
HAL Id: hal-04642887
https://hal.science/hal-04642887

Submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning the tasks of an autonomous mobile robot fleet
for internal logistics of production systems

Cyrille Briand, Arthur Bit-Monnot, Elouan Blanchard, Grégoire Milliez,
Mohamed Amine Abdeljaouad

To cite this version:
Cyrille Briand, Arthur Bit-Monnot, Elouan Blanchard, Grégoire Milliez, Mohamed Amine Abdel-
jaouad. Planning the tasks of an autonomous mobile robot fleet for internal logistics of production
systems. APMS 2024 CONFERENCE, Sep 2024, Chemnitz/Zwickau, Germany. �hal-04642887�

https://hal.science/hal-04642887
https://hal.archives-ouvertes.fr


Planning the tasks of an autonomous mobile
robot fleet for internal logistics of production

systems

E. Blanchard1,2, Arthur Bit-Monnot1, C. Briand1, M.A. Abdeljaouad2, G.
Milliez2

1 LAAS-CNRS, Université de Toulouse, CNRS, UT3, Toulouse, France
{elouan.blanchard,cyrille.briand,arthur.bit-monnot}@laas.fr

2 Direction de l’Innovation – Groupe ALTEN, Toulouse, France
{elouan.blanchard,mohamedamine.abdeljaouad,gregoire.milliez}@alten.com

Abstract. The problem of planning the activities of a fleet of autonomous
mobile robots in the context of performing a production plan is tackled
in this paper. Three kinds of tasks are considered: the ones related to
supplying workstations with the components or tools that are used in
the operations, the ones related to the evacuation of empty containers or
garbage collecting, and the latter ones that aim at moving semi-finished
production from workstations to others. This paper shows that the plan-
ning of these activities can be modeled homogeneously as a particu-
lar pickup-and-delivery problem with time windows. To solve the latter
problem, we propose a greedy heuristic as well as a mixed-integer linear
programming approach. An illustration of the interest in the approach
is provided in a production context, demonstrating its validity and high-
lighting its advantages and limitations. A benchmark of the literature is
also considered to show how our approach performs in the context of a
job-shop problem with transportation constraints.

Keywords: Internal logistics, pick-up and delivery with time windows,
inventory routing, job-shop with transportation constraints.

1 Introduction

This work focuses on planning at a tactical decision level the activities of a
fleet of robots in the context of the internal logistics of production systems. Two
types of robots are usually distinguished for internal logistics: Automated Guided
Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). AGVs can only follow
fixed paths or tracks to transport materials, which usually requires infrastructure
modifications such as magnetic strips or wires. On the other hand, AMRs are a
newer family of robots that exploit sophisticated sensors (cameras, lidars) and
more advanced navigation algorithms, in particular the well-known Simultaneous
Localization and Mapping (SLAM) algorithm, that allows the robots to navigate
in uncontrolled environments without the need for fixed paths or tracks.
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AMRs are undoubtedly much more flexible than AGVs since they no longer
have to follow fixed routes. They can detect obstacles and bypass them, choos-
ing in real time the best alternative route. Their intelligent navigation allows
them to move safely in dynamic environments. For that reason, in the context
of the new industrial revolution, AMRs are playing an important role in the de-
velopment of smarter production systems (see [1]). They are capable of carrying
out a wide range of logistical operations such as supplying workstations with
component kits, moving specific production tools, collecting empty containers,
or evacuating waste. AMRs can also be used to transport semi-finished products
between production workstations.

In this new context, the ability to synchronize the planning of robot fleet
operations with the design of the production plan is becoming increasingly cru-
cial to fostering the agility of the production system. Indeed, the lateness of a
production task, a machine failure, or a quality default may need to adapt the
production plan, which will consequently impact the robot routing plan as well
since component supplying should possibly be delayed, semi-product moves have
to be rescheduled, or new components have to be delivered. Conversely, during
the implementation of the routing plan, AMRs can also experience unexpected
delays when ensuring collision avoidance (in case of congestion for instance), if
a route is temporally closed, or if the loading/unloading operations made on
the robot take longer as expected, which may require to adapt the production
plan. Therefore, in a highly dynamic environment, the challenge is to maintain
in real-time the consistency between production and routing plans such that the
work in progress (a basic production efficiency indicator) is kept minimized.

