
HAL Id: hal-04643096
https://hal.science/hal-04643096v1

Preprint submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pipeline Configuration Methodology for Optimizing
Neural Network Accelerators Utilization under a

Throughput Constraint
Ali Oudrhiri, Alix Munier

To cite this version:
Ali Oudrhiri, Alix Munier. Pipeline Configuration Methodology for Optimizing Neural Network Ac-
celerators Utilization under a Throughput Constraint. 2024. �hal-04643096�

https://hal.science/hal-04643096v1
https://hal.archives-ouvertes.fr


Pipeline Configuration Methodology for Optimizing
Neural Network Accelerators Utilization under a

Throughput Constraint
Ali Oudrhiri†, Alix Munier†

†Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract—Neural Networks (NNs) have gained widespread
popularity, leading to the development of dedicated NN ac-
celerators. They typically optimize key performance indicators
(KPIs) such as throughput, power, and chip area, involving trade-
offs between these factors. They usually consist of a Neural
Processing Unit (NPU) comprising parallel Processing Elements
for computations, along with on-chip memories. This paper
investigates the feasibility of enhancing processing throughput
and achieving improved trade-offs with other KPIs by deploying
a pipeline configuration with multiple instances of the NPUs.

We develop a generic methodology applicable to a wide class of
NN accelerators for determining an optimal pipeline architecture
and a layers mapping to NPUs to optimize a fixed KPI under
a throughput constraint. Our methodology is validated using an
industrial accelerator prototype for which close functions for the
evaluation of the considered KPIs are available. Our experiments
show that the pipeline significantly increases the throughput of
the system without degrading the other considered KPIs.

Index Terms—Neural networks accelerators, pipeline config-
uration, throughput enhancement, key performance indicators

I. INTRODUCTION AND RELATED WORK

Neural networks (NNs) have become incredibly popular [1].
Using a NN requires a large amount of calculation; an impor-
tant research community is working on NN accelerators chips
(see the survey of Sze et al. [2]). These chips are designed to
optimize multiple key performance indicators (KPIs), with the
most significant ones being the throughput, the power, and the
chip area. Several projects are focused on designing efficient
NN accelerators [2]–[6].

In this paper, we discuss accelerators that are composed of
a Neural Processing Unit (NPU) dedicated to computations,
along with on-chip memories (SRAMs). The accelerator NPU
comprises an array of Processing Elements (PEs) responsible
for executing multiplications and accumulations, which have
a substantial impact on the overall performance of the NPU.

By increasing parallelization through the addition of more
PEs, the processing latency of the NPU (i.e. the number
of cycles required to process one image) is improved until
a point where further parallelization on PEs does not yield
more efficient processing. Moreover, when using a unique
NPU, the images are usually processed one by one, which
limits the throughput (i.e. the number of images inferred per
second). This limitation becomes especially significant for
stream applications, where throughput plays a crucial role.

In this paper, we investigate the feasibility of enhancing
the throughput by considering several NPUs in a pipeline
configuration. We consider as input a feed-forward NN, the
description of a configurable NPU and a minimum throughput.
We also consider that close functions for the evaluation of the
considered KPI and processing time of a layer are available.
The problem is to find, for a given throughput, an optimal
pipeline architecture (number of NPUs, number of PEs per
NPU, size of RAMs) and the mapping of the NN layers opti-
mizing a specific KPI (it could be antagonistic to throughput).

We observe that these multi-criteria optimization problems
are particular versions of the basic assembly line balancing
problem [7] proved to be NP-hard [8]. We show that our
particular case can be polynomially solved using a dynamic
programming algorithm inspired by Held et al. [9]. Solving
exactly this problem can thus be done without simulations.

