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One of the major settings of global sensitivity analysis is that of fixing non-influential factors, in order to reduce the dimensionality of a
model. However, this is often done without knowing the magnitude of the approximation error being produced. This paper presents a new
theorem for the estimation of the average approximation error generated when fixing a group of non-influential factors. A simple function
where analytical solutions are available is used to illustrate the theorem. The numerical estimation of small sensitivity indices is discussed.
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1. Introduction

This work is related to global sensitivity analysis based

on the use of ANOVA decomposition and global

sensitivity indices (see [1,6–8] for theory, and [3,4] for

applications). Definitions of the sensitivity indices can be

found in Section 2.

Different settings for sensitivity analysis are available,

depending on the modeler’s needs. One of these is the

factors fixing setting. It is used for identifying non-

influential factors in the model (those factors that can be

fixed at any value in their domains without significantly

reducing the output variance). A limit with factor fixing is

that of fixing unessential factors without knowing the

magnitude of the approximation error that is being

produced. In Section 2, we prove one new theorem which

quantifies this approximation error of the model output

when one factor or a group of factors is fixed. So, once we

know from total indices that a factor is unessential, we will

also have an estimate of the error that is generated by fixing

it.

In this paper we study a model function f ðx1; . . . ;xnÞ,
where the factors x1; . . . ;xn are non-random independent

scaled variables: 0px1p1; . . . ; 0pxnp1. Thus the point

x ¼ ðx1; . . . ;xnÞ is defined in the n-dimensional unit

hypercube with Lebesgue measure. Clearly the factors

x1; . . . ;xn can be regarded as independent random vari-

ables uniformly distributed in the unit interval [0,1]. In this

case the quantities that are called variances are real

variances of certain random variables.

The sensitivity analysis based on ANOVA decomposi-

tion and global sensitivity indices can be easily (mutatis

mutandis) generalized to independent random factors

x1; . . . ;xn with arbitrary distribution functions

F1ðx1Þ; . . . ;F nðxnÞ (e.g., [8]). However, the requirement of

independence is important.

Section 2 contains a new theorem, Section 3—an

illustration of the theorem, and in Section 4 numerical

estimation of small sensitivity indices is discussed.
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2. The proposed theorem

Let x ¼ ðx1; . . . ;xnÞ be a point in the n-dimensional

unit hypercube with Lebesgue measure. We denote

by y an arbitrary subset consisting of s variables and

let z be the set of n�s complementary variables,

1pspn� 1. Thus x � ðy; zÞ and dx ¼ dy dz. All the

integrals below are from 0 to 1 in each variable. The set

of variables z can be regarded as non-essential if the

sensitivity index Stot
z 51. The common practice in such a

situation is to fix somehow a value z0 and to use f ðy; z0Þ as
an approximation to f(x). The approximation error

depends on the choice of z0:

dðz0Þ ¼
1

D

Z

½f ðxÞ � f ðy; z0Þ�
2 dx, (1)

where D is the variance of f(x): D ¼
R

f 2 dx� f 20,

f 0 ¼
R

f dx. The model function is assumed to be square

integrable.

The following theorem shows that d(z0) is of the same

order as Stot
z .

Theorem. For an arbitrary z0 the error dðz0ÞXStot
z . If z0 is

assumed to be random and uniformly distributed, then the

expected value is Edðz0Þ ¼ 2Stot
z .

A corollary of the theorem is the following assertion

from [5]: for an arbitrary e40 with probability exceeding

1�e

dðz0Þo 1þ
1

�

� �

Stot
z .

In particular (at e ¼ 0.5), the inequality dðz0Þo3Stot
z holds

with probability exceeding 0.50.

Proof. The ANOVA decomposition of f(x) can be written

in the form

f ðxÞ ¼ f 0 þ g1ðyÞ þ g2ðzÞ þ g12ðxÞ, (2)

where g1(y) is the sum of all terms that depend on y

variables only and similarly g2(z) is the sum of all terms

that depend on z only; g12 is the remainder.

From the definition of ANOVA, one can see that
R

g1 dy ¼
R

g2 dz ¼
R

g12 dy ¼
R

g12 dz ¼ 0.

Consider the variances Dy ¼
R

g21 dy, Dz ¼
R

g22 dz,

Dyz ¼
R

g212 dx.

