
HAL Id: hal-04642776
https://hal.science/hal-04642776

Preprint submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Constructive characterisations of the must-preorder for
asynchrony

Giovanni Bernardi, Ilaria Castellani, Paul Laforgue, Léo Stefanesco

To cite this version:
Giovanni Bernardi, Ilaria Castellani, Paul Laforgue, Léo Stefanesco. Constructive characterisations of
the must-preorder for asynchrony. 2024. �hal-04642776�

https://hal.science/hal-04642776
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Constructive characterisations of the must-preorder1

for asynchrony2

Giovanni Bernardi #3

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France4

Ilaria Castellani #5

INRIA, Université Côte d’Azur, France6

Paul Laforgue #7

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France8

Nomadic Labs, Paris, France9

Léo Stefanesco #10

MPI-SWS11

Abstract12

De Nicola and Hennessy’s must-preorder is a contextual refinement which states that a server q refines13

a server p if all clients satisfied by p are also satisfied by q. Owing to the universal quantification over14

clients, this definition does not yied a practical proof method for the must-preorder, and alternative15

characterisations are necessary to reason on it.16

We present the first characterisations of the must-preorder that are constructive, supported17

by a mechanisation in Coq, and independent from any calculus: our results pertain to Selinger18

output-buffered agents with feedback. This is a class of Labelled Transition Systems that captures19

programs that communicate asynchronously via a shared unordered buffer, as in asynchronous CCS20

or the asynchronous π-calculus.21

Our results are surprising: the behavioural characterisations devised for synchronous communi-22

cation carry over as they stand to asynchronous communication, if servers are enhanced to act as23

forwarders, i.e. they can input any message as long as they store it back into the shared buffer. This24

suggests a technique to port standard characterisations from synchronous to asynchronous settings.25

2012 ACM Subject Classification Program verification, Constructive mathematics, Operational26

semantics27

Keywords and phrases Software Verification, Observational equivalence, Asynchrony28

Digital Object Identifier 10.4230/LIPIcs...29

1 Introduction30

Code refactoring is a routine task to develop or update software, and it requires methods31

to ensure that a program p can be safely replaced by a program q. One way to address32

this issue is via refinement relations, i.e. preorders. For programming languages, the most33

well-known one is Morris extensional preorder [76, pag. 50], defined by letting p ≤ q if for all34

contexts C, whenever C[p] reduces to a normal form N , then C[q] also reduces to N .35

Comparing servers. This paper studies a version of Morris preorder for nondeterministic36

asynchronous client-server systems. In this setting it is natural to reformulate the preorder37

by replacing reduction to normal forms (i.e. termination) with a suitable liveness property.38

Let p V r denote a client-server system, that is a parallel composition in which the identities39

of the server p and the client r are distinguished, and whose computations have the form40

p V r = p0 V r0 −→ p1 V r1 −→ p2 V r2 −→ . . . , where each step represents either an internal41

computation of one of the two components, or an interaction between them. Interactions42

correspond to handshakes, where two components ready to perform matching input/output43

actions advance together. We express liveness by saying that p must pass r, denoted p must r,44

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gio@irif.fr
mailto:ilaria.castellani@inria.fr
mailto:paul.laforgue123@gmail.com
mailto:leo.stefanesco@mpi-sws.org
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Constructive characterisations of the must-preorder for asynchrony

p0

p1 p2

p3 p4

str float

int long

r0

r2r1

r3

str int

int str

Figure 1 The behaviours of a server p0 and of a client r0.

if in every maximal computation of p V r there exists a state pi V ri such that good(ri),45

where good is a decidable predicate indicating that the client has reached a successful state.46

Servers are then compared according to their capacity to satisfy clients, i.e. via contexts of47

the form [−] V r and the predicate must. Morris preorder then becomes the must-preorder48

by De Nicola and Hennessy [44] : p ⊏∼must q when ∀r. p must r implies q must r.49

Advantages. The must-preorder is by definition liveness preserving, because p must r50

literally means that “in every execution something good must happen (on the client side)”.51

Results on ⊏∼must thus shed light on liveness-preserving program transformations.52

The must-preorder is independent of any particular calculus, as its definition requires53

simply (1) a reduction semantics for the parallel composition p V r, and (2) a predicate good54

over programs. Hence ⊏∼must may relate servers written in different languages. For instance,55

servers written in OCaml may be compared to servers written in Java according to clients56

written in Python, because all these languages communicate using the same basic protocols.57

Drawback. The definition of the must-preorder is contextual: proving that p ⊏∼must q58

requires analysing an infinite amount of clients, and so the definition of the preorder59

does not entail an effective proof method. A solution to this problem is to define an60

alternative (semantic) characterisation of the preorder ⊏∼must, i.e. a preorder ≼alt that61

coincides with⊏∼must and does away with the universal quantification over clients (i.e. contexts).62

In synchronous settings, i.e. when both input and output actions are blocking, such alternative63

characterisations have been thoroughly investigated, typically via a behavioural approach.64

Behavioural characterisations. Alternative preorders are usually defined in two steps:65

- First, programs are associated with labelled transition systems (LTSs) like those in Figure 1,66

where transitions are labelled by input actions such as str, output actions such as str, or67

the internal action τ while dotted nodes represent successful states, i.e. those satisfying68

the predicate good. There, the server p0 is ready to input either a string or a float. The69

client r0, on the other hand, is ready to either output a string, or input an integer. The input70

int makes the client move to the successful state r2, while the output str makes the client71

move to the state r1, where it can still perform the input int to reach the successful state r3.72

Output transitions enjoy a sort of commutativity property on which we will return later.73

Programs p, q, r, . . . are usually associated with their behaviours via inferences rules, which74

implicitly define a function lts(−) that, given a program p, returns the LTS whose root is p.75

- Second, program behaviours, i.e. LTSs, are used to define the alternative preorders for ⊏∼must76

following one of two different approaches: must-sets or acceptance sets.77

Alternative preorders for synchrony. Both approaches were originally proposed for78

the calculus CCS [75], where communication is synchronous. The first alternative preorder,79

which we denote by ≼MS, was put forth by De Nicola [44], and it compares server behaviours80

according to their must-sets, i.e. the sets of actions that they may perform. The second81

alternative preorder, which we denote by ≼AS, was put forth by Hennessy [55], and it82



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:3

p p′

q

a

α ⇒
p p′

p′′ q

a

α α

a

p p′

q

a

a ⇒
p p′

q

a

τ
a

Output-commutativity Feedback

p p′

p′′

a

a ⇒ p′ = p′′
p p′

p′′

a

τ ⇒
p p′

p′′ q

a

τ τ

a

or
p p′

p′′

a

τ
a

Output-determinacy Output-tau

p p′

p′′

a

α ⇒
p p′

p′′ q

a

α α

a

p′

p′′ p

a

a

⇒ p′ = p′′

where α ̸= a and α ̸= τ

Output-confluence Backward-output-determinacy

Figure 2 First-order axioms for output-buffered agents with feedback as given by Selinger [92],
extended with the Backward-output-determinacy axiom.

compares the acceptance sets of servers, i.e. how servers can be moved out of their potentially83

deadlocked states. Both these preorders characterise ⊏∼must in the following sense:84

∀p, q ∈ CCS. p ⊏∼must q iff lts(p) ≼MS lts(q) (1)85

∀p, q ∈ CCS. p ⊏∼must q iff lts(p) ≼AS lts(q) (2)8687

Asynchrony. In distributed systems, however, communication is inherently asynchronous.88

For instance, the standard TCP transmission on the Internet is asynchronous. Actor languages89

like Elixir and Erlang implement asynchrony via mailboxes, and both Python and90

JavaScript offer developers the constructs async/wait, to return promises (of results) or91

wait for them. In this paper we model asynchrony via output-buffered agents with feedback,92

as introduced by Selinger [92]. These are LTSs obeying the axioms in Figure 2, where a93

denotes an input action, a denotes an output action, τ denotes the internal action, and α94

ranges over all these actions. For instance, the Output-commutativity axiom states that95

an output a can always be postponed: if a is followed by any action α, it can commute with96

it. In other terms, outputs are non-blocking,as illustrated by the LTS for r0 in Figure 1.97

Theoretical issues. The practical importance of asynchrony motivates a specific study98

of ⊏∼must. Efforts in this direction have already been made, all of which focussed on process99

calculi [39, 24, 95, 57]. Note that the axioms in Figure 2 impose conditions only over outputs.100

This asymmetric treatment of inputs and outputs substantially complicates the proofs of101

completeness and soundness of the alternative characterisations of ⊏∼must. To underline the102

subtleties due to asynchrony, we note that the completeness result for asynchronous CCS103

given by Castellani and Hennessy in [39], and subsequently extended to the π-calculus by104

Hennessy [57], is false (see Appendix I).105

Contributions and paper structure. Our main contributions may be summarised as106

follows (where for each of them, we detail where it is presented):107

The first behavioural characterisations of the must-preorder (Theorem 17, Theorem 21),108

that are calculus independent, in that both our definitions and our proofs work directly109



XX:4 Constructive characterisations of the must-preorder for asynchrony

on LTSs. Contrary to all the previous works on the topic, we show that the standard110

alternative preorders characterise the must-preorder also in Selinger asynchronous setting.111

To this end, it suffices to enrich the server semantics with forwarding, i.e. ensure that112

servers are ready to receive any input message, as long as they store it back in a global113

shared buffer. This idea, although we use it here in a slightly different form, was pioneered114

by Honda et al. [64]. In this paper we propose a construction that works on any LTS115

(Lemma 13) and we show the following counterparts of Equations (1) and (2), where OF116

denotes the LTSs of output-buffered agents with feedback, and FW is the function that117

enhances them with forwarding:118

∀p, q ∈ OF. p ⊏∼must q iff FW(p) ≼MS FW(q) (a)119

∀p, q ∈ OF. p ⊏∼must q iff FW(p) ≼AS FW(q) (b)120121

Quite surprisingly, the alternative preorders ≼AS and ≼MS need not be changed. We122

present these results in Section 3. Selinger axioms are fundamental to prove completeness,123

which we discuss in Appendix C.124

The first constructive account of the must-preorder. We show that if the must and125

termination predicates are defined intensionally (in the sense of Brede and Herbelin [29]),126

then ⊏∼must can be characterised constructively. The original definitions of must and127

termination given by De Nicola [44], though, are extensional. Showing that intensional and128

extensional definitions are logically equivalent is a known problem, discussed for instance129

by Coquand [43] and Brede and Herbelin [29]. We follow their approach and adapt the130

bar-induction principle to our setting to prove the desired equivalences. Our treatment131

shows that Kőnig’s lemma, which is a mainstay in the literature on the must-preorder, is132

actually unnecessary: the bar-induction principle suffices for our purposes1. Since Rahli133

et al. [83] have shown bar-induction to be compatible with constructive type theory, we134

argue that our development is entirely constructive. Due to space constraints, we explain135

the principle of bar-induction and how to adapt it to our usage in Appendix A, while in136

this extended abstract we merely employ the principle.137

The first mechanisation of the theory of must-preorder in a fully nondeterministic setting,138

which consists of around 8000 lines of Coq. In Appendix J we gather the Coq versions of139

all the definitions and the results used in the main body of the paper.140

In Section 5, we discuss the impact of the above contributions, as well as related and141

future work. In Section 2, we recall the necessary background definitions and illustrate them142

with a few examples.143

2 Preliminaries144

We model individual programs such as servers p and clients r as LTSs obeying Selinger145

axioms, while client-server systems p V r are modelled as state transition systems with a146

reduction semantics. We now formally define this two-level semantics.147

Labelled transition systems. A labelled transition system (LTS) is a triple L =148

⟨A, L, −→⟩ where A is the set of states, L is the set of labels and −→ ⊆ A × L × A is the149

transition relation. When modelling programs as LTSs, we use transition labels to represent150

program actions. The set of labels in Selinger LTSs has the same structure as the set of151

actions in Milner’s calculus CCS: one assumes a set of names N , denoting input actions152

1 In fact even its version for finite branching trees, i.e. the fan theorem, suffices in the current treatment.



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:5

Class Sts (A: Type) := MkSts {
sts_step: A → A → Prop;
sts_stable: A → Prop; }.

Inductive ExtAct (A: Type) := Inductive Act (A: Type) :=
| ActIn (a: A) | ActOut (a: A). | ActExt (ext: ExtAct A) | τ.

Class Label (L: Type) := Class Lts (A L : Type) `{Label L} :=
MkLabel { MkLts {
label_eqdec: EqDecision L; lts_step: A → Act L → A → Prop;
label_countable: Countable L; }. lts_outputs: A → finite_set L;

lts_performs: A → (Act L) → Prop; }.

Figure 3 Highlights of our Sts and Lts typeclasses.

[S-Srv]
p

τ−→ p′

p V r −→ p′ V r
[S-Clt]

r
τ−→ r′

p V r −→ p V r′
[S-com]

p
µ−→ p′ r

µ−→ r′

p V r −→ p′ V r′

Figure 4 The STS of server-client systems.

and ranged over by a, b, c, a complementary set of conames N , denoting output actions and153

ranged over by a, b, c, and an invisible action τ , representing internal computation. The set154

of all actions, ranged over by α, β, γ, is given by Actτ
def= N ⊎ N ⊎ {τ}. We use µ, µ′ to155

range over the set of visible actions N ⊎ N , and we extend the complementation function · to156

this set by letting a
def= a. In the following, we will always assume L = Actτ . Once the LTS is157

fixed, we write p
α−→ p′ to mean that (p, α, p′) ∈ −→ and p

α−→ to mean ∃p′. p
α−→ p′.158

We use L to range over LTSs. To reason simultaneously on different LTSs, we will use159

the symbols LA and LB to denote respectively the LTSs ⟨A, L, −→A⟩ and ⟨B, L, −→B⟩.160

In our mechanisation LTSs are borne out by the typeclass Lts in Figure 3. The states of161

the LTS have type A, labels have type L, and lts_step is the characteristic function of the162

transition relation, which we assume to be decidable. We let O(p) = {a ∈ N | p
a−→} and163

I(p) = {a ∈ N | p
a−→} be respectively the set of outputs and the set of inputs of state p. We164

assume that the set O(p) is finite for any p. In our mechanisation, the set O(p) is rendered by165

the function lts_outputs, and we shall also use a function lts_performs that lets us decide166

whether a state can perform a transition labelled by a given action.167

Client-server systems. A client-server system (or system, for short) is a pair p V r in168

which p is deemed to be the server of client r. In general, every system p V r is the root of a169

state transition system (STS), ⟨S, −→⟩, where S is the set of states and −→ is the reduction170

relation. For the sake of simplicity2we derive the reduction relation from the LTS semantics171

of servers and clients as specified by the rules in Figure 4. In our mechanisation (Figure 3),172

2 In general the reduction semantics and the LTS of a calculus are defined independently, and connected
via the Harmony lemma ([87], Lemma 1.4.15 page 51). We have a mechanised proof of it.



XX:6 Constructive characterisations of the must-preorder for asynchrony

sts_step is the characteristic function of the reduction relation −→, and sts_stable is the173

function that states whether a state can reduce or not. Both functions are assumed decidable.174

▶ Definition 1 (Computation). Given an STS ⟨S, −→⟩ and a state s0 ∈ S, a computation of s0175

is a finite or infinite reduction sequence3, i.e. a partial function η from N to S whose domain176

is downward-closed, such that s0 = η(0) and for each n ∈ dom(η) \ {0}, η(n − 1) −→ η(n).■177

A computation η is infinite if dom(η) = N. A computation η is maximal if either it178

is infinite or it cannot be extended, i.e. η(nmax) X−→ where nmax = max(dom(η)). To179

formally define the must-preorder, we assume a decidable predicate good over clients. A180

computation η of s0 = p0 V r0 is successful if there exists n ∈ N such that good(snd(η(n))).181

We assume the predicate good to be preserved by output actions. To the best of our182

knowledge, this assumption is true in all the papers on testing theory for asynchronous calculi183

that rely on ad-hoc actions such as ω or ✓ to signal success. In Appendix F we show that184

this assumption holds for the language ACCS extended with the process 1. Moreover, when185

considering an equivalence on programs ≃ that is compatible with transitions, in the sense186

of Figure 5, we assume the predicate good to be preserved also by this equivalence. These187

assumptions are met by the frameworks in [39, 24, 57].188

▶ Definition 2 (Client satisfaction). We write p must r if every maximal computation of p V r189

is successful. ■190

▶ Definition 3 (must-preorder). We let p ⊏∼must q whenever for every client r we have that191

p must r implies q must r. ■192

▶ Example 4. Consider the system p0 V r0, where p0 and r0 are the server and client given in193

Figure 1. The unique maximal computation of this system is p0 V r0 −→ p1 V r1 −→ p3 V r3.194

This computation is successful since it leads the client to the good state r3. Hence, client r0195

is satisfied by server p0. Since Output-commutativity implies a lack of causality between196

the output str and the input int in the client, it is the order between the input str and197

the output int in the server that guides the order of client-server interactions. ◀198

A closer look at Selinger axioms. Let us now discuss the axioms in Figure 2. The199

Output-commutativity axiom expresses the non-blocking behaviour of outputs: an output200

cannot be a cause of any subsequent transition, since it can also be executed after it, leading201

to the same resulting state. Hence, outputs are concurrent with any subsequent transition.202

The Feedback axiom says that an output followed by a complementary input can also203

synchronise with it to produce a τ -transition. These first two axioms specify properties204

of outputs that are followed by another transition. Instead, the following three axioms,205

Output-confluence, Output-determinacy and Output-tau, specify properties of206

outputs that are co-initial with another transition4. The Output-determinacy and207

Output-tau axioms apply to the case where the co-initial transition is an identical output or208

a τ -transition respectively, while the Output-confluence axiom applies to the other cases.209

When taken in conjunction, these three axioms state that outputs cannot be in conflict with210

any co-initial transition, except when this is a τ -transition: in this case, the Output-tau211

axiom allows for a confluent nondeterminism between the τ -transition on one side and the212

output followed by the complementary input on the other side.213

3 Which is defined as a coinductive type in our Coq development.
4 Two transitions are co-initial if they stem from the same state.



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:7

p

q q′

≃

α

⇒
p p′

q q′

α

≃ ≃

α

Figure 5 Axiom stating that equivalence ≃ is compatible with a transition relation.

We now explain the novel Backward-output-determinacy axiom. It is the dual of214

Output-determinacy, as it states that also backward transitions with identical outputs215

lead to the same state. The intuition is that if two programs arrive at the same state by216

removing the same message from the mailbox, then they must coincide. This axiom need not217

be assumed in [92] because it can be derived from Selinger axioms when modelling a calculus218

like ACCS equipped with a parallel composition operator ∥ (see Lemma 87 in Appendix F).219

We use the Backward-output-determinacy axiom only to prove a technical property of220

clients (Lemma 54) that is used to prove our completeness result.221

Calculi. A number of asynchronous calculi [64, 25, 39, 61, 79, 88] have an LTS that222

enjoys the axioms in Figure 2, at least up to some structural equivalence ≡. The reason is223

that these calculi syntactically enforce outputs to have no continuation, i.e. outputs can only224

be composed in parallel with other processes.5. For example, Selinger [92] shows that the225

axioms of Figure 2 hold for the LTS of the calculus ACCS (the asynchronous variant of CCS6)226

modulo bisimulation, and in Lemma 90 we prove this for the LTS of ACCS modulo ≡:227

▶ Lemma 5. We have that ⟨ACCS≡, L, −→≡⟩ ∈ OF.228

To streamline reasoning modulo some (structural) equivalence we introduce the typeclass229

LstEq, whose instances are LTSs equipped with an equivalence ≃ that satisfies the property230

in Figure 5. Defining output-buffered agents with feedback using LtsEq does not entail any231

loss of generality, because the equivalence ≃ can be instantiated using the identity over the232

states A. Further details can be found in Appendix F.1.233

When convenient we denote LTSs using the following minimal syntax for ACCS:234

p, q, r ::= a | g | p ∥ p | recx.p | x, g ::= 0 | a.p | τ.p | g + g (3)235

as well as its standard LTS7 whose properties we discuss in detail in Appendix F. This236

is exactly the syntax used in [92, 24], without the operators of restriction and relabelling.237

Here the syntactic category g defines guards, i.e. the terms that may be used as arguments238

for the + operator. Note that, apart from 0, only input-prefixed and τ -prefixed terms are239

allowed as guards, and that the output prefix operator is replaced by atoms a. In fact, this240

syntax is completely justified by Selinger axioms, which, as we argued above, specify that241

outputs cannot cause any other action, nor be in conflict with it.242

▶ Definition 6. Given an LTS ⟨A, L, −→⟩ and state p0 ∈ A, a transition sequence of p0 is a243

finite or infinite sequence of the form p0α1p1α2p2 · · · with pi ∈ A and αi ∈ L, and such that,244

for every n ≥ 1 such that pn is in the sequence we have pn−1
αn−−→ pn. ■245

5 In the calculus TACCS of [39] there is a construct of asynchronous output prefix, but its behaviour is to
spawn the corresponding atom in parallel with the continuation, so it does not act as a prefix

6 The syntax of ACCS, which is closely inspired by that of the asynchronous π-calculus with input- and
τ -guarded choice [4, 5], is given in Equation (3) and discussed later.

7 Where the recursion rule is replaced by the one usually adopted for testing semantics, which introduces
a τ -transition before each unfolding.



XX:8 Constructive characterisations of the must-preorder for asynchrony

If a transition sequence is made only of τ -transitions, it is called a computation, the idea246

being that usually τ -steps should be related to reductions via the Harmony lemma.247

We give now an example that illustrates the use of the testing machinery in our asyn-248

chronous setting. This is also a counter-example to the completeness of the alternative249

preorder proposed in [39], as discussed in detail in Appendix I.250

▶ Example 7. Let Ω = recx.τ.x and Pierre = b.(τ.Ω + c.d). The LTS of Pierre is as follows:251

b.(τ.Ω + c.d) τ.Ω + c.d

Ω

d 0

b
τ

c
d

τ

252

Pierre models a citizen confronted with an unpopular pension reform. To begin with, Pierre253

can only do the input b, which models his getting aware of the brute-force imposition of the254

reform by the government. After performing the input, Pierre reaches the state τ.Ω + c.d,255

where he behaves in a nondeterministic manner. He can internally choose not to trust the256

government for any positive change, in which case he will diverge, refusing any further257

interaction. But this need not happen: in case the government offers the action c, which258

models a positive change in political decision, Pierre can decide to accept this change, and259

then he expresses his agreement with the output d, which stands for “done”. ◀260

▶ Example 8. We prove now the inequality Pierre ⊏∼must 0 by leveraging the possibility of261

divergence of Pierre after the input b. Fix an r such that Pierre must r. We distinguish two262

cases, according to whether r
b−→ or r ̸ b−→.263

i) Let r
b−→ r′ for some r′. Consider the maximal computation Pierre V r −→ τ.Ω +264

c.d V r′ −→ Ω V r′ −→ . . . in which Pierre diverges and r does not move after the first265

output. Since Pierre must r, either good(r) or good(r′). In case good(r′), by Lemma 87266

we get also good(r). Hence 0 must r.267

ii) Let r
bX−→. Suppose r = r0

τ−→ r1
τ−→ r2

τ−→ . . . is a maximal computation of r. Then268

Pierre V r has a maximal computation Pierre V r0 −→ Pierre V r1 −→ Pierre V r2 −→ . . ..269

As Pierre must r, there must exist an i ∈ N such that good(ri). Hence 0 must r. ◀270

The argument in Example 8 can directly use Definition (3) because it is very simple to271

reason on the process 0. The issues brought about by the contextuality of Definition (3),272

though, hinder showing general properties of ⊏∼must. Even proving the following seemingly273

obvious fact is already cumbersome:274

τ.(a ∥ b) + τ.(a ∥ c) ⊏∼must a ∥ (τ.b + τ.c) (4)275

This motivates the study of alternative characterisations for ⊏∼must, and in the rest of the276

paper we present two preorders that fit the purpose, and let us establish Equation (4).277

We conclude this section by recalling auxiliary and rather standard notions: given an LTS278

⟨A, L, −→⟩, the weak transition relation p
s=⇒ p′, where s ∈ Act⋆, is defined via the rules279

[wt-refl] p
ε=⇒ p280

[wt-tau] p
s=⇒ q if p

τ−→ p′ and p′ s=⇒ q281

[wt-mu] p
µ.s=⇒ q if p

µ−→ p′ and p′ s=⇒ q282

We write p
s=⇒ to mean ∃p′. p

s=⇒ p′, where s ∈ Act⋆.283



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:9

We write p ↓ and say that p converges if every computation of p is finite, and we lift the284

convergence predicate to finite traces by letting the relation ⇓ ⊆ A × Act⋆ be the least one285

that satisfies the following rules286

[cnv-epsilon] p ⇓ ε if p ↓,287

[cnv-mu] p ⇓ µ.s if p ↓ and p
µ=⇒ p′ implies p′ ⇓ s.288

To understand the next section, one should keep in mind that all the predicates defined289

above have an implicit parameter: the LTS of programs. By changing this parameter, we may290

change the meaning of the predicates. For instance, letting Ω be the ACCS process recx.τ.x,291

in the standard LTS ⟨ACCS, −→, Actτ ⟩ we have Ω τ−→ Ω and ¬(Ω ↓), while in the LTS292

⟨ACCS, ∅, Actτ ⟩ we have Ω τX−→ and thus Ω ↓. In other words, the same predicates can be293

applied to different LTSs, and since the alternative characterisations of ⊏∼must are defined294

using such predicates, they can relate different LTSs.295

3 Behavioural characterisations296

We first recall the definition of the standard alternative preorder ≼AS, and show how to297

use it to characterise ⊏∼must in our asynchronous setting. Then we recall the other standard298

alternative preorder, namely ≼MS, and prove that it also captures ⊏∼must, by applying our299

first characterisation.300

3.1 The acceptance-set approach301

The ready set of a program p is defined as R(p) = I(p) ∪ O(p), and it contains all the visible302

actions that p can immediately perform. If a program p is stable, i.e. it cannot perform any303

τ -transition, we say that it is a potential deadlock. In general, the ready set of a potential304

deadlock p shows how to make p move to a different state, possibly one that can perform305

further computation: if R(p) = ∅ then there is no way to make p move on, while if R(p)306

contains some action, then p is a state waiting for the environment to interact with it. Indeed,307

potential deadlocks are called waiting states in [64]. In particular, in an asynchronous setting308

the outputs of a potential deadlock p show how it can unlock the inputs of a client, which309

in turn may lead the client to a novel state that can make p move, possibly to a state that310

can perform further computation. A standard manner to capture all the ways out of the311

potential deadlocks that a program p encounters after executing a trace s is its acceptance312

set: A(p, s, −→) = {R(p′) | p
s=⇒ p′ τX−→}.313

In our presentation we indicate explicitly the third parameter of A, i.e. the transition314

relation of the LTS at hand, because when necessary we will manipulate this parameter. For315

any two LTSs LA, LB and servers p ∈ A, q ∈ B, we write A(p, s, −→A) ≪ A(q, s, −→B) if for316

every R ∈ A(q, s) there exists R̂ ∈ A(p, s) such that R̂ ⊆ R. We can now recall the definition317

of the behavioural preorder à la Hennessy, ≼AS, which is based on acceptance sets [55].318

▶ Definition 9. We write319

p ≼cnv q whenever ∀s ∈ Act⋆. p ⇓A s implies q ⇓B s,320

p ≼acc q whenever ∀s ∈ Act⋆. p ⇓A s implies A(p, s, −→A) ≪ A(q, s, −→B),321

p ≼AS q whenever p ≼cnv q and p ≼acc q. ■322

In the synchronous setting, the behavioural preorder ≼AS is closely related to the denota-323

tional semantics based on Acceptance Trees proposed by Hennessy in [54, 55]. There the324

predicates need not be annotated with the LTS that they are used on, because those works325



XX:10 Constructive characterisations of the must-preorder for asynchrony

treat a unique LTS. Castellani and Hennessy [39] show in their Example 4 that the condition326

on acceptance sets, i.e. ≼acc, is too demanding in an asynchronous setting.327

Letting p = a. 0 and q = 0, they show that p ⊏∼must q but p ̸≼AS q, because A(p, ϵ) = {{a}}328

and A(q, ϵ) = {∅}, and corresponding to the ready set ∅ ∈ A(q, ϵ) there is no ready set329

R̂ ∈ A(p, s) such that R̂ ⊆ ∅. Intuitively this is the case because acceptance sets treat inputs330

and outputs similarly, while in an asynchronous setting only outputs can be tested.331

Nevertheless ≼AS characterises ⊏∼must, if servers are enhanced as with forwarding. We now332

introduce this concept.333

Forwarders. We say that an LTS L is of output-buffered agents with forwarding, for334

short is OW, if it satisfies all the axioms in Figure 2 except Feedback, and also the two335

following axioms:336

p p′

a

a
p p′

q

a

a ⇒ p
τ−→ q or p = q

Input-Boomerang Fwd-Feedback

(5)337

The Input-Boomerang axiom states a kind of input-enabledness property, which is338

however more specific as it stipulates that the target state of the input should loop back339

to the source state via a complementary output. This is the essence of the behaviour of340

a forwarder, whose role is simply to pass on a message and then get back to its original341

state. The Fwd-Feedback axiom is a weak form of Selinger’s Feedback axiom, which342

is better understood in conjunction with the Input-Boomerang axiom: if the sequence343

of transitions p
a−→ p′ a−→ q in the Fwd-Feedback axiom is taken to be the sequence of344

transitions p′ a−→ p
a−→ p′ in the Input-Boomerang axiom, then we see that it must be345

q = p in the Fwd-Feedback axiom. Moreover, no τ action is issued when moving from p to346

q, since no synchronisation occurs in this case: the message is just passed on.347