Many researchers have explored the pipelining of multiple
accelerators to accelerate NNs evaluation and optimize various
KPIs [10]–[18]. However, our methodology distinguishes itself
by offering several advantages. First, it allows the adaptation of
each NPU to the computation needs of layers; this capability is
not achievable using fixed heterogeneous machines as in [11]–
[13]. Second, our approach enables mapping multiple layers
onto a same NPUs resulting in optimized solutions compared
to methods assigning each layer to a separate NPU [14],
[18]. Furthermore, our approach is compatible with various
types of accelerators. Indeed, layers are processed sequen-
tially, leaving the schedule of instructions within the NPUs
unmodified and flexible. Our approach thus differs from [10],
[15], [16] where specific accelerators are employed, allowing
the computation of successive layers to potentially overlap.
We illustrate our methodology using Gemini-1 [19], for which
closed-formulas for the KPIs are available. However, it can be
applied to any other accelerator if the necessary information
is accessible. Finally, the methodology for determining the
pipeline architecture and layer mapping is both generic and
exact. Recently, Cai et al. [17] proved that grouping layers
onto different configurable NPUs considering the given KPI
can be expressed using Mixed Integer Linear Programming
(MIP) and they developed heuristics to solve approximately
this optimization problem. In contrast, our paper demonstrates
that this problem can be exactly solved using a polynomial
time-efficient algorithm, ensuring easy scalability for NNs
with numerous layers.



The goal of this study is not a standard comparison be-
tween state-of-the-art accelerators but to highlight a pipeline
methodology, applicable to a wide range of accelerators, that
optimizes different KPIs for a given throughput. The objective
is then to elaborate on the potential of the accelerator’s pipeline
methodology to improve KPIs compared to a single instance of
this accelerator with an equivalent number of PEs. This obser-
vation is made in [17], where they experimentally demonstrate
a speedup of 1.2× to 6.3× compared to benchmarked ASICs.
Additionally, thanks to Gemini-1 [19], we observe that the
pipeline significantly improves the maximum throughput of the
application, and the computing resources are better utilized.
For example, the implemented pipeline achieves a throughput
surpassing what can be achieved by a single NPU, up to 3.2×
for MobileNet [20]. Moreover, we also notice that, even when
SRAMs are taken into consideration, the KPIs of optimal
solutions using the pipeline architecture are often better. For
instance, we observe a 13% throughput improvement for the
same area or a 14% throughput improvement within the same
power budget for a VGG-like network [21]. Furthermore, low-
frequency utilization in the pipeline leads to substantial power
savings without sacrificing throughput, achieving a 43% power
gain at 38.4 inferences per second. Finally, it enables the
best energy efficiency, achieving twice the energy reduction
compared to the best energy obtained with a unique NPU.
Another key objective of this paper is to simplify the process
of identifying the optimal pipeline architecture and layer
mapping. To this end, we propose a dynamic programming
solution that is exact and scalable.

This paper is organized as follows. Section II describes
our optimization problem. Section III presents our dynamic
programming algorithm to solve it. Section IV is dedicated to
our experiments. Section V is our conclusion.

II. DESCRIPTION OF THE PROBLEM

This section introduces the problem and important prop-
erties of feasible solutions. Subsections II-A, II-B and II-C
provide brief descriptions of the NPU, the considered NNs,
and the pipeline architecture, respectively. Subsection II-D
describes a feasible mapping; subsections II-E and II-F show
the computation of the minimum SRAM capacities and the
minimum number of PE for each NPU of the pipeline for a
fixed mapping and a minimum throughput. Lastly, subsections
II-G and II-H present the considered KPIs and address the
identified problem.

A. NPU accelerator working principle

The NN accelerator consists of a configurable NPU engine,
with N adjustable parallelized PEs, and on-chip RAMs for
storing NN weights and fmaps as illustrated by Figure 1. The
partitioning of RAMs into multiple cuts or considering them
as multi-bank instances does not affect the problem at hand.
The NPU reads and writes fmaps in the FMAPS RAM. The
weights are read from the Weights RAM. To streamline the
study, we consider that the input fmaps and the NN weights

are preloaded into their corresponding RAMs. It is assumed
that the NPU process the NN layers sequentially.

PEs Array

Weights RAM

NPU

Fig. 1: Single NPU accelerator general architecture

B. Description of the NN

The fixed feed-forward NN to be processed is composed by
a set of ℓ > 0 successive layers L = [L0, Lℓ−1], as presented
by Figure 2. The intermediary fmaps are denoted by I =
[I1, Iℓ−1]; for any j ∈ [1, ℓ − 1], Ij is the fmap of size sj
produced by the layer Lj−1 and input of Lj .

