheme using
a long ventral muscle. To justify the choice of the con-
figuration at rest, we will compare three cases: straight
neck (I-shape), C-shape, and S-shape with a long ventral
muscle. We will consider three manipulators: 6 modules,



9 modules, and 12 modules.
We will consider modules with b = 0.05 m and

L/b = 2. The mass and height h of each manipulator
increase with the number of modules. The manipulator
with 6 modules is the same as in Section 3.3. In each
case, the I-shape features a straight, vertical configura-
tion where all module angles are zero. In the C-shape
configuration, the orientation of the base bar and the EE
pose have the same constraints as in Section 3.3 with the
EE pose varying along the y-axis depending on h. The
S-shape configuration has the same constraints as the C-
shape but with a base bar orientation of −π/4 instead of
π/4.

The TFWs of the manipulator with 6 modules and
their stiffness distribution are provided in Fig. 14. It can
be observed that the general shape of the TFW is sim-
ilar between the C-shape and S-shape configurations at
rest, with a broader region on the right. The primary dis-
tinction between the TFWs of the C-shape and S-shape
configurations is that the TFW of the S-shape exhibits a
rightward shift compared to that of the C-shape. Addi-
tionally, the narrow portion of the TFW in the C-shape
configuration is less noticeable in the S-shape configura-
tion. On the other hand, the I-shape configuration exhibits
a TFW that is relatively symmetric between the right and
left, even though the actuation is not symmetric. The
same findings for the TFW shape apply to the 9 and 12
modules. Regarding the EE pose stiffness distribution,
it can be observed that the S-shape is similar to the C-
shape, exhibiting higher stiffness in the right part of the
TFW. The peak in the distribution of λm appears to cover
a larger area in the C-shape configuration. In contrast,
the I-shape configuration displays an almost symmetri-
cal distribution, despite having asymmetric actuation. In
the three considered cases, the amplitude of the maximum
and mean λm appears similar, suggesting that it is inde-
pendent of the configuration at rest.

Comparing the surfaces of the TFWs, as shown in
Fig. 15, reveals some interesting results. In the case
of 6 modules, the C-shape configuration stands out as
the best for achieving the largest TFW. At lower forces
(||f ||∞ ≤ 50), the S-shape configuration comes second
in terms of desirability, but with higher forces, the I-
shape configuration yields a larger TFW than the S-shape
configuration. However, for 9 and 12 modules, the I-
shape configuration is less favorable. For 9 modules, the
S-shape configuration is more appealing at lower forces
(||f ||∞ ≤ 50), but the TFW is larger for the C-shape con-
figuration at higher forces. With 12 modules, the S-shape
configuration provides the largest workspace for the con-
sidered tendon force amplitudes.

This suggests that the S-shape becomes increasingly
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Fig. 14. Influence of the configuration at rest on the TFW for a
manipulator with 6 modules (left) and their corresponding distri-
butions of λm (right).

Fig. 15. TFW surface for manipulators with 6 modules (left),
9 modules (center), and 12 modules (right) depending on their
configuration at rest (I-shape, C-shape or S-shape).

favorable as the number of modules increases. With 9
modules, the C-shape outperforms the S-shape only un-
der high-force conditions. However, with 12 modules, it
is noteworthy that when higher possible forces are im-
posed (e.g. 200 N), the C-shape offers a larger TFW than



the S-shape. Thus, to confirm that the S-shape configu-
ration becomes more favorable with an increasing num-
ber of modules, the study was repeated with manipulators
having the same mass as the 6-X manipulator. The results
showed that the S-shape configuration becomes more fa-
vorable than the C-shape configuration starting from 21
modules for maximum forces of 140N.

In summary, the C-shape configuration at rest results
in a larger TFW than the S-shape configuration when the
maximum tendon forces are high enough. However, as
the number of modules increases, the S-shape configura-
tion becomes more advantageous for a given set of forces.

4.4 Choice of the actuation scheme
In the previous sections, we used an actuation

scheme with one long tendon on one side and an even dis-
tribution of other tendons on the other side. This actuation
scheme is not only inspired by the long ventral muscles
of birds but also provides better velocity manipulability
in some parts of the workspace than designs without long
tendons [33]. In this section, we study the influence of the
actuation scheme on the workspace.