We mechanise all this via the typeclass LtsObaFW. The overall structure of our typeclasses348

to reason on LTSs is thus Lts ≥ LtsEq ≥ LtsOba and LtsOba is a super-class of both LtsObaFB349

and LtsObaFW. We defer the details to Appendix J.350

To prove that ≼AS is sound and complete with respect to ⊏∼must:351

1. we define an operation to lift any LTS L ∈ OF into a suitable LTS Lfw ∈ OW, and352

2. we check the predicates ⇓ and A(−, −, −) over the LTS Lfw.353

Let MO denote the set of all finite multisets of output actions, for instance we have354

∅, {|a|}, {|a, a|}, {|a, b, a, b|} ∈ MO. We let M, N, . . . range over MO. The symbol M stands355

for mailbox. We denote with ⊎ the multiset union. We assume a function mbox : A → MO356

defined for any LTS LA of output-buffered agents such that357

(i) a ∈ O(p) if and only if a ∈ mbox(p), and358

(ii) for every p′, if p
a−→ p′ then mbox(p) = {|a|} ⊎ mbox(p′).359

Note that by definition mbox(p) is a finite multiset.360

▶ Definition 10. Let FW(L) = ⟨A×MO, L, −→fw⟩ for every LTS L = ⟨A, L, −→⟩, where the361

states in FW(L) are pairs denoted p ▷ M , such that p ∈ A and M ∈ MO, and the transition362

relation −→fw is defined via the rules in Figure 6. ■363

▶ Example 11. If a calculus is fixed, then the function FW may have a simpler definition.364

For instance Castellani and Hennessy [39] define it in their calculus TACCS by letting α−→fw365



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:11

[L-Proc]
p

α−→ p′

p ▷ M
α−→fw p′ ▷ M

[L-Comm]
p

a−→ p′

p ▷ ({|a|} ⊎ M) τ−→fw p′ ▷ M

[L-Mout]
p ▷ ({|a|} ⊎ M) a−→fw p ▷ M

[L-Minp] p ▷ M
a−→fw p ▷ ({|a|} ⊎ M)

Figure 6 Lifting of a transition relation to transitions of forwarders.

be the least relation over TACCS such that (1) for every α ∈ Actτ .
α−→ ⊆ α−→fw, and (2)366

for every a ∈ N . p
a−→fw p ∥ a. ◀367

The transition relation −→fw is reminiscent of the one introduced in Definition 8 by368

Honda and Tokoro in [64]. The construction given in our Definition (10), though, does not369

yield the LTS of Honda and Tokoro, as −→fw adds the forwarding capabilities to the states370

only at the top-level, instead of descending structurally into terms. As a consequence, in the371

LTS of [64] a. 0 + 0 b−→ b, while a. 0 + 0 bX−→fw b.372

▶ Example 12. As the set N is countable, every process p in the LTS ⟨ACCS×MO, Actτ , −→fw⟩373

is infinitely-branching, for instance for every p and every input µ we have p
µ−→ p ∥ µ, hence374

p
a0−→ p ∥ a0, p

a1−→ p ∥ a1, p
a2−→ p ∥ a2, . . . ◀375

The intuition behind Definition (10) is that, when a client interacts with a server376

asynchronously, the client can send any message it likes, regardless of the inputs that the377

server can actually perform. In fact, asynchronous clients behave as if the server was saturated378

with forwarders, namely processes of the form a.a, for any a ∈ N .379

We are ready to state two main properties of the function FW: it lifts any LTS of output-380

buffered agents with feedback to an LTS of forwarders, and the lifting preserves the must381

predicate. We can therefore reason on ⊏∼must using LTSs of forwarders.382

▶ Lemma 13. For every LTS L ∈ OF, FW(L) ∈ OW.383

▶ Lemma 14. For every LA, LB , LC ∈ OF, p ∈ A, q ∈ B, r ∈ C,384

1. p musti r if and only if FW(p) musti r,385

2. p ⊏∼must q if and only if FW(p) ⊏∼must FW(q).386

We now simplify the definition of acceptance sets to reason on forwarders: for any two
LTS LA, LB ∈ OW and servers p ∈ A, and q ∈ B we let Afw(p, s, −→) = {O(p′) | p

s=⇒
p′ τX−→}. This definition suffices to characterise ⊏∼must because in each LTS that is OW every
state performs every input, thus comparing inputs has no impact on the preorder ≼acc of
Definition (9). More formally, for every LA, LB ∈ OW and every p ∈ A and q ∈ B, we let

p ≼fw
acc q iff ∀s ∈ Act⋆. p ⇓ s implies Afw(p, s, −→A) ≪ Afw(q, s, −→B)

Then we have the following logical equivalence.387

▶ Lemma 15. Let LA, LB ∈ OW. For every p ∈ A, q ∈ B, p ≼acc q if and only if p ≼fw
acc q.388

Proof. The only if implication is trivial, so we discuss the if one. Suppose that p ≼fw
acc q389

and that for some s we have that R ∈ A(q, s, −→B). Let X be the possibly empty subset390

of R that contains only output actions. Note that since LB is OW we know by definition391



XX:12 Constructive characterisations of the must-preorder for asynchrony

that R = X ∪ N . By definition X ∈ Afw(q, s, −→B), and thus by hypothesis there exists392

some set of output actions Y ∈ Afw(p, s, −→A) such that Y ⊆ X. It follows that the set393

Y ∪ N ∈ A(p, s, −→A), and trivially Y ∪ N ⊆ X ∪ N = R. ◀394

In view of the second point of Lemma 14, to prove completeness it suffices to show395

that ≼AS includes ⊏∼must in the LTS of forwarders. This is indeed true:396

▶ Lemma 16. For every LA, LB ∈ OW and servers p ∈ A, q ∈ B, if p ⊏∼must q then p ≼AS q.397

By a slight abuse of notation, given an LTS L = ⟨A, L, −→⟩ and a state p ∈ A, we denote398

with FW(p) the LTS rooted at p ▷ ∅ in FW(L).399

▶ Theorem 17. For every LA, LB ∈ OF and p ∈ A, q ∈ B, p ⊏∼must q if and only if400

FW(p) ≼AS FW(q).401

The proof of completeness is given in Appendix C, where the main aim is to show402

Lemma 16. The proof of soundness, instead, requires much more auxiliary machinery403

than the one used to state Lemma 16, so we defer it entirely to Appendix D. Here we404

highlight the major novelty with respect to the literature, via a little digression. All the405

soundness arguments for behavioural characterisations of ⊏∼must in non-deterministic settings,406

for instance [44, 57, 59, 23, 14] but to cite a few, are rooted in classical logic, because they407

(1) unzip maximal computations of p V r −→ · · · to produce traces p
s=⇒ and r

s=⇒ that408

may be infinite; (2) use the excluded middle on an undecidable property, namely the infinity409

of the traces at hand; and (3) in case of infinite traces apply Kőnig’s lemma (see for instance410

lemmas 4.4.12 and 4.4.13 of [55]). Our proof replaces Kőnig’s lemma with induction and411

works on infinite branching STS. This is possible thanks to the bar-induction principle, which412

we outline in Section 4.413

From Lemma 5 and Theorem 17 we immediately get a characterisation of ⊏∼must for ACCS:414

415

▶ Corollary 18. For every p, q ∈ ACCS≡, p ⊏∼must q if and only if FW(p) ≼AS FW(q).416

In Appendix E we present what, to the best of our knowledge, are the first behavioural417

characterisations of the must-preorder that fully exploit asynchrony, i.e. disregard irrelevant418

(that is, non-causal) orders of visible actions in traces. Due to space constraints, here we419

omit these additional results.420

3.2 The must-set approach421

As first application of Theorem 17, we prove that the second standard way to characterise422

the preorder ⊏∼must, i.e. the one based on must-sets, is indeed sound and complete.423

For every X ⊆fin Act, that is for every finite set of visible actions, with a slightly abuse of424

notation we write p must X whenever p
ε=⇒ p′ implies that p′ µ−→ for some µ ∈ X, and we425

say that X is a must-set of p. Let (p after s, −→) = {p′ | p
s=⇒ p′}. For every LA, LB and426

p ∈ A, q ∈ B, let p ≼m q whenever ∀s ∈ Act⋆ we have that p ⇓ s implies that (∀X ⊆fin Act if427

(p after s, −→A) must X then (q after s, −→B) must X).428

▶ Definition 19. For every LA, LB ∈ OF, and server p ∈ A and q ∈ B we let p ≼MS q429

whenever p ≼cnv q ∧ p ≼m q. ■430

▶ Lemma 20. Let LA, LB ∈ OF. For every p ∈ A, q ∈ B such that FW(p) ≼cnv FW(q), we431

have that FW(p) ≼m FW(q) if and only if FW(p) ≼fw
acc FW(q).432



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:13

As a direct consequence, we obtain our second result.433

▶ Theorem 21. Let LA, LB ∈ OF. For every p ∈ A and q ∈ B, we have that p ⊏∼must q if434

and only if FW(p) ≼MS FW(q).435

Failure refinement. must-sets have been used mainly by De Nicola and collaborators,436

for instance in [45, 24], and are closely related to the failure refinement proposed in [34] by437

Hoare, Brookes and Roscoe for TCSP (the process algebra based on Hoare’s language CSP438

[63, 32]). Following [34], a failure of a process p is a pair (s, X) such that p
s=⇒ p′ and p′ µX−→439

for all µ ∈ X. Then, failure refinement is defined by letting p ≤fail q whenever the failures440

of q are also failures of p. This refinement was designed to give a denotational semantics441

to processes, and mechanisations in Isabelle/HOL have been developed to ensure that the442

refinement is well defined [93, 12]. Both Hennessy [55, pag. 260] and [38] highlight that the443

failure model can be justified operationally via the must testing equivalence: it is folklore444

dating back to [44, Section 4] that failure equivalence and ≂ coincide. Thanks to Theorem 21445

we conclude that in fact ⊏∼must coincides with ≤fail in conjunction with ≼cnv.8446

▶ Corollary 22. Let LA, LB ∈ OF. For every p ∈ A and q ∈ B, we have that p ⊏∼must q if447

and only if FW(p) ≼cnv FW(q) and FW(p) ≤fail FW(q).448

4 Bar-induction: from extensional to intensional definitions449

Two predicates are crucial to reason on the must-preorder, namely passing a test, i.e. must,450

and convergence, i.e. ↓. Both predicates are defined in an extensional manner, i.e. by451

requiring that for every infinite sequence there exists a state that is in some sense good.452

These are respectively the predicate good in the definition of must and the predicate of453

stability, i.e. X−→, in the definition of convergence.454

Both extensional predicates can actually be defined inductively, following an intensional
approach. Let intQ be the inductive predicate (least fixpoint) defined by the following rules:

[axiom]
Q(s)

intQ(s)
[ind-rule]

s → ∀s′. s → s′ implies intQ(s′)
intQ(s)

and we define our inductive predicates via int by letting p ↓i
def= intQ1(p) and p musti r

def=455

intQ2(p, r), where Q1(p) def= p X−→ and Q2(p, r) def= good(r).456

While proving that the intensional predicates (musti and ↓i) imply the extensional ones457

(must and ↓) are easy arguments by induction, proving the converse implications is a known458

problem. Its constructive solution rests on either the fan-theorem or the bar-induction459

principle. The first applies to finite branching trees, while the second to countably infinite460

branching trees. We favour bar-induction because in calculi like infinitary CCS computations461

can form countably branching trees.462

▶ Proposition 23. Given a countably branching STS ⟨S, →⟩, and a decidable predicate Q463

on S, for all s ∈ S, extQ(s) implies intQ(s).464

▶ Corollary 24. For every p ∈ A, (1) p ↓ if and only if p ↓i, (2) for every r we have that465

p must r if and only if p musti r.466

8 The preorder becomes then the “failure divergence” refinement formalised as ⊑FD in https://www.
isa-afp.org/sessions/hol-csp/#Process_Order.html.

https://www.isa-afp.org/sessions/hol-csp/#Process_Order.html
https://www.isa-afp.org/sessions/hol-csp/#Process_Order.html


XX:14 Constructive characterisations of the must-preorder for asynchrony

Thanks to this corollary, in the proofs of the characterisations of ⊏∼must, and in our code,467

we use the predicates musti and ↓i. In other terms, we reason by induction.468

The details about bar-induction, our mechanisation, and the proofs of the above results469

are deferred to Appendix A.470

5 Conclusion471

In this paper we have shown that the standard characterisations of the must-preorder by472

De Nicola and Hennessy [44, 55] are sound and complete also in an asynchronous setting,473

provided servers are enhanced with the forwarding ability. Lemma 13 shows that this lifting474

is always possible. Our results are supported by the first mechanisation of the must-preorder,475

and increase proof (i.e. code) factorisation and reusability since the alternative preorders do476

not need to be changed when shifting between synchronous and asynchronous semantics: it is477

enough to parametrise the proofs on the set of non-blocking actions. Corollary 22 states that478

must-preorder and failure refinement essentially coincide. This might spur further interest479

in the mechanisations of the latter [93, 12], possibly leading to a joint development.480

Proof method for must-preorder. Theorem 17 and Theorem 21 endow researchers in481

programming languages for message-passing software with a proof method for ⊏∼must, namely:482

to define an LTS that enjoys the axioms of output-buffered agents with feedback for the483

language at issue. A concrete example of this approach is Corollary 18.484

Live programs have barred trees. We argued that a proof of p must r is a proof of485

liveness (of the client). This paper is thus de facto an exemple that proving liveness amounts486

to prove that a computational tree has a bar (identified by the predicate good), and hence487

bar-induction is a natural way to reason constructively on liveness-preserving manipulations.488

While this fact seems to be by and large unexploited by the PL community, we believe that489

it may be of interest to practitioners reasoning on liveness properties in theorem provers in490

particular, and to the PL community at large.491

Mechanisation. As observed by Boreale and Gadducci [22], the must-preorder lacks a492

tractable proof method. We thus argue that our contributions, being fully mechanised in Coq,493

are crucial to pursue non-trivial results about testing preorders for real-world programming494

languages. Our mechanisation lowers the barrier to entry for researchers versed into theorem495

provers and wishing to use testing preorders; adds to the toolkit of Coq users an alternative496

to the well-known (and already mechanised) bisimulation equivalence [80]; and provides a497

starting point for researchers willing to study testing preorders and analogous refinements498

within type theory. Our code is open-source and available on-line. Practitioners working on499

testing preorders may benefit from it, as there are analogies between reasoning techniques500

for May, must, Compliance, Should, and Fair testing. For instance Baldan et al.501

show with pen and paper that a technique similar to forwarding works to characterise the502

may-preorder [8].503

Future work. Thanks to Theorem 17 and Theorem 21 we can now set out to (1)504

develop a coinductive characterisation for ⊏∼must adapting the one in [2, 17]; (2) devise an505

axiomatisation of ⊏∼must for asynchronous calculi, as done in [59, 23, 55, 56] for synchronous506

ones; (3) study for which asynchronous calculi ⊏∼must is a pre-congruence; (4) machine-check507

semantic models of subtyping for session types [17]; (5) study the decidability of ⊏∼must. We508

conjecture that in Selinger asynchronous setting the must-preorder is undecidable.509

Related work. Appendix G contains a detailed discussion of related works. Here we510

highlight that the notion of forwarder was outlined in the original paper on testing-preorders511



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:15

for asynchrony [39], and then used in the saturated LTS of [8] to reason on the may-preorder,512

and in [95] to reason on a version of the must-preorder parametrised on the set of tests.513

Forwarders, also called “links”, have applications outside of testing theory, as shown by [73]514

and the recent [49]. Characterising ⊏∼must directly on LTSs instead of calculi was suggested515

already in [55, 13]. Selinger axioms, discussed also by [9], are crucial in our completeness516

proof. Brouwer bar-induction principle is paramount to prove soundness constructively.517

References518

1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.519

Adventures in monitorability: from branching to linear time and back again. Proc. ACM520

Program. Lang., 3(POPL):52:1–52:29, 2019. doi:10.1145/3290365.521

2 Luca Aceto and Matthew Hennessy. Termination, Deadlock, and Divergence. J. ACM,522

39(1):147–187, 1992. doi:10.1145/147508.147527.523

3 Reynald Affeldt and Naoki Kobayashi. A Coq Library for Verification of Concurrent Programs.524

In Carsten Schürmann, editor, Proceedings of the Fourth International Workshop on Logical525

Frameworks and Meta-Languages, LFM@IJCAR 2004. Cork, Ireland, July 5, 2004, volume526

199 of Electronic Notes in Theoretical Computer Science, pages 17–32. Elsevier, 2004. URL:527

https://doi.org/10.1016/j.entcs.2007.11.010, doi:10.1016/J.ENTCS.2007.11.010.528

4 Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On Bisimulations for the529

Asynchronous pi-calculus. In U. Montanari and V. Sassone, editors, Proceedings CONCUR530

96, Pisa, volume 1119 of Lecture Notes in Computer Science, pages 147–162. Springer Verlag,531

1996.532

5 Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On Bisimulations for the533

Asynchronous pi-calculus. Theoretical Computer Science, 195:291–324, 1998.534

6 Anish Athalye. CoqIOA: A formalization of IO Automata in the Coq Proof Assistant. Master’s535

thesis, Massachusetts Institute of Technology, June 2017.536

7 Clément Aubert and Daniele Varacca. Processes against tests: On defining contextual537

equivalences. J. Log. Algebraic Methods Program., 129:100799, 2022. URL: https://doi.org/538

10.1016/j.jlamp.2022.100799, doi:10.1016/J.JLAMP.2022.100799.539

8 Paolo Baldan, Filippo Bonchi, Fabio Gadducci, and Giacoma Valentina Monreale. Asyn-540

chronous Traces and Open Petri Nets. In Chiara Bodei, Gian-Luigi Ferrari, and Corrado Priami,541

editors, Programming Languages with Applications to Biology and Security - Essays Dedicated542

to Pierpaolo Degano on the Occasion of His 65th Birthday, volume 9465 of Lecture Notes in543

Computer Science, pages 86–102. Springer, 2015. doi:10.1007/978-3-319-25527-9\_8.544

9 Paolo Baldan, Filippo Bonchi, Fabio Gadducci, and Giacoma Valentina Monreale. Concurrency545

cannot be observed, asynchronously. Math. Struct. Comput. Sci., 25(4):978–1004, 2015.546

doi:10.1017/S0960129513000108.547

10 Franco Barbanera and Ugo de’Liguoro. Two notions of sub-behaviour for session-based548

client/server systems. In Temur Kutsia, Wolfgang Schreiner, and Maribel Fernández, editors,549

Proceedings of the 12th International ACM SIGPLAN Conference on Principles and Practice550

of Declarative Programming, July 26-28, 2010, Hagenberg, Austria, pages 155–164. ACM, 2010.551

doi:10.1145/1836089.1836109.552

11 Henk Barendregt and Giulio Manzonetto. A Lambda Calculus Satellite. College Publications,553

2022. Chapter 11. URL: https://www.collegepublications.co.uk/logic/mlf/?00035.554

12 James Baxter, Pedro Ribeiro, and Ana Cavalcanti. Sound reasoning in tock-CSP. Acta555

Informatica, 59(1):125–162, 2022. doi:10.1007/s00236-020-00394-3.556

13 Giovanni Bernardi. Behavioural equivalences for Web services. PhD thesis, Trinity College557

Dublin, 2013. URL: http://www.tara.tcd.ie/handle/2262/77595.558

14 Giovanni Bernardi and Matthew Hennessy. Mutually Testing Processes. Log. Methods Comput.559

Sci., 11(2), 2015. doi:10.2168/LMCS-11(2:1)2015.560

https://doi.org/10.1145/3290365
https://doi.org/10.1145/147508.147527
https://doi.org/10.1016/j.entcs.2007.11.010
https://doi.org/10.1016/J.ENTCS.2007.11.010
https://doi.org/10.1016/j.jlamp.2022.100799
https://doi.org/10.1016/j.jlamp.2022.100799
https://doi.org/10.1016/j.jlamp.2022.100799
https://doi.org/10.1016/J.JLAMP.2022.100799
https://doi.org/10.1007/978-3-319-25527-9_8
https://doi.org/10.1017/S0960129513000108
https://doi.org/10.1145/1836089.1836109
https://www.collegepublications.co.uk/logic/mlf/?00035
https://doi.org/10.1007/s00236-020-00394-3
http://www.tara.tcd.ie/handle/2262/77595
https://doi.org/10.2168/LMCS-11(2:1)2015


XX:16 Constructive characterisations of the must-preorder for asynchrony

15 Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session561

types. Log. Methods Comput. Sci., 12(2), 2016. doi:10.2168/LMCS-12(2:10)2016.562

16 Giovanni Tito Bernardi and Adrian Francalanza. Full-abstraction for client testing preorders.563

Sci. Comput. Program., 168:94–117, 2018. doi:10.1016/j.scico.2018.08.004.564

17 Giovanni Tito Bernardi and Matthew Hennessy. Modelling session types using contracts. Math.565

Struct. Comput. Sci., 26(3):510–560, 2016. doi:10.1017/S0960129514000243.566

18 Gérard Berry and Gérard Boudol. The Chemical Abstract Machine. Theor. Comput. Sci.,567

96(1):217–248, 1992. doi:10.1016/0304-3975(92)90185-I.568

19 Aleš Bizjak, Lars Birkedal, and Marino Miculan. A model of countable nondeterminism in569

guarded type theory. In Gilles Dowek, editor, Rewriting and Typed Lambda Calculi, pages570

108–123, Cham, 2014. Springer International Publishing.571

20 Filippo Bonchi, Georgiana Caltais, Damien Pous, and Alexandra Silva. Brzozowski’s and572

Up-To Algorithms for Must Testing. In Chung-chieh Shan, editor, Programming Languages and573

Systems - 11th Asian Symposium, APLAS 2013, Melbourne, VIC, Australia, December 9-11,574

2013. Proceedings, volume 8301 of Lecture Notes in Computer Science, pages 1–16. Springer,575

2013. doi:10.1007/978-3-319-03542-0\_1.576

21 Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. The Theory of Traces for Systems with577

Nondeterminism, Probability, and Termination. Log. Methods Comput. Sci., 18(2), 2022. URL:578

https://doi.org/10.46298/lmcs-18(2:21)2022, doi:10.46298/LMCS-18(2:21)2022.579

22 Michele Boreale and Fabio Gadducci. Processes as formal power series: A coinductive approach580

to denotational semantics. Theor. Comput. Sci., 2006. doi:10.1016/j.tcs.2006.05.030.581

23 Michele Boreale and Rocco De Nicola. Testing Equivalence for Mobile Processes. Inf. Comput.,582

120(2):279–303, 1995. doi:10.1006/inco.1995.1114.583

24 Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Trace and Testing Equivalence on584

Asynchronous Processes. Inf. Comput., 172(2):139–164, 2002. doi:10.1006/inco.2001.3080.585

25 Gérard Boudol. Asynchrony and the Pi-calculus. Research Report RR-1702, INRIA, 1992.586

URL: https://hal.inria.fr/inria-00076939.587

26 Gérard Boudol. The pi-Calculus in Direct Style. High. Order Symb. Comput., 11(2):177–208,588

1998. doi:10.1023/A:1010064516533.589

27 Gérard Boudol and Carolina Lavatelli. Full Abstraction for Lambda Calculus with Resources590

and Convergence Testing. In Hélène Kirchner, editor, Trees in Algebra and Programming -591

CAAP’96, 21st International Colloquium, Linköping, Sweden, April, 22-24, 1996, Proceedings,592

volume 1059 of Lecture Notes in Computer Science, pages 302–316. Springer, 1996. doi:593

10.1007/3-540-61064-2\_45.594

28 M. Bravetti, J. Lange, and G. Zavattaro. Fair Refinement for Asynchronous Session Types. In595

FOSSACS, 2021.596

29 Nuria Brede and Hugo Herbelin. On the logical structure of choice and bar induction principles.597

In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,598

June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470523.599

30 Flavien Breuvart, Giulio Manzonetto, Andrew Polonsky, and Domenico Ruoppolo. New600

Results on Morris’s Observational Theory: The Benefits of Separating the Inseparable. In601

Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures602

for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52603

of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:604

10.4230/LIPIcs.FSCD.2016.15.605

31 Flavien Breuvart, Giulio Manzonetto, and Domenico Ruoppolo. Relational Graph Models at606

Work. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:2)2018.607

32 Stephen D. Brookes. On the Relationship of CCS and CSP. In Josep Díaz, editor, Automata,608

Languages and Programming, 10th Colloquium, Barcelona, Spain, July 18-22, 1983, Proceedings,609

volume 154 of Lecture Notes in Computer Science, pages 83–96. Springer, 1983. doi:10.1007/610

BFb0036899.611

https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.1016/j.scico.2018.08.004
https://doi.org/10.1017/S0960129514000243
https://doi.org/10.1016/0304-3975(92)90185-I
https://doi.org/10.1007/978-3-319-03542-0_1
https://doi.org/10.46298/lmcs-18(2:21)2022
https://doi.org/10.46298/LMCS-18(2:21)2022
https://doi.org/10.1016/j.tcs.2006.05.030
https://doi.org/10.1006/inco.1995.1114
https://doi.org/10.1006/inco.2001.3080
https://hal.inria.fr/inria-00076939
https://doi.org/10.1023/A:1010064516533
https://doi.org/10.1007/3-540-61064-2_45
https://doi.org/10.1007/3-540-61064-2_45
https://doi.org/10.1007/3-540-61064-2_45
https://doi.org/10.1109/LICS52264.2021.9470523
https://doi.org/10.4230/LIPIcs.FSCD.2016.15
https://doi.org/10.4230/LIPIcs.FSCD.2016.15
https://doi.org/10.4230/LIPIcs.FSCD.2016.15
https://doi.org/10.23638/LMCS-14(3:2)2018
https://doi.org/10.1007/BFb0036899
https://doi.org/10.1007/BFb0036899
https://doi.org/10.1007/BFb0036899


G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:17

33 Stephen D. Brookes. Deconstructing CCS and CSP Asynchronous Communication, Fairness,612

and Full Abstraction. 2002.613

34 Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating614

Sequential Processes. J. ACM, 31(3):560–599, 1984. doi:10.1145/828.833.615

35 Caroline Caruana. Compositional Reasoning about Actor Based Systems, 2019.616

36 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani.617

Foundations of session types. In António Porto and Francisco Javier López-Fraguas, editors,618

Proceedings of the 11th International ACM SIGPLAN Conference on Principles and Practice619

of Declarative Programming, September 7-9, 2009, Coimbra, Portugal, pages 219–230. ACM,620

2009. doi:10.1145/1599410.1599437.621

37 Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for Web services.622

ACM Trans. Program. Lang. Syst., 31(5):19:1–19:61, 2009. doi:10.1145/1538917.1538920.623

38 Simon Castellan, Pierre Clairambault, and Glynn Winskel. The Mays and Musts of Concurrent624

Strategies. In Alessandra Palmigiano and Mehrnoosh Sadrzadeh, editors, Samson Abramsky on625

Logic and Structure in Computer Science and Beyond, pages 327–361, Cham, 2023. Springer626

International Publishing. doi:10.1007/978-3-031-24117-8_9.627

39 Ilaria Castellani and Matthew Hennessy. Testing Theories for Asynchronous Languages. In628

Vikraman Arvind and Ramaswamy Ramanujam, editors, Foundations of Software Technology629

and Theoretical Computer Science, 18th Conference, Chennai, India, December 17-19, 1998,630

Proceedings, volume 1530 of Lecture Notes in Computer Science, pages 90–101. Springer, 1998.631

doi:10.1007/978-3-540-49382-2\_9.632

40 Andrea Cerone and Matthew Hennessy. Process Behaviour: Formulae vs. Tests. Technical633

report, Trinity College Dublin, School of Computer Science and Statistics, 2010.634

41 R. Cleaveland and A. E. Zwarico. A Theory of Testing for Real-Time. In LICS, 1991.635

42 Rance Cleaveland and Matthew Hennessy. Testing Equivalence as a Bisimulation Equivalence.636

In Joseph Sifakis, editor, Automatic Verification Methods for Finite State Systems, Interna-637

tional Workshop, Grenoble, France, June 12-14, 1989, Proceedings, volume 407 of Lecture638

Notes in Computer Science, pages 11–23. Springer, 1989. doi:10.1007/3-540-52148-8\_2.639

43 T. Coquand. About Brouwer’s Fan Theorem. https://www.cairn-int.info/640

journal-revue-internationale-de-philosophie-2004-4-page-483.htm, 2003.641

44 Rocco De Nicola and Matthew Hennessy. Testing Equivalences for Processes. Theor. Comput.642

Sci., 34:83–133, 1984. doi:10.1016/0304-3975(84)90113-0.643

45 Rocco De Nicola and Hernan C. Melgratti. Multiparty testing preorders. Log. Methods Comput.644

Sci., 19(1), 2023. doi:10.46298/lmcs-19(1:1)2023.645

46 Rocco De Nicola and Rosario Pugliese. Linda-based applicative and imperative process algebras.646

Theor. Comput. Sci., 238(1-2):389–437, 2000. doi:10.1016/S0304-3975(99)00339-4.647

47 D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects648

on local relational reasoning. J. Funct. Program., 22(4-5):477–528, 2012. doi:10.1017/649

S095679681200024X.650

48 Michael Dummett. Elements of Intuitionism. Oxford logic guides. Clarendon Press, 2000.651

URL: https://books.google.fr/books?id=JVFzknbGBVAC.652

49 Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi. Eager Functions as Processes.653