L0 → L1 → L2 → L3 → L4
I1 I2 I3 I4

Fig. 2: A feed-forward NN of ℓ = 5 layers and the corresponding
intermediary fmaps

C. Description of the pipeline architecture

The pipeline is composed of n NPUs instances G =
[G0, Gn−1] and n + 2 SRAMs R ∪ {IFMAP, OFMAP} with
R = [R0, Rn−1]. The components are linked following Figure
3 all located on the same chip. The two SRAMs IFMAP and
OFMAP contain respectively the successive input and output
fmaps; the other SRAMs are dedicated to intermediary fmaps.
Each NPU Gi ∈ G contains Ni processors, while each SRAM
Ri ∈ R has a capacity denoted as Ki (in KB). If single-port
RAMs are used, it is assumed that there is no simultaneous
access to the SRAM Ri from the two NPUs Gi and Gi+1

Our study does not consider Weights RAMs since they do not
impact the optimization: indeed, the quantity of NN weights
remains constant and are distributed into the multiple RAMs.

NPU NPU NPU
G G G

Fig. 3: Overview of a pipeline architecture of n NPU

D. Layers mapping on NPUs

As the NN layers are consecutive, the natural way
to distribute them to G is using a pipeline scheme. A
mapping of the layers to a pipeline architecture of n NPU
π : [0, ℓ − 1] 7→ [0, n − 1] fulfills the following conditions:
a layer is processed by exactly one NPU, layers L0 and
Lℓ−1 are processed respectively by G0 and Gn−1, each
NPU processes at least one layer, and the mapping π is
non-decreasing, i.e. if the NPU Gi processes the layer Lj ,



then any subsequent layer Lj′ with j′ > j is assigned to an
NPU Gi′ with i′ ≥ i.

E. Evaluation of the minimum intermediary SRAMs capacity

First, we do not consider the two SRAMs IFMAP and
OFMAP since they only store respectively the input and output
fmap only fixed by the NN. We show in the following that a
minimum size K̂i(π) of the intermediate memories Ri for
i ∈ [0, n− 1] can be defined from any mapping π.

Lemma 1. For any couple (i, j) ∈ [0, n− 1]× [1, ℓ− 1] and
any layers mapping π, the intermediary fmap Ij is stored by
Ri if and only if π(j − 1) = i.

Proof. We first observe that the intermediary fmap Ij is the
output of the layer Lj−1.

Let suppose first that Ij is stored by Ri. Then, following the
communication scheme of the pipeline architecture, Lj−1 is
mapped to Gi and thus π(j−1) = i. Conversely, if π(j−1) =
i, then the output Ij of Lj−1 is stored to the output Ri of Gi,
which completes the proof.

Theorem 1. Let us consider a layers mapping π and i ∈
[0, n − 1]. Let us also consider the value j̄ (resp. j) as the
maximum (resp. minimum) value j ∈ [1, ℓ−1] such that π(j−
1) = i. Then, K̂i(π) = max(sj ,maxj∈[j,j̄−1](sj + sj+1)) is
the minimum feasible size of the SRAM Ri.

Proof. By Lemma 1, all the layers Lj−1 for j ∈ [j, j̄] are
performed by Gi and their output fmap Ij are stored by Ri.

Now, the output Ij is first solely stored by Ri. Then, for
j ∈ [j, j̄ − 1] the fmap Ij and Ij+1 need to be stored in Ri

simultaneously to evaluate the layer Lj . Thus, lower bound
on the memory size of Ri is proved.

F. Execution time, throughput and a lower bound of the
number of PE for a fixed mapping

We assume that the execution time of a layer Lj by the NPU
Gi follows pi,j = y(Lj , Ni) + c where y is a non-increasing
function of Ni and c a constant value. The execution time of
a set of consecutive layers [Lg, Lh] for 0 ≤ g ≤ h ≤ ℓ− 1 by
Gi is then expressed as:

pi,[g,h] =

h∑
j=g

y(Lj , Ni) + (h− g).c (1)

For any mapping π, we also note pi,π the total execution time
of the successive layers mapped to Gi.

In a pipeline system, n fmaps are processed simultaneously
(when the pipeline is filled). The throughput T of a mapping
π is then given by the execution time of the slowest NPU,
i.e. T = mini∈[0,n−1]

1
pi,π

. The associated period P is then
defined as P = 1

T = maxi∈[0,n−1] pi,π and has to be
minimized. In the following, P ⋆ denotes a fixed upper bound
of the period.