The number of possible actuation schemes increases
with the number of modules. Therefore, we will first fo-
cus on the manipulator with 6 modules of Section 3.3. As
demonstrated in Section 4.3, the most suitable configura-
tion at rest for this manipulator is the C-shape, which will
be used for the study here. For this manipulator, we will
initially study very different actuation schemes, including
three cases where there is a long tendon on one side and
three cases where there are two tendons symmetrically
distributed on each side, such that there are two distinct
groups of modules actuated by the same tendons.

We designate the various types of actuation by nam-
ing each tendon with L (left) or R (right) based on the
side they pull the modules, with the module numbers they
actuate as indices (e.g. the manipulator with 6 modules
studied in Fig 2 (left) is R123456L12L34L56).

The TFWs of the manipulators with the studied actu-
ation schemes are depicted in Fig. 16. Figure 17 presents
the different TFW surfaces and volumes by considering
the orientation of the EE as a third dimension.

One initial observation is that for the actuation
with two tendons on each side evenly distributed
(R123R456L123L456), the TFW is slightly larger than for
the actuation with one tendon on one side and even ten-
don distribution on the other side (R123456L12L34L56),
notably along the y-axis around the equilibrium configu-
ration at x = 0. However, as shown in Fig. 17, we obtain
a volume 2.5 times smaller for R123R456L123L456 than
for R123456L12L34L56. This means that for a given posi-
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Fig. 16. Influence of the actuation on the TFW. First column, 1
long cable on the left and 3 more or less balanced groups on the
right. Second column: actuation identical on the right and left with
2 groups of modules of more or less similar size.

tion, the range of possible orientations is much smaller for
R123R456L123L456. Therefore, these actuation schemes
studied with two tendons on each side are less favorable
if one wishes to modulate the EE orientation to some ex-
tent. A second observation is that for actuations with 2
tendons on each side, the TFW decreases as the tendon
distribution becomes unequal.

For actuation schemes with one tendon pulling all the
modules on one side, we observe that R123456L12L34L56

and R123456L123L45L6 have similar TFWs in terms of
shape, surface, and volume. Thus, an even distribution of
the tendons is not the only interesting case. This can be
analyzed through bio-inspiration, [28,34] indicate that the
bird neck can be separated into 3 to 9 subgroups that do
not necessarily have the same number of vertebrae. How-
ever, the TFW of R123456L1234L5L6 is smaller than those
of the two previous ones. In this case, the distribution be-
comes too uneven to be advantageous.

The distribution of λm for the different manipulators
has not been depicted in this context. However, it closely
resembles the distribution shown in Fig. 5. Unlike the
manipulators studied in Sections 4.1 and 4.2, the ampli-
tudes remain consistent across all manipulators. There-



fore, the actuation minimally impacts the EE pose stiff-
ness.

Fig. 17. TFW surface for 6-X C-shape manipulators with differ-
ent actuation schemes (left). TFW volume for manipulators with
different actuation for a maximum force of 140 N (right). Com-
parison between actuation schemes with one long tendon on one
side and actuation with two tendons and each side

We now study more actuation schemes with a
long ventral tendon and 3 dorsal tendons pulling 3, 2,
and 1 modules distributed in different ways similar to
R123456L123L45L6. The results in terms of surface and
volume are presented in Fig. 18. It can be observed that
all these actuation schemes have fairly similar TFW sur-
faces. However, when we consider the volumes, we can
see that R123456L123L45L6 and R123456L12L345L6 are
better. Thus, the actuation with evenly distributed ten-
dons or those with a group of one joint near the head
are the most promising among the ones studied. Many
other actuation schemes can be considered, notably those
with tendons linked to non-successive joints, such as
R123456L14L25L36. However, this specific configura-
tion demonstrates a less favorable TFW, akin to that of
R12345R6L12345L6; consequently, we omit the study of
such cable routing between non-successive joints.

The study can also be extended to the 9-X S-shape
manipulator discussed in Section 4.3.