Theor. Comput. Sci., 913:8–42, 2022. URL: https://doi.org/10.1016/j.tcs.2022.01.043,654

doi:10.1016/J.TCS.2022.01.043.655

50 Adrian Francalanza. A theory of monitors. Inf. Comput., 281:104704, 2021. doi:10.1016/j.656

ic.2021.104704.657

51 D. Fridlender. An Interpretation of the Fan Theorem in Type Theory. In TYPES, 1998. URL:658

https://doi.org/10.1007/3-540-48167-2_7.659

52 Dan Frumin, Robbert Krebbers, and Lars Birkedal. ReLoC: A Mechanised Relational Logic660

for Fine-Grained Concurrency. In Anuj Dawar and Erich Grädel, editors, Proceedings of the661

33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,662

July 09-12, 2018, pages 442–451. ACM, 2018. doi:10.1145/3209108.3209174.663

https://doi.org/10.1145/828.833
https://doi.org/10.1145/1599410.1599437
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1007/978-3-031-24117-8_9
https://doi.org/10.1007/978-3-540-49382-2_9
https://doi.org/10.1007/3-540-52148-8_2
https://www.cairn-int.info/journal-revue-internationale-de-philosophie-2004-4-page-483.htm
https://www.cairn-int.info/journal-revue-internationale-de-philosophie-2004-4-page-483.htm
https://www.cairn-int.info/journal-revue-internationale-de-philosophie-2004-4-page-483.htm
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.46298/lmcs-19(1:1)2023
https://doi.org/10.1016/S0304-3975(99)00339-4
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1017/S095679681200024X
https://books.google.fr/books?id=JVFzknbGBVAC
https://doi.org/10.1016/j.tcs.2022.01.043
https://doi.org/10.1016/J.TCS.2022.01.043
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/3-540-48167-2_7
https://doi.org/10.1145/3209108.3209174


XX:18 Constructive characterisations of the must-preorder for asynchrony

53 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta664

Informatica, 42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.665

54 Matthew Hennessy. Acceptance Trees. J. ACM, 32(4):896–928, 1985. doi:10.1145/4221.4249.666

55 Matthew Hennessy. Algebraic theory of processes. MIT Press series in the foundations of667

computing. MIT Press, 1988.668

56 Matthew Hennessy. A fully abstract denotational semantics for the pi-calculus. Theor. Comput.669

Sci., 278(1-2):53–89, 2002. doi:10.1016/S0304-3975(00)00331-5.670

57 Matthew Hennessy. The security pi-calculus and non-interference. J. Log. Algebraic Methods671

Program., 2005. doi:10.1016/j.jlap.2004.01.003.672

58 Matthew Hennessy. A distributed Pi-calculus. Cambridge University Press, 2007.673

59 Matthew Hennessy and Anna Ingólfsdóttir. Communicating Processes with Value-passing and674

Assignments. Formal Aspects Comput., 5(5):432–466, 1993. doi:10.1007/BF01212486.675

60 Matthew Hennessy and Gordon D. Plotkin. A Term Model for CCS. In Piotr Dembinski,676

editor, Mathematical Foundations of Computer Science 1980 (MFCS’80), Proceedings of677

the 9th Symposium, Rydzyna, Poland, September 1-5, 1980, volume 88 of Lecture Notes in678

Computer Science, pages 261–274. Springer, 1980. doi:10.1007/BFb0022510.679

61 Matthew Hennessy and James Riely. Information flow vs. resource access in the asynchronous680

pi-calculus. ACM Trans. Program. Lang. Syst., 24(5):566–591, 2002. doi:10.1145/570886.681

570890.682

62 Daniel Hirschkoff, Guilhem Jaber, and Enguerrand Prebet. Deciding Contextual Equivalence683

of ν-Calculus with Effectful Contexts. In Orna Kupferman and Pawel Sobocinski, editors,684

Foundations of Software Science and Computation Structures - 26th International Conference,685

FoSSaCS 2023, Held as Part of the European Joint Conferences on Theory and Practice of686

Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings, volume 13992 of Lecture687

Notes in Computer Science, pages 24–45. Springer, 2023. doi:10.1007/978-3-031-30829-1\688

_2.689

63 C. A. R. Hoare. Communicating Sequential Processes (Reprint). Commun. ACM, 1983.690

64 Kohei Honda and Mario Tokoro. An Object Calculus for Asynchronous Communication. In691

Pierre America, editor, ECOOP’91 European Conference on Object-Oriented Programming,692

Geneva, Switzerland, July 15-19, 1991, Proceedings, volume 512 of Lecture Notes in Computer693

Science, pages 133–147. Springer, 1991. doi:10.1007/BFb0057019.694

65 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.695

In George C. Necula and Philip Wadler, editors, POPL, pages 273–284, New York, 2008. ACM696

Press.697

66 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.698

Journal of ACM, 63(1):9:1–9:67, 2016.699

67 Benedetto Intrigila, Giulio Manzonetto, and Andrew Polonsky. Degrees of extensionality in700

the theory of Böhm trees and Sallé’s conjecture. Log. Methods Comput. Sci., 15(1), 2019.701

doi:10.23638/LMCS-15(1:6)2019.702

68 S. C. Kleene and R. E. Vesley. The Foundations of Intuitionistic Mathematics: Especially703

in Relation to Recursive Functions. Studies in logic and the foundations of mathemat-704

ics. North-Holland Publishing Company, 1965. URL: https://books.google.fr/books?id=705

2EHVxQEACAAJ.706

69 Vasileios Koutavas and Nikos Tzevelekos. Fully Abstract Normal Form Bisimulation for707

Call-by-Value PCF. In LICS, 2023.708

70 Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order709

concurrent separation logic. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings710

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL711

2017, Paris, France, January 18-20, 2017, pages 205–217. ACM, 2017. doi:10.1145/3009837.712

3009855.713

https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1145/4221.4249
https://doi.org/10.1016/S0304-3975(00)00331-5
https://doi.org/10.1016/j.jlap.2004.01.003
https://doi.org/10.1007/BF01212486
https://doi.org/10.1007/BFb0022510
https://doi.org/10.1145/570886.570890
https://doi.org/10.1145/570886.570890
https://doi.org/10.1145/570886.570890
https://doi.org/10.1007/978-3-031-30829-1_2
https://doi.org/10.1007/978-3-031-30829-1_2
https://doi.org/10.1007/978-3-031-30829-1_2
https://doi.org/10.1007/BFb0057019
https://doi.org/10.23638/LMCS-15(1:6)2019
https://books.google.fr/books?id=2EHVxQEACAAJ
https://books.google.fr/books?id=2EHVxQEACAAJ
https://books.google.fr/books?id=2EHVxQEACAAJ
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855


G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:19

71 Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software714

Engineers. Addison-Wesley, 2002. URL: http://research.microsoft.com/users/lamport/715

tla/book.html.716

72 Cosimo Laneve and Luca Padovani. The Must Preorder Revisited. In Luís Caires and717

Vasco Thudichum Vasconcelos, editors, CONCUR 2007 - Concurrency Theory, 18th In-718

ternational Conference, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceed-719

ings, volume 4703 of Lecture Notes in Computer Science, pages 212–225. Springer, 2007.720

doi:10.1007/978-3-540-74407-8\_15.721

73 Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. Math. Struct.722

Comput. Sci., 14(5):715–767, 2004. doi:10.1017/S0960129504004323.723

74 Robin Milner. Functions as Processes. In Mike Paterson, editor, Automata, Languages and724

Programming, 17th International Colloquium, ICALP90, Warwick University, England, UK,725

July 16-20, 1990, Proceedings, volume 443 of Lecture Notes in Computer Science, pages726

167–180. Springer, 1990. doi:10.1007/BFb0032030.727

75 Robin Milner. Communicating and Mobile Systems - the Pi-Calculus. Cambridge University728

Press, 1999.729

76 James H. Morris. Lambda-calculus models of programming languages. PhD thesis, Massachusetts730

Institute of Technology, 1969. URL: https://dspace.mit.edu/handle/1721.1/64850.731

77 Keiko Nakata, Tarmo Uustalu, and Marc Bezem. A Proof Pearl with the Fan Theorem and732

Bar Induction - Walking through Infinite Trees with Mixed Induction and Coinduction. In733

Hongseok Yang, editor, Programming Languages and Systems - 9th Asian Symposium, APLAS734

2011, Kenting, Taiwan, December 5-7, 2011. Proceedings, volume 7078 of Lecture Notes in735

Computer Science, pages 353–368. Springer, 2011. doi:10.1007/978-3-642-25318-8\_26.736

78 Rocco De Nicola and Matthew Hennessy. CCS without tau’s. In Hartmut Ehrig, Robert A.737

Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT’87: Proceedings of the738

International Joint Conference on Theory and Practice of Software Development, Pisa, Italy,739

March 23-27, 1987, Volume 1: Advanced Seminar on Foundations of Innovative Software740

Development I and Colloquium on Trees in Algebra and Programming (CAAP’87), volume741

249 of Lecture Notes in Computer Science, pages 138–152. Springer, 1987. doi:10.1007/742

3-540-17660-8\_53.743

79 Catuscia Palamidessi. Comparing the Expressive Power of the Synchronous and Asynchronous744

pi-calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003. doi:10.1017/745

S0960129503004043.746

80 Damien Pous. Coinduction All the Way Up. In Martin Grohe, Eric Koskinen, and Natarajan747

Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer748

Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 307–316. ACM, 2016. doi:749

10.1145/2933575.2934564.750

81 Enguerrand Prebet. Functions and References in the Pi-Calculus: Full Abstraction and751

Proof Techniques. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,752

49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,753

July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 130:1–130:19. Schloss Dagstuhl -754

Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.130.755

82 R. Pugliese. Semantic Theories for Asynchronous Languages. PhD thesis, Università di Roma756

"La Sapienza", 1996.757

83 Vincent Rahli, Mark Bickford, Liron Cohen, and Robert L. Constable. Bar Induction is758

Compatible with Constructive Type Theory. J. ACM, 66(2):13:1–13:35, 2019. doi:10.1145/759

3305261.760

84 António Ravara, Pedro Resende, and Vasco Thudichum Vasconcelos. An Algebra of Behavioural761

Types. Inf. Comput., 212:64–91, 2012.762

85 Arend Rensink and Walter Vogler. Fair testing. Inf. Comput., 205(2):125–198, 2007. doi:763

10.1016/j.ic.2006.06.002.764

http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1007/978-3-540-74407-8_15
https://doi.org/10.1017/S0960129504004323
https://doi.org/10.1007/BFb0032030
https://dspace.mit.edu/handle/1721.1/64850
https://doi.org/10.1007/978-3-642-25318-8_26
https://doi.org/10.1007/3-540-17660-8_53
https://doi.org/10.1007/3-540-17660-8_53
https://doi.org/10.1007/3-540-17660-8_53
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.4230/LIPIcs.ICALP.2022.130
https://doi.org/10.1145/3305261
https://doi.org/10.1145/3305261
https://doi.org/10.1145/3305261
https://doi.org/10.1016/j.ic.2006.06.002
https://doi.org/10.1016/j.ic.2006.06.002
https://doi.org/10.1016/j.ic.2006.06.002


XX:20 Constructive characterisations of the must-preorder for asynchrony

86 David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda calculus with locally765

bottom-avoiding choice: context lemma and correctness of transformations. Math. Struct.766

Comput. Sci., 18(3):501–553, 2008. doi:10.1017/S0960129508006774.767

87 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,768

2011.769

88 Davide Sangiorgi. Asynchronous pi-calculus at Work: The Call-by-Need Strategy. In Mário S.770

Alvim, Kostas Chatzikokolakis, Carlos Olarte, and Frank Valencia, editors, The Art of771

Modelling Computational Systems: A Journey from Logic and Concurrency to Security and772

Privacy - Essays Dedicated to Catuscia Palamidessi on the Occasion of Her 60th Birthday,773

volume 11760 of Lecture Notes in Computer Science, pages 33–49. Springer, 2019. doi:774

10.1007/978-3-030-31175-9\_3.775

89 Davide Sangiorgi and David Walker. The Pi-Calculus - a Theory of Mobile Processes. Cam-776

bridge University Press, 2001.777

90 Manfred Schmidt-Schauß and David Sabel. Correctly Implementing Synchronous Message778

Passing in the Pi-Calculus By Concurrent Haskell’s MVars. In Ornela Dardha and Jurriaan Rot,779

editors, Proceedings Combined 27th International Workshop on Expressiveness in Concurrency780

and 17th Workshop on Structural Operational Semantics, EXPRESS/SOS 2020, and 17th781

Workshop on Structural Operational SemanticsOnline, 31 August 2020, volume 322 of EPTCS,782

pages 88–105, 2020. doi:10.4204/EPTCS.322.8.783

91 Manfred Schmidt-Schauß, David Sabel, and Nils Dallmeyer. Sequential and Parallel Im-784

provements in a Concurrent Functional Programming Language. In David Sabel and Peter785

Thiemann, editors, Proceedings of the 20th International Symposium on Principles and Practice786

of Declarative Programming, PPDP 2018, Frankfurt am Main, Germany, September 03-05,787

2018, pages 20:1–20:13. ACM, 2018. doi:10.1145/3236950.3236952.788

92 Peter Selinger. First-Order Axioms for Asynchrony. In Antoni W. Mazurkiewicz and Józef789

Winkowski, editors, CONCUR ’97: Concurrency Theory, 8th International Conference, War-790

saw, Poland, July 1-4, 1997, Proceedings, volume 1243 of Lecture Notes in Computer Science,791

pages 376–390. Springer, 1997. doi:10.1007/3-540-63141-0\_26.792

93 S. Taha, L. Ye, and B. Wolff. HOL-CSP Version 2.0. Archive of Formal Proofs, April 2019.793

94 Erica Tanti and Adrian Francalanza. Towards Sound Refactoring in Erlang. 2015. URL:794

https://api.semanticscholar.org/CorpusID:63046364.795

95 Prasannaa Thati. A Theory of Testing for Asynchronous Concurrent Systems. PhD thesis,796

University of Illinois Urbana-Champaign, USA, 2003. URL: https://hdl.handle.net/2142/797

81630.798

96 Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer.799

Logical Relations for Fine-Grained Concurrency. In Roberto Giacobazzi and Radhia Cousot,800

editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming801

Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 343–356. ACM, 2013.802

doi:10.1145/2429069.2429111.803

97 Rob van Glabbeek. Just Testing. In Orna Kupferman and Pawel Sobocinski, editors, Founda-804

tions of Software Science and Computation Structures - 26th International Conference, FoS-805

SaCS 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software,806

ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings, volume 13992 of Lecture Notes in807

Computer Science, pages 498–519. Springer, 2023. doi:10.1007/978-3-031-30829-1\_24.808

A Bar-Induction809

In this appendix we present our treatment of the bar-induction principle. Section A.1 is an810

informal introduction to the intuitions behind bar-induction. A reader already acquainted811

with this principle may read directly Section A.2.812

https://doi.org/10.1017/S0960129508006774
https://doi.org/10.1007/978-3-030-31175-9_3
https://doi.org/10.1007/978-3-030-31175-9_3
https://doi.org/10.1007/978-3-030-31175-9_3
https://doi.org/10.4204/EPTCS.322.8
https://doi.org/10.1145/3236950.3236952
https://doi.org/10.1007/3-540-63141-0_26
https://api.semanticscholar.org/CorpusID:63046364
https://hdl.handle.net/2142/81630
https://hdl.handle.net/2142/81630
https://hdl.handle.net/2142/81630
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1007/978-3-031-30829-1_24


G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:21

p V r

✓

✓ ✓

..
.

τ

τ τ

τ

τ

τ

τ

Figure 7 The state transition system of client-server system.

p V r

✓

✓ ✓

..
.

τ

τ τ

τ

τ

τ

τ

p V r

✓

✓ ✓

..
.

τ

τ τ

τ

τ

τ

τ

p V r

✓

✓ ✓

..
.

τ

τ τ

τ

τ

τ

τ

(1) (2) (3)

Figure 8 Extensional approach: finding successful prefixes in every maximal path of the compu-
tational tree.

A.1 A visual introduction813

We explain the difference between extensional definitions of predicates and intensional ones,814

by discussing how the two different approaches make us reason on computational trees.815

Suppose that we have a client-server system p V r and that we want to prove eitherp must r816

or p musti r. For both proofs, what matters is the state transition system (STS) of p V r, i.e.817

the computation steps performed by the client-server system at issue. In fact it is customary818

to treat this STS as a computational tree, as done for instance in the proofs of [55, Lemma819

4.4.12] and [40, Theorem 2.3.3]. In the rest of this subsection we discuss the tree depicted820

in Figure 7. It contains three maximal computations, the middle one being infinite. In the821

figures of this subsection, the states in which the client is successful (i.e. in the predicate822

good) contain the symbol ✓.823

A.1.0.1 The extensional approach824

To prove p must r, the extensional definition of must requires checking that every maximal825

path in the tree in Figure 7 starts with a finite prefix that leads to a successful state. The826

proof that p must r amounts to looking for a suitable prefix maximal path by maximal path,827

via a loop whose iterations are suggested in Figure 8. There at every iteration a different828

maximal path (highlighted by dashed arrows) is checked, and each time a successful prefix829

is found (indicated by a red arrow), the loop moves on to the next maximal path. Once830



XX:22 Constructive characterisations of the must-preorder for asynchrony

p V r

✓

✓ ✓

..
.

τ

τ τ

τ

τ

τ

τ

p V r

✓

✓ ✓

τ

τ τ

τ

(1) (2)

p V r

✓

✓ ✓

τ

τ τ

τ

p V r

✓

✓ ✓

τ

τ τ

τ

(3) (4)

Figure 9 Intensional approach: visiting the tree bottom-up, starting from the bar.

a maximal path is explored, it remains dashed, to denote that there a succesful prefix has831

been found. The first iteration looks for a successful prefix in the left-most maximal path,832

while the last iteration looks for a successful prefix in the right-most path. In the current833

example the loop terminates because the tree in Figure 7 has conveniently a finite number834

of maximal paths, but in general the mathematical reasoning has to deal with an infinite835

amount of maximal path. An archetypal example is the tree in Figure 10: it has countably836

many maximal paths, each one starting with a successful prefix.837

A.1.0.2 The intensional approach838

Consider now the predicate musti - which is defined intensional ly - and a proof that839

p musti r. The base case of musti ensures that all the nodes that contain a successful client840

(i.e. that satisfies the predicate Q2, defined on line 553 of the submission) are in musti.841

Pictorially, this is the step from (1) to (2) in Figure 9, where the nodes in musti are drawn842

using dashed borders, and the freshly added ones are drawn in red. Once the base case is843

established, the inductive rule of musti ensures that any node that inevitably goes to nodes844

that are in musti, is also in the predicate musti. This leads to the step from (2) to (3) and845

then from (3) to (4). Note that the argument is concise, for in the tree the depth at which846

successful states can be found is finite. In general though is may not be the case. The tree in847

Figure 10 is again the archetypal example: every maximal path there contains a finite prefix848

that leads to a successful state, but there is no upper bound on the length on those prefixes.849

A.1.0.3 Do extensional and intensional predicates coincide ?850

Extensional and intensional definitions make us reason on computational trees in strikingly851

different fashions: extensionally we reason maximal path by maximal path, while intensional852



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:23

p V r

✓

✓

✓

✓

.... . .
...

τ
τ

τ
τ

τ

τ

τ

τ

τ

τ

τ

Figure 10 An infinite branching computational tree where the bar ✓ is at unbounded depth.

ly we reason bottom-up, starting from the nodes in a predicate that bars the tree.9 It is853

natural to ask whether reasoning in these different manners ultimately leads to the same854

outcomes. In our setting this amounts to proving that the predicates must and musti855

are logically equivalent, and similarly for the convergence predicates ↓ and ↓i. The proof856

that p musti r implies p must r is - obviously - by induction on the derivation of p musti r.857

Proving that the extensional predicates imply the intensional ones is, on the other hand,858

delicate, because we may have to deal with unbounded structures. The tree in Figure 10 is859

once more the archetypal example: it has countably many maximal paths, and there is no860

upper bound on the depth at which successful states (i.e. nodes in the bar) are found.861

In classical logic one can prove that p must r implies p musti r by contradiction. As we862

wish to avoid this reasoning principle, the only tool we have is the axiom of Bar-induction,863

which states exactly that under suitable hypotheses, extensionally defined predicates imply864

their intensional ly defined counter-parts.865

A.2 Inductive definitions of predicates866

We present the inductive characterisations of ↓ and must in any state transition system867

(STS) ⟨S, →⟩ that is countably branching. In practice, this condition is satisfied by most868

concrete LTS of programming languages, which usually contain countably many terms; this869

is the case for ACCS and for the asynchronous π-calculus.870

Following the terminology of [29] we introduce extensional and intensional predicates871

associated to any decidable predicate Q : S → B over an STS ⟨S, →⟩.872

▶ Definition 25. The extensional predicate extQ(s) is defined, for s ∈ S, as873

∀η maximal execution of S. η0 = s implies ∃n ∈ N, Q(ηn)874

9 Whence the name bar-induction.



XX:24 Constructive characterisations of the must-preorder for asynchrony

The intensional predicate intQ is the inductive predicate (least fixpoint) defined by the following
rules:

[axiom]
Q(s)

intQ(s)
[ind-rule]

s → ∀s′. s → s′ implies intQ(s′)
intQ(s)

■875

For instance, by letting876

Q1(p) ⇐⇒ p X−→ Q2(p, r) ⇐⇒ good(r)877

we have by definition that878

p ↓ ⇐⇒ extQ1(p) p must r ⇐⇒ extQ2(p, r) (ext-preds)879

that is the standard definitions of ↓ and must are extensional. Our aim now is to prove that880

they coincide with their intensional counterparts. Since we will use the intensional predicates881

in the rest of the paper a little syntactic sugar is in order, let882

p ↓i ⇐⇒ intQ1(p) p musti r ⇐⇒ intQ2(p, r) (int-preds)883

The proofs of soundness, i.e. that the inductively defined predicates imply the extensional884

ones, are by rule induction:885

▶ Lemma 26. For p ∈ S,886

(a) p ↓i implies p ↓,887

(b) for every r. p musti r implies p must r.888

The proofs of completeness are more delicate. To the best of our knowledge, the ones889

about CCS [40, 13] proceed by induction on the greatest number of steps necessary to arrive890

at termination or at a successful state. Since the STS of ⟨CCS,
τ−→⟩ is finite branching,891

Kőnig’s lemma guarantees that such a bound exists. This technique does not work on infinite-892

branching STSs, for example the one of CCS with infinite sums [14]. If we reason in classical893

logic, we can prove completeness without Kőnig’s lemma and also over infinite-branching894

STSs via a proof ad absurdum: suppose p ↓. If ¬(p ↓i) no finite derivation tree exists to prove895

p ↓i, and then we construct an infinite sequence of τ moves starting with p, thus ¬(p ↓).896

Since we strive to be constructive we replace reasoning ad absurdum with a constructive897

axiom: (decidable) bar-induction. In the rest of this section we discuss this axiom, and adapt898

it to our client-server setting. This requires a little terminology.899

A.2.0.1 Bar-induction900

The axiom we want to use is traditionally stated using natural numbers. We use the901

standard notations N⋆ for finite sequences of natural numbers, Nω for infinite sequences,902

and N∞ = N⋆ ∪Nω for finite or infinite sequences. Remark that, in constructive logics, given903

u ∈ N∞, we cannot do a case analysis on whether u is finite or infinite. The set N∞ equipped904

with the prefix order can be seen as a tree, denoted TN , in the sense of set theory: a tree is905

an ordered set (A, ≤) such that, for each a ∈ A, the set {b | b < a} is well-ordered by <. A906

path in a tree A is a maximal element in A. In the tree N∞, each node has ω children, and907

the paths are exactly the infinite sequences Nω.908

A predicate P ⊆ N⋆ over finite words is a bar if every infinite sequence of natural numbers909

has a finite prefix in P . Note that a bar defines a subtree of TN extensionally, because it910



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:25

defines each path of the tree, as a path u ∈ Nω is in the tree if and only if there exists a911

finite prefix which is in the bar P .912

A predicate Q ⊆ N⋆ is hereditary if913

∀w ∈ N⋆, if ∀n ∈ N, w · n ∈ Q then w ∈ Q.914

Bar-induction states that the extensional predicate associated to a bar implies its intensional915

counterpart: a predicate Pint ⊆ N⋆ which contains Q and which is hereditary.916

▶ Axiom 27 (Decidable bar induction over N). Given two predicates Pint , Q over N⋆, such917

that:918

1. for all π ∈ Nω, there exists n ∈ N such that (π1, . . . , πn) ∈ Q;919

2. for all w ∈ N∗, it is decidable whether Q(w) or ¬Q(w);920

3. for all w ∈ N∗, Q(w) ⇒ Pint(w);921

4. Pint is hereditary;922

then Pint holds over the empty word: Pint(ε).923

Bar-induction is a generalisation of the fan theorem, i.e. the constructive version of924

Kőnig’s lemma [48, pag. 56], and states that any extensionally well-founded tree T can be925

turned into an inductively-defined tree t that realises T [29, 68].926

Our mechanisation of bar-induction principle is formulated as a Proposition that is proved927

using classical reasoning, since it is not provable directly in the type theory of Coq. This928

principle though has a computational content, bar recursion, which, currently, cannot be929

used in mainstream proof assistants such as Coq.930

A.2.0.2 Admissibility.931

To show that the principle is admissible, we prove that it follows from the Classical Epsilon932

(CE) axiom of the Coq standard library. In short, CE gives a choice function ϵ such that933

if p is a proof of ∃x : A, Px, then ϵ(p) is an element of A such that P (ϵ(p)) holds. It934

implies Excluded Middle, and thus classical reasoning, because A ∨ ¬A is equivalent to935

∃b : bool, (b = true ∧ A) ∨ (b = false ∧ ¬A). Since CE is guaranteed by the Coq developers936

to be admissible, our statement of bar-induction is also admissible.937

A.2.0.3 Encoding states938

The version of bar-induction we just outlined is not directly suitable for our purposes, as939

we need to reason about sequences of reductions rather than sequences of natural numbers.940

The solution is to encode STS states by natural numbers. This leads to the following issue:941

the nodes of the tree TN have a fixed arity, namely N, while processes have variably many942

reducts, including zero if they are stable. To deal with this glitch, it suffices to assume that943

there exists the following family of surjections:944

F (p) : N → {q | p → q} (6)945

where a surjection is defined as follows.946

▶ Definition 28. A map f : A → B is a surjection if it has a section g : B → A, that is,947

f ◦ g = IdB.948

This definition implies the usual one which states the existence of an antecedent x ∈ A for949

any y ∈ B, and it is equivalent to it if we assume the Axiom of Choice.950



XX:26 Constructive characterisations of the must-preorder for asynchrony

Using this map F as a decoding function, any sequence of natural numbers corresponds951

to a path in the STS. Its subjectivity means that all paths of the LTS can be represented as952

such a sequence. This correspondence allows us to transport bar induction from sequences of953

natural numbers to executions of processes.954

Note that such a family of surjections F exists for ACCS processes, and generally to most955

programming languages, because the set Actτ is countable, and so are processes. This leads956

to the following version of bar-induction where words and sequences are replaced by finite957

and infinite executions.958

▶ Proposition 29 (Decidable bar induction over an STS). Let ⟨S, →⟩ be an STS such that a959

surjection as in (6) exists. Given two predicates Q, Pint over finite executions, if960

1. for all infinite execution η, there exists n ∈ N such that (η1, . . . , ηn) ∈ Q;961

2. for all finite execution ζ, Q(ζ) or ¬Q(ζ) is decidable;962

3. for all finite execution ζ, Q(ζ) ⇒ Pint(ζ);963

4. Pint is hereditary, as defined above except that ζ · q is a partial operation defined when ζ964

is empty or its last state is p and p → q;965

then Pint holds over the empty execution: that is Pint(ε) holds.966

The last gap towards a useful principle is the requirement that every state in our STS has an967

outgoing transition. This condition is necessary to ensure the existence of the surjection in968

Equation (6). To ensure this requirement given any countably-branching STS, we enrich it969

by adding a sink state, which (a) is only reachable from stable states of the original STS,970

and (b) loops. This is a typical technique, see for instance [71, pag. 17].971

▶ Definition 30. Define Sink(S, →) := ⟨S ∪ {⊤}, →⊤⟩, where →⊤ is defined inductively as972

follows:973

p → q =⇒ p →⊤ q p X−→ =⇒ p →⊤ ⊤ ⊤ →⊤ ⊤974

A maximal execution of Sink(S, →) is always infinite, and it corresponds (in classical logic)975

to either an infinite execution of S or a maximal execution of S followed by infinitely many ⊤.976

We finally prove the converse of Lemma 26.977

▶ Proposition 31. Given a countably branching STS ⟨S, →⟩, and a decidable predicate Q978

on S, we have that, for all s ∈ S, extQ(s) implies intQ(s).979

Now we easily obtain completeness of the intensional predicates.980

▶ Corollary 32. For every p ∈ C,981

1. p ↓ implies p ↓i,982

2. for every r. p must r implies p musti r.983

Proof. Direct consequence of Proposition 31, and Equation (ext-preds) and Equation (int-984

preds) above. ◀985

As we have outlined why Corollary 32 is true, from now on we use ↓i and musti instead986

of ↓ and must. We now present the properties of these predicates that we use in the rest of987

the paper.988

Convergence along traces is obviously preserved by the strong transitions −→.989

▶ Lemma 33. In every LTS, for every p, p′ ∈ C and s ∈ Act⋆ the following facts are true,990

1. if p ⇓ s and p
τ−→ p′ then p′ ⇓ s,991

2. for every µ ∈ Act. p ⇓ µ.s and p
µ−→ p′ imply p ⇓ s.992



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:27

▶ Lemma 34. For every s ∈ Act⋆ and p ∈ ACCS, if p ⇓ s then | {q | p
s=⇒ q} | ∈ N.993

The hypothesis of convergence in Lemma 34 is necessary. This is witnessed by the process
p = recx.(x ∥ a), which realises an ever lasting addition of a message to the mailbox:

p
τ−→ p ∥ a

τ−→ p ∥ a ∥ a
τ−→ p ∥ a ∥ a ∥ a

τ−→ . . .