Many attempts have been made in the literature to integrate these two com-
plex problems. The workstation supplying problem being very similar to the
Inventory Routing Problem (IRP), a first category of approaches is related to
this problem. IRP consists in determining the tours to be carried out for each
vehicle of the fleet, defining for each tour the order in which the workstations
are visited, the date of the visit and the quantity to be delivered (or picked up).
The aim is to avoid stock-outs and minimize logistics costs. Another category
of approaches is related to Pickup-and-Deliveries Problems (PDP) where each
logistic operation is characterized by a good quantity to move from a specific
origin to a particular destination. The problem of coupling transportation con-
straints with production scheduling is also present in the scheduling literature
with the Job-Shop scheduling Problem with Transport (JSPT), introduced in
the 90’s.

In this paper, we show how internal logistic operations, such as supplying
workstations with component kits, moving specific production tools, collecting
empty containers, or evacuating waste can be advantageously modeled as pick-up
and delivery tasks to be carried out in time windows. Then, aiming at minimizing
the work in progress, a two-step approach is proposed to determine an efficient
routing of the robots such that pick-up and delivery time windows, and the
capacity of workstations and vehicles are satisfied. We do not consider so far a
dynamic environment as the production plan is assumed known in advance, the
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goal being to build up a routing plan that satisfies the internal logistics required
to implement the production plan.

The paper is organized as follows. Section 2 proposes an analysis of the lit-
erature related to our problem, highlighting the differences between the three
previously mentioned categories of approach, to motivate our positioning. Sec-
tion 3 shows how our problem can be defined generically as a PDP with time
windows. For the solving methodologies, we propose in Sections 4 and 5 a mixed
integer linear program (MILP) and a polynomial greedy heuristic, respectively.
Section 6 provides some first results and illustrates the benefits of our approach
on several medium-sized instances. In Section 7, using a benchmark of the lit-
erature related to job-shop with transportation constraints, we show how the
heuristic and the MILP performs aiming at sizing the AMR fleet. Some conclu-
sions and work perspectives are drawn in Section 8.

2 Literature review

Vehicle Routing Problems (VRP) are a family of NP-hard problems widely stud-
ied in combinatorial optimization. They have many practical applications, as
they model a wide variety of transportation problems, whether for people, goods,
or information. Generally speaking, they involve organizing the delivery of goods
to customers over a period of time, according to their needs, using vehicles lo-
cated in one or more depots. The goods are initially stored in depots. Vehicle
loads, as well as their routes, must then be determined to minimize the total
cost of transport while respecting logistical constraints (return to depot, on-time
delivery, vehicle capacities). The book by Toth and Vigo [2] provides a compre-
hensive survey of the state of the art, as well as a description of methods and
solutions for this problem and its variants. The Capacitated VRP (CVRP) is the
simplest and most widely studied of the VRPs. It first appeared in 1959 [3]. In
this version of the CVRP, the vehicles are all identical and have the same trans-
portation capacity. There is a single central depot where the requested products
are initially stored. Vehicles pass through each customer at most once (they
complete an elementary cycle), and each customer is visited at most once. The
aim is to minimize transportation costs while ensuring the required deliveries.
An important extension of the VRP is the VRP with Time Windows (VRPTW)
problem, where each delivery must be made within a specified time interval,
possibly including an unloading time [4].