We studied manipulators with a long tendon on one
side and tendons pulling 4, 3, or 2 modules on the other
side, as well as evenly distributed tendons. We found
that configurations such as R123456789L1234L567L89,
R123456789L123L4567L89 and R123456789L123L456L789

provide the largest TFW surface and volume. Thus, sim-
ilar to the results on the 6-X manipulator, actuation with
unevenly distributed tendons is most effective when the
smallest module group is located near the head, as well as

Fig. 18. TFW surface for 6-X C-shape manipulators with differ-
ent actuation schemes (left). TFW volume for manipulators with
different actuation for a maximal force of 140 N (right). Compar-
ison between actuation schemes with one long tendon on one
side and tendons that pull groups of 3, 2 and 1 modules on the
other side.

with evenly distributed tendons.
We now explore an intermediate actuation scheme

for the 9-X S-shape manipulator that employs 2 ten-
dons on each side, such that there are 3 distinct
groups of 3 modules (R123456R789L123L456789 and
R123R456789L123456L789). These actuation schemes are
compared to the manipulator with a single long tendon
on one side and evenly distributed tendons on the other
(R123456789L123L456L789), as well as the manipulator
featuring 2 tendons on each side, forming 2 groups of 5
and 4 modules (R12345R6789L12345L6789). The TFWs of
these manipulators are shown in Fig. 19, and the compar-
ison of their TFW surface and volume is presented in Fig.
20.

In each scenario, we observe that manipulators
equipped with 2 tendons on each side exhibit a TFW with
a larger area as compared to R123456789L123L456L789,
particularly along the y-axis near the equilibrium config-
uration at rest. This result is similar to the 6-X C-shape
manipulator.

Similarly to our previous investigation on
the 6-X manipulator, R12345R6789L12345L6789

demonstrates a significantly smaller volume when
compared to R123456789L123L456L789. However,
R123456R789L123L456789 and R123R456789L123456L789

both exhibit substantial volumes, akin to that of
R123456789L123L456L789. Therefore, these two new
actuation schemes hold promise for achieving a large
TFW. It can also be noted that while the volumes of
R123456R789L123L456789 and R123R456789L123456L789

are greater than that of R123456789L123L456L789, it does
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Fig. 19. TFW for 9-X S-shape manipulators with different ac-
tuation schemes. The first one is an actuation with one long ten-
don on one side and 3 tendons evenly distributed on the other
side (R123456789L123L456L789). The second one is an ac-
tuation with 2 tendons on each side, resulting in 2 groups of 5
and 4 modules (R12345R6789L12345L6789). Third and fourth
ones are 2 actuation schemes with 2 tendons on each side, cre-
ating 3 groups of 3 modules (R123456R789L123L456789 and
R123R456789L123456L789).

Fig. 20. TFW surface for 9-X S-shape manipulators with differ-
ent actuation schemes (left). TFW volume for manipulators with
different actuation schemes for a maximal force of 140 N (right).

not necessarily indicate a higher orientation range, as
their surfaces are also larger.

5 EXPERIMENTAL RESULTS
In this section, we examine a prototype consisting of

3 modules without offset. One tendon pulls all the mod-
ules on the left, while three other tendons pull each mod-
ule on the right. The prototype features b = 0.05 m and

L = 0.1 m, with each module weighing 0.214 kg. The
springs have identical stiffness values on the left and right
parts of the joints, ranging from bottom to top at 600 N/m,
600 N/m, and 200 N/m, with a free length of 0.46 m. The
orientation angle of the base bar γ0 = 0 and the stable
rest pose forms an I-shape. Encoders on the joints enable
the computation of the joint angles q. The prototype is
shown in Fig. 21. Figure 22 gives a more detailed view
of how one joint is constructed and how the tendons are
attached.

The TFW of this manipulator is represented in Fig.
23, where the minimum force imposed is not 0 but 10
to ensure tendon tensions. The motors have a maximum
torque limitation, which results in a maximum tendon ten-
sion of 90 N with the chosen drum and gear ratio. There-
fore, the TFW has been computed for tensions ranging
from 10 to 90 N with a step of 1 N. Due to the pres-
ence of dry friction in the prototype, obtaining the exact
same joint angles q for a given force vector f is com-
plicated, and obstacles also limit the reachable EE pose.
However, two extreme poses attained by the prototype are
represented in this figure, showing that the TFW drawn is
likely correct.