In more general languages also image-finiteness may fail. An example is given on page 267 of994

[60].995

The predicate musti is preserved by atoms freely changing their locations in systems.996

This is coherent with the intuition that the mailbox is a global and shared one. For instance997

the systems a. 0 ∥ d V d. 1 and a. 0 V d. 1 ∥ d, which in the mechanisation are respectively998

999
( pr_par ( pr_input a pr_nil ) ( pr_out d), pr_input d pr_succes )10001001

and1002

1003
( pr_input a pr_nil , pr_par ( pr_input a pr_succes ) ( pr_out d))10041005

have the same mailbox, namely d.1006

The predicate musti enjoys three useful properties: it ensures convergence of servers1007

interacting with clients that are not in a good state; it is preserved by internal computation1008

of servers; and it is preserved also by interactions with unhappy clients. The arguments1009

to show these facts are by rule induction on the hypothesis p musti r. The last fact is a1010

consequence of a crucial property of musti, namely Lemma 45.1011

▶ Lemma 35. Let LA ∈ OW and LB ∈ OF. For every p ∈ A, r ∈ B we have that p musti r1012

implies that p ↓i or good(r).1013

▶ Lemma 36. Let LA ∈ OW and LB ∈ OF. For every p, p′ ∈ A, r ∈ B we have that1014

p musti r and p
τ−→ p′ imply q musti r.1015

▶ Lemma 37. For every LB ∈ OBA, r ∈ B and name a ∈ N such that p
a−→ p′ then1016

good(p) iff good(p′).1017

Proof. This is a property of Good, more specifically good_preserved_by_lts_output and1018

good_preserved_by_lts_output_converse. ◀1019

Lemma 45 Let LA ∈ OW and LB ∈ OF. For every p1, p2 ∈ A, every r1, r2 ∈ B and name1020

a ∈ N such that p1
a−→ p2 and r1

a−→ r2, if p1 musti r2 then p2 musti r1.1021

Proof. We proceed by induction on p1 musti r2. In the base case p1 musti r2 is derived1022

using the rule [axiom] and thus good(r2). Lemma 37 implies that good(r1), and so we1023

prove p2 musti r1 using rule [axiom]. We are done with the base case.1024

In the inductive case, the hypothesis p2 musti r1 has been derived via an rule [ind-rule],1025

and we therefore know the following facts:1026

1. p1 V r2
τ−→ p̂ V r̂, and1027

2. For every p′, r′ such that p1 V r2
τ−→ p′ V r′ we have that p′ musti r′.1028

We prove p2 musti r1 by applying rule [ind-rule]. In turn this requires us to show that1029

(i) p2 V r1
τ−→, and that1030

(ii) for each p′ and r′ such that p2 V r1
τ−→ p′ V r′, we have p′ musti r′.1031

We prove (i). The argument starts with a case analysis on how the transition (1) has1032

been derived. There are the following three cases:1033



XX:28 Constructive characterisations of the must-preorder for asynchrony

[S-Srv] a τ -transition performed by the server such that p1
τ−→ p̂ and that r̂ = r2, or1034

[S-Clt] a τ -transition performed by the client such that r2
τ−→ r̂ and that p̂ = p1, or1035

[S-com] an interaction between the server p1 and the client r2 such that p1
µ−→ p̂ and that1036

r2
µ−→ r̂.1037

In case [S-Srv] we use the Output-tau axiom together with the transitions p1
a−→ p21038

and p1
τ−→ p̂ to obtain that either:1039

there exists a p3 such that p2
τ−→ p3 and p̂

a−→ p3, or1040

p2
a−→ p3.1041

In the first case p2
τ−→ p3 let us construct the transition p2 V r1

τ−→ p3 V r1 as required. In1042

the second case recall that by hypothesis r1
a−→ r2, and thus the transition p2

a−→ p̂ and1043

rule [S-com] let us construct the desired reduction p2 V r1
τ−→ p̂ V r2.1044

In case [S-Clt] we use the Output-commutativity axiom together with the transitions1045

r1
a−→ r2

τ−→ r̂ to obtain a r3 such that r1
τ−→ r3

a−→ r̂ and it follows that there exists the1046

silent move p2 V r1
τ−→ p2 V r3.1047

In case [S-com] we have that p1
µ−→ p̂ and r2

µ−→ r̂. We distinguish whether µ = a or not.1048

If µ = a then observe that r1
a−→ r2

a−→ r̂. Since by hypothesis r1, r2 ∈ B and LB ∈ OF we1049

apply Feedback axiom to these transitions and obtain r1
τ−→ r̂. An application of [S-com]1050

let us construct the desired transition p2 V r1
τ−→ p2 V r̂.1051

If µ ̸= a we apply the Output-confluence axiom to the transitions p1
a−→ p2 and1052

p1
µ−→ p̂ to obtain a p3 such that p2

µ−→ p3 and p̂
a−→ p3. We then apply the Output-1053

commutativity axiom to obtain r1
µ−→ r3

a−→ r̂ for some r3. Finally, we have the desired1054

p2 V r1
τ−→ p̂ V r3 thanks to the existence of an interaction between p2 and r1 that follows1055

from p2
µ−→ p3 and r1

µ−→ r2. This concludes the proof of (i).1056

We now tackle (ii). First of all, note that the inductive hypothesis states the following1057

fact,1058

For every p′, r′, p0 and r0, such that p1 V r2
τ−→ p′ V r′, p′ a−→ p0 and r0

a−→ r′ then1059

p0 musti r0.1060

Fix a transition
p2 V r1

τ−→ p′ V r′,

we must show p′ musti r′. We proceed by case analysis on the rule used to derive the1061

transition at issue, and the cases are as follows,1062

(a) a τ -transition performed by the server such that p2
τ−→ p′ and that r′ = r1, or1063

(b) a τ -transition performed by the client such that r1
τ−→ r′ and that p′ = p2, or1064

(c) an interaction between the server p2 and the client r1 such that p2
µ−→ p′ and that1065

r1
µ−→ r′.1066

In case (a) we have p2
τ−→ p′ and r′ = r1 and hence we must show p′ musti r1. We apply1067

the Output-commutativity axiom to the transitions p1
a−→ p2

τ−→ p′ to obtain a p3 such1068

that p1
τ−→ p3

a−→ p′. We apply the inductive hypothesis with p′ = p3, r′ = r2, p0 = p′ and1069

r0 = r1 and obtain p2 musti r1 as required.1070

In case (b) we have r1
τ−→ r′ and p′ = p2, we therefore must show p2 musti r′. We apply1071

the Output-tau axiom to the transitions r1
τ−→ r′ and r1

a−→ r2 to obtain that1072

either there exists a r̂ such that r2
τ−→ r̂ and r′ a−→ r̂,1073

or r2
a−→ r′.1074



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:29

In the first case we apply the inductive hypothesis with p′ = p1, r′ = r̂, p0 = p2 and r0 = r′
1075

and obtain p2 musti r′ as required. In the second case, the transitions p1
a−→ p2 and r2

a−→ r′
1076

and rule [S-com] let us prove p1 V r2
τ−→ p2 V r′. We apply part (2) to obtain p2 musti r′ as1077

required.1078

We now consider the case (c) in which p2
µ−→ p′ and r1

µ−→ r′. We must show p′ musti r′
1079

and to do so we distinguish whether µ = a or not.1080

If µ = a then we apply the Output-determinacy axiom to the transitions r1
a−→ r21081

and r1
µ−→ r′ to obtain that r2 = r′. Since by hypothesis p1, p2 ∈ A and LA ∈ OW we apply1082

the Fwd-Feedback axiom to the transitions p1
a−→ p2

a−→ p′ to prove that either p1
τ−→ p′

1083

or p1 = p′ must hold. If p1
τ−→ p′ then we have that p1 V r2

τ−→ p′ V r2. The property in (2)1084

ensures that p′ musti r2 and from r2 = r′ we have that the required p′ musti r′ holds too. If1085

p1 = p′ then p′ musti r2 is a direct consequence of the hypothesis p1 musti r2.1086

If µ ̸= a then we are allowed to apply the Output-confluence axiom to the transitions1087

r1
a−→ r2 and r1

µ−→ r′ to obtain a r̂ such that r2
µ−→ r̂ and r′ a−→ r̂. An application of the1088

Output-commutativity axiom to the transitions p1
a−→ p2

µ−→ p′ provides us with a p̂1089

such that p1
µ−→ p̂

a−→ p′. We now apply the inductive hypothesis with p′ = p̂, r′ = r̂, p0 = p′
1090

and r0 = r′ and obtain p2 musti r′ as required. This concludes the proof of (ii), and therefore1091

of the lemma. ◀1092

▶ Lemma 38. Let LA ∈ OW and LB ∈ OF. For every p, p′ ∈ A, r, r′ ∈ B and every1093

action µ ∈ Act such that p
µ−→ p′ and r

µ−→ r′ we have that p musti r and ¬good(r) implies1094

p′ musti r′.1095

Proof. By case analysis on the hypothesis that p musti r. ◀1096



XX:30 Constructive characterisations of the must-preorder for asynchrony

[L-Proc]
p

α−→ p′

p ▷ M
α−→fw p′ ▷ M

[L-Comm]
p

a−→ p′

p ▷ ({|a|} ⊎ M) τ−→fw p′ ▷ M

[L-Mout]
p ▷ ({|a|} ⊎ M) a−→fw p ▷ M

[L-Minp] p ▷ M
a−→fw p ▷ ({|a|} ⊎ M)

Figure 11 Lifting of a transition relation to transitions of forwarders.

B Forwarders1097

The intuition behind forwarders, quoting [64], is that “any message can come into the1098

configuration, regardless of the forms of inner receptors. [. . . ] As the experimenter is not1099

synchronously interacting with the configuration [. . . ], he may send any message as he likes.”1100

In this appendix we give the technical results to ensure that the function FW(−) builds1101

an LTS that satisfies the axioms of the class LtsEq.1102

▶ Definition 39. For any LTS L = ⟨C, L, −→⟩ ∈ OF, we define the function strip : C −→ C1103

by induction on mbox(p) as follows: if mbox(p) = ∅ then strip(p) = p, while if ∃a ∈ mbox(p)1104

and p
a−→ p′ then strip(p) = strip(p′). Note that strip(p) is well-defined thanks to the1105

Output-determinacy and the Output-commutativity axioms. ■1106

We now wish to show that FW(L) ∈ OW for any LTS L of output-buffered agents1107

with feedback. Owing to the structure of our typeclasses, we have first to construct an1108

equivalence .= over FW(L) that is compatible with the transition relation, i.e. satisfies the1109

axiom in Figure 5. We do this in the obvious manner, i.e. by combining the equivalence ≃1110

over the states of L with an equivalence over mailboxes.1111

▶ Definition 40. For any LTS L ∈ OF, two states p ▷ M and q ▷ N of FW(L) are equivalent,1112

denoted p ▷ M
.= q ▷ N , if strip(p) ≃ strip(q) and M ⊎ mbox(p) = N ⊎ mbox(q). ■1113

▶ Lemma 41. For every LA and every p ▷ M, q ▷ N ∈ A × MO, and every α ∈ L, if1114

p ▷ M ( .= · α−→fw) q ▷ N then p ▷ M ( α−→fw · .=) q′ ▷ N ′.1115

▶ Lemma 42. For every LA ∈ OF and every p, q ∈ A, M ∈ MO, if p ≃ q then p▷M
.= q▷M .1116

Proof. This follows from the fact that if p ≃ q then strip(p) ≃ strip(q) and mbox(p) =1117

mbox(q).1118

◀1119

Lemma 13. For every LTS L ∈ OF, FW(L) ∈ OW.1120

Proof. We must show that, given an LTS L = ⟨C, L, −→⟩ ∈ OF, we have that FW(L) ∈ OW.1121

To do so, we need to show that FW(L) obeys to the axioms given in Equation (5), namely1122

Input-Boomerang and Fwd-Feedback. We first show that FW(L) obeys to the Input-1123

Boomerang axiom.1124

We pick a process p ∈ C, a mailbox M ∈ MO and a name a ∈ N . The axiom Input-
Boomerang requires us to exhibit a process p′ ∈ A and a mailbox M ′ ∈ MO such that the
following transitions hold.

p ▷ M
a−→fw p′ ▷ M ′ a−→fw p ▷ M



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:31

We choose p′ = p and M ′ = ({|a|} ⊎ M). An application of the rule [L-Minp] and then
the rule [L-Mout] from Figure 11 allows us to derive the required sequence of transitions as
shown below.

p ▷ M
a−→fw p ▷ ({|a|} ⊎ M) a−→fw p ▷ M

We now show that FW(L) obeys to the Fwd-Feedback axiom. To begin we pick three1125

processes p1, p2, p3 ∈ C, three mailboxes M1, M2, M3 ∈ MO and a name a ∈ N such that:1126

p1 ▷ M1
a−→fw p2 ▷ M2

a−→fw p3 ▷ M3

We need to show that either:1127

1. p1 ▷ M1
τ−→fw p3 ▷ M3, or1128

2. p1 ▷ M1
.= p3 ▷ M31129

We proceed by case analysis on the last rule used to derive the transition p1 ▷ M1
a−→fw1130

p2 ▷ M2. This transition can either be derived by the rule [L-Mout] or the rule [L-Proc].1131

We first consider the case where the transition has been derived using the rule [L-Mout].
We then have that p1 = p2 and M1 = ({|a|} ⊎ M2). We continue by case analysis on the last
rule used to derive the transition p2 ▷ M2

a−→fw p3 ▷ M3. If this transition has been derived
using the rule [L-Minp] then it must be the case that p2 = p3 and that ({|a|} ⊎ M2) = M3.
This lets us conclude by the following equality to show that p1 ▷ M1

.= p3 ▷ M3.

p1 ▷ M1 = p2 ▷ ({|a|} ⊎ M2) = p3 ▷ M3

Otherwise, this transition has been derived using the rule [L-Proc], which implies that
p2

a−→ p3 together with M2 = M3. An application of the rule [L-Comm] ensures the following
transition and allows us to conclude this case with p1 ▷ M1

τ−→fw p3 ▷ M3.

p1 ▷ M1 = p2 ▷ ({|a|} ⊎ M2) τ−→ p3 ▷ M2 = p3 ▷ M3

We now consider the case where the transition p1 ▷ M1
a−→fw p2 ▷ M2 has been derived1132

using the rule [L-Proc] such that p1
a−→ p2 and M1 = M2.1133

Again, we continue by case analysis on the last rule used to derive the transition1134

p2 ▷ M2
a−→fw p3 ▷ M3. If this transition has been derived using the rule [L-Minp] then it must1135

be the case that p2 = p3 and ({|a|} ⊎ M2) = M3. Also, note that, as L ∈ OF, the transition1136

p1
a−→ p2 implies mbox(p1) = mbox(p2) ⊎ {|a|}. In order to prove p1 ▷ M1

.= p3 ▷ M3, it1137

suffices to show the following:1138

(a) strip(p1) ≃ strip(p3), and1139

(b) M1 ⊎ mbox(p1) = M3 ⊎ mbox(p3)1140

We show that strip(p1) ≃ strip(p3) by definition of strip() together with the transition1141

p1
a−→ p2 and the equality p2 = p3.1142

The following ensures that M1 ⊎ mbox(p1) = M3 ⊎ mbox(p3).1143

M1 ⊎ mbox(p1)
= M1 ⊎ mbox(p2) ⊎ {|a|} from mbox(p1) = mbox(p2) ⊎ {|a|}
= M2 ⊎ mbox(p3) ⊎ {|a|} from M1 = M2, p2 = p3
= (M2 ⊎ {|a|}) ⊎ mbox(p3)
= M3 ⊎ mbox(p3) from M3 = M2 ⊎ {|a|}

If the transition p2 ▷ M2
a−→fw p3 ▷ M3 has been derived using the rule [L-Proc] then it1144

must be the case that p2
a−→ p3 and M2 = M3. As L ∈ OF, we are able to call the axiom1145



XX:32 Constructive characterisations of the must-preorder for asynchrony

Feedback together with the transitions p1
a−→ p2 and p2

a−→ p3 to obtain a process p′
31146

such that p1
τ−→ p′

3 and p′
3 ≃ p3. An application of Lemma 42 and rule [L-Proc] allows us to1147

conclude that p1 ▷ M1 ( τ−→fw · .=) p3 ▷ M3. ◀1148



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:33

∀s ∈ Act⋆, ∀a ∈ N ,

(1) ¬good(f(s))
(2) ∀µ ∈ Act, f(µ.s) µ−→ f(s)
(3) f(a.s) τ−→
(4) ∀r ∈ C, f(a.s) τ−→ r implies good(r)
(5) ∀r ∈ C, µ ∈ Act, f(a.s) µ−→ r implies µ = a and r = f(s)

∀E ⊆ N ,
(t1) ta(ε, E) τX−→
(t2) ∀a ∈ N , ta(ε, E) aX−→
(t3) ∀a ∈ N , ta(ε, E) a−→ if and only if a ∈ E

(t4) ∀µ ∈ Act, r ∈ C, ta(ε, E) µ−→ r implies good(r)

(c1) ∀µ ∈ Act, tc(ε) τX−→
(c2) ∃r, tc(ε) τ−→ r

(c3) ∀r, tc(ε) τ−→ r implies good(r)

Table 1 Properties of the functions that generate clients.

C Completeness1149

This section is devoted to the proof that the alternative preorder given in Definition (9)1150

includes the must-preorder. First we present a general outline of the main technical results1151

to obtain the proof we are after. Afterwards, in Subsection (C) we discuss in detail on all1152

the technicalities.1153

Proofs of completeness of characterisations of contextual preorders usually require using,1154

as the name suggests, syntactic contexts. Our calculus-independent setting, though, does not1155

allow us to define them. Instead we phrase our arguments using two functions tc : Act⋆ → C,1156

and ta : Act⋆ × P(N ) → C where ⟨C, L, −→⟩ is some LTS of OF. In Table 1 we gather all1157

the properties of tc and ta that are sufficient to give our arguments. The properties (1) - (5)1158

must hold for both tc and ta(ε, −) for every set of names O, the properties (c1) - (c2) must1159

hold for tc, and (t1) - (t4) must hold for ta.1160

We use the function tc to test the convergence of servers, and the function ta to test the1161

acceptance sets of servers.1162

A natural question is whether such tc and ta can actually exist. The answer depends on1163

the LTS at hand. In Appendix F.2, and in particular Figure 18, we define these functions for1164

the standard LTS of ACCS, and it should be obvious how to adapt those definitions to the1165

asynchronous π-calculus [57].1166

In short, our proofs show that ≼AS is complete with respect to ⊏∼must in any LTS of1167

output-buffered agents with feedback wherein the functions tc and ta enjoying the properties1168

in Table 1 can be defined.1169

First, converging along a finite trace s is logically equivalent to passing the client tc(s).1170

In other words, there exists a bijection between the proofs (i.e. finite derivation trees1171

of p musti tc(s)) and the ones of p ⇓ s. We first give the proposition, and then discuss the1172

auxiliary lemmas to prove it.1173



XX:34 Constructive characterisations of the must-preorder for asynchrony

▶ Proposition 43. For every LA ∈ OW, p ∈ A, and s ∈ Act⋆ we have that p musti tc(s) if1174

and only if p ⇓ s.1175

The if implication is Lemma 60 and the only if implication is Lemma 57. The hypothesis1176

that LA ∈ OW, i.e. the use of forwarders, is necessary to show that convergence implies1177

passing a client, as shown by the next example.1178

▶ Example 44. Consider a server p in an LTS L ∈ OF whose behaviour amounts to the1179

following transitions: p
b−→ Ω τ−→ Ω τ−→ . . . Note that this entails that L does not not enjoy1180

the axioms of forwarders.1181

Now let s = a.b. Since p ↓ and p
aX=⇒ we know that p ⇓ a.b. On the other hand Table 1(2)1182

implies that the client tc(s) performs the transitions tc(s) a−→ tc(b) b−→ tc(ε). Thanks to1183

the Output-commutativity axiom we obtain tc(s) b−→ a−→ tc(ε). Table 1(1) implies that1184

the states reached by the client are unsuccessful, and so by zipping the traces performed by1185

p and by tc(s) we build a maximal computation of p V tc(s) that is unsuccessful, and thus1186

p ̸musti tc(s). ◀1187

This example explains why in spite of Lemma 14 output-buffered agents with feedback do1188

not suffice to use the standard characterisations of the must-preorder.1189

We move on to the more involved technical results, i.e. the next three lemmas, that we1190

use to reason on acceptance sets of servers. We wish to stress Lemma 45: it states that, when1191

reasoning on musti, outputs can be freely moved from the client to the server side of systems,1192

if servers have the forwarding ability. Its proof uses all the axioms for output-buffered agents1193

with feedback, and the lemma itself is used in the proof of the main result on acceptance1194

sets, namely Lemma 47.1195

▶ Lemma 45 ( Output swap ). Let LA ∈ OW and LB ∈ OF. For every p1, p2 ∈ A,1196

every r1, r2 ∈ B and name a ∈ N such that p1
a−→ p2 and r1

a−→ r2, if p1 musti r2 then1197

p2 musti r1.1198

▶ Lemma 46. Let LA ∈ OW. For every p ∈ A, s ∈ Act⋆, and every L, E ⊆ N , if1199

L ∈ Afw(p, s) then p ̸musti ta(s, E \ L).1200

▶ Lemma 47. Let LA ∈ OW. For every p ∈ A, s ∈ Act⋆, and every finite set O ⊆ N , if1201

p ⇓ s then either1202

(i) p musti ta(s,
⋃

Afw(p, s) \ O), or1203

(ii) there exists Ô ∈ Afw(p, s) such that Ô ⊆ O.1204

We can now show that the alternative preorder ≼AS includes ⊏∼must when used over LTSs1205

of forwarders.1206

▶ Lemma 48. For every LA, LB ∈ OW and servers p ∈ A, q ∈ B, if p ⊏∼must q then p ≼AS q.1207

Proof. Let p ⊏∼must q. To prove that p ≼cnv q, suppose p ⇓ s for some trace s. Proposition 431208

implies p musti tc(s), and so by hypothesis q musti tc(s). Proposition 43 ensures that q ⇓ s.1209

We now show that p ≼acc q. Thanks to Lemma 15, it is enough to prove that p ≼fw
acc q.1210

So, we show that for every trace s ∈ Act⋆, if p ⇓ s then Afw(p, s) ≪ Afw(q, s). Fix an1211

O ∈ Afw(q, s). We have to exhibit a set Ô ∈ Afw(p, s) such that Ô ⊆ O.1212

By definition O ∈ Afw(q, s) means that for some q′ we have q
s=⇒ q′ τX−→ and O(q′) = O.1213

Let E =
⋃

Afw(p, s) and X = E \ O. The hypothesis that p ⇓ s, and the construction of1214

the set X let us apply Lemma 47, which implies that either1215



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:35

(a) p musti ta(s, X), or1216

(b) there exists a Ô ∈ Afw(p, s) such that Ô ⊆ O(q′).1217

Since (b) is exactly what we are after, to conclude the argument it suffices to prove that (a)1218

is false. This follows from Lemma 46, which proves q ̸musti ta(s, X), and the hypothesis1219

p ⊏∼must q, which ensures p ̸musti ta(s, X). ◀1220

The fact that the must-preorder can be captured via the function FW(−) and ≼AS is a1221

direct consequence of Lemma 14 and Lemma 48.1222

▶ Proposition 49 (Completeness). For every LA, LB ∈ OF and servers p ∈ A, q ∈ B, if1223

p ⊏∼must q then FW(p) ≼AS FW(q).1224

We now gather all the technical auxiliary lemmas and then discuss the proofs of the main1225

ones.1226

By assumption, outputs preserve the predicate good. For stable clients, they also preserve1227

the negation of this predicate.1228

▶ Lemma 50. For all r, r′ ∈ A and trace s ∈ N ⋆, r
τX−→, ¬good(r) and r

s=⇒ r′ implies1229

¬good(r′).1230

C.1 Testing convergence1231

We start with preliminary facts, in particular two lemmas that follow from the properties in1232

Table 1.1233

A process p converges along a trace s if for every p′ reached by p performing any prefix1234

of s, the process p′ converges.1235

▶ Lemma 51. For every ⟨A, L, −→⟩, p ∈ A, and s ∈ Act⋆, p ⇓ s if and only if p
s′

=⇒ p′
1236

implies p′ ↓ for every s′ prefix of s.1237

Traces of output actions impact neither the stability of servers, nor their input actions.1238

▶ Lemma 52. For every LA, every p, p′ ∈ A and every trace s ∈ N ⋆,1239

1. p
τX−→ and p

s=⇒ p′ implies p′ τX−→.1240

2. p
τX−→ and p

s=⇒ p′ implies I(p) = I(p′).1241

▶ Lemma 53. For every s ∈ Act⋆, tc(s) τ−→.1242

The Backward-output-determinacy axiom is used in the proof of the next lemma.1243

▶ Lemma 54. For every s ∈ Act⋆, if tc(s) µ−→ r then either1244

(a) good(r), or1245

(b) s = s1.µ.s2 for some s1 ∈ N ⋆ and s2 ∈ Act⋆ such that r ≃ tc(s1.s2).1246

▶ Lemma 55. For every s ∈ Act⋆, if tc(s) τ−→ r then either:1247

(a) good(r), or1248

(b) there exist b, s1, s2 and s3 with s1.b.s2 ∈ N ⋆ such that s = s1.b.s2.b.s3 and r ≃1249

tc(s1.s2.s3).1250

▶ Lemma 56. Let LA ∈ OW. For every server p, p′ ∈ A, trace s ∈ Act⋆ and action µ ∈ Act1251

such that p
µ=⇒ p′ we have that p musti tc(µ.s) implies p′p′ musti tc(s).1252

Proof. By rule induction on the reduction p
µ=⇒ p′ together with Lemma 36 and Lemma 38.1253

◀1254



XX:36 Constructive characterisations of the must-preorder for asynchrony

▶ Lemma 57. Let LA ∈ OW. For every server p ∈ A, trace s ∈ Act⋆ we have that1255

p musti tc(s) implies p ⇓ s.1256

Proof. We proceed by induction on the trace s. In the base case s is ε. Table 1(1) states1257

that ¬good(tc(ε)) and we apply Lemma 35 to obtain p ↓i, and thus p ⇓ ε. In the inductive1258

case s is µ.s′ for some µ ∈ Act and s′ ∈ Act⋆. We must show the following properties,1259

1. p ↓i, and1260

2. for every p′ such that p
µ=⇒ p′, p′ ⇓ s′.1261

We prove the first property as we did in the base case, and we apply Lemma 56 to prove the1262

second property. ◀1263

▶ Lemma 58. Let LA ∈ OW. For every p ∈ A, s1 ∈ N ⋆ and s3 ∈ Act⋆ we have that1264

1. for every µ ∈ Act, if p ⇓ s1.µ.s3 and p
µ−→ q then q ⇓ s1.s3,1265

2. for every a.s2 ∈ N ⋆ if p ⇓ s1.a.s2.a.s3 then p ⇓ s1.s2.s3.1266

▶ Lemma 59. For every LTS LA and every p ∈ A, p ↓i implies p musti tc(ε).1267

Proof. Rule induction on the derivation of p ↓i. ◀1268

▶ Lemma 60. For every LA ∈ OW, every p ∈ A, and s ∈ Act⋆, if p ⇓ s then p musti tc(s).1269

Proof. The hypothesis p ⇓ s ensures p ↓i. We show that p musti tc(s) reasoning by complete1270

induction on the length of the trace s. The base case is Lemma 59 and here we discuss the1271

inductive case, i.e. when len(s) = n + 1 for some n ∈ N.1272

We proceed by rule induction on p ↓i. In the base case p
τX−→, and the reduction at hand1273

is due to either a τ transition in tc(s), or a communication between p and tc(s).1274

In the first case tc(s) τ−→ r, and so Lemma 55 ensures that one of the following conditions1275

holds,1276

1. good(r), or1277

2. there exist a ∈ N , s1, s2 and s3 with s = s1.a.s2.a.s3 and r ≃ tc(s1.s2.s3).1278

If good(r) then we conclude via rule [axiom]; otherwise Lemma 58(2) and the hypothesis1279

that p ⇓ s imply p ⇓ s1.s2.s3, thus prove p musti r via the inductive hypothesis of the1280

complete induction on s.1281

We now consider the case when the transition is due to a communication, i.e. p
µ−→ p′

1282

and tc(s) µ−→ r. Lemma 54 tells us that either good(r) or there exist s1 and s2 such1283

that s = s1.µ.s2 and r ≃ tc(s1.s2). In the first case we conclude via rule [axiom]. In the1284

second case we apply Lemma 58(1) to prove p′ ⇓ s1.s2, and thus p′ musti r follows from the1285

inductive hypothesis of the complete induction. In the inductive case of the rule induction1286

on p ↓i, we know that p
τ−→ p′ for some process p′. We reason again by case analysis on1287

how the reduction we fixed has been derived, i.e. either via a τ transition in tc(s), or via1288

a communication between p and tc(s), or via a τ transition in p. In the first two cases we1289

reason as we did for the base case of the rule induction. In the third case p ⇓ s and p
τ−→ p′