Inventory Routing Problems (IRP) are a generalization of VRP over several
periods. Customer requests are no longer data, but decision variables, and cus-
tomer inventories must be managed aiming at finding a compromise between
transport costs and storage costs over a range of time periods. Knowledge of
customer inventories enables the delivery driver to be more efficient but makes
the problem more complex. A detailed introduction to IRP is given in [5], while
a literature review is provided in [6] and [7]. Due to their complexity, IRPs are
often solved with heuristics or hybrid methods, involving heuristics and exact
methods. In [8], for example, the problem is decomposed into two parts: first, the
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customers to be served are determined for each period, and then a VRP is solved
at each period. In this way, existing heuristics for the VRP can be exploited [9].
More recently, heuristic, metaheuristic, and hybrid (matheuristic) methods have
been developed for these problems. In [10], a matheuristic is proposed for solving
IRP, mixing integer linear programming (MILP), and adaptive extended neigh-
borhood search (ALNS). In [11], an approach combining linear programming
and GRASP (Greedy Randomized Adaptive Search Procedure) is presented.
In [12], a genetic algorithm is used for a general variant of IRP. In [13], a two-
part iterative metaheuristic is described, coupling variable neighborhood search
(VNS) and linear programming to minimize transport and storage costs at each
stage. In [14], a method is proposed that integrates a fixed-sequence mathemati-
cal program, two randomized greedy algorithms, and a column-generation-based
heuristic, which can solve realistic industrial IRP problems arising in gas dis-
tribution. Finally, in [15], the authors propose a mixed integer linear program
to minimize the energy consumed by vehicles that supply the workstations of a
mixed-model automotive assembly line.

VRP with Pickup and Delivery (or Pickup-and-Delivery Problem, PDP) is
another important extension of CVRP [16, 17]. It differs from CVRP in that
goods or people can have several origins, and several destinations, unlike CVRP
where all goods are stored at the depot. So some customers have negative re-
quests to indicate that they are producing items. There may be several types
of items to collect and deliver. As the items can be loaded during the tour, the
precedence constraints are not checked a priori, and the items have to be differ-
entiated, which is not necessary in CVRP. There are two main types of PDP,
depending on whether goods or people are transported. PDPs for goods involve
finding elementary routes for each vehicle that minimize the total cost of trans-
port while respecting the constraints of collection and delivery to customers [18].
A distinction is made between: i) many-to-many problems, where each item is
available at several locations and has to be delivered to several destinations, ii)
one-to-many-to-one problems, where some items originate from a single depot
and have to be delivered to customers, and other items have to be picked up
from customers and then delivered to the depot, and iii) one-to-one problems,
where each item has a single origin and a single destination. Among PDP vari-
ants, we are particularly focusing on those where pickup and deliveries have to
be completed inside specific time windows (PDPTW). Solving approaches us-
ing column generation have been very successful both for tackling realistic size
PDPTW instances [19], as well as dynamic ones [20]. Li and Lim [21] proposes a
metaheuristic to solve the PDPTW and six large-size data sets to evaluate their
algorithm. More recently, in [22], a matheuristic is proposed that works well on
Li-and-Lim’s instances, as well as on a new set of instances.

The existence of transportation operations between production activities has
also been investigated in the scheduling literature. In [23], Ulusoy et al. con-
sider the JSPT, a job-shop problem that involves to simultaneous schedule the
machines and route the AGVs. Classically, the goal is to minimize the schedule
makespan. The authors propose a genetic algorithm that was evaluated on a set
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of freely available problem instances, which we used in this work. Deroussi et
al. [24] propose three different metaheuristics (an iterated local search, a sim-
ulated annealing procedure, and a hybrid approach) that exploit a neighboring
structure relying on the routes followed by the AGVs. An extended disjunctive
graph and a local search are introduced by Lacomme et al. in [25] to efficiently
model both problem and solutions, which can be also used to tackle flexible
job-shop with several transport robots. In [26], Gondran et al. show that, when
quality of service (QoS) is taken into account additionally with the makespan,
the problem becomes close to the Dial-A-Ride Problem (DARP) where pickup
and delivery operations have to be scheduled. They propose an iterative solv-
ing approach that first minimizes the makespan and then the QoS. The flexible
job-shop scheduling problem with transportation resources is considered in [27]
where, using a disjunctive graph modeling, the authors propose a tabu search
procedure that exploits a neighborhood function, which explores a large set of
moves in constant time. New benchmark instances are also proposed. Note that
a recent survey related to scheduling problems with transportation constraints is
proposed in [28], which reviews over 160 papers and introduces a new three-field
classification scheme for characterizing them.