Theorem 2. Let us consider that for i ∈ [0, n− 1], the layers
Lj mapped to Gi follow q ≤ j ≤ h. Let also suppose that a

maximum period P ⋆ is fixed. Then, the minimum number of
PEs of Gi, denoted by N̂i(π, P

⋆), can be computed in time
complexity O(logNmax) where Nmax is an upper bound of
the number of PEs.

Proof. Since y is a non-increasing function of Ni, N̂i(π, P
⋆)

can be computed by simply using a binary search [22] on Ni.

G. Objective functions considered (or KPIs)

Several objectives φ(π, P ⋆) can be taken into consideration
to evaluate the couple (π, P ⋆) and the associated pipeline
architecture. However, we suppose that these objective can be
evaluated (by a close formula or a polynomial time algorithm).
If φi(π, P

⋆) is the restriction of φ to the layers allocated to
the NPU Gi, φ(π, P ⋆) =

∑n−1
i=0 φi(π, P

⋆).
The latency corresponds to the total execution time of the

NN. If several successive executions of the NN are launched,
the execution time of the treatment for each NPU is fixed
to the maximum period P ⋆ and thus the total latency is
Lat(π, P ⋆) = n.P ⋆. The area of the pipeline system is the
sum of the area of each NPU Gi with the corresponding
SRAM. For i ∈ [1, n−1], they depend on the size K̂i(π) of the
SRAM Ri and the number of PEs N̂i(π, P⋆) of Gi. We thus
note a(π, P ⋆) = aNPU (π, P

⋆) + aRAM (π). Another com-
monly considered objective is the NPUs power consumption
pw(π, P ⋆); it computed summing up the static and dynamic
power of each NPU in the pipeline system. The NPUs’ power
can be aggregated as they operate simultaneously. Lastly, the
energy consumed by frame is e(π, P ⋆) = P ⋆.pw(π, P ⋆). Any
other convex linear combination of KPIs can be considered.

H. Formal description of the problem

An instance of our problem is defined by a fixed NN with
the number of layers and the size of the intermediary fmaps,
the description of the configurable NPU engine, a maximum
period P ⋆ and an objective function φ to minimize. The
problem consists then to compute a mapping π that minimizes
φ. As stated by Theorems 1 and 2, the pipeline architecture
is deduced from π and P ⋆.

The described pipeline approach is generic and applicable
to any accelerator processing NN layers sequentially.

III. DESCRIPTION OF THE DYNAMIC PROGRAMMING
ALGORITHM

The problem tackled in this paper can be seen as a particular
instance of the assembly line balancing [7]. We develop in
the following an intuitive Dynamic Programming algorithm
inspired from [9] to solve it exactly.

The main idea of our algorithm is to build a valued directed
state graph H = (V,E,w) defined as follows: the set of
vertices is V = {s, p} ∪ V1 with V1 = {[g, d], 0 ≤ g ≤
d ≤ ℓ − 1}. Each vertex u = [g, d] ∈ V1 models the
successive layers [Lg, Ld] mapped to a same NPU. The set
of arcs E = Es ∪ Ep ∪ E1 is defined as:

• E1 = {a = (u, u′) ∈ V 2
1 , u = [g, d] and u′ = [d+1,m]}

models that u′ can be mapped to a NPU just after u;



• Es = {(s, u), u = [0, d] ∈ V1};
• Ep = {(u, p), u = [g, ℓ− 1] ∈ V1}.

Lastly, the valuation w : E 7→ N of the arcs is defined
following the objective φ as follows:

• For each arc a = (u, p) ∈ Ep, w(a) = 0;
• Each arc a = (u, v) ∈ Ep ∪E1 with u = [g, d] is valued

by the restriction of φ to the layers [Lg, Ld] assuming
that these layers are mapped to a same NPU.

We observe that, for some objectives as the area or the power,
the minimum number of PEs requires for each node to achieve
the requested throughput, or the minimum memory size must
be evaluated for each vertex in order to compute the valuations
w. Moreover, the throughput constraint is fulfilled by fixing a
minimum number of PEs, as stated by Theorem 2.