1290

imply p′ ⇓ s, we thus obtain p′ musti tc(s) thanks to the inductive hypothesis of the rule1291

induction which we can apply because the tree to derive p′ ↓i is smaller than the tree to1292

derive that p ↓i. ◀1293

C.2 Testing acceptance sets1294

In this section we present the properties of the function ta(−, −) that are sufficient to obtain1295

completeness. To begin with, ta(−, −) function enjoys a form of monotonicity with respect1296

to its second argument.1297



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:37

▶ Lemma 61. Let LA ∈ OF. For every p ∈ A, trace s ∈ Act⋆, and sets of outputs O1, O2,1298

if p musti ta(s, O1) and O1 ⊆ O2 then p musti ta(s, O2).1299

Proof. Induction on the derivation of p musti ta(s, O1). ◀1300

Let OBA denote the set of LTS of output-buffered agents. Note that any L ∈ OBA need1301

not enjoy the Feedback axiom.1302

▶ Lemma 62. Let LA ∈ OBA, and LB ∈ OBA. For every p ∈ A, trace s ∈ Act⋆, set of1303

outputs O and name a ∈ N , such that1304

(i) p ↓i and,1305

(ii) For every p′ ∈ A, p
a=⇒ p′ implies p′ musti ta(s, O),1306

we have that p musti ta(a.s, O).1307

Proof. We proceed by induction on the hypothesis p ↓i.1308

C.2.0.1 (Base case: p is stable)1309

We prove p musti ta(a.s, O) by applying rule [ind-rule]. Since Table 1(3) implies that1310

p V ta(a.s, O) τ−→, all we need to prove is the following fact,1311

∀p′ ∈ A, r ∈ B. if p V ta(a.s, O) τ−→ p′ V r then p′ musti r. (⋆)1312

Fix a transition p V ta(ε, O) τ−→ p′ V r. As p is stable, this transition can either be due to:1313

1. a τ -transition performed by the client such that ta(a.s, O) τ−→ r, or1314

2. an interaction between the server p and the client ta(a.s, O).1315

In the first case Table 1(4) implies good(r), and hence we obtain p′ musti r via rule [axiom].
In the second case there exists an action µ such that

p
µ−→ p′ and ta(a.s, O) µ−→ r

Table 1(5) implies µ is a and r = ta(s, O). We then have p
a−→ p′ and thus the reduction1316

p
a=⇒ p′, which allows us to apply the hypothesis (ii) and obtain p′ musti r as required.1317

C.2.0.2 (Inductive case: p
τ−→ p′ implies p′)1318

The argument is similar to one for the base case, except that we must also tackle the case1319

when the transition p V ta(a.s, O) τ−→ p′ V r is due to a τ action performed by p, i.e. p
τ−→ p′

1320

and r = ta(a.s, O). The inductive hypothesis tells us the following fact:1321

For every p1 and a, such that p
τ−→ p1, for every p2, if p1

a=⇒ p2 then p2 musti ta(s, O).1322

To apply the inductive hypothesis we have to show that for every p2 such that p′ a=⇒ p2 we1323

have that p2 musti ta(s, O). This is a consequence of the hypothesis (ii) together with the1324

reduction p
τ−→ p′ a=⇒ p2, and thus concludes the proof. ◀1325

▶ Lemma 63. Let LA ∈ OF. For every p ∈ A and set of outputs O, if p is stable then either1326

(a) p musti ta(ε, O(p) \ O), or1327

(b) O(p) ⊆ O.1328



XX:38 Constructive characterisations of the must-preorder for asynchrony

Proof. We distinguish whether O(p) \ O is empty or not. In the first case, O(p) \ O = ∅1329

implies O(p) ⊆ O, and we are done.1330

In the second case, there exists a ∈ O(p) such that a /∈ O. Note also that Table 1(1) ensures1331

that ¬good(ta(ε, O(p) \ O)), and thus we construct a derivation of p musti ta(ε, O(p) \ O)1332

by applying the rule [ind-rule]. This requires us to show the following facts,1333

1. p V ta(s, O(p) \ O) −→, and1334

2. for each p′, r such that p V ta(s, O(p) \ O) τ−→ p′ V r, p′ musti r holds.1335

To prove (1), we show that an interaction between the server p and the test ta(s, O(p) \ O)1336

exists. As a ∈ O(p), we have that p
a−→. Then a ∈ O(p) \ O together with (3) ensure1337

that ta(s, O(p) \ O) a−→. An application of the rule [s-com] gives us the required transition1338

p V ta(s, O(p) \ O) −→.1339

To show (2), fix a silent transition p V ta(s, O(p) \ O) τ−→ p′ V r. We proceed by case1340

analysis on the rule used to derive the transition under scrutiny. Recall that the server p is1341

stable by hypothesis, and that ta(s, O(p) \ O) is stable thanks to Table 1(1). This means1342

that the silent transition must have been derived via rule [S-com]. Furthermore, Table 1(2)1343

implies that the test ta(s, O(p) \ O) does not perform any output. As a consequence, if there1344

is an interaction it must be because the test performs an input and becomes r. Table 1(4)1345

implies that good(r), and hence we obtain the required p′ musti r applying rule [axiom]. ◀1346

Lemma 46 Let LA ∈ OW. For every p ∈ A, s ∈ Act⋆, and every L, E ⊆ N , if L ∈ Afw(p, s)1347

then p ̸musti ta(s, E \ L).1348

Proof. By hypothesis there exists a set L ∈ Afw(p, s), i.e. for some p′ we have p
s=⇒ p′ τX−→1349

and O(p′) = L. We have to show that p ̸musti ta(s, E \ L), i.e. p musti ta(s, E \ L) implies1350

⊥. For convenience, let X = E \ L.1351

We proceed by induction on the derivation of the weak transitions p
s=⇒ p′. In the base1352

case the derivation consists in an application of rule [wt-refl], which implies that p = p′
1353

and s = ε. We show that there exists no derivation of judgement p musti ta(s, X). By1354

definition, ¬good(ta(s, X)) and thus no tree that ends with [axiom] can have p musti ta(s, X)1355

as conclusion. The hypotheses ensure that p is stable, and ta(ε, X) is stable by definition.1356

The set of inputs of ta(ε, X) is X, which prevents an interaction between p and ta(s, X), i.e.1357

an application of rule [S-com]. This proves that p V ta(s, X) is stable, thus a side condition1358

of [ind-rule] is false, and the rule cannot be employed to prove p musti ta(s, X).1359

In the inductive cases p
s=⇒ p′ is derived using either:1360

(i) rule [wt-tau] such that p
τ−→ p̂

s=⇒ p′, or1361

(ii) rule [wt-mu] such that p
µ−→ p̂

t=⇒ p′, with s = µ.t.1362

In the first case, applying the inductive hypothesis requires us to show p̂ musti ta(s, X),1363

which is true since p musti ta(s, X) is preserved by the τ -transitions performed by the server.1364

In the second case, applying the inductive hypothesis requires us to show p̂ musti ta(t, X).1365

Table 1(2) implies that ta(µ.t, X) µ−→ ta(t, X). Then we derive via [S-com] the transition1366

p V ta(µ.t, E) τ−→ p̂ V ta(t, E). Since p musti ta(s, X) is preserved by the interactions1367

occurring between the server and the client, which implies p̂ musti ta(t, X) as required. ◀1368

Lemma 47 Let LA ∈ OW. For every p ∈ A, s ∈ Act⋆, and every finite set O ⊆ N , if p ⇓ s1369

then either1370

(i) p musti ta(s,
⋃

Afw(p, s) \ O), or1371

(ii) there exists Ô ∈ Afw(p, s) such that Ô ⊆ O.1372

Proof. We proceed by induction on the trace s.1373



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:39

C.2.0.3 (Base case, s = ε)1374

The hypothesis p ⇓ ε implies p ↓i and we continue by induction on the derivation of p ↓i.10
1375

In the base case p ↓i was proven using rule [axiom], and hence p
τX−→. We apply Lemma 631376

to obtain either:1377

(i) p musti ta(ε, O(p) \ O), or1378

(ii) O(p) ⊆ O.1379

In case (i) we are done. In case (ii), as p is stable we have {p′ | p
ε=⇒ p′ τX−→} = {p} and1380

thus Afw(p, ε) = {O(p)} and we conclude by letting Ô = O(p).1381

In the inductive case p ↓i was proven using rule [ind-rule]. We know that p
τ−→, and the1382

inductive hypothesis states that for any p′ such that p
τ−→ p′, either:1383

(a) p′ musti ta(ε, O(p′) \ O), or1384

(b) there exists Ô ∈ Afw(p′, s) such that Ô ⊆ O.1385

It follows that either1386

(∀) for each p′ ∈ {p′ | p
τ−→ p′}, p′ musti ta(ε,

⋃
Afw(p′, s) \ O), or1387

(∃) there exists a p′ ∈ {p′ | p
τ−→ p′} and a Ô ∈ Afw(p′, ε) such that Ô ⊆ O,1388

We discuss the two cases. If (∃) the argument is straightforward: we pick the existing p′ such1389

that p
τ−→ p′. The definition of Afw(−, −) ensures that and show that Afw(p′, ε) ⊆ Afw(p, ε),1390

and thus we conclude by choosing Ô.1391

Case (∀) requires more work. We are going to show that p musti ta(ε,
⋃

Afw(p, s) \ O)1392

holds. To do so we apply the rule [ind-rule] and we need to show the following facts,1393

(a) p V ta(ε,
⋃

Afw(p, s) \ O) τ−→, and1394

(b) for each p′ V r′ such that p V ta(ε,
⋃

Afw(p, s) \ O) τ−→ p′ V r′, we have p′ musti r′.1395

The first requirement follows from the fact that p is not stable. To show the second1396

requirement we proceed by case analysis on the transition p V ta(ε,
⋃

Afw(p, s) \ O) τ−→ p′ V r′.1397

As ta(ε, O(p) \ O) is stable by (1), it can either be due to:1398

1. a τ -transition performed by the server p such that p
τ−→ p′, or1399

2. an interaction between the server p and the client ta(ε,
⋃

Afw(p, s) \ O).1400

In the first case we apply the first part of the inductive hypothesis to prove that
p′ musti ta(ε,

⋃
Afw(p′, s) \ O), and we conclude via Lemma 61 to get the required

p′ musti ta(ε,
⋃

Afw(p, s) \ O).

In the second case, there exists a µ ∈ Act such that

p
µ−→ p′ and ta(ε,

⋃
Afw(p, s) \ O) µ−→ r

Thanks to Table 1(4) we apply rule [axiom] to prove that p′ musti r and we are done with1401

the base case of the main induction on the trace s.1402

C.2.0.4 (Inductive case, s = µ.s′)1403

By induction on the set {p′ | p
µ=⇒ p′} and an application of the inductive hypothesis we1404

know that either:1405

(i) there exists p′ ∈ {p′ | p
µ=⇒ p′} and Ô ∈ Afw(p′, s′) such that Ô ⊆ O, or1406

(ii) for each p′ ∈ {p′ | p
µ=⇒ p′} we have that p′ musti ta(s′,

⋃
Afw(p′, s′)).1407

10 Recall that the definition of ↓i is in Equation (int-preds)



XX:40 Constructive characterisations of the must-preorder for asynchrony

[Mset-now]
good(r)

X mustaux r

[Mset-step]

¬good(r) ∀X ′. X
τ−→ X ′ implies X ′ mustaux r

∀ p ∈ X. p V r
τ−→ ∀r′. r

τ−→ r′ implies X mustaux r′

∀X ′, µ ∈ Act⋆. X
µ=⇒ X ′ and r

µ−→ r′ imply X ′ mustaux r′

X mustaux r

Figure 12 Rules to define inductively the predicate mustaux.

In the first case, the inclusion Afw(p′, s′) ⊆ Afw(p, µ.s′) and Ô ∈ Afw(p′, s′) imply1408

Ô ∈ Afw(p, s) and we are done.1409

In the second case, we show p musti ta(s,
⋃

Afw(p, s)) by case analysis on the action µ,1410

which can be either an input or an output.1411

If µ is an input, µ = a for some a ∈ N . An application of the axiom of forwarders gives
us a p′ such that p

a−→ p′ a−→ p. An application of Table 1(2) gives us the following
transition,

ta(a.s′,
⋃

Afw(p, a.s′) \ O) a−→ ta(s′,
⋃

Afw(p, a.s′) \ O)

By an application of Lemma 45 it is enough to show

p′ musti ta(s′,
⋃

Afw(p, a.s′) \ O)

to obtain the required p musti ta(a.s′,
⋃

Afw(p, a.s′) \ O).1412

If µ is an output, µ = a for some a ∈ N and we must show that

p musti ta(a.s′,
⋃

Afw(p, a.s′) \ O).

We apply Lemma 62 together with (ii) to obtain p musti ta(a.s′,
⋃

Afw(p′, s′) \ O). Again,1413

Lemma 61 together with the inclusion Afw(p′, s′) ⊆ Afw(p, a.s′) ensures the required1414

p musti ta(s,
⋃

Afw(p, s) \ O).1415

◀1416

D Soundness1417

In this section we prove the converse of Proposition 49, i.e. that ≼AS is included in ⊏∼must.1418

We remark immediately that a naïve reasoning does not work. Fix two servers p and q such1419

that p ≼AS q. We need to prove that for every client r, if p musti r then p musti r. The1420

reasonable first proof attempt consisting in proceeding by induction on p musti r fails, as1421

demonstrated by the following example.1422

▶ Example 64. Consider the two servers p = τ.(a ∥ b) + τ.(a ∥ c) and q = a ∥ (τ.b + τ.c)1423

of Equation (4). Fix a client r such that p musti r. Rule induction yields the following1424

inductive hypothesis:1425

∀p′, q′. p V r
τ−→ p′ V r′ ∧ p′ ≼AS q′ ⇒ q′ musti r′.1426



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:41

In the proof of q musti r we have to consider the case where there is a communication1427

between q and r such that, for instance, q
a−→ τ.b + τ.c and r

a−→ r′. In that case, we need1428

to show that τ.b + τ.c musti r′. Ideally, we would like to use the inductive hypothesis. This1429

requires us to exhibit a p′ such that p V r
τ−→ p′ V r′ and p′ ≼acc τ.b + τ.c. However, note1430

that there is no way to derive p V r
τ−→ p′ V r′, because p

aX−→. The inductive hypothesis1431

thus cannot be applied, and the naïve proof does not go through. ◀1432

This example suggests that defining an auxiliary predicate mustaux in some sense equivalent1433

to musti, but that uses explicitly weak outputs of servers, should be enough to prove that ≼AS1434

is sound with respect to ⊏∼must. Unfortunately, though, there is an additional nuisance to1435

tackle: server nondeterminism.1436

▶ Example 65. Assume that we defined the predicate musti using weak transitions on the1437

server side for the case of communications. Recall the argument put forward in the previous1438

example. The inductive hypothesis now becomes the following:1439

For every p′, q′, µ such that p
µ=⇒ p′ and r

µ−→ r′, p′ ≼AS q′ implies q′ musti r′.1440

To use the inductive hypothesis we have to choose a p′ such that p
a=⇒ p′ and p′ ≼AS τ.b + τ.c.1441

This is still not enough for the entire proof to go through, because (modulo further τ -moves)1442

the particular p′ we pick has to be related also to either b or c. It is not possible to find1443

such a p′, because the two possible candidates are either b or c; neither of which can satisfy1444

p′ ≼AS τ.b + τ.c, as the right-hand side has not committed to a branch yet.1445

If instead of a single state p in the novel definition of musti we used a set of states and a1446

suitable transition relation, the choice of either b or c will be suitably delayed. It suffices for1447

instance to have the following states and transitions: {p} a=⇒ {b, c}. ◀1448

Now that we have motivated the main intuitions behind the definition of our novel1449

auxiliary predicate mustaux, we proceed with the formal definitions.1450

The LTS of sets. Let P+(Z) be the set of non-empty parts of Z. For any LTS ⟨A, L, −→ ⟩,
we define for every X ∈ P+(A) and every α the sets

D(α, X) = {p′ | ∃p ∈ X. p
α−→ p′},

WD(α, X) = {p′ | ∃p ∈ X. p
α=⇒ p′}.

Essentially we lift the standard notion of state derivative to sets of states. We construct1451

the LTS ⟨P+(A), Actτ , −→⟩ by letting X
α−→ D(α, X) whenever D(α, X) ̸= ∅. Similarly, we1452

have X
α=⇒ WD(α, X) whenever WD(α, X) ̸= ∅. This construction is standard [42, 20, 21]1453

and goes back to the determinisation of nondeterministic automata.1454

Let mustaux be defined via the rules in Figure 12. This predicate let us reason on musti1455

via sets of servers, in the following sense.1456

▶ Lemma 66. For every LTS LA, LB and every X ∈ P+(A), we have that X mustaux r if1457

and only if for every p ∈ X. p musti r.1458

To lift the predicates ≼cnv and ≼acc to sets of servers, we let Afw(X, s) = {O | ∃p ∈1459

X.O ∈ Afw(p, s)}, and for every finite X ∈ P+(A), we write X ↓ to mean ∀p ∈ X. p ↓, we1460

write X ⇓ s to mean ∀p ∈ X. p ⇓ s, and let1461

X ≼set
cnv q to mean ∀s ∈ Act⋆, if X ⇓ s then q ⇓ s,1462

X ≼set
acc q to mean ∀s ∈ Act⋆, X ⇓ s implies Afw(X, s) ≪ Afw(q, s),1463

X ≼set
AS q to mean X ≼set

cnv q ∧ X ≼set
acc q.1464



XX:42 Constructive characterisations of the must-preorder for asynchrony

These definitions imply immediately the following equivalences, {p} ≼set
acc q ⇐⇒ p ≼cnv q,1465

{p} ≼set
cnv q ⇐⇒ p ≼acc q and thereby the following lemma.1466

▶ Lemma 67. For every LTS LA, LB , p ∈ A, q ∈ B, p ≼AS q if and only if {p} ≼set
AS q.1467

The preorder ≼set
AS is preserved by τ -transitions on its right-hand side, and by visible1468

transitions on both sides. We reason separately on the two auxiliary preorders ≼set
cnv and ≼set

acc.1469

We need one further notion.1470

▶ Lemma 68. Let LA, LB ∈ OW. For every set X ∈ P+(A), and q ∈ B, such that X ≼set
cnv q,1471

1. q
τ−→ q′ implies X ≼set

cnv q′,1472

2. X ↓i, X
µ=⇒ X ′ and q

µ−→ q′ imply X ′ ≼set
cnv q′.1473

▶ Lemma 69. Let LA, LB ∈ OW. For every X, X ′ ∈ P+(A) and q ∈ B, such that X ≼set
acc q,1474

then1475

1. q
τ−→ q′ implies X ≼set

acc q′,1476

2. if X ↓i then for every µ ∈ Act, every q′ and X ′ such that q
µ−→ q′ and X

µ=⇒ X ′ we have1477

X ′ ≼set
acc q′.1478

The main technical work for the proof of soundness is carried out by the next lemma.1479

▶ Lemma 70. Let LA, LB ∈ OW and LC ∈ OF. For every set of servers X ∈ P+(A),1480

server q ∈ B and client r ∈ C, if X mustaux r and X ≼set
AS q then q musti r.1481

▶ Proposition 71 (Soundness). For every LA, LB ∈ OF and servers p ∈ A, q ∈ B, if1482

FW(p) ≼AS FW(q) then p ⊏∼must q.1483

Proof. Lemma 14 ensures that the result follows if we prove that FW(p) ⊏∼must FW(q). Fix1484

a client r such that FW(p) musti r. Lemma 70 implies the required FW(q) musti r, if we1485

show that1486

(i) {FW(p)} mustaux r, and that1487

(ii) {FW(p)} ≼set
AS FW(q).1488

The first fact follows from the assumption that FW(p) musti r and Lemma 66 applied to the1489

singleton {FW(p)}. The second fact follows from the hypothesis that FW(p) ≼AS FW(q)1490

and Lemma 67. ◀1491

D.1 Technical results to prove soundness1492

We now discuss the proofs of the main technical results behind Proposition 71. The predicate1493

mustaux is monotonically decreasing with respect to its first argument, and it enjoys properties1494

analogous to the ones of musti that have been shown in Lemma 35 and Lemma 36.1495

▶ Lemma 72. For every LTS LA, LB and every set X1 ⊆ X2 ⊆ A, client r ∈ B, if1496

X2 mustaux r then X1 mustaux r.1497

▶ Lemma 73. Let LA ∈ OW and LB ∈ OF. For every set X ∈ P+(A), client r ∈ B, if1498

¬good(r) and X mustaux r then X ↓i.1499

▶ Lemma 74. For every LA, LB, every set X1, X2 ∈ P+(A), and client r ∈ B, if X1 mustaux1500

r and X1
ε=⇒ X2 then X2 mustaux r.1501

▶ Lemma 75. For every LTS LA, LB and every X ∈ P+(A) and r ∈ B, if X mustaux r1502

then for every X ′ such that1503

(a) If X
ε=⇒ X ′ then X ′ mustaux r,1504



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:43

(b) For any µ ∈ Act and client r′, if X
µ=⇒ X ′, r

µ−→ r′ and ¬good(r), then X ′ mustaux r′.1505

▶ Lemma 76. Given two LTS LA and LB then for every X ∈ P+(A) and r ∈ B, if for each1506

p ∈ X we have that p musti r, then X mustaux r.1507

▶ Lemma 77. Let LA, LB ∈ OW and LC ∈ OF. For every X ∈ P+(A) and q ∈ B such1508

that X ≼set
AS q, for every r ∈ C if ¬good(r) and X mustaux r then q V r

τ−→.1509

Proof. If either q
τ−→ or r

τ−→ then we prove that q V r performs a τ -transition vis [S-Srv]or
[S-Clt], so suppose that both q and r are stable. Since q is stable we know that

Afw(q, ε) = {O(q)}

The hypotheses ¬good(r) and X mustaux r together with Lemma 73 imply X ↓i and thus1510

X ⇓ ε. The hypothesis X ≼set
acc q with s = ε, gives us a p′ such that p

ε=⇒ p′ τX−→ and1511

O(p′) ⊆ O(q). By definition there exists the weak silent trace X =⇒ X ′ for some set X ′
1512

such that {p′} ⊆ X ′. The hypothesis X mustaux r together with Lemma 74 and Lemma 721513

ensure that {p′} mustaux r.1514

As ¬good(r), {p′} mustaux r must have been derived using rule [ind-rule] which implies1515

that p′ V r
τ−→. As both r is stable by assumption, and p′ is stable by definition, this1516

τ -transition must have been derived using [s-com], and so p′ µ−→ and r
µ−→ for some µ ∈ Act.1517

Now we distinguish whether µ is an input or an output. In the first case µ is an input. Since1518

LB ∈ OW we use the Input-Boomerang axiom to prove q
µ−→, and thus q V r

τ−→ via1519

rule [S-com]. In the second case µ is an output, and so the inclusion O(p′) ⊆ O(q) implies1520

that q
µ−→, and so we conclude again applying rule [S-com]. ◀1521

▶ Lemma 78. Let LA, LB ∈ OW. For every X ∈ P+(A) and q, q′ ∈ B, such that X ≼set
AS q,1522

then for every µ ∈ Act, if X ⇓ µ and q
µ−→ q′ then X

µ=⇒.1523

Proof. Then, from X ≼set
cnv q and X ⇓ µ we have that q ⇓ µ and thus q′ ↓i. As q′ converges,

there must exist q′′ such that
q

µ=⇒ q′ ε=⇒ q′′ τX−→

and so Afw(q, µ, −→B) ̸= ∅. An application of the hypothesis X ≼set
acc q implies that there1524

exists a set Ô ∈ Afw(X, µ, −→A), and thus there exist two servers p′ ∈ X and p′′ such that1525

p′ µ=⇒ p′′ τX−→. Since p′ ∈ X it follows that X
µ=⇒. ◀1526

Lemma 68 Let LA, LB ∈ OW. For every set X ∈ P+(A), and q ∈ B, such that X ≼set
cnv q1527

then1528

1. q
τ−→ q′ implies X ≼set

cnv q′,1529

2. if X ↓i and q
µ−→ q′ then for every set X

µ=⇒ X ′ we have that X ′ ≼set
cnv q′.1530

Proof. We first prove part (1). Let us fix a trace s such that X ⇓ s. We must show q′ ⇓ s.1531

An application of the hypothesis X ≼set
cnv q ensures q ⇓ s. From the transition q

τ−→ q′ and1532

the fact that convergence is preserved by the τ -transitions we have that q′ ⇓ s as required.1533

We now prove part (2). Fix a trace s such that X ′ ⇓ s. Since q
µ−→ q′, the required q′ ⇓ s

follows from q ⇓ µ.s. Thanks to the hypothesis X ≼set
cnv q it suffices to show that X ⇓ µ.s′,

i.e. that
∀p ∈ X.p ⇓ µ.s′

Fix a server p ∈ X. We must show that1534

1. p ↓i and that1535

2. for any p′ such that p
µ=⇒ p′ we have p′ ⇓ s.1536



XX:44 Constructive characterisations of the must-preorder for asynchrony

The first requirement follows from the hypothesis X ↓i. The second requirement follows from1537

the transition p
µ=⇒ p′, from the assumption X ′ ⇓ s, and the hypothesis that X

µ=⇒ X ′,1538

which ensures that p′ ∈ X ′ and thus by definition of X ′ ⇓ s that p′ ⇓ s. ◀1539

Lemma 69 Let LA, LB ∈ OW. For every X, X ′ ∈ P+(A) and q ∈ B, such that X ≼set
acc q,1540

then1541

1. q
τ−→ q′ implies X ≼set

acc q′,1542

2. for every µ ∈ Act, if X ↓i, then for every q
µ−→ q′ and set X

µ=⇒ X ′ we have X ′ ≼set
acc q′.1543

Proof. To prove part (1) fix a trace s ∈ Act⋆ such that X ⇓ s. We have to explain why1544

Afw(X, s) ≪ Afw(q′, s). By unfolding the definitions, this amounts to showing that1545

∀O ∈ Afw(q′, s). ∃pattaboy ∈ X. ∃Ô ∈ Afw(pattaboy, s). Ô ⊆ O (⋆)1546

Fix a set O ∈ Afw(q′, s). By definition there exists some q′′ such that q′ s=⇒ q′′ τX−→,1547

and that O = O(q′′). The definition of Afw(−, −) and the silent move q
τ−→ q′ ensures that1548

O ∈ Afw(q, s). The hypothesis X ≼set
acc q and that X ⇓ s now imply that Afw(X, s) ≪ Afw(q, s),1549

which together with O ∈ Afw(q, s) implies exactly Equation (⋆).1550

We now prove part (2). To show X ′ ≼set
acc q′ fix a trace s ∈ Act⋆ such that X ′ ⇓ s.1551

We have to explain why Afw(X, s) ≪ Afw(q′, s). By unfolding the definitions we obtain1552

our aim,1553

∀O ∈ Afw(q′, s). ∃pattaboy ∈ X ′. ∃Ô ∈ Afw(pattaboy, s). Ô ⊆ O (⋆⋆)1554

To begin with, we prove that X ⇓ µ.s. Since X
µ=⇒ X ′ we know that X

µ=⇒ X ′. This,1555

together with X ↓i and X ′ ⇓ s implies the convergence property we are after.1556

Now fix a set O ∈ Afw(q′, s). Thanks to the transition q
µ−→ q′, we know that O ∈1557

Afw(q, µ.s). The hypothesis X ≼set
acc q together with X ⇓ µ.s implies that there exists1558

a server pattaboy ∈ X such that there exists an Ô ∈ Afw(pattaboy, µ.s). This means that1559

pattaboy
µ=⇒ p′

attaboy and that Ô ∈ Afw(p′
attaboy, s). Since X

µ=⇒ X ′ we know that p′
attaboy ∈ X ′

1560

and this concludes the argument.1561

◀1562

▶ Lemma 79. For every LA ∈ OW, LB ∈ OF, every set of processes X ∈ P+(A), every1563

r ∈ B, and every µ ∈ Act, if X mustaux r, ¬good(r) and r
µ−→ then X ⇓ µ.1564

Lemma 70 Let LA, LB ∈ OW and LC ∈ OF. For every set of processes X ∈ P+(A), server1565

q ∈ B and client r ∈ C, if X mustaux r and X ≼set
AS q then q musti r.1566

Proof. We proceed by induction on the derivation of X mustaux r. In the base case, good(r)1567

so we trivially derive q musti r. In the inductive case the proof of the hypothesis X mustaux r1568

terminates with an application of [Mset-step]. Since ¬good(r), we show the result applying1569

[ind-rule]. This requires us to prove that1570

(1) q V r
τ−→, and that1571

(2) for all q′, r′ such that q V r
τ−→ q′ V r′ we have q′ musti r′.1572

The first fact is a consequence of Lemma 77, which we can apply because ¬good(r) and1573

thanks to the hypothesis X ≼set
acc q and X mustaux r. To prove the second fact, fix a transition1574

q V r
τ−→ q′ V r′. We have to explain why the following properties are true,1575

(a) for every q′. q
τ−→ q′ implies q′ musti r,1576

(b) for every r. r
τ−→ r′ implies q musti r′,1577

(c) for every q′, r′ and µ ∈ Act, q
µ−→ q′ and r

µ−→ r′ imply q′ musti r′.1578



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:45

p p1

p3

a

b implies
p p1

p2 p3

a

b b

a

p implies p
a−→ p′

Input-commutativity Input-receptivity

Figure 13 The Input-receptivity axiom of [92], and our version of input-commutativity, which
allows swapping only consecutive inputs.