Let us discuss the pros and cons of the previous approaches in the context
of internal production logistics. First, we remark that the problem of supplying
a production line invalidates several classical assumptions of the IRP. Indeed,
loading/unloading times are no longer negligible compared with transportation
times as the routes between workstations can now be very short. Additionally,
the time granularity to be considered is very fine, with operation times generally
expressed in minutes, which means that it is no longer possible to split the
decision-making horizon into time periods lasting longer than one vehicle tour.

Besides, the problems of transferring semi-finished products and eliminating
waste falls clearly outside the scope of classic IRP, since it no longer just in-
volves supplying workstations, but also collecting items. The JSPT environment
also seems too restrictive since conversely, it only considers the transportation
of semi-finished products, but not the problem of supplying workstations with
components. Furthermore, as indicated in [24], for reasons of complexity, the
number of vehicles taken into account in JSPT is often limited to 1 or 2, and
their capacity is assumed to be unitary, which seems too restrictive with regard
to real industrial practices.

Finally, while internal logistics is classically concerned with minimizing the
work-in-progress (WIP) and respecting the production plan as closely as possi-
ble, both IRP and PDPTW aim at minimizing the transportation costs, which
essentially depends on the length of the routes followed by the vehicles and the
number of vehicles. The JSPT also addresses the minimization of makespan,
which, although important, is not central in the context of internal logistics.

In the following sections, we propose to model our problem using the PDPTW
formalism, which allows us to consider the different types of internal logistics
operations generically.
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3 Problem definition

Knowing the production schedule and the topology of the production workshop
(i.e., the list of buffers B, their lower and upper capacities [lB , UB ], and the
inter-buffer transportation times), it is possible to model all logistical activities
as pickup-and-delivery tasks that must be carried out inside some specific time
windows to ensure the smooth running of production. We can distinguish be-
tween two kinds of buffers: the output buffers that produce goods, which have
to be picked up by the AMRs, and the input buffers, which consume goods
that have been delivered by the AMRs. Assuming a deterministic production
process, the knowledge of the production schedule allows us to predict for each
input/output buffer the evolution of its inventory along the time horizon L. We
refer to IB(t) as the inventory level of Buffer B at time t. Note that the notion of
good picked-up or delivered to buffers is generic as it could correspond to com-
ponents required for assembly operations, tools needed to carry out a production
task, wastes produced during the production, intermediary products, and so on.

Algorithm 1 details how to compute the set of delivery time intervals of an
input buffer B. The way to compute the picked-up intervals of the output buffers
being quite similar, we do not detail it further. The algorithm starts with the
computation of the number N of mandatory deliveries (see line (2)). Note that
IB(L) refers to as the state of the inventory at the end of the production horizon
L, without assuming any replenishment of the buffer. Note also that although
every delivery activity is unitary, it does not forbid to supply several goods at
the same time to the buffer, in which case several delivery activities are simply
assumed completed at the same time. In lines (3)-(10), the time ti where the
delivery activity i can be started is computed (if the inventory level is initially
lower than uB − 1 then the activity i can immediately start). In lines (11)-(14),
the time window [ai, bi] associated with each delivery i is computed: bi is simply
the time where, if i is not yet performed then the inventory level will get lower
than lB .

Algorithm 1 functioning is illustrated in the example of Figure 1. The dotted
yellow lines represent the lower and upper value [lB , uB ] = [2, 6] of the inventory
of the buffer B. IB(t) is represented with the plain blue decreasing curve. The
initial value of the inventory IB(0) = 4.7 being lower than 5, the first item can
be delivered at time a1 = 0 and has to be delivered at the latest at time 9.6,
when IB becomes equal to lB . Using the same reasoning, one can deduce that
the second item can be delivered at the earliest at time a1 when IB becomes
equal to 4 and at time b1, at the latest, when IB(b1) = lB − 1. In that example,
N = 4 items must be delivered to avoid any stock-out.