Figure 4 presents the state graph H for ℓ = 4 without the
valuation of the arcs. One can observe that paths of the state

s p[0, 0] [1, 1] [2, 2] [3, 3]

[0, 1] [2, 3]

[0, 3]

[1, 2]

[0, 2] [1, 3]

Fig. 4: A state graph H for ℓ = 4. The valuations are not presented.

graph H from s to p model all the feasible mapping π. For
our example, the path s → [0, 1] → [2, 2] → [3, 3] → p is
associated to the mapping π : [0, 3] → [0, 2] with π(0) =
π(1) = 0, π(2) = 1 and π(3) = 2. The minimum number
of PE’s for each NPU and the minimum memory size are
evaluated using Theorems 2 and 1. Since the arcs are valued
from the criteria restriction on each NPU, the path of minimum
value from s to p models a feasible mapping minimizing φ.
Thus, our algorithm simply builds the state graph H and finds
its shortest path using Dijkstra algorithm [22].

Theorem 3. The time complexity of the DP algorithm belongs
to O(ℓ4 log ℓ+ ℓ2 logNmax) where Nmax is an upper bound
on the number of PEs.

Proof. The number of vertices (resp. arcs) of the state graph
belong to O(ℓ2) (resp. O(ℓ4)). Moreover, for each vertex
u ∈ V1, determining the minimum number of PEs required
to reach a given throughput takes O(logNmax) instructions
(see Theorem 2), while determining the minimum memory
size requires O(ℓ) instructions (see Theorem 1). So, the
computation of H belongs to O(ℓ4+ℓ2(ℓ+logNmax)), which
is equivalent to O(ℓ4 + ℓ2 logNmax). Now, the complexity of
Dijkstra algorithm [22] is bounded by O(ℓ4 log ℓ).

IV. EXPERIMENTAL RESULTS

This section aims to present our experiments using the
DP algorithm. Subsection IV-A presents briefly the evaluation
of the KPIs for the industrial prototype Gemini-1. The NN
considered are detailed in subsection IV-B. Subsection IV-C
shows that the architecture pipeline allows reducing drasti-
cally the period, allowing the increasing of the latency. In

Subsection IV-D, it is proved that the pipeline architecture
allows adjusting as possible the whole number of PEs. Lastly,
Subsection IV-E and IV-F studies respectively the power and
the energy minimization, and shows that for small values of
the period, the pipeline architecture has better performance
even when the SRAMs are taken into account.

A. KPI of Gemini-1

We consider for our experiments the industrial prototype
Gemini-1 for which analytical close formulas for execution
times and KPIs are available [19]. Additionally, the number
of PEs in Gemini-1 is not fixed and can be adjusted before
logic synthesis. The execution time function of a layer Lj on
a NPU of Ni PEs can be set here to y(Lj , Ni) = ⌈ f(Lj)

Ni
⌉

where f is a function depending on the layer Lj parameters.
The models of KPIs were obtained using gates level sim-

ulations for the CMOSC40 technology at 25◦C using the
typical corner for a 200MHz sign-off frequency. The RAMs
considered are SPREGHD SRAMs developed by STMicro-
electronics.

The area and power of the NPU Gi follow ai,NPU (π, P
⋆) =

c0 + c1 × N̂i(π, P
⋆) and pwi,NPU (π, P

⋆) = g0(π) + g1(π)×
N̂i(π, P

⋆). The two values c0 and c1 are constants obtained
through linear regression on various hardware setups. The
functions g0 and g1 are determined through regression on
diverse hardware configurations for different NN executions,
and their values are dependent on the layer parameters.

Lastly, the synchronization between two consecutive NPUs
is ensured by temporarily interrupting them when their input
fmaps are not yet completed. Single port RAMs are con-
sidered; the NPUs do not read data in every cycle, which
allows for write operations to be performed when the read
operations are not required (readings and writings never occur
simultaneously).