First, note that X mustaux r, ¬good(r), and Lemma 73 imply X ↓. Second, the inductive1579

hypotheses state that for every r′, non-empty set X ′, and q the following facts hold,1580

(i) X
τ−→ X ′ and X ′ ≼set

AS q implies q musti r,1581

(ii) r
τ−→ r′ and X ≼set

AS q implies q musti r′,1582

(iii) for every and µ ∈ Act, X
µ=⇒ X ′ and r

µ−→ r′, and X ′ ≼set
AS q implies q musti r′.1583

To prove (a) we use X ↓ and the hypothesis X ≼set
cnv q to obtain q ↓i. A rule induction on1584

q ↓i now suffices: in the base case (a) is trivially true and in the inductive case (a) follows1585

from Lemma 68(1) and Lemma 69(1), and the inductive hypothesis.1586

The requirement (b) follows directly from the hypothesis X ≼set
AS q and part (ii) of the1587

inductive hypothesis.1588

To see why (c) holds, fix an action µ such that q
µ−→ q′ and r

µ−→ r′. Since ¬good(r)1589

Lemma 79 implies that X ⇓ µ, and so Lemma 78 proves that X
µ=⇒. In turn this implies1590

that there exists a X ′ such that X
µ=⇒ X ′, and thus Lemma 68(2) and Lemma 69(2) prove1591

that X ′ ≼set
AS q′ holds, and (iii) ensures the result, i.e. that q′ musti r′. ◀1592

E Traces in normal form and further alternative characterisations1593

As hinted at in the main body of the paper, we characterise the must-preorder using only1594

the causal order of actions on traces. In this appendix we outline the necessary constructions1595

and our reasoning. All the results are mechanised.1596

Let nf : Act⋆ −→ (MI × MO)⋆ be the function

nf(s) = (I0, M0), (I1, M2), . . . , (In, Mn)

which is defined inductively in Figure 14. The intuition is that given a trace s, the function
nf forgets the orders of actions in sequences of consecutive inputs, and in sequences of
consecutive outputs, thereby transforming them in multisets. On the other hand nf preserves
the order among these sequences, for instance

nf(cabddaefe) = ({|c, a|}, {|b, d, d|}), ({|a|}, {|e, f |}), ({|e|},∅)

Let σ range over the set (MI × MO)⋆. We say that σ is a trace in normal form, and we1597

write p
σ=⇒ q, whenever there exists s ∈ Act⋆ such that p

s=⇒ q and nf(s) = σ.1598

We lift in the obvious way the predicates ≼cnv,≼acc, and ≼fw
acc to traces in nformal forms.1599

For every LA, LB and p ∈ A, q ∈ B let1600

p ≼cnv
asyn q to mean ∀σ ∈ (MI × MO)⋆. p ⇓ σ implies q ⇓ σ,1601

p ≼acc
asyn q to mean ∀σ ∈ (MI × MO)⋆. p ⇓ σ implies Afw(p, σ) ≪ Afw(q, σ),1602



XX:46 Constructive characterisations of the must-preorder for asynchrony

nf(ε) = ε

nf(s) = nf′(s,∅,∅)

nf′(ε, I, M) = (I, M)
nf′(a.b.s, I, M) = (I, {|a|} ⊎ M), nf′(s, {|b|},∅)

nf′(a.s, I, M) = nf′(s, {|a|} ⊎ I, M)
nf′(a.s, I, M) = nf′(s, I, {|b|} ⊎ M)

Figure 14 Definition of the trace normalization function nf

p ≼asyn
ms q to mean ∀σ ∈ (MI × MO)⋆. p ⇓ σ implies that if ∀L.(p after σ, −→A) must L1603

then (q after σ, −→B) must L1604

▶ Definition 80. Let1605

p ≼NF
AS q whenever q ≼cnv

asyn p ∧ p ≼acc
asyn q,1606

p ≼NF
MS q whenever q ≼cnv

asyn p ∧ p ≼asyn
ms q. ■1607

If an LTS is of forwarders, i.e. L ∈ OW, the transition relation −→ is input-receptive1608

(Axiom (IB4), Table 2 of [92]), and in Lemma 81 we prove that it enjoys a restricted version1609

of Input-commutativity, and that so does its weak version. Sequences of input actions1610

s ∈ N ⋆ enjoy a form of diamond property in =⇒. The crucial fact pertains consecutive input1611

actions.1612

▶ Lemma 81. For every LA ∈ OW, every p, q ∈ A and every a, b ∈ N , if p
a.b=⇒ q then1613

p
b.a=⇒ · ≃ q.1614

Lemma 81, together with an induction on traces, allows us to prove that nf preserves1615

convergence and acceptance sets.1616

▶ Lemma 82. For every LA ∈ OW, every p ∈ A and every s ∈ Act⋆ and we have that1617

1. p
s=⇒ q iff p

nf(s)=⇒ · ≃ q, and if the first trace does not pass through a successful state then1618

the normal form does not either,1619

2. p ⇓ nf(s) iff p ⇓ s,1620

3. Afw(p, s) = Afw(p, nf(s)).1621

We thereby obtain two other characterisations of the contextual preorder ⊏∼must: Theo-1622

rem 17 and Lemma 82 ensure that the preorders ⊏∼must,≼NF
AS , and ≼NF

MS coincide.1623

▶ Corollary 83. For every LA, LB ∈ OF, every p ∈ A and q ∈ B, the following facts are1624

equivalent:1625

1. p ⊏∼must q,1626

2. FW(p) ≼NF
AS FW(q),1627

3. FW(p) ≼NF
MS FW(q).1628

F Asynchronous CCS1629

Here we recall the syntax and the LTS of asynchronous CCS, or ACCS for short, a version of1630

CCS where outputs have no continuation and sum is restricted to input- and τ -guards. This1631



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:47

[Input]
a.p

a−→ p
[Tau]

τ.p
τ−→ p

[Mb-Out]
a

a−→ 0 [Unf] recx.p
τ−→ p[recx.p/x]

[Sum-L]
p

α−→ p′

p + q
α−→ p′

[Sum-R]
q

α−→ q′

p + q
α−→ q′

[Par-L]
p

α−→ p′

p ∥ q
α−→ p′ ∥ q

[Par-R]
q

α−→ q′

p ∥ q
α−→ p ∥ q′

[Com]
p

µ−→ p′ q
µ−→ q′

p ∥ p′ τ−→ q ∥ q′

Figure 15 The LTS of processesThe meta-variables are a ∈ N , µ ∈ Act, α ∈ Actτ .

calculus, which is inspired by the variant of the asynchronous π-calculus considered by [4, 5]1632

for their study of asynchronous bisimulation, was first investigated by [92], and subsequently1633

resumed by other authors such as [24]. Different asynchronous variants of CCS were studied1634

in the same frame of time by [82], whose calculus included output prefixing and operators1635

from ACP, and by [39], whose calculus TACCS included asynchronous output prefixing and1636

featured two forms of choice, internal and external, in line with previous work on testing1637

semantics [78].1638

The syntax of terms is given in Equation (3). As usual, recx.p binds the variable x in p,1639

and we use standard notions of free variables, open and closed terms. Processes, ranged over1640

by p, q, r, . . . are closed terms. The operational semantics of processes is given by the LTS1641

⟨ACCS, Actτ , −→⟩ specified by the rules in Figure 15.1642

The prefix a.p represents a blocked process, which waits to perform the input a, i.e.1643

to interact with the atom a, and then becomes p; and atoms a , b , . . . represent output1644

messages. We will discuss in detail the role played by atoms in the calculus, but we first1645

overview the rest of the syntax. We include 1 to syntactically denote successful states. The1646

prefix τ.p represents a process that does one step of internal computation and then becomes p.1647

The sum g1 + g2 is a process that can behave as g1 or g2, but not both. Thus, for example1648

τ.p + τ.q models an if ...then ...else, while a.p + b.q models a match ...with. Note1649

that the sum operator is only defined on guards, namely it can only take as summands 0, 1 or1650

input-prefixed and τ -prefixed processes. While the restriction to guarded sums is a standard1651

one, widely adopted in process calculi, the restriction to input and τ guards is specific to1652

asynchronous calculi. We will come back to this point after discussing atoms and mailboxes.1653

Parallel composition p ∥ q runs p and q concurrently, allowing them also to interact with1654

each other, thanks to rule [Com]. For example1655

b.a. 0 ∥ b.c. 0 ∥ (a ∥ b ∥ c) (7)1656

represents a system in which two concurrent processes, namely b.a. 0 and b.c. 0, are both1657

ready to consume the message b from a third process, namely a ∥ b ∥ c . This last process is1658



XX:48 Constructive characterisations of the must-preorder for asynchrony

a parallel product of atoms, and it is not guarded, hence it is best viewed as an unordered1659

mailbox shared by all the processes running in parallel with it. For instance in (7) the terms1660

b.a. 0 and b.c. 0 share the mailbox a ∥ b ∥ c . Then, depending on which process consumes b,1661

the overall process will evolve to either b.c. 0 ∥ c or b.a. 0 ∥ a , which are both stuck.11
1662

Concerning the sum construct, we follow previous work on asynchronous calculi ([4, 5, 89,1663

24]) and only allow input-prefixed or τ -prefixed terms as summands. The reason for forbidding1664

atoms in sums is that the nondeterministic sum is essentially a synchronising operator: the1665

choice is solved by executing an action in one of the summands and simultaneously discarding1666

all the other summands. Then, if an atom were allowed to be a summand, this atom could1667

be discarded by performing an action in another branch of the choice. This would mean1668

that a process would have the ability to withdraw a message from the mailbox without1669

consuming it, thus contradicting the intuition that the mailbox is a shared entity which is1670

out of the control of any given process, and with which processes can only interact by feeding1671

a message into it or by consuming a message from it. In other words, this restriction on the1672

sum operator ensures that atoms indeed represent messages in a global mailbox. For further1673

details see the discussion on page 191 of [89].1674

A structural induction on the syntax ensures that processes perform only a finite number1675

of outputs:1676

▶ Lemma 84. For every p ∈ ACCS. | O(p) | ∈ N.1677

Together with Lemma 87, this means that at any point of every execution the global mailbox1678

contains a finite number of messages. Since the LTS is image-finite under any visible action,1679

a consequence of Lemma 84 is that the number of reducts of a program is finite.1680

▶ Lemma 85. For every p ∈ ACCS. | {p′ ∈ ACCS | p
τ−→ p′} | ∈ N.1681

Proof. Structural induction on p. The only non-trivial case is if p = p1 ∥ p2. In this case the1682

result is a consequence of the inductive hypothesis, of Lemma 84 and of the following fact:1683

p
τ−→ q iff1684

1. p1
τ−→ p′

1 and q = p′
1 ∥ p2,1685

2. p2
τ−→ p′

2 and q = p1 ∥ p′
2,1686

3. p1
a−→ p′

1 and p2
a−→ p′

2 and q = p′
1 ∥ p′

2,1687

4. p1
a−→ p′

1 and p2
a−→ p′

2 and q = p′
1 ∥ p′

2.1688

In the third case the number of possible output actions a is finite thanks to Lemma 84, and1689

so is the number of reducts p′
1 and p′

2, so the set of term p′
1 ∥ p′

2 is decidable. The same1690

argument works for the fourth case. ◀1691

Thanks to Lemma 84 and Lemma 85, Lemma 85 holds also for the LTS modulo structural1692

congruence, i.e. ⟨ACCS≡, −→≡, Actτ ⟩.1693

F.1 Structural equivalence and its properties1694

To manipulate the syntax of processes we use a standard structural congruence denoted ≡,1695

stating that ACCS is a commutative monoid with identity 0 with respect to both sum and1696

parallel composition.1697

11 The global shared mailbox that we treat is reminiscent but less general than the chemical “soup” of [18].
In that context the components of the soup are not just atoms, but whole parallel components: in fact,
the chemical soup allows parallel components to come close in order to react with each other, exactly as
the structural congruence of [74], which indeed was inspired by the Chemical Abstract Machine.



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:49

Class LtsEq (A L : Type) `{Lts A L} := {
eq_rel : A → A → Prop;

eq_rel_refl p : eq_rel p p;
eq_symm p q : eq_rel p q → eq_rel q p;
eq_trans p q r :
eq_rel p q → eq_rel q r → eq_rel p r;

eq_spec p q (α : Act L) :
(∃ p', (eq_rel p p') ∧ p' −→{α} q)
→
(∃ q', p −→{α} q' ∧ (eq_rel q' q))

}.

Figure 16 A typeclass for LTSs where a structural congruence exists over states.

A first fact is the following one.1698

▶ Lemma 86. For every µ ∈ N and α ∈ Actτ , if p
µ.α=⇒ q then p

α.µ=⇒ · ≡ q.1699

As sum and parallel composition are commutative monoids, we use the notation

Σ{g0, g1, . . . gn} to denote g0 + g1 + . . . + gn

Π{p0, p1, . . . pn} to denote p0 ∥ p1 ∥ . . . ∥ pn

This notation is useful to treat the global shared mailbox. In particular, if {|µ0, µ1, . . . µn|} is
a multiset of output actions, then the syntax Π{|µ0, µ1, . . . µn|} represents the shared mailbox
that contains the messages µi; for instance Π{|a, a, c|} = a ∥ a ∥ c . We use the colour − to
highlight the content of the mailbox. Intuitively a shared mailbox contains the messages
that are ready to be read, i.e. the outputs that are immediately available (i.e. not guarded
by any prefix operation). For example in

c ∥ a.(b ∥ c.d. 1) ∥ d ∥ τ.e

the mailbox is c ∥ d . The global mailbox that we denote with − is exactly the buffer B in1700

the configurations of [95], and reminiscent of the ω used by [28]. The difference is that ω1701

represents an unbounded ordered queue, while our mailbox is an unbounded unordered buffer.1702

As for the relation between output actions in the LTS and the global mailbox, an output1703

a can take place if and only if the message a appears in the mailbox:1704

▶ Lemma 87. For every p ∈ ACCS,1705

1. for every a ∈ N . p
a−→ p′ implies p ≡ p′ ∥ a ,1706

2. there exists p′ such that p ≡ p′ ∥ ΠM , and p′ performs no output action.1707

This lemma and Lemma 86 essentially hold, because, as already pointed out in Section 2,1708

the syntax enforces outputs to have no continuation.1709

The following lemma states a fundamental fact ([58, Lemma 2.13], [75, Proposition 5.2],1710

[89, Lemma 1.4.15]). Its proof is so tedious that even the references we have given only1711

sketch it. In this paper we follow the masters example, and give merely a sketch. However,1712

we have a complete machine-checked proof.1713



XX:50 Constructive characterisations of the must-preorder for asynchrony

[S-szero] p + 0 ≡ p

[S-scom] p + q ≡ q + p

[S-sass] (p + q) + r ≡ p + (q + r)

[S-pzero] p ∥ 0 ≡ p

[S-pcom] p ∥ q ≡ q ∥ p

[S-pass] (p ∥ q) ∥ r ≡ p ∥ (q ∥ r)

[S-refl] p ≡ p

[S-symm] p ≡ q if q ≡ p

[S-trans] p ≡ q if p ≡ p′ and p′ ≡ q

[S-prefix] α.p ≡ α.q if p ≡ q

[S-sum] p + q ≡ p′ + q if p ≡ p′

[S-ppar] p ∥ q ≡ p′ ∥ q if p ≡ p′

Figure 17 Rules to define structural congruence on ACCS.

▶ Lemma 88. For every p, q ∈ ACCS and α ∈ Actτ . p ≡ · α−→ q implies p
α−→ · ≡ q.1714

Proof sketch. We need to show that if there exists a process p′ such that p ≡ p′ and p′ α−→ q1715

then there exists a process q′ such that p
α−→ p′ and p′ ≡ q. The proof is by induction on1716

the derivation p ≡ p′.1717

We illustrate one case with the rule [S-trans]. The hypotheses tell us that there exists p̂1718

such that p ≡ p̂ and p̂ ≡ p′, that p′ α−→ q, and the inductive hypotheses that1719

(a) for all q′ s.t p̂
α−→ q′ implies that there exists a q̂ such that p

α−→ q̂ and q̂ ≡ q′
1720

(b) for all q′ s.t p′ α−→ q′ implies that there exists a q̂ such that p̂
α−→ q̂ and q̂ ≡ q′

1721

By combining part (b) and p′ α−→ q we obtain a q̂1 such that p̂
α−→ q̂1 and q̂1 ≡ q. Using1722

part (a) together with p̂1
α−→ q̂1 we have that there exists a q̂2 such that p

α−→ q̂2 and q̂2 ≡ q̂1.1723

We then have that p
α−→ q̂2 and it remains to show that q̂2 ≡ q. We use the transitivity1724

property of the structural congruence relation to show that q̂2 ≡ q̂1 and q̂1 ≡ q imply q̂2 ≡ q1725

as required and we are done with this case. ◀1726

Time is a finite resource. The one spent to machine check Lemma 88 would have been1727

best invested into bibliographical research. Months after having implemented the lemma1728

we realised that [3] already had an analogous result for a mechanisation of the π-calculus.1729

Lemma 88 is crucial to prove the Harmony Lemma, which states that τ -transitions coincide1730

with the standard reduction relation of ACCS. This is out of the scope of our discussion, and1731

we point the interested reader to Lemma 1.4.15 of [89], and to the list of problems presented1732

on the web-page of The Concurrent Calculi Formalisation Benchmark.12
1733

We give a corollary that is useful to prove Lemma 90.1734

▶ Corollary 89. For every p, q ∈ ACCS, α ∈ Actτ . p ≡ q implies that p
α−→ · ≡ r if and only if1735

q
α−→ · ≡ r.1736

12 https://concurrentbenchmark.github.io/

https://concurrentbenchmark.github.io/


G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:51

Proof. Since q ≡ p
α−→ p′ ≡ r Lemma 88 implies q

α−→ · ≡ p′, thus q
α−→ · ≡ r by transitivity1737

of ≡. The other implication follows from the same argument and the symmetry of ≡. ◀1738

A consequence of Lemma 87 is that the LTS ⟨ACCS≡, −→≡, Actτ ⟩ enjoys the axioms in1739

Figure 2, and thus it is OF. [92, Theorem 4.3] proves it reasoning modulo bisimilarity, while1740

we reason modulo structural equivalence.1741

▶ Lemma 90. For every p ∈ ACCS, and a ∈ N the following properties are true,1742

for every α ∈ Actτ . p
a−→ α−→ p3 implies p

α−→ a−→ · ≡ p3;1743

for every α ∈ Actτ . α ̸∈ {τ, a}. p
a−→ p′ and p

α−→ p′′ imply that p′′ a−→ q and p′ α−→ q1744

for some q;1745

p
a−→ p′ and p

a−→ p′′ imply p′ ≡ p′′;1746

p
a−→ p′ a−→ q implies p

τ−→ · ≡ q;1747

p
a−→ p′ and p

τ−→ p′′ imply that p′ τ−→ q and p′′ a−→ q; or that p′ τ−→ p′′.1748

for every p′ if there exists a p̂ such that p
a−→ p̂ and p′ a−→ p̂ then p ≡ p′

1749

Proof. To show feedback we begin via Lemma 87 which proves p ≡ p′ ∥ a . We derive1750

p′ ∥ a
τ−→ q′ and apply Corollary 89 to obtain p

τ−→ · ≡ q.1751

We prove Output-Tau. The hypothesis and Lemma 87 imply that p ≡ p′ ∥ a . Since1752

p
τ−→ p′′ it must be the case that p′ τ−→ p̂ for some p̂, and p′′ = p̂ ∥ a . Let q = p̂. We have1753

that p′′ a−→ p̂ ∥ 0 ≡ q. ◀1754

Processes that enjoy Output-Tau are called non-preemptive in [41, Definition 10].1755

Each time a process p reduces to a stable process p′, it does so by consuming at least1756

part of the mailbox, for instance a multiset of outputs N , thereby arriving in a state q whose1757

inputs cannot interact with what remains of the mailbox, i.e. M \ N , where M is the original1758

mailbox.1759

▶ Lemma 91. For every M ∈ MO, p, p′ ∈ ACCS, if p ∥ ΠM
ε=⇒ p′ τX−→ then there exist an1760

N ⊆ M and some q ∈ ACCS such that p
N=⇒ q

τX−→, O(q) ⊆ O(p′), and I(q) #(M \ N).1761

Proof. By induction on the derivation of p ∥ ΠM
ε=⇒ p′.In the base case this is due to

[wt-refl], which ensures that
p ∥ ΠM = p′,

from which we obtain p ∥ ΠM
τX−→. This ensures that I(p) # M .We pick as q and N1762

respectively p ∥ ΠM and ∅ as p ∥ ΠM
∅=⇒ p ∥ ΠM by reflexivity, and O(p ∥ ΠM ) =1763

O(p′).1764

In the inductive case the derivation ends with an application of [wt-tau] and

p ∥ ΠM
τ−→ p′

...
p′ ε=⇒ p′

p ∥ ΠM
ε=⇒ p′

We continue by case analysis on the rule used to infer the transition p ∥ ΠM
τ−→ p′.1765

As by definition ΠM
τX−→, the rule is either [Par-L], i.e. a τ -transition performed by p, or1766

[Com], i.e. an interaction between p and ΠM .1767



XX:52 Constructive characterisations of the must-preorder for asynchrony

F.1.0.1 Rule [Par-L]:1768

In this case p
τ−→ p′′ for some p′′, thus p′′ ∥ ΠM

ε=⇒ p′ and the result follows from the1769

inductive hypothesis.1770

F.1.0.2 Rule [Com]:1771

The hypothesis of the rule ensure that p
a−→ p′′ and ΠM

a−→ p′, and as the process ΠM1772

does not perform any input, it must be the case that a ∈ N , that a ∈ M , and that1773

q ≡ Π(M \ {|a|}) .13 Note that p′ ≡ p′′ ∥ Π(M \ {|a|}) .1774

The inductive hypothesis ensures that for some N ′ ⊆ M \ {|a|} and some q3 ∈ ACCS we1775

have1776

(a) p′ N ′
=⇒ q3

τX−→,1777

(b) O(q3) ⊆ O(p′), and1778

(c) I(q3) #((M \ {|a|}) \ N ′)1779

We conclude by letting q = q3, and N = {|a|} ⊎ N ′. The trace p
a−→ p′ N ′

=⇒ q3 proves that1780

p
{|a|}⊎N ′

=⇒ q3, moreover we already know that q3 is stable. The set inclusion O(q3) ⊆ O(p′)1781

follows from b, and lastly I(q) #(M \ ({|a|}⊎N ′)) is a consequence of I(q3) #((M \{|a|})\N ′)1782

and of (M \ {|a|}) \ N ′ = (I \ ({|a|} ⊎ N ′)). ◀1783

We define the predicate good,

good(1)
good(p ∥ q) if good(p) or good(q)
good(p + q) if good(p) or good(q)

This predicate is preserved by structural congruence.1784

▶ Lemma 92. For every p, q ∈ ACCS. p ≡ q and good(p) imply good(q).1785

▶ Lemma 93. For every p, q ∈ ACCS. p ≡ q and p ↓i imply q ↓i.1786

▶ Lemma 94. For every p, q ∈ ACCS and s ∈ Act⋆, we have that p ≡ q and FW(p) ⇓ s imply1787

FW(q) ⇓ s.1788

▶ Lemma 95. For every p, r, r′ ∈ ACCS. r ≡ r′ and p musti r then p musti r′.1789

▶ Lemma 96. For every p, q, r ∈ ACCS. p ≡ q and p musti r then q musti r.1790

A typical technique to reason on the LTS of concurrent processes, and so also of client-1791

server systems, is trace zipping: if p
s=⇒ p′ and q

s=⇒ q′, an induction on s ensures that1792

p ∥ q =⇒ p′ ∥ q′. Zipping together different LTS is slightly more delicate: we can zip weak1793

transitions s=⇒fw together with the co-transitions s=⇒, but possibly moving inside equivalence1794

classes of ≡ instead of performing actual transitions in −→.1795

▶ Lemma 97 (Zipping). For every p, q ∈ ACCS1796

1. for every µ ∈ Act. if p
µ−→fw p′ and q

µ−→ q′ then p ∥ q
τ−→ p′ ∥ q′ or p ∥ q ≡ p′ ∥ q′;1797

2. for every s ∈ Act⋆. if p
s=⇒fw p′ and q

s=⇒ q′ then p ∥ q
ε=⇒ · ≡ p′ ∥ q′.1798

13 In terms of LTS with mailboxes, p′ = (M \ {|a|}).



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:53

g(ε, r) = r

g(a.s, r) = a ∥ g(s, r)
g(a.s, r) = a.g(s, r) + τ. 1

c(s) = g(s, τ. 1) (14)
ta(s, L) = g(s, h(L)) where h(L) = Π{µ. 1 | µ ∈ L} (15)

Figure 18 Functions to generate clients.

Obviously, for every p, q ∈ A and output a ∈ N we have1799

p
τ−→fw q if and only if p

τ−→ q (8)1800

p
ε=⇒fw q if and only if p

ε=⇒ q (9)1801

p
a−→fw q if and only if p

a−→ q (10)1802
1803

together with the expected properties of finiteness, the first one amounting to the finiteness1804

of the global mailbox in any state:1805

| {a ∈ N | p
a−→fw} | ∈ N (11)1806

For every µ ∈ Act. | {q | p
µ−→fw q} | ∈ N (12)1807

| {q ∈ A | p
τ−→fw q} | ∈ N (13)1808

1809

F.2 Client generators and their properties1810

This subsection is devoted to the study of the semantic properties of the clients produced1811

by the function g. In general these are the properties sufficient to obtain our completeness1812

result.1813

▶ Lemma 98. For every p ∈ ACCS and s ∈ Act⋆, if p
τ−→ then g(p, s) τ−→.1814

Proof. By induction on the sequence s. In the base case s = ε. The test generated by g is p,1815

which reduces by hypothesis, and so does g(ε, p). In the inductive case s = α.s2, and we1816

proceed by case-analysis on α. If α is an output then g(α.s2, p) = α.(g(s2, p)) + τ. 1 which1817

reduces to 1 using the transition rule [Sum-R]. If µ is an input then g(α.s2, p) = α ∥ g(s2, p)1818

which reduces using the transition rule [Par-R] and the inductive hypothesis, which ensures1819

that g(s2, p) reduces. ◀1820

▶ Lemma 99. For every p and s, if ¬good(p) then for every s, ¬good(g(s, p)).1821

Proof. The argument is essentially the same of Lemma 98 ◀1822

▶ Lemma 100. For every s ∈ Act⋆, if g(s, q) µ−→ o then either1823

(a) q
µ−→ q′, s ∈ N ⋆, and o = Πs ∥ q′, or1824

(b) s = s1. µ .s2 for some s1 ∈ N ⋆ and s2 ∈ Act⋆, and o ≡ Πs1 ∥ g(s2, q), and1825

(i) µ ∈ N implies g(s, q) ≡ Πs1 ∥ (τ. 1 + µ.g(s2, q)),1826

(ii) µ ∈ N implies g(s, q) ≡ Πs1 ∥ µ ∥ (τ. 1 + µ.g(s2, q)).1827



XX:54 Constructive characterisations of the must-preorder for asynchrony

Proof. The proof is by induction on s.1828

In the case, s = ε, and hence by definition g(s, q) = q. The hypotheses g(s, q) µ−→ o1829

implies q
µ−→ o, and o ≡ 0 ∥ o ≡ Πε ∥ o.1830

In the inductive case, s = ν.s′. We have two cases, depending on whether ν is an output1831

action or an input action.1832

Suppose ν is an output. In this case g(s, q) = τ. 1 + ν.g(s′, q). The hypothesis g(s, q) µ−→ o

ensures that ν = µ, thus µ is an input action. By letting s1 = ε and s2 = s′ we obtain the
required

g(s, q) = τ. 1 + µ.g(s2, q) ≡ Πs1 ∥ (τ. 1 + µ.g(s2, q))

and o ≡ Πs1 ∥ g(s2, q).1833

Now suppose that ν is an input action. By definition1834

g(s, q) = ν ∥ g(s′, q) (16)1835

and the inductive hypothesis ensures that either1836

(1) q
µ−→ q′, s′ ∈ N ⋆, and o′ = Πs′ ∥ q′, or1837

(2) s′ = s′
1. µ .s′

2, for some s′
1 ∈ N ⋆ and s2 ∈ Act⋆, and1838

o′ ≡ Π s′
1 ∥ g(s′

2, q) (17)1839

and1840

µ ∈ N implies g(s′, q) ≡ Π s′
1 ∥ (τ. 1 + µ.g(s′

2, q)) (18)1841

µ ∈ N implies g(s′, q) ≡ Π s′
1 ∥ µ ∥ (τ. 1 + µ.g(s′

2, q)) (19)1842
1843

The action µ is either an input or an output, and we organise the proof accorrdingly.1844

Suppose µ is an input. Since ν is an output, the transition g(s, q) µ−→ o must be due to1845

a transition g(s′, q) µ−→ o′, thus Equation (16) implies1846

o = ν ∥ o′ (20)1847

In case 1, then s′ ∈ N ⋆ and ν ∈ N ensure s ∈ N ⋆ and the equality o ≡ Πs ∥ q′ follows1848

from o′ = Πs′ ∥ q′ and Equation (20).1849

In case 2, let s1 = ν.s′
1, s2 = s′

2. Since ν is an input we have s1 ∈ N ⋆. The equalities1850

s = ν.s′ and s′ = s′
1. µ .s′

2 imply that s = s1 µ s2. The required o ≡ Π s1 ∥ g(s′
2, q) follows1851

from o′ ≡ Π s′
1 ∥ g(s′

2, q) and Equation (20).1852

Now we proceed as follows,

g(s, q) = ν ∥ g(s′, q) By Equation (16)
≡ ν ∥ (Π s′

1 ∥ (τ. 1 + µ.g(s′
2, q))) By Equation (18)