Eventually, each task (i, j) is characterized by a pick-up buffer Bi ∈ B,
a delivery buffer Bj , a pick time window [ai, bi] and a delivery time window
[aj , bj ]. Two tasks (i, j) and (k, l) can involve identical buffers (i.e., Bi = Bk or
Bj = Bl).

The problem can then be represented by a complete directed graph G =
(V,A) where V = 0, ..., 2n+ 1 is the set of vertices and A is the set of arcs. V is
partitioned into two subsets: pick-up vertices P = {1, ..., n} and delivery vertices
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Algorithm 1: Compute delivery intervals
Data: IB(t) the inventory level of Buffer B (without replenishment), [lB , uB ]

the lower and upper capacity of B.
Result: The set of delivery intervals {[ai, bi]}.

1 begin
2 N ←− lB − ⌊IB(L)⌋
3 for i←− 1 to N + uB − lB − 1 do
4 if IB(0) < uB − 1 then
5 ti ←− 0
6 else
7 Find t such that IB(t) = uB − i
8 ti ←− t

9 end
10 end
11 for i←− 1 to N do
12 ai ←− ti
13 bi ←− ti+uB−lB−1

14 end
15 return {[ai, bi]}
16 end

D = {n+1, ..., 2n} (each node i is associated with node n+ i by one task). The
fictitious vertices 0 and 2n + 1 model the origin and end of each vehicle’s tour
respectively (they do not correspond to any real location, as a vehicle tour can
include as many trips to the depot as necessary). A transportation time tij is
associated with each stop (i, j) ∈ A. Each node i ∈ V must be served during
a time interval [ai, bi], the service time lasts si and the quantity required is qi.
This quantity is positive for the pick-up vertices, and negative for delivery ones.
It is assumed that s0 = s2n+1 = 0, q0 = q2n+1 = 0 and qn+i = −qi,∀i ∈ P .
The fleet is made up of a set K of K homogeneous AMRs (K = {1, ...,K}) of
capacity Qk, expressed in number of part kits.

Finding one feasible solution to the above problem consists in determining
a route for each vehicle such that i) any vertex i is served once during the
time interval [ai, bi] (which ensures that any buffer never runs out of goods or
never overpasses its maximum capacity) and ii) the vehicle’s capacity is never
exceeded. Note that, depending on the number of vehicles and their capacity, the
problem may not admit any feasible solution. As an objective function, we choose
to maximize the sum of the times of service, which tends to deliver the good
as late as possible, while respecting the feasibility constraints. This criterion is
in line with a WIP minimization viewpoint as it tends to maintain the buffers’
inventories as low as possible.
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Fig. 1. Example of computation of delivery intervals

4 MILP model

The problem can be modeled as the MILP below, which is partly inspired by
the non-linear formulation of PDPTW proposed by Toth and Vigo [29]. Decision
variables Ti indicate the time of visit of vertex i ∈ P ∪D. The variable xijk is
equal to 1 if vehicle k uses arc (i, j), 0 otherwise. Qij indicates the quantity
transported on the arc (i, j) ∈ A. The objective function (1) maximizes the sum
of the item delivery dates in a just-in-time logic. Constraints (2)-(5) are un-
changed from Toth’s original formulation. They indicate that at most K disjoint
paths, each corresponding to the path of a vehicle, must start from vertex 0 to
reach vertex 2n+ 1 and cover all the vertices. The constraints (6)-(8) make the
link between Ti and xijk variables. Note that si refers to as the service time in
i and tij to as the time to travel from i to j. Constraints (6) model minimum
transportation times. Constraints (7) take into account time windows. Finally,
constraints (8) express that, if there is a vehicle k traveling on the arc (i, j),
then Tj − Ti ≥ si + tij . The constant Mij is a lower bound of Tj − Ti. The
constraints (9)-(10) link the quantities carried on the arcs to the variables xijk.
Constraints (9) ensure that the quantity conveyed on the arc is zero if no AMR
uses the arc. Constraints (10) ensure flow conservation.
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(PDPTW) max
∑
i∈P

