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Abstract. Purpose. Deep learning is the standard for medical image segmentation. However, it may encounter
difficulties when the training set is small. Also, it may generate anatomically aberrant segmentations. Anatomical
knowledge can be potentially useful as a constraint in deep learning segmentation methods. In this paper, we propose
a novel loss function based on projected pooling to introduce soft topological contraints. Our main application is the
segmentation of the red nucleus from quantitative susceptibility mapping (QSM) which is of interest in parkinsonian
syndromes.

Approach. This new loss function introduces soft constraints on the topology by magnifying small parts of the
structure to segment to avoid that they are discarded in the segmentation process. To that purpose, we use projection of
the structure onto the three planes and then use a series of MaxPooling operations with increasing kernel sizes. These
operations are performed both for the ground-truth and the prediction and the difference is computed to obtain the loss
function. As a result, it can reduce topological errors as well as defects in the structure boundary. The approach is
easy to implement and computationally efficient.

Results. When applied to the segmentation of the red nucleus from QSM data, the approach led to a very high
accuracy (Dice 89.9%) and no topological errors. Moreover, the proposed loss function improved the Dice accuracy
over the baseline when the training set was small. We also studied three tasks from the medical segmentation decathlon
challenge (MSD) (heart, spleen, and hippocampus). For the MSD tasks, the Dice accuracies were similar for both
approaches but the topological errors were reduced.

Conclusions. We proposed an effective method to automatically segment the red nucleus which is based on
a new loss for introducing topology constraints in deep learning segmentation. The code is publicly available at
https://github.com/GuanghuiFU/TopologyLoss/.

Keywords: Segmentation, Loss function, Anatomical priors, Topology, Connected components, Deep Learning.
*Corresponding author: O. Colliot (olivier.colliot@cnrs.fr)

1 Introduction

Deep learning is the main approach for medical image segmentation.1 However, deep learning
models often need large labeled datasets for training. In the medical image segmentation, obtain-
ing labeled data is an expensive and tedious process since it requires voxel-wise annotations.2 Fur-
thermore, anatomically aberrant segmentations may still be generated even with sufficient training
data.3, 4 For medical segmentation, plenty of anatomical information is available. Medical experts
extensively use their anatomical knowledge to perform manual segmentations. This is particularly
useful when the target boundary is not clearly visible in the image. Prior knowledge may include
information about the shape, size, location, texture or topology of the target. In particular, topol-
ogy is an example of important prior anatomical information as many anatomical structures have

1

https://github.com/GuanghuiFU/TopologyLoss/
olivier.colliot@cnrs.fr


fixed topological characteristics.5 Thus, incorporating prior knowledge into deep learning models
has the potential to improve their performance. In particular, this may avoid anatomically aberrant
segmentations, which are highly problematic since they reduce the confidence of the users even
when the voxel-wise accuracy is high.

In deep learning, a natural way to use prior knowledge is to propose new loss functions.3

Various types of prior knowledge have been introduced as novel loss functions including bounding
boxes,6 area and size,7 perimeter,8 topology9–11 or skeleton of the target structure.12 Regarding
topology, existing approaches rely on persistent homology (PH),13 to construct loss functions.9–11

This is a principled way to constrain the topology. However, calculating PH of the segmentation
prediction on each epoch is particularly time-consuming, especially when dealing with 3D data.
There is thus a need for computationally efficient loss functions.

Our target application is the segmentation of the red nucleus of the brain from quantitative
susceptibility mapping (QSM) data. The red nucleus is a structure of the midbrain which plays an
important role in parkinsonian syndromes.14 The red nucleus is rich in iron. QSM is therefore well
adapted to study it since it provides an indirect measure of iron content from magnetic resonance
imaging (MRI) acquisitions. Thus, automatic segmentation of the red nucleus from QSM can be
useful for studying and assisting the diagnosis parkinsonian syndromes. Several approaches have
been proposed for automatic segmentation of the red nucleus from QSM data.15–20 However, to
the best of our knowledge, none of them has assessed the topological correctness of the results.
Moreover, these papers only includes healthy participants and were thus not evaluated in patients
with parkinsonism.

In this paper, we propose a novel approach to introduce soft topological constraints for seg-
mentation of the red nucleus from QSM data. To that purpose, we use projection and pooling
operations to obtain multiscale representations of both the ground-truth and the predicted segmen-
tations. Specifically, we first perform maximum projections onto the three planes (axial, coronal
and sagittal) which concentrate together the errors scattered in different slices. We then use Max-
Pooling with different kernel sizes to construct a series of simplified representations of the ground-
truth and predicted segmentations. This allows magnifying small errors, such as in particular small
erroneous connected components. We first experimented on controlled synthetic data to validate
the generality of our method, and then focused on our target application which is the segmentation
of the red nucleus from QSM. We finally also performed an evaluation on three tasks from the
medical segmentation decathlon (MSD).21

A preliminary version of this work was published as a conference paper.22 The present article
extends the previous work with: i) a more detailed overview of related works; ii) a more extensive
motivation and methodological description of the approach; iii) a heuristic to choose the kernel
sizes; iv) experiments with varying the size of the training set; v) comparison of our method with a
connected component preserving post-processing operation. The rest of this paper is organized as
follows. In Section 2, we describe related work. Section 3 describes the proposed method and its
implementation. Section 4 presents the experiments and results. The paper ends with a discussion
(Section 5).