B. Description of the NNs considered

Gemini-1 is designed for edge applications. It is tailored
for NNs with low RAM requirements. Our experiments do
not serve demonstrations, they highlight the practicality of
our generic approach. Importantly, while Gemini-1 is limited
to NNs used on the edge, there should be no expected
issues when using larger ones with other accelerators. This is
attributed to our allocation algorithm, which maintains poly-
nomial complexity. Three NNs were taken into consideration:
MobileNet x0.25 [20] with 27 layers predominantly compris-
ing depthwise separable convolutions, VGG-like (shown in
Figure 5), which is inspired by VGG-16 [21] and consists of 11
layers combining convolution, maxpools, and fully connected
layers (that are relatively large), and P-Net with 7 layers
[23], containing the same layers as the previous ones. These
networks have 8-bit quantized weights with weight sizes of
850,000, 526,000, and 7,900, respectively, and input feature
map (fmaps) sizes of 224x224x3, 128x128x1, and 32x32x1,
respectively. In cases where the objective φ involves the use
of RAMs, we only consider the VGG-like network, as the



other two networks were either too large, requiring progressive
loading, or too small to impact RAM performance.

3x
3x

4

2x
2x

4

3x
3x

8

3x
3x

8

2x
2x

8

3x
3x

16

3x
3x

16

16
38

4x
32

32
x3

2

32
x1

V
G

G
-l

ik
e

12
8x

12
8x

1

3
x3

x4

Convolution
filters

Fully 
connected

Maxpool
window

Fig. 5: VGG-like network structure

C. Minimizing the throughput and the latency

We start by considering the latency minimization, i.e. φ =
Lat. We observe that smaller values of the period P ⋆ are
unattainable with a single NPU and that a pipeline allows to
decrease drastically the period. In the following, we restrict
solutions to fewer than 700 PEs to remain realistic.

Table I compares the minimum period obtained for a single
NPU (in this case the latency and the period are equal
as the images are processed sequentially) vs. the minimum
period for a pipeline with its corresponding minimum latency.
Throughput can be optimized 3.2 times, 3.5 times, and 1.85

TABLE I: Minimal reachable period P ∗ and the corresponding
latency for a pipeline architecture vs. a single NPU (in cycles)

Pipeline Solution
NN Single NPU Min. P ∗ Corresp. Lat.

Mobilenet 26810 8400 176400
VGG-like 117890 34000 102000

P-Net 2720 1470 5880

times respectively for MobileNet, VGG-like, and P-Net using
a pipeline architecture. However, the pipeline’s latency is
significantly higher; for MobileNet, using 21 NPUs results in
a latency 6.6 times higher than the best single NPU latency.
Consequently, the pipeline significantly reduces the system’s
period but increases latency.

D. Minimization of Processing Elements number

We tackle in this section the minimization of the whole
number of PEs (N̂ ). Figure 6 presents N̂ depending on the
period for the three NNs. The green curves correspond to the
optimal pipeline solution obtained using our DP algorithm; the
red ones correspond to the solution using a unique NPU.

N
um

be
r 

of
 P

ro
ce

ss
in

g 
El

em
en

ts
 (N

)

min NPE using the pipeline for P-net
min NPE using the pipeline for Mobilenet
min NPEusing a single NPU for VGG-like
min NPE using a single NPU for P-net
min NPE using a single NPU for Mobilenet
min NPE using the pipeline for VGG-like

150 PEs:
@10 MHz
Single NPU:
202 FPS
Pipeline:
275 FPS

Period P*=1/throughput (cycles/inference)

^

Fig. 6: PEs number under throughput constraints for 3 NNs

As mentioned earlier, smaller values of the period cannot
be achieved considering only one single NPU. Furthermore,
we observe that the green curves are always under their
corresponding red ones. The consequence is that PEs are
underutilized for many layers for the single NPU, while the
pipeline optimal solution adjusts as possible the PEs number.

Let us consider that a frame corresponds to the total
execution of the NN for one image. For example, we observe
that for MobileNet, with 150 PEs operating at 10MHz, a single
NPU can process 202 frames per second (FPS). However,
the optimal pipeline solution for 150 PEs obtained by our
algorithm is given by n = 5, Ni = [20, 56, 18, 49, 7], and
the grouping of the layers [0], [1, 11], [12, 14], [15, 22] and
[23, 26]; the images processing rate is then 275FPS for the
same frequency, resulting in a significant acceleration of 36%.