Tn+i (1)

s.t.
∑
k∈K

∑
j∈V

xijk = 1 ∀i ∈ P (2)

∑
j∈V

xijk =
∑
j∈V

xn+i,jk ∀i ∈ P, k ∈ K (3)

∑
j∈V

x0jk ≤ 1 ∀k ∈ K (4)

∑
j∈V

xijk =
∑
j∈V

xjik ∀i ∈ P ∪D, k ∈ K (5)

Tn+i ≥ Ti + si + ti,n+i ∀i ∈ P (6)
ai ≤ Ti + si ≤ bi ∀i ∈ V (7)
Tj − Ti ≥Mij + (si + tij −Mij)xijk ∀i ∈ V, j ∈ V, k ∈ K (8)

0 ≤ Qij ≤
∑
k∈K

Qkxijk ∀i ∈ V, j ∈ V (9)

∑
j∈V

Qji −
∑
j∈V

Qij = qi ∀i ∈ V (10)

xijk ∈ {0, 1} ∀i ∈ V, j ∈ V, k ∈ K (11)

5 A greedy heuristic

To solve the MILP efficiently, it is often worthwhile to provide the solver with a feasible
initial solution. For that purpose, we propose a greedy algorithm that tries to find a
feasible solution. The solution is constructed iteratively by the algorithm, in a greedy
manner: at each iteration, the list of tasks to be performed is updated and the algorithm
enumerates all the tuples constituted by an activity (i, j), a vehicle k, and an insertion
position in the route followed by k, rk. Such a tuple is said feasible if:

1. there is enough time at the insertion position between the previous task (i−1, j−1)
and the next one (i+ 1, j + 1) to insert (i, j), i.e.: the time to travel from j − 1 to
i, then pick-up one item at i in the time window [ai, bi], then to move from i to j,
deliver the item in the time window [aj , bj ], to move from i to j, and travel finally
to j to i+1 (obviously, the situations where j− 1 and i, or j and i+1, are located
at the same workstation, are particular cases);

2. There is enough capacity left in the vehicle to load an additional item.

Once all possible tuples have been checked, the best tuple is selected, i.e. the one
minimizing the increase of the sum of the delivery times, and the insertion is performed.
If at a given iteration, none of the combinations turns out to be feasible, then the
heuristic fails. In that case, the number of vehicles K or their capacity Qk should be
increased. To evaluate the condition (1) efficiently, note that we actualize dynamically
the earliest and latest starting time of the tasks belonging to the route rk each time
a new task is inserted (which can be done with a linear complexity). The overall
complexity of the procedure is O((2n+1)3), n being the number of pick-up and delivery
tasks. Note that it is also possible to guide the heuristic using another criterion that
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the one related to the WIP, e.g. the total distance covered by the robots, their load,
and the lateness (if we allow it).

6 First results

Fig. 2. Schematic representation of the workshop topology

To test the quality of the greedy heuristic, one of our MILP model, and determine
its added value, we set up 3 problem instances having 4 vehicles and 8 buffers for the
first, 6 vehicles and 14 buffers for the second, and 8 vehicles and 20 buffers for the
last. In these instances, the depot is an additional workstation having an infinite input
and output capacity. Each workstation corresponds to a specific buffer in the MILP
model and has a minimum and maximum storage capacity. The consumption inside the
buffers is spread over 20 minutes, time during which every workstation can consume
up to around twice their respective maximum capacities.

Some workstations have a positive consumption meaning that their local inventory
monotonically decreases, i.e. they are associated with the input buffers. The others
have a negative consumption so that their local inventory monotonically increases over
the planning horizon, i.e. they are associated with the output buffers. Let us recall
that this modeling enables us to represent any internal logistic task (as long as the
consumption of vehicle capacity by tasks can be expressed using the same scale of
size): e.g., the components supplying tasks starting from the depot, the collecting and
supplying of semi-finished products, and the retrieval of finished products or waste.