2 Related work

The standard approach for deep learning-based segmentation is to supervise at the voxel level,
using a voxel-wise loss (typically cross-entropy23 and Dice loss24). However, this may gener-
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Fig 1 This diagram describes the construction of the topological loss function. For both the ground-truth segmentation
and the prediction, we build a multiscale characterization using two steps. We first perform 3D MaxPooling to project
the object onto the axial, sagittal and coronal planes. We then use 2D MaxPooling with different kernel size to build
a multiscale representation (due to space limitation, we only show the 2D MaxPooling steps for the axial projection,
but the process is the same for the sagittal and coronal projections). Counting the pixels in the output of each 2D
MaxPooling provides a series of numbers (one for each scale) which constitute the characterization of the structure
to segment. The topological loss function is then the average across scales of the differences between the numbers
obtained for the ground-truth segmentation and that obtained for the prediction.

ate anatomically aberrant segmentations. To overcome such problems, one can introduce prior
anatomical knowledge in the segmentation procedure. In particular, prior knowledge can be in-
troduced through new loss functions. Note that the use of prior knowledge for segmentation is a
classical topic in medical image computing that goes way beyond the design of alternative losses25

or even deep neural networks.26–29 In the remainder of this section, we provide a non-exhaustive
overview of existing loss functions for introducing prior knowledge. We first briefly deal with
shape, size and texture (Section 2.1) and then focus specifically topological constraints (Section
2.2). More extensive surveys can be found in.3, 5, 30

2.1 Loss functions for integrating prior knowledge

Prior knowledge includes various types of information including shape, size, location, texture or
topology.

Huang et al.31 proposed a loss function based on a probabilistic atlas which includes prior
information on location and shape of the organs. Kervadec et al.6 proposed a weakly supervised
learning segmentation approach that introduces several global constraints derived from box anno-
tations. They assume that there must be a vertical and horizontal line across the foreground region
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in the bounding box. Chen et al.7 proposed a loss function which can incorporate area and size
information. Such a loss function may be beneficial when the dimension of the target object is
stable. However, it may not be adapted to targets with a very variable size such as brain tumors
or anatomical structures which are affected by a pathology (e.g. atrophy due to a degenerative
process). Shit et al.12 proposed a loss function named clDice which adds supervision from the
skeleton of the target structure. It is beneficial for accurate segmentation of tubular structures such
as blood vessels. El Jurdi et al.8 proposed a perimeter-based medical image segmentation loss
function. This soft optimization of contour boundaries allows the network to take into considera-
tion border irregularities. However, it is not yet adapted to the segmentation of multiple connected
components.

2.2 Topology-based loss functions and models

Several topology-based loss functions are based on persistent homology (PH). PH is an algebraic
method for characterizing the topology of shapes and functions.13 The basic idea of PH is to
represent the data with a family of complexes, and encode the change of the topological features
(such as the number of connected components, holes, voids) across different scales, with a barcode
or persistence diagram.32 More details on PH can be found in Edelsbrunner et al.13, 33 and Pun et
al.34

Clough et al.10 proposed a topological loss function based on PH. They treat 2D images or
3D volumes as cubical complexes, and use the topology layer9 to extract the birth and death of
topological features of different dimensions from the predictions for supervision. Although the
approach can provide substantial gains in segmentation accuracy, its computational cost may be-
come prohibitive, at least in 3D.10 Hu et al.35 proposed a topology-preserving loss function based
on PH. This method adjusts the prediction by PH-based thresholding. However, it does not work
if the model fails to detect the target region because the adjustment of the threshold does not com-
pensate for the missing region. In other words, this method can only remove erroneous connected
components and cannot cope with the missing ones. Byrne et al.36 designed a new loss function
for multi-class segmentation based on PH, extending from binary setting to consider a richer set
of topological priors, including hierarchical class containment and adjacency. It is an extension of
the work of Clough et al.10 to the multi-class setting. Nevertheless, its computational cost is also
very high. Another method based on PH is that of Santhirasekaram et al.37 who proposed a method
called Topology Preserving Compositionality. The method constrains the model’s latent space to
a dictionary of components, ensuring topological accuracy through PH. All the aforementioned
works are based on PH.

However, the involvement of PH makes them computationally expensive, in particular in 3D.
Moreover, PH is applicable when the topology of the target object is precisely defined. For in-
stance, one needs to know the exact number of connected components and this needs to be reliable
across subjects. It may not be adapted for objects with imperfections such as random cuts that can
be for example found in blood vessel ensembles. For such cases, a soft topological constraint may
be beneficial.

Mosinska et al.38 proposed a new loss function to control the higher-order topological fea-
tures of linear structures. They use pretrained VGG19 to extract feature maps at several layers,
and minimise the difference between the ground-truth and the prediction. But the so-called high-
level features are not clearly defined, and the backbone network pre-trained from ImageNet39 may
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not generalize well to medical images. BennTaieb et al.40 introduced a loss function which can
represent topological (containment and exclusion) and geometric priors (boundary smoothness).
However, it is not clear whether these constraints can be encoded in a binary segmentation task or
whether it can be applied to 3D data. He et al.41 proposed a cascaded fully convolutional network
(FCN) framework to segment eight retina layers while preserving the topological relationships be-
tween the layers. However, the idea of considering layer nesting as constraints may not generalize
to other tasks. Hu et al.42 proposed a network which based on discrete Morse theory (DMT)43

for topological accuracy by identify global structures, including 1D skeletons and 2D patches.
However, they only dealt with 2D images.

2.3 Positioning of our contribution

Our aim was to propose a simple and computationally efficient way to introduce constraints in
deep learning based segmentation. It aims at being applicable with any deep learning architecture.
The constraints are soft in the sense that we don’t ensure but only favor topological correctness.
Moreover, as we will see, the proposed approach not only constrains the topology but also the
boundary of the regions. Compared to previous works based on PH, the main limitation is that
we do not guarantee an exact topology: the number of connected components are only approxi-
mately constrained. Furthermore, we do not deal with other topological features such as voids or
holes. However, it has the advantage of being simple to implement and computationally efficient.
Moreover, it does not require to have a fixed and predefined topology.

3 Proposed method

The idea underlying our loss function is to characterize the structure to segment at different scales.
We compute a series of numbers (one for each scale) that is the characterization of the segmen-
tation. Characterizations are computed for both the ground-truth and the predicted segmentation.
The characterizations of the ground-truth and the prediction are compared to produce the loss func-
tion. The characterization is computed using two steps. We first perform a maximum projection of
the 3D segmentation into 2D space according to three views (axial, sagittal and coronal). We then
characterize the result using 2D pooling layers with different kernel sizes (corresponding to differ-
ent scales). This produces the characterization which contains a number for each scale. These two
steps are summarized on Figure 1. The topological loss is then computed as the average across
scales of the differences between the ground-truth and the prediction.