≡ ( ν ∥ Π s′
1 ) ∥ (τ. 1 + µ.g(s′

2, q)) Associativity
≡ Π s1 ∥ (τ. 1 + µ.g(s′

2, q)) Because s1 = ν.s′
1

≡ Π s1 ∥ (τ. 1 + µ.q(s2, q)) Because s2 = s′
2

Now suppose that µ is an output. Then either ν = µ or ν ̸= µ.1853

In the first case we let s1 = ε and s2 = s′. Equation (16) and ν = µ imply g(s, q) = µ ∥1854

g(s2, q) from which we obtain the required g(s, q) ≡ Π s1 ∥ µ ∥ g(s2, q), and o ≡ Π s1 ∥1855

g(s2, q).1856



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:55

If ν ̸= µ then Equation (16) ensures that the transition g(s, q) µ−→ o must be due to1857

g(s′, q) µ−→ o′ and Equation (20) holds. We use the inductive hypothesis.1858

If 1 is true, we proceed as already discussed. In case 2 holds, let s1 = ν.s′
1, we have that

s1 ∈ N ⋆. Let s2 = s′
2, now we have that

g(s, q) = ν ∥ g(s′, q) By Equation (16)
≡ ν ∥ (Π s′

1 ∥ µ ∥ g(s′
2, q)) By Equation (19)

≡ ( ν ∥ Π s′
1 ) ∥ µ ∥ g(s′

2, q) Associativity
= Π s1 ∥ µ ∥ g(s′

2, q) Because s1 = ν.s′
1

= Π s1 ∥ µ ∥ g(s2, q) Because s2 = s′
2

◀1859

▶ Lemma 101. For every s ∈ Act⋆, if g(s, q) µ−→ p then either:1860

(a) there exists q′ such that q
µ−→ q′, s ∈ N ⋆ with p ≡ Πs ∥ q′, or1861

(b) s = s1. µ .s2 for some s1 ∈ N ⋆ and s2 ∈ Act⋆ with p ≡ g(s1.s2, q).1862

Proof. The proof is by induction over the sequence s.1863

In the base case s = ε and we have g(ε, q) = q. We show part (a) and choose q′ = p. We1864

have g(ε, q) = q
µ−→ p, p ≡ Πε ∥ q′ and ε ∈ N ⋆ as required.1865

In the inductive case s = ν.s′. We proceed by case-analysis on ν. If ν is an input, then1866

g(ν.s′, q) = ν ∥ g(s′, q). The hypothesis g(ν.s′, q) µ−→ p implies that either:1867

(i) ν
µ−→ 0 with p = 0 ∥ g(s′, q) and ν = µ, or1868

(ii) g(s′, q) µ−→ p̂ with p = ν ∥ p̂.1869

In the first case we show part (b). We choose s1 = ε, s2 = s′. We have s = µ.s′ = ν.s′,1870

p = 0 ∥ g(s′, q) ≡ g(ε.s′, q) and ε ∈ N ⋆ as required.1871

In the second case the inductive the hypothesis tells us that either:1872

(H-a) there exists q′ such that q
µ−→ q′, s′ ∈ N ⋆ with p̂ ≡ Πs′ ∥ q′, or1873

(H-b) s = s1. µ .s2 for some s1 ∈ N ⋆ and s2 ∈ Act⋆ with p̂ ≡ g(s1.s2, q).1874

part (a) or part (b) is true.1875

If part (a) is true then s′ ∈ N ⋆ and there exists q′′ such that q
µ−→ q′′ with p̂ ≡ Πs′ ∥ q′′.1876

We prove part (a). We choose q′ = q′′ and s = ν.s′. We have p ≡ ν ∥ p̂ ≡ ν ∥ Πs′ ∥ q′′ ≡1877

Πν.s′ ∥ q′′ and ν.s′ ∈ N ⋆ as required.1878

If part (b) is true then s′ = s′
1. µ .s′

2 for some s′
1 ∈ N ⋆ and s′

2 ∈ Act⋆ with p̂ ≡ g(s′
1.s′

2, q).1879

We prove part (a). We choose s1 = ν.s′
1 and s2 = s′

2. We have p ≡ ν ∥ p̂ ≡ ν ∥ g(s′
1.s′

2, q) ≡1880

g(ν.s′
1.s′

2, q) as required.1881

If ν is an output, then g(ν.s′, q) = ν.(g(s′, q)) + τ. 1. We prove part (b) and choose s1 = ε,1882

s2 = s′. The hypothesis g(ν.s′, q) µ−→ p implies that µ = ν and p ≡ g(s′, q) ≡ g(ε.s′, q) as1883

required. ◀1884

▶ Lemma 102. For every s ∈ Act⋆, if g(s, q) τ−→ o then either1885

(a) good(o), or1886

(b) s ∈ N ⋆, q
τ−→ q′, and o = Πs ∥ q′, or1887

(c) s ∈ N ⋆, q
ν−→ q′, and s = s1.ν.s2, and o ≡ Πs1.s2 ∥ q′ , or1888

(d) o ≡ g(s1.s2.s3, q) where s = s1.µ.s2.µ.s3 with s1.µ.s2 ∈ N ⋆.1889

Proof. By induction on the structure of s.1890

In the base case s = ε. We prove b. Trivially s ∈ N ⋆, and by definition g(ε, q) = q, the1891

hypothesis implies therefore that q
τ−→ o. The q′ we are after is o itself, for o ≡ 0 ∥ o = Πs ∥ o.1892



XX:56 Constructive characterisations of the must-preorder for asynchrony

In the inductive case s = ν.s′. We proceed by case analysis on whether ν ∈ N or ν ∈ N .1893

If ν is an output, by definition g(s, q) = τ. 1 + ν.gens′q. Since ν.g(s′, q) τX−→, the silent1894

move g(s, q) τ−→ o is due to rule [Sum-L], thus o = 1 + ν.g(s′, q), and thus good(o). We1895

have proven a.1896

Suppose now that ν is an input, by definition1897

g(s, q) = ν ∥ g(s′, q) (21)1898

The silent move g(s, q) τ−→ o must have been derived via the rule [Com], or the rule [Par-R].1899

If [Com] was employed we know that

ν
ν

−→ 0

...
g(s′, q) ν−→ o′

ν ∥ g(s′, q) τ−→ 0 ∥ o′

and thus o ≡ o′. Since ν is an input and g(s′, q) ν−→ o′, Lemma 100 ensures that either1900

(1) q
ν−→ q′, s′ ∈ N ⋆, and o′ = Πs′ ∥ q′, or1901

(2) s′ = s′
1. ν .s′

2 for some s′
1 ∈ N ⋆ and s′

2 ∈ Act⋆, and1902

o′ ≡ Πs′
1 ∥ g(s′

2, q) (22)1903

g(s, q) ≡ Πs′
1 ∥ (τ. 1 + ν.g(s′

2, q)) (23)1904
1905

In case 1 we prove part (c). Since ν is an input, s′ ∈ N ⋆ ensures that s ∈ N ⋆. By letting1906

s1 = ε and s2 = s′ we obtain s = s1.ν.s2. We have to explain why o ≡ Πs1.s2 ∥ q′. This1907

follows from the definitions of s1 and s2, from o ≡ 0 ∥ o′ and from o′ ≡ Πs′ ∥ q′.1908

In case 2 we prove part (d). Let s1 = ε, s2 = s′
1 and s3 = s′

2.

s′ = νs′
1.ν.s′

2 By inductive hypothesis
ν.s′ = ν.s′

1.ν.s′
2

s = ν.s′
1.ν.s′

2 Because s = ν.s′

s = s1.ν.s2.ν.s3 By definition

and s1.ν.s2 ∈ N ⋆ as required. Moreover o′ = Πs′
1 ∥ g(s′

2, q) = Πs2 ∥ g(s3, q) =1909

g(s2.s3, q) = g(s1.s2.s3, q) as required. This concludes the argument due to an applicaton of1910

[Com].1911

If [Par-R] was employed we know that

...
g(s′, q) τ−→ o′

ν ∥ g(s′, q) τ−→ ν ∥ o′

thus g(s′, q) τ−→ o′ and1912

o = ν ∥ o′ (24)1913

Since s′ is smaller than s, thanks to g(s′, q) τ−→ o′ we apply the inductive hypothesis to1914

obtain either1915

(i) good(o′), or1916



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:57

(ii) s′ ∈ N ⋆, q
τ−→ q′, and o′ = Πs′ ∥ q′, or1917

(iii) s′ ∈ N ⋆, q
µ−→ q′, and s′ = s′

1.µ.s′
2, or1918

(iv) o′ ≡ g(s′
1.s′

2.s′
3, q) where s′ = s′

1.µ.s′
2.µ.s′

3 with s′
1.µ.s′

2 ∈ N ⋆,1919

If i then Equation (24) implies a. If ii then s = ν.s′ and the assumption that ν is input1920

imply that s ∈ N ⋆. Equation (24) and o′ = Πs′ ∥ q′ imply that o = Πs ∥ q′. We have1921

proven b. If ii we prove b, because s′ ∈ N ⋆ ensures s ∈ N ⋆ and s′ = s′
1.µ.s′

2 let use prove1922

s = s1.ν.s2 by letting s1 = ν.s′
1 and s2 = s′

2.1923

If iv we prove d. We have o′ ≡ g(s′
1.s′

2.s′
3, q) and s′ = s′

1.λ.s′
2. λ .s′

3 with s′
1.λ.s′

2 ∈ N ⋆.1924

Let s1 = ν.s′
1, s2 = s′

2 and s3 = s′
3. Since s′

1.µ.s′
2 ∈ N ⋆, we have s1.µ.s2 ∈ N ⋆. We also

have
s′ = s′

1.µ.s′
2.µ.s′

3 By inductive hypothesis
ν.s′ = ν.s′

1.µ.s′
2.µ.s′

3
s = ν.s′

1.µ.s′
2.µ.s′

3 Because s = ν.s′

s = s1.µ.s2.µ.s3 By definition

It remains to prove that o ≡ g(s1.s2.s3, q). This is a consequence of Equation (24), of1925

o′ ≡ g(s′
1.s′

2.s′
3, q), and of the definitions of s1, s2, and s3. ◀1926

▶ Lemma 103. For every s ∈ Act⋆, and process q such that or q
τ−→ q′ implies good(q′),1927

and for every µ ∈ N .q
µ−→ q′ implies good(q′), if g(s, q) = o0

τ−→ o1
τ−→ o2

τ−→ . . . on
τX−→1928

and n > 0 then good(oi) for some i ∈ [1, n].1929

Proof. Lemma 102 implies that one of the following is true,1930

(a) good(o1), or1931

(b) s ∈ N ⋆, q
τ−→ q′, and o1 = Πs ∥ q′, or1932

(c) s ∈ N ⋆, q
µ−→ q′, and s = s1.µ.s2, and o1 ≡ Π s1.s2 ∥ q′ , or1933

(d) o1 ≡ g(s1.s2.s3, q) where s = s1.µ.s2.µ.s3 with s1.µ.s2 ∈ N .1934

If a we are done. If b or c then good(q′), and thus good(o1).1935

In the base case len(s) = 0, thus d is false. It follows that good(o1).1936

In the inductive case s = ν.s′. We have to discuss only the case in which d is true. The1937

inductive hypothesis ensures that1938

For every s′ ∈
⋃len(s)−1

i=0 , if g(s′, q) τ−→ o′
1

τ−→ o′
2

τ−→ . . . o′
m

τX−→ and m > 0 then good(o′
j)1939

for some j.1940

Note that o1
τ−→ so the reduction sequence o1 =⇒ on cannot be empty, thus m > 0. This

and len(s1s2s3) < len(s) let us apply the inductive hypothesis to state that

g(s1.s2.s3, q) τ−→ o′
1

τ−→ o′
2

τ−→ . . . o′
m

τX−→ implies o′
j for some j.

We conclude the argument via Lemma 88 and because ≡ preserves success. ◀1941

▶ Lemma 104. For every s ∈ Act⋆ and process q, if g(s, q) τX−→ then1942

1. s ∈ N ⋆,1943

2. q
τX−→,1944

3. I(q) ∩ s = ∅,1945

4. R(g(s, q)) = s ∪ R(q).1946

Proof. By induction on s. In the base case ε ∈ N ⋆, and g(ε, q) = q, thus q
τX−→. The last1947

two points follow from this equality and from ε containing no actions.1948

In the inductive case s = µ.s′. The hypothesis g(µ.s′, q) τX−→ and the definition of g imply1949

that g(µ.s′, q) = µ ∥ g(s′, q), thus µ ∈ N . The inductive hypothesis ensures that1950



XX:58 Constructive characterisations of the must-preorder for asynchrony

1. s′ ∈ N ⋆,1951

2. q
τX−→,1952

3. for every I(q) ∩ s′ = ∅,1953

4. for every R(g(s′, q)) = s′ ∪ R(q)1954

Since µ ∥ g(s′, q) τX−→ rule [Com] cannot be applied, thus q
µX−→, and so I(q) ∩ s = ∅. From1955

R(g(s′, q)) = s′ ∪ R(q) we obtain R(g(s, q)) = s ∪ R(q). ◀1956

▶ Lemma 105. For every µ ∈ Act, s and p, g(µ.s, p) µ−→ g(s, p).1957

Proof. We proceed by case-analysis on µ. If µ is an input then g(µ.s, p) = µ ∥ g(s, p). We1958

have µ ∥ g(s, p) µ−→ 0 ∥ g(s, p) ≡ g(s, p) as required. If µ is an output then g(µ.s, p) =1959

µ.g(s, p) + τ. 1. We have µ.g(s, p) + τ. 1 µ−→ g(s, p) as required. ◀1960

▶ Lemma 106. For every s ∈ Act⋆, q ∈ ACCS. c(s) τ−→fw q either1961

(a) good(q), or1962

(b) there exist b, s1, s2 and s3 with s1.b.s2 ∈ N ⋆ such that s = s1.b.s2.b.s3 and q ≡1963

c(s1.s2.s3).1964

Proof. The proof is by induction on s.1965

In the base case s = ε, c(ε) = τ. 1 and then q = 1. We prove a with good(1).1966

In the inductive case s = µ.s′. We proceed by case-analysis over µ.1967

If µ is an input then c(µ.s′) = µ ∥ c(s′). We continue by case-analysis over the reduction1968

µ ∥ c(s′) τ−→ q. It is either due to:1969

(i) a communication between µ and c(s′) such that µ
µ−→ 0 and c(s′) µ−→ q′ with q = 0 ∥ q′,1970

or1971

(ii) a reduction of c(s′) such that c(s′) τ−→ q′ with q = µ ∥ q′.1972

If i is true then Lemma 101 tells us that there exist s′
1 and s′

2 such that s′ = s′
1.µ.s′

2 and1973

q′ ≡ c(s′
1.s′

2) with s′
1 ∈ N ∗. We prove (b). We choose b = µ, s1 = ε, s2 = s′

1, s3 = s′
2. We1974

show the first requirement by s = µ.s′ = µ.s′
1.µ.s′

2 = ε.µ.s′
1.µ.s′

2 = s1.b.s2.b.s3. The second1975

requirement is q = 0 ∥ q′ ≡ c(s′
1.s′

2) = c(ε.s′
1.s′

2) = c(s1.s2.s3).1976

We now consider the case (ii). The inductive hypothesis tells us that either:1977

1. good(q′), or1978

2. there exist ι, s′
1, s′

2 and s′
3 with s′

1.ι.s′
2 ∈ N ∗ such that s′ = s′

1.ι.s′
2.ι.s′

3 and q′ ≡1979

c(s′
1.s′

2.s′
3).1980

If (1) is true then we prove a with q = µ ∥ q′ and µ ∥ q′ and good(q′). If (2) is1981

true then we prove (b). We choose b = ι, s1 = µ.s′
1, s2 = s′

2, s3 = s′
3. We show the1982

first requirement with s = µ.s′ = µ.s′
1.ι.s′

2.ι.s′
3 = s1.b.s2.b.s3. The second requirement is1983

q = µ ∥ q′ ≡ µ ∥ c(s′
1.s′

2.s′
3) = c(µ.s′

1.s′
2.s′

3) = c(s1.s2.s3).1984

If µ is an output then c(µ.s′) = µ.(cs′) + τ. 1. The hypothesis c(µ.s′) τ−→ q implies q = 1.1985

We prove (a) with good(1). ◀1986

G Further related works1987

Contextual preorders in functional languages. Morris preorder is actively studied in1988

the pure λ-calculus [30, 31, 67, 11], λ-calculus with references [81, 62], in PCF [69] as well as1989

in languages supporting shared memory concurrency [96], and mutable references [47]. The1990

more sophisticated the languages, the more intricate and larger the proofs. The need for1991

mechanisation became thus apparent, in particular to prove that complex logical relations1992

defined in the framework Iris (implemented in Coq) are sound, i.e. included in the preorder1993



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:59

[70, 52]. [7] provide a framework to study contextual equivalences in the setting of process1994

calculi. It is worth noting, though, that as argued by [26] (in Section 3 of that paper), Morris1995

equivalence coincides with may-equivalence, at least if the operational semantics at hand1996

enjoys the Church-Rosser property. In fact [27] define Morris preorder literally as a testing1997

one, via tests for convergence. The studies of the must-preorder in process calculi can thus1998

be seen as providing proof methods to adapt Morris equivalence to nondeterministic settings,1999

and using contexts that are really external observers. To sum up, one may say that Morris2000

equivalence coincides with may-equivalence when nondeterminism is confluent and all states2001

are viewed as accepting states, while it coincides with must equivalence in the presence of2002

true nondeterminism and when only successful states are viewed as accepting states.2003

In the setting of nondeterministic and possibly concurrent applicative programming2004

languages [91, 90, 19], also a contextual preorder based on may and must-termination has2005

been studied [86, 19]. Our preorder ≼cnv is essentially a generalisation of the must-termination2006

preorder of [86] to traces of visible actions.2007

Models of asynchrony. While synchronous (binary) communication requires the2008

simultaneous occurrence of a send and a receive action, asynchronous communication allows2009

a delay between a send action and the corresponding receive action. Different models of2010

asynchrony exist, depending on which medium is assumed for storing messages in transit. In2011

this paper, following the early work on the asynchronous π-calculus [64, 25, 4], we assume the2012

medium to be an unbounded unordered mailbox, shared by all processes. Thus, no process2013

needs to wait to send a message, namely the send action is non-blocking. This model of2014

communication is best captured via the output-buffered agents with feedback of [92]. The2015

early style LTS of the asynchronous π-calculus is a concrete example of this kind of LTSs.2016

A similar global unordered mailbox is used also in Chapter 5 of [95], by [33], which relies2017

explicitly on a mutable global state, and by [79], which manipulates it via two functions get2018

and set.2019

More deterministic models of asynchrony are obtained assigning a data structure to every2020

channel. For example [65, 66] use an even more deterministic model in which each ordered2021

pair of processes is assigned a dedicated channel, equipped with an ordered queue. Hence,2022

messages along such channels are received in the same order in which they were sent. This2023

model is used for asynchronous session calculi, and mimics the communication mode of the2024

TCP/IP protocol. The obvious research question here is how to adapt our results to the2025

different communication mechanisms and different classes of LTSs. For instance, both [94]2026

and [35] define LTSs for Erlang. We will study whether at least one of these LTSs is an2027

instance of output-buffered agents with feedback. If this is not the case, we will first try to2028

adapt our results to Erlang LTSs.2029

Mutable state. Prebet [81] has recently shown an encoding of the asynchronous π-2030

calculus into a λ-calculus with references, which captures Morris equivalence via a bisimulation.2031

This renders vividly the intuition that output-buffered agents manipulate a shared common2032

state. We therefore see our work also as an analysis of the must-preorder for a language in2033

which programs manipulate a global mutable store. Since the store is what contains output2034

messages, and our formal development shows that only outputs are observable, our results2035

suggest that characterisations of testing preorders for impure programming languages should2036

predicate over the content of the mutable store, i.e. the values written by programs. Another2037

account of π-calculus synchronisation via a functional programming language is provided in2038

[90], that explains how to use Haskell M-vars to implement π-calculus message passing.2039

Theories for synchronous semantics. Both [72] and [37] employed LTSs as a model2040

of contracts for web-services (i.e. WSCL), and the must-preorder as refinement for contracts.2041



XX:60 Constructive characterisations of the must-preorder for asynchrony

The idea is that a search engine asked to look for a service described by a contract p1 can2042

actually return a service that has a contract p2, provided that p1 ⊏∼must p2.2043

The must-preorder for clients proposed by [14] has partly informed the theory of monitors2044

by [1], in particular the study of preorders for monitors by [50]. Our results concern LTSs2045

that are more general than those of monitors, and thus our code could provide the basis to2046

mechanise the results of [1].2047

The first subtyping relation for binary session types was presented in [53] using a syntax-2048

oriented definition. The semantic model of that subtyping is a refinement very similar to the2049

must-preorder. The idea is to treat types as CCS terms, assign them an LTS [36, 10, 84, 17],2050

and use the resulting testing preorders as semantic models of the subtyping. In the setting of2051

coinductively defined higher-order session types, the correspondence is implicitly addressed2052

in [36]. In the setting of recursive higher-order session types, it is given by Theorem 4.102053

of [15].2054

We would like to mechanise in our framework these results, in particular the ones about2055

asynchronous semantics, and contrast and compare the various testing preorders used in the2056

literature. More in general, given the practical relevance of asynchronous communication, it2057

seems crucial not only to adapt the large body of theory outlined above to the asynchronous2058

setting but also to resort to machine supported reasoning to do it. This paper is meant to2059

be a step forward in this direction.2060

Must-preorder and asynchrony. The first investigation on the must-preorder in an2061

asynchronous setting was put forth by [39]. While their very clear examples shed light on2062

the preorder, their alternative preorder (Definition 6 in that paper) is more complicated than2063

necessary: it uses the standard LTS of ACCS, the LTS of forwarders, a somewhat ad-hoc2064

predicate I
⇝, and a condition on multisets of inputs, that we do not use. Moreover that2065

preorder is not complete because of a glitch in the treatment of divergence. The details of2066

the counter-example we found to that completeness result are in Appendix I.2067

In [57] Hennessy outlines how to adapt the approach of [39] to a typed asynchronous2068

π-calculus. While the LTS of forwarders is replaced by a Context LTS, the predicates to define2069

the alternative preorder are essentially the same used in the preceding work with Castellani.2070

Acceptance sets are given in Definition 3.19 there, and the predicate ⇝ is denoted ↘, while2071

the generalised acceptance sets of [39] are given in Definition 3.20. Owing to the glitch in2072

the completeness of [39], it is not clear that Theorem 3.28 of [57] is correct either.2073

Also the authors of [24] the must-preorder in ACCS. There is a major difference between2074

their approach and ours. When studying theories for asynchronous programs, one can either2075

(1) keep the definitions used for synchronous programs, and enhance the LTS with forwarders;2076

or2077

(2) adapt the definitions, and keep the standard LTS.2078

In the first case, the complexity is moved into the LTS, which becomes infinite-branching2079

and infinite-state. In the second case, the complexity is moved into the definitions used to2080

reason on the LTS (i.e. in the meta-language), and in particular in the definition of the2081

alternative preorder, which deviates from the standard one. The authors of [24] follow the2082

second approach. This essentially explains why they employ the standard LTS of CCS and2083

to tackle asynchrony they reason on traces via2084

(i) a preorder ⪯ (Table 2 of that paper) that defines on input actions the phenomena due to2085

asynchrony, for instance their annihilation rule (i.e. TO3) is analogous to the Feedback2086

axiom, and their postponement (i.e. TO2) is analogous to the Output-commutativity2087

axiom; and2088

(ii) a rather technical operation on traces, namely s ⊖ s′ = ({|s|}i \ {|s′|}i) \ ({|s|}o \ {|s′|}o).2089



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:61

We favour instead the first approach, for, as we already argued, it helps us achieve a modular2090

mechanisation.2091

The authors of [46] give yet another account of the must-preorder. Even though non-2092

blocking outputs can be written in their calculus, they use a left-merge operator that allows2093

writing blocking outputs. The contexts that they use to prove the completeness of their2094

alternative preorder use such blocking outputs, consequently their arguments need not tackle2095

the asymmetric treatment of input and output actions. This explains why they can use2096

smoothly a standard LTS, while [39] and [24] have to resort to more complicated structures.2097

Theorem 5.3 of the PhD thesis by [95] states an alternative characterisation of the2098

must-preorder, but it is given with no proof. The alternative preorder given in Definition 5.82099

of that thesis turns out to be a mix of the ones by [39] and [24]. In particular, the definition2100

of the alternative preorder relies on the LTS of forwarders, there denoted −→A (Point 1. in2101

Definition 5.1 defines exactly the input transitions that forward messages into the global2102

buffer). The condition that compares convergence of processes is the same as in [39], while2103

server actions are compared using must-sets, and not acceptance sets. In fact, Definition 5.72104

there is titled “acceptance sets” but it actually defines must-sets.2105

May-preorder. may testing and the may-preorder, have been widely studied in asyn-2106

chronous settings. The first characterisation for ACCS appeared in [39] and relies on comparing2107

traces and asynchronous traces of servers. Shortly after [24] presented a characterisation2108

based on operation on traces. A third characterisation appeared in [8], where the saturated2109

LTS −→s is essentially out −→fw. That characterisation supports our claim that results2110

about synchronous semantics are true also for asynchronous ones, modulo forwarding. Com-2111

positionality of trace inclusion, i.e. the alternative characterisation of the may-preorder, has2112

been partly investigated in Coq by [6] in the setting of IO-automata. The may-preorder has2113

also been studied in the setting of actor languages by [35, 94].2114

Fairness. Van Glabbeek [97] argues that by amending the semantics of parallel composi-2115

tion (i.e. the scheduler) different notions of fairness can be embedded in the must-preorder.2116

We would like to investigate which notion of fairness makes the must-preorder coincide with2117

the Fair-preorder of [85].2118

Bar-induction. A mainstay in the literature on the must-preorder is Kőnig’s lemma,2119

see for example Theorem 2.3.3 in [40], and Theorem 1 in [16]. [48], though, explains in2120

detail why Kőnig’s lemma is not constructive. Instead, we use in this paper the constructive2121

bar-induction principle, whose fundamental use is to prove that if every path in a tree T2122

is finite, then T is well-founded, as discussed by [77, 29] and [68]. Unfortunately, while it2123

is a constructive principle, mainstream proof assistants do not support it, which is why2124

we had to postulate it as a proof principle that we proved using the Excluded Middle2125

axiom. One consequence of using an axiom is that they do not have computational content.2126

Developing a type theory with a principle of bar-induction is the subject of recent and2127

ongoing works [51, 83].2128

H Co-inductive characterisation of the must-preorder2129

▶Definition 107 (Co-inductive characterisation of the must-preorder). For every finite LTS LA,2130

LB and every X ∈ P+(A), q ∈ B, the coinductive characterisation ⋖ of the must-preorder2131

is defined as the greatest relation such that whenever X ⋖ q, the following requirements hold:2132

1. X ↓ implies q ↓,2133

2. For each q′ such that q
τ−→ q′, we have that X ⋖ q′,2134



XX:62 Constructive characterisations of the must-preorder for asynchrony

3. X ↓ and q
τX−→ imply that there exist p ∈ X and p′ ∈ A such that p =⇒ p′ τX−→ and2135

O(p′) ⊆ O(q),2136

4. For any µ ∈ Act, X ′ ∈ P+(A) and q ∈ B such that X ⇓ µ, X
µ=⇒ X ′ and q

µ−→ q′, we2137

have that X ′ ⋖ q′
2138

▶ Theorem 108. For every LTS LA, LB ∈ OBA, every p ∈ A and q ∈ B, we have that2139

p ⊏∼must q if and only if FW ({p}) ⋖ FW (q) .2140

I Counter-example to existing completeness result2141

In this section we recall the definition of the alternative preorder ≪ch by [39], and show that2142

it is not complete with respect to ⊏∼must, i.e. ⊏∼must ̸⊆ ≪ch. We start with some auxiliary2143

definitions.2144

The predicate I
⇝ is defined by the following two rules:2145

p
I
⇝ p if p

τX−→ and I(p) ∩ I = ∅,2146

p
I⊎{|a|}
⇝ p′′ if p

a=⇒ p′ and p′ I
⇝ p′

2147

The generalised acceptance set of a process p after a trace s with respect to a multiset of
input actions I is defined by

GA(p, s, I) = {O(p′′) | p
s=⇒fw p′ I

⇝ p′′}

The set of input multisets of a process p after a trace s is defined by

IM (p, s) = {{|a1, . . . , an|} | ai ∈ N , p
s=⇒fw

a1=⇒ . . .
an=⇒}

The convergence predicate over traces performed by forwarders is denoted ⇓a, and defined2148

as ⇓, but over the LTS given in Example 11.2149

The preorder ≪ch is now defined as follows:2150

▶ Definition 109 (Alternative preorder ≪ch [39]). Let p ≪ch q if for every s ∈ Act⋆. p ⇓a s2151

implies2152

1. q ⇓a s,2153

2. for every R ∈ A(q, s) and every I ∈ IM (p, s) such that I ∩ R = ∅ there exists some2154

O ∈ GA(p, s, I) such that O \ I ⊆ R. ■2155

We illustrate the three auxiliary definitions using the process Pierre = b.(τ.Ω + c.d)2156

introduced in Example 8. We may infer that2157

Pierre {|b,c|}
⇝ d (25)2158

thanks to the following derivation tree

d
τX−→ and I( d ) ∩ ∅ = ∅

d
∅
⇝ d

τ.Ω + c.d
c=⇒ d

τ.Ω + c.d
{|c|}
⇝ d

Pierre b=⇒ τ.Ω + c.d

Pierre {|b,c|}
⇝ d



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:63

Let us now consider the generalised acceptance set of Pierre after the trace ε with respect2159

to the multiset {|b, c|}. We prove that2160

GA(Pierre, ε, {|b, c|}) = {{d}} (26)2161

By definition GA(Pierre, ε, {|b, c|}) = {O(p′′) | Pierre ε=⇒fw p′ {|b,c|}
⇝ p′′}. Since Pierre τX−→,2162

we have2163

GA(Pierre, ε, {|b, c|}) = {O(p′′) | Pierre {|b,c|}
⇝ p′′} (27)2164

Then, thanks to Equation (25) we get O(d) = {d} ∈ GA(Pierre, ε, {|b, c|}). We show now2165

that {d} is the only element of this acceptance set. By (27) above, it is enough to show that2166

Pierre {|b,c|}
⇝ p′′ implies p′′ = d . Observe that2167

1. I(Pierre) ∩ {|b, c|} ̸= ∅,2168

2. Pierre a=⇒ p′ implies a = b, and2169

3. There are two different states p′ such that Pierre b=⇒ p′, but the only one that can do2170

the input c is p′ = τ.Ω + c.d.2171

This implies that the only way to infer Pierre {|b,c|}
⇝ p′′ is via the derivation tree that proves2172

Equation (25) above. Thus p′′ = d.2173

▶ Counterexample 110. The alternative preorder ≪ch is not complete for ⊏∼must, namely2174

p ⊏∼must q does not imply p ≪ch q.2175

Proof. The cornestone of the proof is the process Pierre = b.(τ.Ω + c.d) discussed above. In2176

Example 8 we have shown that Pierre ⊏∼must 0. Here we show that Pierre ̸≪ch 0, because the2177

pair (Pierre, 0) does not satisfy Condition 2 of Definition (109).2178

Since Pierre τX−→, we know that Pierre ↓, and thus by definition Pierre ⇓a ε. We also2179

have by definition A(0, ε) = {∅}, and IM (Pierre, ε) = {∅, {|b|}, {|b, c|}}.2180

Let us check Condition 2 of Definition (109) for p = Pierre and q = 0. Since there is a2181

unique R ∈ A(0, ε), which is ∅, and I ∩ ∅ = ∅ for any I, we only have to check that for every2182

I ∈ IM (Pierre, ε) there exists some O ∈ GA(Pierre, ε, I) such that O \ I ⊆ ∅.2183

Let I = {|b, c|}. By Equation (26) it must be O = {d}. Since {d} \ I = {d} \ {|b, c|} =2184

{d} ̸⊆ ∅, the condition is not satisfied. Thus Pierre ̸≪ch 0. ◀2185

J Highlights of the Coq mechanisation2186

J.1 Preliminaries2187

We begin this section recalling the definition of must, which is given in Definition (2). It is2188

noteworthy that the mechanised definition, i.e. must_extensional, depends on the typeclass2189

Sts (Figure J.1.1), and not the type class Lts. This lays bare what stated in Section 1: to2190

define must a reduction semantics (i.e. a state transition system), and a predicate good2191

over clients suffice.2192

J.1.1 State Transition Systems2193

The typeclass for state transition systems (Sts) is defined as follows, where A is the set of2194

states of the Sts. It included a notion of stability which is axiomatized and decidable.2195



XX:64 Constructive characterisations of the must-preorder for asynchrony

Class Sts (A: Type) := {
sts_step: A → A → Prop;
sts_state_eqdec: EqDecision A;
sts_step_decidable: RelDecision sts_step;

sts_stable: A → Prop;
sts_stable_decidable p : Decision (sts_stable p);
sts_stable_spec1 p : ¬ sts_stable p -> { q | sts_step p q };
sts_stable_spec2 p : { q | sts_step p q } → ¬ sts_stable p;

}.