E. Minimizing the power or the area

Let us consider first the power minimization. Two objective
functions were studied: pwNPU (π, P

⋆) and pw(π, P ⋆) =
pwNPU (π, P

⋆) + pwRAM (π) to take the SRAMs into con-
sideration. Figure 7 presents the minimum values pwNPU

(dashed lines) and pw (solid lines) depending on the period
P ⋆ at 1MHz for the optimum pipeline (green curves) or a
single NPU approach (red curves).

min chip power (RAMs+NPUs) using the pipeline
min NPUs power using the pipeline
min chip power (RAMs+NPUs) for a single NPU
min NPUs power for a single NPU

Min Ts: 33 000 cycles
4022 µW @ 1MHz

142000 cycles
@1 MHz
7 FPS for 329 µW
@ 5.49 MHz
38.4FPS for 1197µW

104500 cycles
@1 MHz
9.6 FPS for 329 µW
@ 4 MHz
38.4 FPS for 839 µW

p
o
w

e
r 

(µ
W

) 
L
e
a
k
a
g

e
 +

 D
y
n

a
m

ic
 (

fo
r 

1
 M

H
z
)

Period P*=1/throughput (cycles/inference)

Fig. 7: Power under throughput constraints for VGG-like
The main observation is that the pipeline remains interesting

for higher throughput. As example, the pipeline architecture
given by n = 2, Ni = [16, 6] along with the layers mapping
[0, 7], [8, 10] can achieve a processing rate of 9.6FPS at 1MHz
and consuming pw = 329µW; the single NPU configuration
can only process 7FPS under the same power budget.

As aforementioned, the pipeline method reduces the whole
number of PEs, or the power dedicated to NPUs. The downside
is that the pipeline requires much more memory than a single
NPU. Therefore, the pipeline solution is usually interesting
when there is a significant enough reduction in the NPU’s
power to compensate for the increase due to the added RAMs.

However, the range of applications where the pipeline
architecture is beneficial extends beyond high-throughput ap-
plications. Indeed, since dynamic power is linear with respect
to frequency (as shown in [24]), it is possible to lower the fre-
quency (voltage fixed) to decrease the power: when targeting
a throughput of 38.4FPS, the optimum pipeline architecture
consumes 839µW at 4MHz. The single NPU would need to



operate at 5.49MHz to achieve the same throughput, resulting
in a power of 1197µW (43% higher than the pipeline).

Lastly, our experiments on the area minimization (not pre-
sented here due to a lack of space) are leading to a conclusion
similar to the power (13% higher throughput can be achieved
by the pipeline for 4.12mm², for example).

F. Minimizing the energy

Figure 8 presents our experiments on the minimization
of the energy depending on a fixed period P ⋆. Overall,

min (NPU+RAMs) energy using the pipeline
min NPUs energy using the pipeline
min (NPU+RAMs) energy a single NPU
min NPUs energy using a single NPU

E
n

e
rg

y
 (

µ
j)

 (
fo

r 
1
 M

H
z
)

Period P*=1/throughput (cycles/inference)

Pipeline minimal
energy: 24 µj
66 000 cycles

Pipeline minimal
energy: 44 µj
119700 cycles

Fig. 8: Energy under throughput constraint for VGG-like
we observe that optimal solutions pipe-lining multiple NPUs
consume less energy than single NPU ones even when the
SRAMs are taken into account, particularly when facing high
throughput constraints. This is attributed to the fact that the
power of a single NPU is high under such constraints. The
minimum energy of 24µJ is achieved for P ⋆ = 66000 (the
pipeline configuration is n = 3, Ni = [26, 11, 1] along with
the mapping [0, 1, 2, 3, 4, 5, 6, 7], [8], [9, 10]), which cannot be
attained with a single NPU. It is nearly two times lower than
the best energy achieved with one NPU (44µJ). Additionally,
since the green curve is consistently below the red one, it is
possible to optimize energy for a specific throughput. Finally,
the optimization can be further improved by reducing the
frequency, as described in the previous paragraph.

V. CONCLUSION

We developed in this paper a generic methodology for opti-
mizing various KPIs using NN accelerators, while adhering to
throughput constraints. The methodology provides the pipeline
architecture and layers mapping on NPUs. The algorithms
developed are exact and efficient with low time complexity.
Through experimentation with an industrial prototype, we
demonstrated that the pipeline structure enables optimizing the
throughput beyond what a single NPU can achieve. Addition-
ally, it offers important optimization for hardware resources,
area, power, and energy. The most significant advantage is
low-frequency operation, resulting in substantial power gains.