3.1 Projection by 3D-MaxPooling

The first step is to create 2D representations of the 3D structure to segment. Specifically, we
perform a maximum projection onto three planes (axial, coronal, and sagittal) by 3D-MaxPooling.
The projections of the prediction onto the axial, sagittal and coronal planes are denoted respectively
as Paxial, Psagittal and Pcoronal and computed as follows:

Paxial = MP3
kaxi(Vw,h,s)

Psagittal = MP3
ksag(Vw,h,s)

Pcoronal = MP3
kcor(Vw,h,s)

(1)
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where Vw,h,s denotes the 3D volume, w, h and s are the width, height and number of slices of
the volume respectively, MP k

3 denotes the 3D-MaxPooling with kernel k and kaxi = (1, 1, s),
ksag = (w, 1, 1) and kcor = (1, h, 1) are the kernels for projecting onto the axial, sagittal and
coronal planes respectively. Note that Paxial is of dimension (w, h), Psagittal is of dimension (h, s)
and Pcoronal is of dimension (w, s). The projections of the ground-truth are denoted respectively
as Gaxial, Gsagittal and Gcoronal and are computed in the same way as for the prediction.

The above procedure concentrates the overall object along each axis. The idea is to be able to
magnify the effect of small errors on the overall loss. Indeed, a small segmentation error (such as
for example a small extra connected component) has little effect on the overall loss. On the other
hand, if we project it to 2D, its impact will be magnified. For example, the proportion of a voxel
mispredicted in the volume Vw,h,s is 1

w×h×s
, while if we project it onto the axial plane, the error

proportion is 1
w×h

. Thus, projecting the prediction onto axial planes augments the weight of this
error by s times.

Note that using these projections does not give a theoretical guarantee to achieve a correct
topology. For instance, a hole within an object would not be detected. Another example is that one
erroneous connected component can in principle be hidden by true connected components along
each of the projection axes.

3.2 Topology characterization using 2D-MaxPooling across multiple scales

We characterize the topology of the projected view by using a series of 2D-MaxPooling with
different kernel sizes (and different strides as well, the strides value being equal to the kernel size
value).

By doing so, we increasingly magnify the importance of small areas. In the ground-truth, these
can can be genuine but tiny anatomical details. In the prediction they can be small errors.

We perform the series of 2D-MaxPooling for the projections onto axial, sagittal and coronal
plane and for both the ground-truth (Gaxial, Gsagittal, Gcoronal) and the prediction (Paxial, Psagittal, Pcoronal),
as follows:

P k
topo =|MP k

2 (Paxial)|+ |MP k
2 (Psagittal)|+ |MP k

2 (Pcoronal)|
Gk

topo =|MP k
2 (Gaxial)|+ |MP k

2 (Gsagittal)|+ |MP k
2 (Gcoronal)|

(2)

where MP k
2 is the 2D-MaxPooling operation with kernel size k (and stride k) and |I| denotes the

number of non-zero pixels in image I .
We then compute the absolute difference between P k

topo and Gk
topo for each kernel size. The

topology loss Ltopo is obtained by averaging over all kernels and over the three projection planes.

Ltopo =
|
∑

k∈K Gk
topo − P k

topo|
3× |K|

. (3)

where K is the set of kernels and |K| is the number of kernels.
In the implementation, we chose the different kernel sizes based on the characteristics of the

task. The details of the kernel selection strategies are introduced in Section 3.4.
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3.3 Final loss

The loss function is a combination of the voxel-wise Dice loss and the proposed topological loss
weighted by a hyper-parameter λ:

Ltotal = Ltopo + λLdice. (4)

λ can be a fixed or dynamic hyperparameter. In our experiments, we used a fixed value of λ = 1.
Similar to reference,10 pre-training with a standard loss is necessary before using our loss

function. This is because if the network is randomly initialized, excessive topological errors (which
can be in the hundreds) will make the network unable to fit. So we first pre-train with the Dice loss
and then fine-tune with our loss function which combines Dice and topological losses.

3.4 Kernel size selection

In our loss function, the kernel sizes of the 2D-Max-Pooling layer are hyperparameters, which
can be adjusted according to the characteristics of the target structure. Here, we propose a simple
heuristic to choose the kernel sizes. More sophisticated approaches could be used in the future.
The largest kernel size k1 is equal to the width of the image projected onto the axial plane divided
by four and by the number of connected components in the target. Then, we iteratively define
smaller kernels kj as kj−1

2
if this results in an even number or kj−1

2
− 1 otherwise. We stop the

process when kj is strictly smaller than a threshold T defined as follows. T approximates the size
of the projection smallest structure among all participants in the training set. (More precisely, it
is equal to T = mini=1...p(min(G

(i)
axial, G

(i)
sagittal, G

(i)
coronal)) where p is the number of participants

in the training set, G(i)
axial (resp. G

(i)
sagittal and G

(i)
coronal) is the axial (resp. sagittal and coronal)

projection of the target structure of participant i. The kernel size results obtained are as follows.
For red nucleus: 2, 4, 10, 20. For spleen: 10, 20, 40. For heart: 10, 20, 40. For hippocampus: 4, 8,
16.

4 Experiments and results

4.1 Implementation

Our loss function is compatible with any model architecture. In our experiments, we used the
standard 3D-UNet.44 Since the training sets are very small in some experiments, we used early
stopping in the training process to avoid over-fitting. The early stopping was done using only the
validation set in order to obtain an unbiased performance on the test set. We did not use data
augmentation or hyperparameter search techniques. In all experiments, the hyperparameters were
identical.