For the stiffness experiment, the tendon tensions are
set to 50 N in each tendon, resulting in an equilibrium
pose of approximately q = [0◦; 3.7◦;−4.8◦]⊤ (which is
not exactly null due to the influence of pulleys through
which the tendons pass). A dynamometer is attached to
the top right part of the manipulator and is pulled hori-
zontally. The experimental setup is illustrated in Fig. 21.

The position [xr, yr]
⊤ where the dynamometer is at-

tached is defined by:

{
xr = xn + b

2 cos γn
yr = yn + b

2 sin γn
(14)

The stiffness matrix of the point where the
dynamometer is attached is given by K′

xy =(
J′
xyK

−1J′⊤
xy

)−1
with J′

xy =
[
∂xr

∂q

⊤
, ∂yr

∂q

⊤]⊤
.

The numerical value of this matrix at the considered
position and for the imposed tendon tensions is:

K′
xy =

[
87 528
528 4181

]
(15)

The eigenvalues are λm = 20 N/m and λM =
4248 N/m associated with the eigenvectors vm =
[−0.9920,−0.1261]⊤ and vM = [0.1261,−0.9920]⊤.
As expected from the manipulator configuration, the stiff-
ness is lowest near the horizontal axis.



Fig. 21. Prototype with 3 modules. The tendons are pulled with
a tension of 50 N.

Fig. 22. Module of the prototype.

As depicted in Fig. 21, the manipulator is pulled with
a force of 4.04 N, resulting in an approximate angle of
q = [−17◦,−3◦,−3◦]⊤. Dividing the applied force by
the horizontal displacement yields a stiffness of approxi-
mately 54 N/m. This value differs from the theoretical 20
N/m due to the applied large displacement and the fric-
tion. Nevertheless, the order of magnitude of this stiffness
remains similar.

6 CONCLUSION
A family of planar manipulators built upon stacking

a series of tensegrity X-joints has been analyzed in this

paper. The manipulators are actuated with four tendons,
regardless of the number of modules. The main goal of
this work was to study the influence of offsets, number
of modules, geometry of the joints, configuration at rest
of the manipulators and actuation scheme on the TFW
size. The manipulators spring constants were determined
so that the configuration at rest features the desired EE
pose with minimal stiffness to ensure stability.

We have shown that the more the number of mod-
ules, the larger the TFW. However, the increase in the
number of modules is limited by the feasibility of the re-
quired springs. In this study, it is observed that the ef-
fect of offsets did not demonstrate a significant impact.
In fact, the module ratio turned out to be of more impor-
tance for these manipulators. In particular, a ratio of L/b
close to 2 appears to be the most suitable for achieving the
largest TFW. It has been noted that the C-shape configura-
tion at rest outperforms the S-shape one only when forces
are substantial. However, as the number of modules in-
creases, for a given set of forces, the S-shape configura-
tion gradually surpasses the C-shape one in terms of TFW
surface. Regarding actuation, using two tendons evenly
and symmetrically distributed on each side resulted in a
larger workspace in terms of position but a significantly
limited orientation range. Conversely, actuation with a
single tendon on one side, with tendons either evenly dis-
tributed or unevenly distributed on the other side and the
smallest group of modules near the head, provides a large
workspace with improved orientation modulation. An
intermediate actuation scheme featuring two tendons on
each side, resulting in three equally distributed groups of
modules, was subsequently investigated. The results re-
vealed that this compromise yields a better TFW while
preserving the advantages of both previously explored ac-
tuation schemes.

The study into the stiffness of the EE pose revealed
several key findings. We observed that: (i) there exists
an optimal number of modules to achieve higher EE pose
stiffness, (ii) the offset height tends to decrease the ma-
nipulator EE pose stiffness, (iii) the EE pose stiffness
generally increases as the ratio L/b decreases, without
approaching the geometric limit too closely (iv) both the
actuation schemes and the configuration at rest have neg-
ligible effects on the minimum EE pose stiffness.

This paper serves as a preliminary investigation into
the design of a tendon-driven tensegrity manipulator.
Payloads can also be considered, as demonstrated in [35]
for 2-DoF manipulators. The TFW was calculated upon
scanning the force space. Another possibility could be
to scan the workspace. This will be the object of future
work. Furthermore, we will also study the impact of ob-
stacles. Kinematically redundant and under-actuated ma-
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nipulators should have a better capability to adapt to clut-
tered environments by shaping around obstacles.
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