Squaring (2) and integrating over dx we obtain the

relation D ¼ Dy þDz þDyz that allows a direct definition

of the sensitivity indices for the sets y and z:

Sz ¼
Dz

D
; Stot

z ¼
Dz þDyz

D
; Sy ¼

Dy

D
; Stot

y ¼
Dy þDyz

D
.

From these definitions one can see that Stot
z ¼ 1� Sy,

Stot
y ¼ 1� Sz.

Now an expression for d(z0) can be derived:

dðz0Þ ¼
1

D

Z

g2ðzÞ þ g12ðxÞ � g2ðz0Þ � g12ðy; z0Þ
� �2

dx

¼
1

D

Z

g22ðzÞ þ g212ðxÞ þ g22ðz0Þ þ g212ðy; z0Þ
� �

dx

¼
1

D
Dz þDyz þ g22ðz0Þ þ

Z

g212ðy; z0Þdy

� �

.

The final result is dðz0Þ ¼ Stot
z þ ð1=DÞ½g22ðz0Þþ

R

g212ðy; z0Þdy�.
Both assertions of the theorem follow immediately:

dðz0ÞXStot
z and

R

dðz0Þdz0 ¼ 2Stot
z .

Proof of the Corollary. Consider a non-negative random

variable Z ¼ dðz0Þ=S
tot
z � 1. Clearly, EZ ¼ 1. A well-known

Chebyshev inequality for non-negative random variables

with finite expectation can be applied: for an arbitrary h40

the probability PfZXhgpEZ=h.
We put � ¼ 1=h and turn to the opposite event:

PfZo1=�g41� �.
The last relation is equivalent to the assertion of the

corollary.

3. Analytic example: the g-function

We illustrate the theorem by using the g-function of

Sobol’, which is often used as a benchmark for sensitivity

analysis exercises (see e.g., [2]) as the exact analytical values

can be easily calculated. The function is defined as

f ¼
Y

n

i¼1

giðxiÞ, (3)

where n is the number of independent input factors and

gi(xi) is

giðxiÞ ¼
j4xi � 2j þ ai

1þ ai
, (4)

for 0pxip1 and aiX0.

The parameter ai is set to determine the importance of

the input factor xi, given that the range of variation of gi(xi)

depends exclusively on the value of ai. If ai ¼ 0, the

corresponding factor xi is important; if ai ¼ 1, xi is

relatively important, while for ai ¼ 9 it becomes non-

important and for ai ¼ 99 non-significant.

For the function (3) the first-order partial variances are

Di ¼ 1=3ð1þ aiÞ
2, the higher order partial variances are

products Di1...is ¼ Di1 ; � � � ;Dis , and the total variance

D ¼
Qn

i¼1ðDi þ 1Þ � 1.

The group variances Dy, Dz, Dtot
y ¼ Dy þDyz, Dtot

z ¼

Dz þDyz are sums of partial variances. However, integral

representations for these variances allow direct numerical

computation of their values [6,8].

Test 1. We consider a model with eight input factors, where

ai ¼ f0; 1; 4:5; 9; 99; 99; 99; 99g,
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so that the eight factors are in decreasing order of

importance. Table 1 contains total indices Stot
i ¼ Dtot

i =D
(the set contains one variable xi).

Let us assume that one of the non-influential factors (e.g.

x4) is fixed at z0. By substituting (3) into (1) we obtain the

expression for d(z0):

dðz0Þ ¼
1

D

1

ða4 þ 1Þ2
ð4=3þ 2a4 þ a24Þ � 2

j4z0 � 2j þ a4

1þ a4

"

þ
j4z0 � 2j þ a4

1þ a4

� �2
#

Y

8

i¼1
ia4

1

ð1þ aiÞ
2
ð4=3þ 2ai þ a2i Þ.

The values of d(x4) are shown in Fig. 1.

If we calculate E[d(z0)] we obtain 0.020, which is twice

the total index of factor 4. It means that when fixing factor

4, we commit an average error corresponding to 2% of the

variance of the original g-function.

We have selected 100 values x4 ¼ 0.01(k�0.5),

1pkp100, and computed the corresponding errors d(x4).

The average of these 100 errors was 0.020—in full

agreement with the analysis above. The graph in Fig. 1 is

rather sophisticated, with two minimum values, and

depends strongly on the behavior of f(x).

Test 2. Consider the factor x8. We have selected 100 values

of x8 and calculated the corresponding errors d(x8). The

behavior of d(x8) is similar to d(x4) in Fig. 1 but the

numerical values are completely different and the average of

these 100 errors was 0.00021 which is twice Stot
8 .