As mentioned in Section 3.3, training is done in two parts: i) pre-training with the Dice loss; ii)
fine-tuning with the proposed combined loss. For pre-training, the learning rate was 10−3, for fine
tuning it was 10−4. For all real datasets, pre-training and fine-tuning comprised each 150 epochs.
When comparing the proposed loss to the standard Dice loss, in order to have a fair comparison,
the total number of training epochs was the same in both cases (300 epochs for Dice loss, 150+150
epochs for the proposed loss). We always used the Adam optimizer.45
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We performed the following preprocessing steps: reshaping images to the same size for each
task and min-max normalization. To that purpose, we used the open-source Python library Tor-
chIO46 1. Our code was developed based on the PyTorch framework.47

4.2 Datasets

We evaluate the approach on synthetic data and then on several medical imaging datasets. The first
medical imaging dataset is our main application where the task is to segment the red nucleus from
QSM (Quantitative Susceptibility Mapping) data. The others are three publicly available datasets
which are part of the Medical Segmentation Decathlon (MSD)212 (heart, hippocampus and spleen).

4.2.1 Synthetic datasets

To test the performance of our loss function in different situations and explore the limitations,
we synthesize a series of parameter controllable datasets. The controlled synthetic datasets aim
at studying the performance as a function of different characteristics of the target: size, distance,
number of components, and noise. The process for synthesizing data is as follows: first, we gener-
ate the 3D volume containing different numbers of 3D spheres following the strategies described
below. Each of the spheres is treated as the target segmentation region (i.e., ground truth) of the
synthesized data. Then, we used the TorchIO46 package to generate synthetic images by adding
random noise and blurring the 3D volumes under default settings (excluding the Noise strategy
generation). For the test set we replaced the starting position of the spheres’ center to avoid re-
peating the same information as found in the training set. The next steps are the same as before.
All synthetic images are standardized to a size of 160× 160× 48. Specifically, the 5 strategies to
generate the synthetic datasets are as describe as follows: we generated five controlled synthetic
datasets as follows:

1) Scale. The target is composed of two spheres. The scale of one of the spheres varies from
0.2x to 3.9x, providing insight into how scale variations impact performance.

2) Shift. Here, the target also consists of two spheres. We systematically modify the distance
between the spheres’ boundaries from 0 to 39 voxels in single increments of 1, examining
the effect of spatial separation on our model.

3) Scale+shift. In this configuration, the target remains with two spheres. As one sphere’s
size changes, the gap between the two spheres also increases, allowing us to evaluate the
combined effects of scalinge and shifting..

4) Components. The target in this dataset varies from 1 to 8 components, randomly placed.
To account for the potential merging of components as their number grows, we reduced the
initial radius compared to other datasets. The scale ratio is randomly set between 1x and 2x,
challenging the model with a diverse component structure.

5) Noise. We introduce Gaussian noise to the Shift dataset volumes, varying the noise’s stan-
dard deviation across five levels: 0.01, 0.05, 0.1, 0.3, 0.5. This dataset tests the model’s
robustness against varying degrees of noise.

1https://torchio.readthedocs.io/
2http://medicaldecathlon.com/
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The examples of the different controlled synthetic datasets are depicted in Figure 2, with the noise
task showcasing training samples at different noise levels. The characteristics of these synthetic
datasets are summarized in Table 1.

Fig 2 Controlled synthetic datasets. Projection in the axial plane for the different targets of the synthetic datasets. For
noise category, we present training data to represent different levels of noise.

Table 1 Synthetic datasets characteristics.
Task Train Validation Test Initial Radius
Scale 25 7 40 10
Shift 25 7 40 5
Shift+scale 25 7 40 5
Components
#C: 1-8

32
(4/class)

32
(4/class)

80
(10/class) 3

Noise-0.01 25 7 40 5
Noise-0.03 25 7 40 5
Noise-0.1 25 7 40 5
Noise-0.3 25 7 40 5
Noise-0.5 25 7 40 5
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4.2.2 Red nucleus dataset

The task was to segment the red nucleus from Quantitative Susceptibility Mapping (QSM) brain
images.48 QSM is an indirect method for imaging iron levels in vivo.49 The red nucleus has ferro-
magnetic properties and QSM is thus an imaging technique that is well-adapted to its visualization
and segmentation. The dataset includes a total of 80 participants, including 18 healthy controls, 46
patients with early Parkinson’s disease (i.e. with a disease duration below 4 years), and 16 patients
with prodromal parkinsonism (idiopathic rapid eye movement sleep behavior disorder-iRBD), re-
cruited between May 2015 and January 2019. The institutional ethical standard committee ap-
proved the study (CPP Paris VI/RCB: 2014-A00725-42). All participants gave written informed
consent. The dimensions of the images are: 160× 160× 128, and the voxel size is: 1× 1× 1mm3.
QSM images were manually segmented by a trained neuroradiologist (L.C.). Figure 3 shows an
example of QSM data with the red nucleus segmentation.

Fig 3 A QSM image displayed from axial, coronal, and sagittal planes together with the manual segmentation of the
red nucleus.

4.2.3 Datasets from the medical segmentation decathlon

We used three datasets from the medical segmentation decathlon:21 spleen, heart and hippocampus.
The spleen task is to segment the spleen in the portal phase in a CT scan. The heart task is to
segment the left atrium in an MRI scan. The hippocampus task is to segment the anterior and
posterior parts of the hippocampus in an MRI scan.
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4.3 Dataset splits

Each dataset was split into training, validation and test sets. The splits were done at the participant
level to avoid any data leakage.50 The number of images in each split is reported in Table 2.
Moreover, the models were trained with different percentages of the training set to explore the
performance with varying training set sizes, while the validation and test sets were left unchanged.

Table 2 Splits of the medical imaging datasets into training, validation and test sets. MSD: Medical Segmentation
Decathlon.

Dataset Task Train+val Test Image Size
Red nucleus Red Nucleus 51+13 16 160,160,128

MSD
Spleen 25+7 9 160, 160, 128
Heart 12+4 4 160, 160, 128
Hippocampus 166+42 52 64, 64, 48

4.4 Evaluation

We characterized the performance at both the voxel level and the topological level. For each
metric, we report the mean and the 95% confidence interval computed using bootstrap (with 5000
resamplings).