The vehicles are assumed all identical and have a capacity Qk = 4, ∀k. Pick-up and
delivery tasks are created thanks to Algorithm 1. Figure 2 shows the topology of the
workshop that has been used to estimate the traveling time on the routes.
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Fig. 3. A greedy solution for the third instance. Tasks are processed in ascending order
of their earliest start. The sum of service times is maximized. The load factor is 70%.

The solution obtained by the heuristic for the third instance is displayed on the
diagram of Figure 3, which provides an overview of the pick-up and delivery schedule
for each vehicle, i.e. , the schedule of the transportation capacity. The number of units
loaded (in this case, up to 4) into the vehicles over time is represented by colored
rectangles. In order to better understand such diagram, let us analyze more tightly
vehicle 2’s schedule, which has been detailed in figure 4. The numbers framed in gray
rectangles (1) indicate the location of the vehicle at the start of each task. Each col-
ored rectangle (2) represents a different item. A bright-colored rectangle (3) represents
movement from one location to another. A dull rectangle (4) represents the service
time of a task to be performed. A hatched rectangle (5) represents the loading of an
empty vehicle. A white rectangle (6) represents an empty trip. Eventually, no rectangle
(7) means that the vehicle is waiting. Here, vehicle 2 starts empty in 0, it first waits,
then loads 4 units a time 3: one green, one cyan, one pink, and one red. It then moves
to workstation 10 to unload the cyan unit at time 5, then to workstation 5 where it
waits to load an orange unit, which is unloaded at workstation 6 at time 8. It unloads
the green unit in workstation 1, then the red unit in workstation 17. He waits a little
before unloading in 12 the pink unit. It waits before loading a brown unit in 19, which
it then unloads in 20. Finally, it loads an orange unit in 5 and waits a little before
unloading it in 6, at time 19.

If we now launch the MILP solver (GUROBI in our case) with a time limit of
30 minutes, initializing it with the solutions found by the heuristic, we do observe an
improvement in the performance of the WIP score. For the first instance, the heuristic
score is 657 seconds, which is increased to 716 seconds (+9%) by the MILP (with a
final gap equal to 4.85%). For the second instance, the heuristic score is 1032 seconds,
which is increased to 1087 (+5.3%) by the MILP (with a gap equal to 8.21%). For the
third instance, the new routes are shown in Figure ??. While the heuristic offers a WIP
score of 1315 seconds, the MILP increases this score to 1368 seconds (i.e., +4%), with
a final gap equal to 12%. The MILP succeeded in systematically improving the WIP
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Fig. 4. The schedule of vehicle 2 in the greedy solution of the third instance

criterion in our three instances. However, we observe that the improvement is rapid at
the start of the optimization, but tends to slow down after a few minutes, and may
even freeze. We suspect that the solutions found are very close to being optimal and
that the solver spends its time to prove the optimality and close the instance.

7 Experiments

In this section, the goal is to determine whether our approach can work on the bench-
mark instances proposed by Ulusoy et al. (see [23]) for the JSPT. This benchmark
consists of 10 instances, named jobset1 .. jobset10, having from 5 to 7 jobs visiting a
set of 7 machines. The benchmark includes a matrix indicating the transport between
each pair of machines. Two unit-capacity vehicles are responsible for transferring prod-
ucts from one machine to the other.

In our experiments, we aim to optimize the QoS expressed in terms of WIP mini-
mization, like Gondran et al. in [26], assuming that the production schedule has been
built up in an earlier phase and must now be respected. To establish an initial pro-
duction schedule, we use an efficient hybrid approach, named ARIES, that mixes
SAT/SMT and CP solvers for solving to optimality the pure job-shop part of the
problem (see [30]), to minimize the makespan. Note that we simply take into account
in solving the minimum time of transportation between the machines, assuming an
infinite number of robots. Then, in the second step, we use our approach to solve the
routing part of the problem, progressively increasing the number of AMRs, until the
fleet size becomes large enough to carry out the various transportation tasks without
causing any delay in the implementation of the optimal schedule. The objectives are
twofold. First, we want to determine whether our approach is efficient enough to deal
with this benchmark. Secondly, as the benchmark considers 2 single capacity vehicles,
we would like to determine whether this number is really constraining, as it impacts the
production makespan, or not, which would mean that the computational complexity
of the instances will mainly lie on solving the job-shop part of the problem (not the
routing part).