Test 3. We now illustrate the theorem in the case where a

group of factors is fixed; this is particularly useful for models

with a high number of factors.

One characteristic of variance-based methods is in fact

the capability of treating grouped factors as if they were

single factors. This property of synthesis is essential for the

agility of the interpretation of results (see [4] for applica-

tions).

We consider the five non-important factors (from 4 to 8)

as a single group z, and the remaining three in another

group y. We fix group z at z0.

Estimating E½dðz0Þ�, we obtain 0.022 which is twice the

total index of group z: Stot
z ¼ 0:011.

It is worth noticing that by fixing all the factors of

group z, the approximation error is 2.2% of the variance of

the g-function, i.e. only 0.2% more than when fixing factor

4 alone.

Remark. The analytical values from Table 1 were repro-

duced numerically by the Monte Carlo method. The

sample size was N ¼ 7� 104.

4. On the numerical estimation of small sensitivity indices

According to [6], the integral representation,

Dy ¼

Z

f ðxÞf ðy; z0Þdxdz0 � f 20, (5)

was used for defining a Monte Carlo algorithm for the

estimation of Sy ¼ Dy=D. For the kth Monte Carlo trial

two independent random points x(k) and x0ðkÞ are used,

1pkpN. If the number of trials N is sufficiently large, then

f 0 �
1

N

X

N

k¼1

f ðxðkÞÞ, (6)

Dþ f 20 �
1

N

X

N

k¼1

f 2ðxðkÞÞ, (7)

Dy þ f 20 �
1

N

X

N

k¼1

f ðxðkÞÞ f ðyðkÞ; z
0
ðkÞÞ. (8)

However in the case when Dy5f 20, the computation of

Dy from (8) is spoilt by a loss of accuracy.

For improving the situation, Saltelli [1] proposed a direct

estimation of f 20. From the identity

f 20 ¼

Z

f ðxÞf ðx0Þdxdx0, (9)

the approximation

f 20 �
1

N

X

N

k¼1

f ðxðkÞÞ f ðx
0
ðkÞÞ, (10)

can be derived. Despite the fact that the statistical error

produced by (10) is larger than the statistical error of (6),

the use of (8) and (10) reduces the loss of accuracy in the

computation of Dy.

Table 1

Total indices

Factor Total index

1 0.787

2 0.242

3 0.034

4 0.010

5 1.05e-04

6 1.05e-04

7 1.05e-04

8 1.05e-04
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Fig. 1. Approximation error d(x4) versus x4.
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We made a further step in this direction: substituting (9)

into (5) we obtained a new integral representation for Dy:

Dy ¼

Z

f ðxÞ½f ðy; z0Þ � f ðx0Þ�dxdx0, (11)

and the corresponding approximation

Dy �
1

N

X

N

k¼1

f ðxðkÞÞ f ðyðkÞ; z
0
ðkÞ � f ðx0ðkÞÞ

h i

, (12)

which is a combination of (8) and (10).

Despite the fact that the dimension of the integral in (11)

is higher than the dimension of the integral in (5), the

modified Monte Carlo algorithm (6)+(7)+(12) is less

sensitive to the loss of accuracy and allows to reduce the

number of trials N.

Fig. 2 shows the numerical evaluation of S5 for the g-

function at different N using both Monte Carlo algorithms.

The performance of the modified algorithm (6)+(7)+(12)

is much more stable than that of the original algorithm

(6)+(7)+(8). The exact value is S5 ¼ 7.15� 10�5.

The representation (11) makes possible a standard

statistical error evaluation for the approximation (12).

Remark 1. In [1] instead of (5) the representation Dy ¼
R

f ðx0Þf ðy0; zÞdz dx0 was used. In this case our modification

can be applied also.

Remark 2. In [5], another way to deal with loss of accuracy

was proposed: to choose a constant cEf0 and to carry out

the calculations with f(x)�c instead of f(x).

5. Conclusions

This work shows how to estimate the approximation

error committed when fixing non-important factors.

In our example the sensitivity indices were estimated

both analytically and numerically; in general, they can be

computed numerically.

The proposed theorem can be easily applied to global

sensitivity methods that provide estimates of total indices;

we have shown the applicability of the procedure also in

cases where factors are treated by groups.

For numerical computation of small sensitivity indices a

modified Monte Carlo algorithm was studied that reduces

the loss of accuracy.
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Fig. 2. Numerical evaluation of S5 using modified and original formulas.
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