4.4.1 Voxel level evaluation

Voxel-level performance was evaluated using the Dice score and the 95 percentile Hausdorff dis-
tance (95%HD) which are defined as follows. Let X (resp. Y ) be a segmentation and x (resp. y)
be a voxel in X (resp. Y ).

The Dice score is: 2|X∩Y |
|X|+|Y | .

The 95%HD is defined as:

95%HD(X, Y ) = max(Perc95
x∈X

d(x, Y ),Perc95
y∈Y

d(y,X))

where d(x, Y ) = miny∈Y d(x, y).

4.4.2 Topological level evaluation

Topological errors may have only a small impact on voxel-level metric if they are of limited size.
However, topological errors make the predictions anatomically inconsistent. We thus evaluated the
connected components (CC) at the 3D level. The 3D CC error is simply defined as the absolute
value of the difference between the number of CC in the ground-truth and that in the prediction.
We used scikit-image 3 to compute the number of connected components.

3https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.
label
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4.5 Compared approaches

In the following, we compare four approaches. The first two are the standard Dice loss (referred to
as baseline) and the proposed approach. In addition, we performed the following post-processing
to remove small erroneous connected components: when the target object has n connected compo-
nents in the ground-truth, we kept only the largest n connected components. The four approaches
are referred to as: i) Baseline; ii) Baseline+Post (when post-processing is applied); iii) Proposed;
iv) Proposed+Post (when post-processing is applied).

Axial Ground Truth Axial Prediction Coronal Ground Truth Coronal Prediction Sagittal Ground Truth Sagittal Prediction

Subject 01 
• Dice: 90.07 
• 3D CC error: 0

Subject 02 
• Dice: 90.54 
• 3D CC error: 0

Fig 4 Examples of automatic and ground-truth segmentation for the red nucleus using the proposed approach for two
subjects. The figure also displays the evaluation metrics: Dice and 3D connected components (CC) error.

4.6 Results

4.6.1 Synthetic datasets

Results on the controlled synthetic datasets are shown in Table 3. One can observe that the average
performance is high for the different approaches. This is not surprising given that the targets are
simple shapes (spheres). More interestingly, we can study the performance as a function of the
different controlled parameters. As shown in Figure 5 (a), our model is stable for components of
different sizes. When the scaling ratio is 0.2, the radius of the sphere is only 2 voxels (start radius =
10, scale ratio= 0.2), and a Dice score of 0.969 can still be achieved. Our performance also trended
upwards as the components was scaled up, with sphere radius between 15 and 27 and dice score
have greater than 0.99 at scales in the 1.5-2.7 range. This is because each layer of pooling kernels
(kernel size = [4, 5, 8, 10, 20]) starts to provide useful topology information at different scales;
while at scale 0.2, components with a radius of 2 voxels will be correspond to the same kernel size,
in which case the multi-level kernel combination will only provide a single information. However,
at small scales we can still achieve a Dice score of 0.97. Conversely, when the components are
too large, the small kernel plays a limited role, which gradually masks the advantage of our loss
function. In general, our loss function has stable performance and works with different element
sizes.

We can find the performance under the “Shift” category in Figure 5 (b), our model is stable
under different distance between target regions. Positive and negative axes mean that one of the
element moves to the right or left with respect to the other one. The performance degradation
for a distance of zero is because the two components are so close that they merge into one. The
1-component case is not included in the training set, so our topological loss tends to separate the
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Table 3 Experiments on test set of synthetic dataset.
Task Loss Dice 95%HD 3D CC

Shift
Baseline 96.53 0.80 0.0
Topology 95.65 1.000 0.03

Scale
Baseline 98.36 1.081 0.03
Topology 98.35 0.95 0.03

Shift+Scale
Baseline 92.85 0.850 0.35
Topology 94.13 0.950 0.08

Components
Baseline 96.30 0.8131 0.09
Topology 95.90 0.9750 0.05

Noise-0.01
Baseline 98.87 0.00 0.0
Topology 99.19 0.00 0.0

Noise-0.05
Baseline 97.77 0.225 0.0
Topology 98.42 0.00 0.0

Noise-0.1
Baseline 94.00 1.000 0.0
Topology 97.14 0.9737 0.0

Noise-0.3
Baseline 92.28 1.000 0.0
Topology 94.27 1.000 0.0

Noise-0.5
Baseline 0.86 1.353 0.0
Topology 0.886 1.000 0.03

two components. Although we have an error of 0.03 in the 3D topology loss, this error proves the
reliability of our loss function. Because in the case of actual medical data, there is almost no case
that the number of organs is different between populations. Learning by using our loss function,
the prior knowledge that the dataset contains 2 components can be summarized from the training
set. This kind of prior knowledge summary does not imply that our loss function is inflexible, as
our loss function still performs better with a random number of components, and detailed analysis
can be seen below.

Our above conclusion is verified again by the scale+shift experiment. When we change the
two variables of distance and size at the same time, the difficulty of the task increases, and our
advantages can be reflected at both the voxel and topology level.

For shift, scale, and noise-related tasks, since the shape and topology of the target are fixed, all
models perform well at the voxel level for these tasks. Difficulty at the topology level increases
with the number of components, as this examines the flexibility of the algorithm. As shown in
the experimental results, all loss functions have topological errors. But the advantage of our loss
function can be reflected in this task that topology loss will nearly have no unexpected predictions
that cause topology error. We have traded negligible performance loss for topological correctness,
which is often more important for medical tasks.

Adding more noise means increasing the difficulty of the task, making its boundaries indis-
tinguishable. As can be seen from Figure 5(d), as the noise increases, the performance of all
the models gradually decreases. The Dice loss is more sensitive to noise, which is reflected in
the performance degradation at noise levels of 0.3 and 0.5. For our loss function, although the
performance is also degraded, it performs better than the dice loss function, across all noise levels.
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Fig 5 Voxel level performance per volume on 4 subtasks: (a) Scale, (b) Shift (c) Scale+shift (d) Noise. For (d), the
dice means the pretrained model, dice_p and topology_dice_p mean fine-tuning models.