This works also offers numerous theoretical perspectives.
For example, is it possible to extend our approach to multiples
NNs with different utilization rates, or to give the Pareto-front
for different KPIs simultaneously. Another interesting question

is the determination of an optimal mapping for a fixed pipeline
architecture. Finally, with appropriate adjustments, this method
could target IMC accelerator tiles and also support NNs with
residual layer connections.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553), 2015.

[2] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient
processing of deep neural networks: A tutorial and survey. Proceedings
of the IEEE, 105(12), 2017.

[3] Linyan Mei, Huichu Liu, Tony Wu, H. Ekin Sumbul, Marian Verhelst,
and Edith Beigne. A uniform latency model for dnn accelerators with
diverse architectures and dataflows. In 2022 Design, Automation,Test in
Europe Conference, Exhibition (DATE), 2022.

[4] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao:
Shifting vision processing closer to the sensor. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA),
2015.

[5] 2017. http://nvdla.org/ 69 76 92 94 96 97 113 114 Nvidia, NVDLA
Open Source Project.

[6] Rastislav Struharik, Bogdan Vukobratović, Andrea Erdeljan, and Damjan
Rakanović. Conna – compressed cnn hardware accelerator. In 2018 21st
Euromicro Conference on Digital System Design (DSD), pages 365–372,
2018.

[7] Nils Boysen, Philipp Schulze, and Armin Scholl. Assembly line
balancing: What happened in the last fifteen years? European Journal
of Operational Research, 301(3), 2022.

[8] Eduardo Álvarez-Miranda and Jordi Pereira. On the complexity of
assembly line balancing problems. Computers & Operations Research,
108, 2019.

[9] Michael Held, Richard M Karp, and Richard Shareshian. Assembly-
line balancing—dynamic programming with precedence constraints.
Operations research, 11(3), 1963.

[10] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer cnn accelerators. In 2016 49th Annual IEEE/ACM MICRO, 2016.

[11] Marcos Lupión Lorente, N.C. Cruz, Juan Sanjuan, Ben Paechter, and
Pilar Ortigosa. Accelerating neural network architecture search using
multi-gpu high-performance computing. The Journal of Supercomputing,
79, 12 2022.

[12] Guanwen Zhong, Akshat Dubey, Cheng Tan, and Tulika Mitra. Synergy:
A HW/SW framework for high throughput cnns on embedded hetero-
geneous soc. CoRR, abs/1804.00706, 2018.

[13] Bogil Kim, Sungjae Lee, Amit Ranjan Trivedi, and William J. Song.
Energy-efficient acceleration of deep neural networks on realtime-
constrained embedded edge devices. IEEE Access, 8, 2020.

[14] Qingyang Yi, Heming Sun, and Masahiro Fujita. FPGA based accel-
erator for neural networks computation with flexible pipelining. CoRR,
abs/2112.15443, 2021.

[15] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-
monian, John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek
Srikumar. Isaac: A convolutional neural network accelerator with in-
situ analog arithmetic in crossbars. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016.

[16] Yangyang Zhao, Qi Yu, Xuda Zhou, Xuehai Zhou, Xi Li, and Chao
Wang. Pie: A pipeline energy-efficient accelerator for inference process
in deep neural networks. In 2016 IEEE 22nd International Conference
on Parallel and Distributed Systems (ICPADS), 2016.

[17] Xuyi Cai, Ying Wang, Xiaohan Ma, Yinhe Han, and Lei Zhang.
Deepburning-seg: Generating dnn accelerators of segment-grained
pipeline architecture. In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2022.

[18] Xiaochen Peng Shanshi Huang, Shimeng Yu. Neurosim v1. 2019.
[19] Ali Oudrhiri, Emilien Taly, Nathan Bain, Alix Munier, Roberto

Guizzetti, and Pascal Urard. Performance modeling and estimation of a
configurable output stationary neural network accelerator. In 2023 IEEE
35th SBAC-PAD.

[20] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.



[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv 1409.1556, 09 2014.

[22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2022.

[23] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint
face detection and alignment using multitask cascaded convolutional
networks. IEEE Signal Processing Letters, 23(10), 2016.

[24] Tarek Darwish and Magdy Bayoumi. 5 - trends in low-power vlsi design.
In WAI-KAI CHEN, editor, The Electrical Engineering Handbook.
Academic Press, Burlington, 2005.