Results of the experiments are displayed in Table 1, in which we report for each in-
stance: the time T JSPT

CPU spent by our job-shop solver to compute the optimal makespan,
the optimal makespan Cmax (assuming an infinite number of AMRs), the number of
AMRs found by our heuristic to follow the production without any makespan deterio-
ration, the time spent for computing the AMRs routes and improving them with our
MILP, the value of our WIP indicator, and eventually the WIP GAP.
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We first observe that our SAT/SMT and CP solver is very efficient in finding the
optimal makespan, since it always returns an optimal schedule in less than 20 ms. Our
heuristic helps us to initially determine the number of vehicles needed to implement the
initial schedule without deteriorating the makespan. Interestingly, this number, which
is limited to 2 in JSPT instances, must be increased to 4 or 5 to avoid any degradation
of the makespan. We also observe that our MILP solves JSPT instances quite quickly
compared to the time experienced in instances presented in Section refFirstResults.
One explanation is that the heuristic already provides routing plans that are almost
optimal so that the MILP therefore does not need to modify them much to make them
optimal. Nevertheless, it should be pointed out that our heuristic gives us no guarantee
regarding the number of vehicles. In a future study, it might be interesting to study
the same problem in the context of bi-objective optimization, where decision-makers
are looking for a compromise between minimizing the makespan and minimizing the
number of vehicles.

Instance name T JSPT
CPU (ms) Cmax(s) #AMR TMILP

CPU (s) WIP GAP

jobset1 7 220 5 9.95 5536 0%
jobset2 6 172 3 4.46 3329 0%
jobset3 12 166 4 0.95 3286 0%
jobset4 13 127 4 3.3 2686 0%
jobset5 11 116 4 0.99 2216 0%
jobset6 13 204 4 12.18 4909 0%
jobset7 14 154 5 34.9 4636 0%
jobset8 16 307 4 7.28 7668 0%
jobset9 12 194 4 3.52 4485 0%
jobset10 15 238 4 7.16 6114 0%

Table 1. Results obtained for the JSPT instances.

8 Conclusion

Adopting the formalism of a pick-up and delivery problem with time windows, we
provide in this paper a generic way to model the various internal logistics activities
that can appear in a production environment. We propose two solving procedures
(that can be sequenced): a greedy insertion heuristic and a MILP formulation. The
correctness of the greedy heuristic and MILP has been established on medium-sized
instances. The greedy heuristic allows for determining feasible solutions quickly, which
can eventually speed up the MILP-solving process. The use of a MILP solver gives
interesting results in our first experiments, although the optimization process can be
very long. These impressions were confirmed by the results obtained on the JSPT
benchmark. Our heuristic succeeded in quickly sizing the fleet and obtaining a fairly
good initial routing plan. MILP also enables us to improve this initial plan, if necessary,
and guarantee its optimality.

As far as future research directions are concerned, although our MILP enables us
to improve the quality of some initial solutions (the number of vehicle being fixed),
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we do not believe that it will be effective for solving large-scale problem instances, or
even for tackling the problem in its dynamic version. Indeed, the number of logistical
operations involved in implementing a production plan during a production campaign
can be very high, which could cause the MILP to be very inefficient. Furthermore, as
mentioned above, production is often disrupted by many unpredictable events, and it
is therefore necessary to maintain real-time consistency between production plans and
routing plans, which falls outside the scope of our method. It should also be noted
that since the implementation of the routing plan is also subject to uncertainties (for
example, it may take longer than expected for a robot to move), the production plan
may also be impacted. Therefore, production scheduling and vehicle routing should
really be considered in an integrated manner. Decomposition methods such as dynamic
branch-and-price approaches, similar to those used in the literature for dynamic PDP-
TW, could be a promising direction of research to achieve this integration.
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