4.6.2 Red nucleus dataset

Results are presented in Table 4. Some examples of automatic segmentations with the proposed
approach are shown in Figure 4. The voxel-level performance is very high when training with the
full dataset of 51 participants (Dice around 90%, 95%HD of 1) for both the proposed approach
and the baseline. However, our approach increased the topological correctness: there was no 3D
CC error while there was an erroneous CC in about one third of the participants for the baseline.
Moreover, when training only on a subset (from 7.5% to 30% of the original training set), the
voxel-level performances are substantially higher for the proposed approach which allows to im-
prove the Dice score by 6 to 16 percent points. One can also appreciate that the confidence intervals
are non-overlapping, indicating that the improvement is statistically significant. Furthermore, the
95%HD error is also substantially reduced. 3D renderings obtained with baseline and proposed
approaches are shown in Figure 6. One can observe that the proposed approach removes erroneous
connected components with the need for post-processing. When post-processing is applied, erro-
neous connected components are removed in both cases but the Dice is higher for the proposed
method.

The effect of the topological loss is illustrated on Figure 7. To ensure the consistency of the
experiments, we systematically trained for 150+150 epochs. However, from this figure, we can see
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Dice score: 60.67

3D CC error: 2


Dice score: 61.82

3D CC error: 0


Dice score: 84.45
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3D CC error: 0


Dice score: 62.25

3D CC error: 4


Dice score: 74.42

3D CC error: 0


Dice score: 84.12

3D CC error: 0


Dice score: 84.12

3D CC error: 0


Ground Truth
 Baseline
 Baseline+post
 Proposed+post
Proposed


Fig 6 Comparison between the baseline and the proposed approach for red nucleus segmentation when training from a
small sample (7.5% of the training set). One can observe that the proposed approach allows to remove most erroneous
connected components without the need of post-processing. After post-processing, the proposed approach still allows
to substantially improve the Dice metric.

that our loss function can improve the prediction results with only a few epochs.

Ground Truth
 Pre-training
 Topology: 1e
 Topology: 2e
 Topology: 3e


Dice score: 64.73 

3D CC error: 4.0


Dice score: 76.68 

3D CC error: 2.0


Dice score: 81.41 

3D CC error: 0


Dice score: 84.13 

3D CC error: 0


Dice score: 64.02 

3D CC error: 3.0


Dice score: 72.51 

3D CC error: 1.0


Dice score: 80.25 

3D CC error: 1.0


Dice score: 84.26 

3D CC error: 1.0


Dice score: 60.41 

3D CC error: 2.0


Dice score: 71.12 

3D CC error: 1.0


Dice score: 79.18 

3D CC error: 1.0


Dice score: 84.46 

3D CC error: 0


A


B


C


Fig 7 Some examples of the training process using the proposed loss function. One can observe that after pretraining
with the Dice loss, many topological errors remain. Fine-tuning with the topological loss can often remove these errors
with only a few epochs (here 1, 2 or 3 epochs). The example shown is the segmentation of the red nucleus from QSM
using 7.5% of the training set.

4.6.3 Datasets from the medical segmentation decathlon

Results are presented in Table 4. Unlike for the red nucleus dataset, the proposed loss and the
baseline Dice loss achieved similar Dice accuracies and 95%HD, across all training sample sizes.
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Ground Truth
 Baseline
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Dice score: 64.34 

3D CC error: 1.0


Dice score: 64.39 

3D CC error: 0


Dice score: 84.26 

3D CC error: 0


Dice score: 75.93 

3D CC error: 0


Dice score: 75.93 

3D CC error: 0


Dice score: 85.21 

3D CC error: 0


A


B


Fig 8 Comparison of the effects of post-processing and topological loss.

However, without topological post-processing, the proposed loss substantially decreased the topo-
logical errors over the baseline. In particular, the 3D CC error was lower for all tasks with the
proposed loss. When applying the topological post-processing, the topological errors were similar
for both approaches. As shown in Figure 9, the proposed approach allows to remove some topo-
logical errors without the need of post-processing. However, after post-processing, the results are
similar.

Fig 9 The figure shows the predictions of the models trained with baseline (Dice Loss) and with our proposed loss
(Topological Loss) on three tasks: heart, spleen and hippocampus segmentation. One can observe that the proposed
approach avoids topological errors without the need of post-processing. However, post-processing allows removing
the errors.
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Table 4 Results on medical datasets: red nucleus and three public datasets from the Medical Segmentation Decathlon
(MSD). The training set size varies: size is indicated both as a percentage (%) of the total training set and as the
absolute number of samples (n). Baseline refers to the Dice loss. “+Post” indicates that the ad-hoc post-processing
was applied.

Dataset Training set % (n) Loss Dice 95%HD 3D CC

Red nucleus

7.5% (4)

Baseline 64.6 [60.7, 68.2] 6.5 [4.1, 9.4] 2.06 [1.25, 3]
Baseline+Post 66.9 [63.4, 70.1] 3.3 [2.4, 4.4] 0 [0, 0]
Proposed 81.6 [78.8, 83.7] 2.1 [1.0, 4.3] 1.3 [0.69, 2.06]
Proposed+Post 82.8 [80.9, 84.5] 1.1 [1.0, 1.2] 0 [0, 0]

15% (8)

Baseline 77.4 [75.6, 79.3] 15.8 [4.9, 28.8] 4.94 [3.56, 6.44]
Baseline+Post 80.3 [78.7, 82.1] 1.1 [1.0, 1.1] 0 [0, 0]
Proposed 86.6 [84.7, 88.3] 1.0 [1.0, 1.0] 0.38 [0, 0.81]
Proposed+Post 86.7 [84.8, 88.6] 1.0 [1.0, 1.0] 0 [0, 0]

30% (16)

Baseline 73.4 [69.7, 76.8] 13.2 [4.9, 23.7] 4.19 [2.81, 5.63]
Baseline+Post 76.2 [71.0, 79.9] 4.8 [1.1, 12.1] 0 [0, 0]
Proposed 86.0 [83.0, 88.2] 1.3 [1.0, 1.7] 0.5 [0.19, 0.88]
Proposed+Post 86.4 [83.5, 88.7] 1.1 [1.0, 1.2] 0 [0, 0]

100 % (51)

Baseline 90.3 [89.4, 91.2] 1.0 [1.0, 1.0] 0.31 [0.06, 0.63]
Baseline+Post 90.5 [89.5, 91.4] 1.0 [1.0, 1.0] 0 [0, 0]
Proposed 89.8 [88.5, 90.9] 1.0 [1.0, 1.0] 0 [0, 0]
Proposed+Post 89.8 [88.5, 90.9] 1.0 [1.0, 1.0] 0 [0, 0]

Spleen

15% (4)

Baseline 65.1 [53.0, 76.6] 32.9 [21.4, 43.9] 1 [0, 2.22]
Baseline+Post 65.2 [53.2, 76.8] 32.6 [21.1, 43.9] 0 [0, 0]
Proposed 65.6 [52.2, 77.6] 29.2 [18.9, 40.2] 0.67 [0, 1.56]
Proposed+Post 66.0 [52.1, 78.4] 27.7 [16.9, 38.8] 0 [0, 0]

30% (8)

Baseline 70.3 [57.5, 82.0] 29.0 [17.8, 40.2] 1 [0.22, 2.22]
Baseline+Post 70.7 [57.5, 82.8] 27.0 [15.0, 38.9] 0 [0, 0]
Proposed 69.7 [55.9, 81.4] 28.4 [18.5, 38.7] 0.33 [0, 0.78]
Proposed+Post 70.2 [56.4, 82.3] 26.4 [15.4, 37.7] 0 [0, 0]

100% (25)

Baseline 84.6 [78.1, 89.9] 15.1 [7.9, 22.8] 0.78 [0.11, 1.67]
Baseline+Post 85.1 [78.5, 90.8] 12.6 [6.0, 20.2] 0 [0, 0]
Proposed 85.1 [78.8, 90.4] 10.2 [5.1, 16.3] 0.11 [0, 0.33]
Proposed+Post 85.3 [78.9, 90.6] 10.1 [4.9, 16.4] 0 [0, 0]

Heart

30% (4)

Baseline 72.6 [65.3, 79.9] 13.1 [7.7, 18.6] 0.5 [0, 1]
Baseline+Post 72.9 [65.9, 79.9] 12.1 [7.7, 16.5] 0 [0, 0]
Proposed 74.1 [68.1, 80.1] 10.8 [7.2, 14.4] 0.25 [0, 0.75]
Proposed+Post 74.2 [68.2, 80.2] 10.8 [7.2, 14.3] 0 [0, 0]

100% (12)

Baseline 82.0 [75.5, 88.4] 8.3 [3.7, 12.9] 1 [0.25, 1.75]
Baseline+Post 82.3 [76.2, 88.4] 8.3 [3.8, 12.9] 0 [0, 0]
Proposed 82.1 [75.2, 89.0] 8.2 [3.3, 13.1] 0.5 [0, 1]
Proposed+Post 81.8 [74.6, 88.9] 8.9 [3.7, 14.2] 0 [0, 0]

Hippocampus

2.5% (4)

Baseline 75.8 [74.1, 77.3] 2.1 [1.9, 2.3] 0.13 [0.07, 0.22]
Baseline+Post 75.8 [74.1, 77.4] 2.1 [1.9, 2.3] 0 [0, 0]
Proposed 75.1 [73.4, 76.7] 2.3 [2.1, 2.5] 0.06 [0.02, 0.11]
Proposed+Post 75.7 [73.8, 77.4] 2.5 [2.2, 2.7] 0 [0, 0]

5% (8)

Baseline 78.4 [76.7, 79.8] 1.9 [1.8, 2.1] 0.08 [0.03, 0.13]
Baseline+Post 78.4 [76.7, 79.8] 1.9 [1.8, 2.1] 0 [0, 0]
Proposed 76.4 [74.9, 77.8] 2.2 [1.9, 2.4] 0 [0, 0]
Proposed+Post 76.4 [74.9, 77.8] 2.2 [1.9, 2.4] 0 [0, 0]

10% (16)

Baseline 80.5 [79.2, 81.7] 1.8 [1.6, 1.9] 0.04 [0.01, 0.08]
Baseline+Post 80.5 [79.1, 81.7] 1.8 [1.6, 1.9] 0 [0, 0]
Proposed 78.6 [77.3, 79.8] 1.9 [1.8, 2.1] 0 [0, 0]
Proposed+Post 78.6 [77.3, 79.8] 1.9 [1.8, 2.1] 0 [0, 0]

30% (50)

Baseline 84.8 [83.9, 85.5] 1.4 [1.3, 1.5] 0.04 [0.01, 0.08]
Baseline+Post 84.8 [83.9, 85.6] 1.4 [1.3, 1.5] 0 [0, 0]
Proposed 84.2 [83.3, 84.9] 1.4 [1.3, 1.5] 0 [0, 0]
Proposed+Post 84.2 [83.3, 84.9] 1.4 [1.3, 1.5] 0 [0, 0]

100% (166)

Baseline 86.1 [85.4, 86.8] 1.3 [1.2, 1.4] 0.02 [0, 0.05]
Baseline+Post 86.1 [85.4, 86.8] 1.3 [1.2, 1.4] 0 [0, 0]
Proposed 85.3 [84.6, 86.0] 1.4 [1.3, 1.5] 0 [0, 0]
Proposed+Post 85.3 [84.6, 86.0] 1.4 [1.3, 1.5] 0 [0, 0]
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5 Discussion

In this paper, we proposed a new loss function that integrates soft topologically constraints. It
is simple and computationally efficient and can be applied with any segmentation model. When
applied to the segmentation of the red nucleus, it resulted in high voxel-level accuracy and topolog-
ical correctness. Moreover, when training with few samples, it resulted in improved performance
over the baseline.

Our loss function imposes soft constraints in the sense that we don’t have absolute guarantees
of topological correctness. Moreover, we mainly control connected components and not other
topological characteristics (holes, tunnels. . . ). This contrasts with approaches based on persistent
homology (PH) 10, 35, 36 which are advantageous in that respect. However, PH-based approaches
are computationally expensive, in particular in 3D. One can also note that our approach not only
introduces constraints on the topology but also more generally will magnify small errors, even if
they don’t constitute isolated connected components. This is due to the use of the pooling process.
This can be advantageous as it can also favor the correct reconstruction of anatomical details in
general, beyond connected components.

Across the vast majority of experiments, our approach substantially decreased topological er-
rors. By contrast, the average 3D CC errors of the baseline are higher. For instance, on average
one third of the subjects have an erroneous CC for the red nucleus segmentation while there are not
3D CC errors for the proposed approach. It is true that removing erroneous connected components
(CC) can be achieved through ad-hoc post-processing operations. The tested post-processing was
efficient in the sense that it removes the 3D CC errors. However, it is more satisfying to be able
to achieve the same results without any ad-hoc post-processing. Moreover, the proposed approach
still provided better Dice accuracies when training with small samples, even after post-processing.

When using the full training sets, the Dice accuracy was comparable between our approach
and the baseline. Nevertheless, an interesting feature of our approach is that, in the case of the
segmentation of the red nucleus, it led to considerable improvements in Dice accuracy (from 6 to
15 percent points) when using only a fraction of the training set. Note that this improvement still
held when the ad-hoc post-processing was applied. However, this was not the case for other target
structures (spleen, heart, hippocampus). It is unclear where this difference comes from. One can
only speculate that it comes from the differences in terms of shapes of the target structures. Further
work will be needed to investigate if this improvement is specific to the red nucleus or can be also
obtained for other tasks.

While the developed approach is general, our motivating target application was the segmen-
tation of the red nucleus from QSM images. There are several existing approaches for automatic
segmentation of the red nucleus.15–20, 51, 52 Among these, some are based on QSM data.15–18, 20 Our
results are in line with those of the best performing approaches which reach around 90% of Dice
accuracy.15, 17, 18 However, these three studies only included healthy controls. Thus, it is unclear
how they would perform on patients. On the contrary, we included patients with parkinsonism
at different stages. Furthermore, we report narrow confidence intervals which indicate that our
performance estimates are precise.53 This provides confidence on the applicability of our results.

Our work has the following limitations. First, as mentioned above, our loss does not impose
strict topological guarantees. This can be a limitation if such guarantees are critical for a given
application and in that case, PH-based method are likely to be more adapted. However, restricting
the number of connected components at the topology level reduces the flexibility of the method.
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Our loss function achieves better performance in these two cases. In Figure 8 (A), although an
additional error can be removed by post-processing, the performance of Dice cannot be improved
due to the poor performance of the main part. In Figure 8 (B), the two main parts are connected as
a single component, so the post-processing cannot remove the error region.

It would have been good to compare our approach with that of the topology loss proposed by
Clough et al.10 and the Hausdorff distance loss proposed by Karimi et al.54 But, the topological loss
code provided in the paper10 does not work in 3D. For the Hausdorff distance loss,54 it is unclear if
it can deal with the case of incorrectly merged regions as we found for the red nucleus. We agreed
that these losses could in principle help remove erroneous components. But as mentioned above,
removing erroneous connected components can also be achieved through post-processing. How-
ever, we could see that the proposed loss still has benefits, even after post-processing is applied. In
particular, it lead to improvements when training with small samples.

Another interesting approach is the loss function based on distance weighting.55 The distance
transform map-based weighting (DTM) loss,54, 56 which multiplies prediction errors by the DTM,
could potentially solve the problem of erroneous distant connected components by assigning higher
weights to pixels further from the boundary of ground-truth labels. While the DTM-based weight-
ing approach has advantages, particularly in penalizing errors in separate topological components,
there are specific scenarios where it might not fully address the issues. For instance, in the case
where connected components of the nucleus are merging (as illustrated in Figure 8.B.), DTM-
based weighting may not adequately resolve the ambiguities. Our proposed method can target
these touching components by supervising from a topological angle. We plan to explore this com-
parison in future work to further understand the benefits and limitations of both methods.

In this work, we chose to use a single label for both left and right red nuclei. Another pos-
sibility would be to use separate labels for each organ as done for instance by Milletari et al.57

and Dolz et al.58 This could simplify the topology, resulting in single connected components for
each label. However, our loss function also takes into account the relationship between the two
regions, as shown in Figure 8.B. If these regions are treated as independent, the error situation
arising from merging of the two prediction regions into a single connected component may not
be effectively resolved. Additionally, it is uncertain whether this approach would address all seg-
mentation challenges, particularly under conditions of very small training sets, where we observed
that our approach resulted in substantial improvements in performance metrics for the red nucleus,
even after post processing.

In our study, our loss function combines 3D projection with 2D max-pooling, but this method
may have a drawback, i.e., the transition from 3D to 2D projection may lead to a loss of spatial
information, which may potentially affect the algorithm’s ability to preserve the complex 3D struc-
ture of the data. Another solution would be to directly perform the max-pooling in 3D. However,
our solution also benefits from the subtle capture of orientation changes by the 2D projection for
better control of details and increased sensitivity. We have not compared the two solutions in this
research, which is a limitation of our current study, and is left for future work.

Furthermore, the heuristic proposed for the choice of kernel sizes is still ad-hoc. Future work
could focus on dynamically learning the optimal kernel size during the training process. Another
limitation of the study is the fact that we only included patients with typical parkinsonism. Further
studies will be needed to asses the performance on patients with other parkinsonian syndromes
such as progressive supranuclear palsy or multiple system atrophy. Finally, our study only included
a relatively small number of patients and future validation on larger cohorts will be needed.
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In conclusion, we proposed a novel loss function for integrating soft topological constraints in
deep learning based segmentation. The approach is simple to implement, has a low computational
cost and is generic as it can be used with any segmentation architecture. We demonstrated that it
can accurately segment the red nucleus from QSM images, even when training with small samples.
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