J.1.2 Maximal computations2196

A computation is maximal if it is infinite or if its last state is stable. Given a state s, the2197

type max_exec_from s contains all the maximal traces that start from s. Note the use of a2198

coinductive type to allow for infinite executions.2199

Context `{Sts A}.

CoInductive max_exec_from: A -> Type :=
| MExStop s (Hstable: sts_stable s) : max_exec_from s
| MExStep s s' (Hstep: sts_step s s') (η: max_exec_from s') :

max_exec_from s.

J.2 The must-preorder2200

J.2.1 Client satisfaction2201

The predicate good is defined as any predicate over the states of an LTS that satisfies2202

certain properties: it is preserved by structural congruence, by outputs in both directions (if2203

p
a−→ p′ then good(p) ⇔ good(p′)).2204

It is defined as a typeclass indexed over the type of states and labels, because we expect2205

a practitioner to reason on a single canonical notion of "good" at a time.2206

Class Good (A L : Type) `{Lts A L, ! LtsEq A L} := {
good : A -> Prop;
good_preserved_by_eq p q : good p -> p ≡ q -> good q;
good_preserved_by_lts_output p q a :

p −→[ActOut a] q -> good p -> good q;
good_preserved_by_lts_output_converse p q a :

p −→[ActOut a] q -> good q -> good p
}.

J.2.2 Must testing2207

Definition (2): We write p must r if every maximal computation of p V r is successful.2208



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:65

Given an integer n and a maximal execution η, the function mex_take_from n applied to2209

η returns None if η is shorter than n and Some p, where p is a finite execution corresponding2210

to the first n steps of η.2211

Then, we define the extensional version of p must e by stating that, for all maximal2212

executions η starting from (p, e), there exists an integer n such that the n-th element of η is2213

good. The nth element is obtained by taking the last element of the finite prefix of length n2214

computed using the function above.2215

Context `{good : B -> Prop}.

Fixpoint mex_take_from (n: nat) {x} (η: max_exec_from x) :
option (finexec_from x) :=

match n with
| 0 => Some $ FExSingl x
| S n => match η with

| MExStop x Hstable => None
| MExStep x x' Hstep η' =>

let p' := mex_take_from n η' in
(λ p', FExStep x x' (bool_decide_pack _ Hstep) p') <$> p'

end
end.

Definition must_extensional (p : A) (e : B) : Prop :=
forall η : max_exec_from (p, e), exists n fex,

mex_take_from n η = Some fex /\ good (fex_from_last fex).2.

J.2.3 The preorder2216

Definition 3 is mechanised in a straightforward way:2217

Definition pre_extensional (p : A) (q : R) : Prop :=
forall (r : B), must_extensional p r -> must_extensional q r.

Notation "p ⊑e q" := (pre_extensional p q).

J.3 Behavioural characterizations2218

J.3.1 Labeled Transition Systems2219

An LTS is a typeclass indexed by the type of states and the type of labels. The type of2220

labels must be equipped with decidable equality and be countable, as enforced by the Label2221

typeclass. An action a : Act L is either an internal action τ or an external action: an input2222

or an output of a label in L.2223

Class Label (L: Type) := {
label_eqdec: EqDecision L;
label_countable: Countable L;

}.
2224



XX:66 Constructive characterisations of the must-preorder for asynchrony

Inductive Act (A: Type) := ActExt (µ: ExtAct A) | τ.

Class Lts (A L : Type) `{Label L} := {
lts_step: A → Act L → A → Prop;
lts_state_eqdec: EqDecision A;

lts_step_decidable a α b : Decision (lts_step a α b);

lts_outputs : A -> gset L;
lts_outputs_spec1 p1 x p2 :

lts_step p1 (ActExt (ActOut x)) p2 -> x ∈ lts_outputs p1;
lts_outputs_spec2 p1 x :

x ∈ lts_outputs p1 -> {p2 | lts_step p1 (ActExt (ActOut x)) p2};

lts_stable: A → Act L → Prop;
lts_stable_decidable p α : Decision (lts_stable p α);
lts_stable_spec1 p α : ¬ lts_stable p α → { q | lts_step p α q };
lts_stable_spec2 p α : { q | lts_step p α q } → ¬ lts_stable p α;

}.

Notation "p −→ q" := (lts_step p τ q).
Notation "p −→{ α } q" := (lts_step p α q).
Notation "p −→[ α ] q" := (lts_step p (ActExt µ) q).2225

An LTS L is cast into an STS by taking only the τ -transitions, as formalised by the2226

following instance, which says that A can be equipped with an STS structure when, together2227

with some labels L, A is equipped with a LTS structure.2228

Program Instance sts_of_lts `{Label L} (M: Lts A L): Sts A :=
{|

sts_step p q := sts_step p τ q;
sts_stable s := lts_stable s τ;

|}.

J.3.2 Weak transitions2229

Let =⇒ ⊆ A × Act⋆ × A denote the least relation such that:2230

[wt-refl] p
ε=⇒ p′,2231

[wt-tau] p
s=⇒ q if p

τ−→ p′, and p′ s=⇒ q2232

[wt-mu] p
µ.s=⇒ q if p

µ−→ p′ and p′ s=⇒ q.2233

Definition trace L := list (ExtAct L).

Inductive wt : A -> trace L -> A -> Prop :=
| wt_nil p : wt p [] p
| wt_tau s p q t (l : p −→ q) (w : wt q s t) : wt p s t
| wt_act µ s p q t (l : p −→[µ] q) (w : wt q s t) : wt p (µ :: s) t.

2234



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:67

Lts

LtsEq

LtsOba

LtsObaFb LtsObaFw

Figure 19 Typeclasses to formalise LTSs.

Notation "p =⇒[s] q" := (wt p s q).2235

J.3.3 Product of LTS2236

The characteristic function of the transition relation of the LTS resulting from the parallel2237

composition of two LTS. States of the parallel product of L1 and L2 are pairs (a, b) ∈ L1 ×L2.2238

The first two cases correspond to unsynchronized steps from either LTS, and the third case2239

corresponds to the LTS taking steps with dual actions. The predicate act_match l1 l2 states2240

that the two actions are visible and are dual of each other.2241

Inductive parallel_step `{M1: Lts A L, M2: Lts B L} :
A * B → Act L → A * B → Prop :=

| ParLeft l a1 a2 b: a1 -[l]→ a2 → parallel_step (a1, b) l (a2, b)
| ParRight l a b1 b2: b1 -[l]→ b2 → parallel_step (a, b1) l (a, b2)
| ParSync l1 l2 a1 a2 b1 b2:

act_match l1 l2 → a1 -[l1]→ a2 → b1 -[l2]→ b2 →
parallel_step (a1, b1) τ (a2, b2)

.

J.4 Typeclasses for LTS2242

The Selinger axioms for LTSs are represented as three typeclasses in our Coq development.2243

Class LtsOba (A L : Type) `{Lts A L, !LtsEq A L} :=
MkOBA {

lts_oba_output_commutativity {p q r a α} :
p −→[ActOut a] q → q −→{α} r →
∃ t, p −→{α} t ∧ t −→≡[ActOut a] r ;

lts_oba_output_confluence {p q1 q2 a µ} :
µ ̸= ActOut a → p −→[ActOut a] q1 → p −→[µ] q2 →
∃ r, q1 −→[µ] r ∧ q2 −→≡[ActOut a] r ;

lts_oba_output_tau {p q1 q2 a} :
p −→[ActOut a] q1 → p −→ q2 →
(∃ t, q1 −→ t ∧ q2 −→≡[ActOut a] t) ∨ q1 −→≡[ActIn a] q2 ;

lts_oba_output_deter {p1 p2 p3 a} :
p1 −→[ActOut a] p2 → p1 −→[ActOut a] p3 → p2 ≡ p3 ;

lts_oba_output_deter_inv {p1 p2 q1 q2} a :2244



XX:68 Constructive characterisations of the must-preorder for asynchrony

p1 −→[ActOut a] q1 → p2 −→[ActOut a] q2 → q1 ≡ q2 → p1 ≡ p2;
(* Multiset of outputs *)
lts_oba_mo p : gmultiset L;
lts_oba_mo_spec1 p a : a ∈ lts_oba_mo p <-> a ∈ lts_outputs p;
lts_oba_mo_spec2 p a q :

p −→[ActOut a] q -> lts_oba_mo p = {[+ a +]} ⊎ lts_oba_mo q;
}.

Class LtsObaFB (A L: Type) `{LtsOba A L} :=
MkLtsObaFB {

lts_oba_fb_feedback {p1 p2 p3 a} :
p1 −→[ActOut a] p2 → p2 −→[ActIn a] p3 → p1 −→≡ p3

}.

Class LtsObaFW (A L : Type) `{LtsOba A L} :=
MkLtsObaFW {

lts_oba_fw_forward p1 a :
∃ p2, p1 −→[ActIn a] p2 ∧ p2 −→≡[ActOut a] p1;

lts_oba_fw_feedback {p1 p2 p3 a} :
p1 −→[ActOut a] p2 → p2 −→[ActIn a] p3 → p1 −→≡ p3 ∨ p1 ≡ p3;

}.2245

J.4.1 Termination2246

We write p ↓ and say that p converges if every sequence of τ -transitions performed by p2247

is finite. This is expressed extensionally by the property that all maximal computations2248

starting from p contain a stable process, meaning that it is finite.2249

Definition terminate (p : A) : Prop :=
forall η : max_exec_from p, exists n fex,

mex_take_from n η = Some fex /\ lts_stable (fex_from_last fex) τ.

J.4.2 Convergence along a trace2250

To define the behavioural characterisation of the preorder, we first define ⇓ ⊆ A × Act⋆ as2251

the least relation such that,2252

[cnv-epsilon] p ⇓ ε if p ↓,2253

[cnv-mu] p ⇓ µ.s if p ↓ and for each p′, p
µ=⇒ p′ implies p′ ⇓ s.2254

This corresponds to the following inductive predicate in Coq:2255

Inductive cnv : A -> trace L -> Prop :=
| cnv_ext_nil p : terminate p -> cnv p []
| cnv_ext_act p µ s :

terminate p -> (forall q, p =⇒{µ} q -> cnv q s) -> cnv p (µ :: s).

Notation "p ⇓ s" := (cnv p s).



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:69

J.5 Forwarders2256

We define a mailbox MO as a multiset of names.2257

Definition mb (L : Type) `{Label L} := gmultiset L.

Definition (10) and Figure 6. Lifting of a transition relation to transitions of forwarders.2258

Inductive lts_fw_step {A L : Type} `{Lts A L} :
A * mb L -> Act L -> A * mb L -> Prop :=

| lts_fw_p p q m α:
lts_step p α q -> lts_fw_step (p ▷ m) α (q ▷ m)

| lts_fw_out_mb m p a :
lts_fw_step (p ▷ {[+ a +]} ⊎ m) (ActExt $ ActOut a) (p ▷ m)

| lts_fw_inp_mb m p a :
lts_fw_step (p ▷ m) (ActExt $ ActIn a) (p ▷ {[+ a +]} ⊎ m)

| lts_fw_com m p a q :
lts_step p (ActExt $ ActIn a) q ->
lts_fw_step (p ▷ {[+ a +]} ⊎ m) τ (q ▷ m).

Definition (39) and Definition (40). For any LTS L, two states of FW(L) are equivalent,2259

denoted p ▷ M
.= q ▷ N , if strip(p) ≃ strip(q) and M ⊎ mbox(p) = N ⊎ mbox(q).2260

Inductive strip `{Lts A L} : A -> gmultiset L -> A -> Prop :=
| strip_nil p : p ⇝{∅} p
| strip_step p1 p2 p3 a m :

p1 −→[ActOut a] p2 -> p2 ⇝{m} p3 -> p1 ⇝{{[+ a +]} ⊎ m} p3

where "p ⇝{ m } q" := (strip p m q).

Definition fw_eq `{LtsOba A L} (p : A * mb L) (q : A * mb L) :=
forall (p' q' : A),

p.1 ⇝{lts_oba_mo p.1} p' ->
q.1 ⇝{lts_oba_mo q.1} q' ->
p' ≃ q' /\ lts_oba_mo p.1 ⊎ p.2 = lts_oba_mo q.1 ⊎ q.2.

Infix " .=" := fw_eq (at level 70).

Lemma 41. For every LA and every p ▷ M, q ▷ N ∈ A × MO, and every α ∈ L, if2261

p ▷ M ( .= · α−→fw) q ▷ N then p ▷ M ( α−→fw · .=) q′ ▷ N ′.2262

Lemma lts_fw_eq_spec `{LtsObaFB A L} p q t mp mq mt α :
p ▷ mp .= t ▷ mt -> (t ▷ mt) −→{α} (q ▷ mq) -> p ▷ mp −→ .={α} q ▷ mq.

Lemma 13. For every LTS L ∈ OF, FW(L) ∈ OW.2263

Program Instance LtsMBObaFW `{LtsObaFB A L} : LtsObaFW (A * mb L) L.

Lemma 14. For every LA, LB ∈ OF, p ∈ A, r ∈ B, p musti r if and only if FW(p) musti r.2264



XX:70 Constructive characterisations of the must-preorder for asynchrony

Lemma must_iff_must_fw
{@LtsObaFB A L IL LA LOA V, @LtsObaFB B L IL LB LOB W,
!FiniteLts A L, !Good B L good }

(p : A) (e : B) : must p e ↔ must (p, ∅) e.

J.6 The Acceptance Set Characterisation2265

The behavioural characterisation with acceptance sets (Definition 9) is formalised as follows.2266

Note that lts_outputs, used in the second part of the definition, is part of the definition of2267

an Lts, and produces the finite set of outputs that a process can immediately produce.2268

Definition bhv_pre_cond1 `{Lts A L, Lts B L} (p : A) (q : B) :=
forall s, p ⇓ s -> q ⇓ s.

Notation "p ≼1 q" := (bhv_pre_cond1 p q) (at level 70).

Definition bhv_pre_cond2 `{Lts A L, Lts B L} (p : A) (q : B) :=
forall s q', p ⇓ s -> q =⇒[s] q' -> q' ↛ ->

∃ p', p =⇒[s] p' /\ p' ↛ /\ lts_outputs p' ⊆ lts_outputs q'.

Notation "p ≼2 q" := (bhv_pre_cond2 p q) (at level 70).

Definition bhv_pre `{@Lts A L HL, @Lts B L HL} (p : A) (q : B) :=
p ≼1 q /\ p ≼2 q.

Notation "p ≼ q" := (bhv_pre p q) (at level 70).

Given an LTS that satisfies the right conditions, must-equivalence coincides with the2269

behavioural characterisation above on the LTS of forwarders (Theorem 17).2270

Section correctness.
Context `{LtsObaFB A L, LtsObaFB R L, LtsObaFB B L}.
Context `{!FiniteLts A L, !FiniteLts B L, !FiniteLts R L, !Good B L}.
(* The LTS can express the tests required for completeness *)
Context `{!gen_spec_conv gen_conv, !gen_spec_acc gen_acc}.

Theorem equivalence_bhv_acc_ctx (p : A) (q : R) :
p ⊑e q <-> (p, ∅) ≼ (q, ∅).

End correctness.

J.7 The Must Set characterisation2271

The behavioural characterisation with must sets (Definition 19) is formalised as follows.2272

Definition MUST `{Lts A L} (p : A) (G : gset (ExtAct L)) :=
forall p', p =⇒ p' -> exists µ p0, µ ∈ G /\ p' =⇒{µ} p0.

Definition MUST__s `{FiniteLts A L} (ps : gset A) (G : gset (ExtAct L)) :=2273



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:71

forall p, p ∈ ps -> MUST p G.

Definition AFTER `{FiniteLts A L} (p : A) (s : trace L) (hcnv : p ⇓ s) :=
wt_set p s hcnv.

Definition bhv_pre_ms_cond2
`{@FiniteLts A L HL LtsA, @FiniteLts B L HL LtsB} (p : A) (q : B) :=
forall s h1 h2 G, MUST__s (AFTER p s h1) G -> MUST__s (AFTER q s h2) G.

Notation "p ≾2 q" := (bhv_pre_ms_cond2 p q) (at level 70).

Definition bhv_pre_ms `{@FiniteLts A L HL LtsA, @FiniteLts B L HL LtsB}
(p : A) (q : B) := p ≼1 q /\ p ≾2 q.

Notation "p ≾ q" := (bhv_pre_ms p q).2274

Lemma 20. Let LA, LB ∈ OF. For every p ∈ A and q ∈ B such that FW(p) ≼cnv FW(q),2275

we have that FW(p) ≼m FW(q) if and only if FW(p) ≼fw
acc FW(q).2276

Context `{@LtsObaFB A L LL LtsA LtsEqA LtsObaA}.
Context `{@LtsObaFB B L LL LtsR LtsEqR LtsObaR}.

Lemma equivalence_bhv_acc_mst2 (p : A) (q : B) :
(p, ∅) ≼1 (q, ∅) -> (p, ∅) ≾2 (q, ∅) <-> (p, ∅) ≼2 (q, ∅).

Given an LTS that satisfies the right conditions, must-equivalence coincides with the2277

behavioural characterisation above on the LTS of forwarders (Theorem 21).2278

Section correctness.
Context `{LtsObaFB A L, LtsObaFB R L, LtsObaFB B L}.
Context `{!FiniteLts A L, !FiniteLts B L, !FiniteLts R L, !Good B L}.
(* The LTS can express the tests required for completeness. *)
Context `{!gen_spec_conv gen_conv, !gen_spec_acc gen_acc}.

Theorem equivalence_bhv_mst_ctx (p : A) (q : R) :
p ⊑e q <-> (p, ∅) ≾ (q, ∅).

End correctness.

J.8 From extensional to intensional definitions2279

Proposition 31. Given a countably branching STS ⟨S, →⟩, and a decidable predicate Q on S,2280

for all s ∈ S, extQ(s) implies intQ(s).2281

Context `{Hsts: Sts A, @CountableSts A Hsts}.
Context `{@Bar A Hsts}.

Theorem extensional_implies_intensional x:
extensional_pred x -> intensional_pred x.



XX:72 Constructive characterisations of the must-preorder for asynchrony

Corollary 24. For every p ∈ A,2282

1. p ↓ if and only if p ↓i,2283

2. for every r we have that p must r if and only if p musti r.2284

Context `{Label L}.
Context `{!Lts A L, !FiniteLts A L}.

Lemma terminate_extensional_iff_terminate (p : A) :
terminate_extensional p <-> terminate p.

Inductive must_sts `{Sts (A * B), good : B -> Prop} (p : A) (e : B) :
Prop :=

| m_sts_now : good e -> must_sts p e
| m_sts_step

(nh : ¬ good e)
(nst : ¬ sts_stable (p, e))
(l : forall p' e', sts_step (p, e) (p', e') -> must_sts p' e')

: must_sts p e
.

Lemma must_extensional_iff_must_sts
`{good : B -> Prop, good_decidable : forall (e : B), Decision (good e)}
`{Lts A L, !Lts B L, !LtsEq B L, !Good B L good,

!FiniteLts A L, !FiniteLts B L} (p : A) (e : B) :
must_extensional p e <-> must_sts p e.

Equivalence between the inductive definitions of must defined using Sts and must defined2285

using Lts.2286

Inductive must `{Lts A L, !Lts B L, !LtsEq B L, !Good B L good}
(p : A) (e : B) : Prop :=

| m_now : good e -> must p e
| m_step

(nh : ¬ good e)
(ex : ∃ t, parallel_step (p, e) τ t)
(pt : forall p', p −→ p' -> must p' e)
(et : forall e', e −→ e' -> must p e')
(com : forall p' e' µ, e −→[µ] e' -> p −→[co µ] p' -> must p' e')

: must p e
.

Lemma must_sts_iff_must `{Lts A L, !Lts B L, !LtsEq B L, !Good B L good}
(p : A) (e : B) : must_sts p e <-> must p e.

J.9 Completeness2287

Properties of the functions that generate clients (Table 1).2288



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:73

Class gen_spec {A L : Type} `{Lts A L, !LtsEq A L, !Good A L good}
(gen : list (ExtAct L) -> A) := {

gen_spec_ungood : forall s, ¬ good (gen s) ;
gen_spec_mu_lts_co µ s : gen (µ :: s) −→≃[co µ] gen s;
gen_spec_out_lts_tau_ex a s : ∃ e', gen (ActOut a :: s) −→ e';
gen_spec_out_lts_tau_good a s e : gen (ActOut a :: s) −→ e -> good e;
gen_spec_out_lts_mu_uniq {e a µ s} :
gen (ActOut a :: s) −→[µ] e -> e = gen s /\ µ = ActIn a;

}.

Class gen_spec_conv {A L : Type} `{Lts A L, ! LtsEq A L, !Good A L good}
(gen_conv : list (ExtAct L) -> A) := {

gen_conv_spec_gen_spec : gen_spec gen_conv ;
gen_spec_conv_nil_stable_mu µ : gen_conv [] ↛[µ] ;
gen_spec_conv_nil_lts_tau_ex : ∃ e', gen_conv [] −→ e';
gen_spec_conv_nil_lts_tau_good e : gen_conv [] −→ e -> good e;

}.

Class gen_spec_acc {A : Type} `{Lts A L, ! LtsEq A L, !Good A L good}
(gen_acc : gset L -> list (ExtAct L) -> A) := {

gen_acc_spec_gen_spec O : gen_spec (gen_acc O);
gen_spec_acc_nil_stable_tau O : gen_acc O [] ↛;
gen_spec_acc_nil_stable_out O a : gen_acc O [] ↛[ActOut a];
gen_spec_acc_nil_mu_inv O a e : gen_acc O [] −→[ActIn a] e -> a ∈ O;
gen_spec_acc_nil_mem_lts_inp O a :

a ∈ O -> ∃ r, gen_acc O [] −→[ActIn a] r;
gen_spec_acc_nil_lts_inp_good µ e' O :

gen_acc O [] −→[µ] e' -> good e';
}.

Proposition 43. For every LA ∈ OW, p ∈ A, and s ∈ Act⋆ we have that p musti tc(s) if2289

and only if p ⇓ s.2290

Lemma must_iff_cnv
`{@LtsObaFW A L IL LA LOA V, @LtsObaFB B L IL LB LOB W,

!Good B L good, !gen_spec_conv gen_conv} (p : A) s :
must p (gen_conv s) <-> p ⇓ s.

Proof. split; [eapply cnv_if_must | eapply must_if_cnv]; eauto. Qed.

Lemma 45. Let LA ∈ OW and LB ∈ OF. For every p1, p2 ∈ A, every r1, r2 ∈ B and2291

name a ∈ N such that p1
a−→ p2 and r1

a−→ r2, if p1 musti r2 then p2 musti r1.2292

Lemma must_output_swap_l_fw
`{@LtsObaFW A L IL LA LOA V, @LtsObaFB B L IL LB LOB W, !Good B L good}
(p1 p2 : A) (e1 e2 : B) (a : L) :
p1 −→[ActOut a] p2 -> e1 −→[ActOut a] e2 -> must p1 e2 -> must p2 e1.



XX:74 Constructive characterisations of the must-preorder for asynchrony

Lemma 46. Let LA ∈ OW. For every p ∈ A, s ∈ Act⋆, and every L, E ⊆ N , if2293

L ∈ Afw(p, s) then p ̸musti ta(s, E \ L).2294

Lemma not_must_gen_a_without_required_output
`{@LtsObaFW A L IL LA LOA V, @LtsObaFB B L IL LB LOB W,

!Good B L good, !gen_spec_acc gen_acc} (q q' : A) s O :
q =⇒[s] q' -> q' ↛ -> ¬ must q (gen_acc (O \ lts_outputs q') s).

Lemma 47. Let LA ∈ OW. For every p ∈ A, s ∈ Act⋆, and every finite set O ⊆ N , if2295

p ⇓ s then either2296

(i) p musti ta(s,
⋃

Afw(p, s) \ O), or2297

(ii) there exists Ô ∈ Afw(p, s) such that Ô ⊆ O.2298

Lemma must_gen_a_with_s
`{@LtsObaFW A L IL LA LOA V, @LtsObaFB B L IL LB LOB W,

!FiniteLts A L, !Good B L good, !gen_spec_acc gen_acc}
s (p : A) (hcnv : p ⇓ s) O :
(exists p', p =⇒[s] p' /\ lts_stable p' τ /\ lts_outputs p' ⊆ O)

\/ must p (gen_acc (oas p s hcnv \ O) s).

Lemma 48. For every LA, LB ∈ OW and servers p ∈ A, q ∈ B, if p ⊏∼must q then p ≼AS q.2299

Lemma completeness_fw
`{@LtsObaFW A L IL LA LOA V, @LtsObaFB B L IL LB LOB W,

@LtsObaFW C L IL LC LOC VC, !FiniteLts A L, !FiniteLts C L,
!FiniteLts B L, !Good B L good,
!gen_spec_conv gen_conv, !gen_spec_acc gen_acc}

(p : A) (q : C) : p ⊑ q -> p ≼ q.

Proposition 49. For every LA, LB ∈ OF and servers p ∈ A, q ∈ B, if p ⊏∼must q then2300

FW(p) ≼AS FW(q).2301

Lemma completeness
`{@LtsObaFB A L IL LA LOA V, @LtsObaFB B L IL LB LOB W,

@LtsObaFB C L IL LC LOC VC,
!FiniteLts A L, !FiniteLts B L, !FiniteLts C L, !Good C L good,
!gen_spec_conv gen_conv, !gen_spec_acc gen_acc}

(p : A) (q : B) : p ⊑ q -> p ▷ ∅ ≼ q ▷ ∅.

J.10 Soundness2302

Figure 12. Rules to define inductively the predicate mustaux.2303

Inductive mustx
`{Lts A L, !FiniteLts A L, !Lts B L, !LtsEq B L, !Good B L good}
(ps : gset A) (e : B) : Prop :=

| mx_now (hh : good e) : mustx ps e
| mx_step2304



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:75

(nh : ¬ good e)
(ex : forall (p : A), p ∈ ps -> ∃ t, parallel_step (p, e) τ t)
(pt : forall ps',

lts_tau_set_from_pset_spec1 ps ps' -> ps' ̸= ∅ ->
mustx ps' e)

(et : forall (e' : B), e −→ e' -> mustx ps e')
(com : forall (e' : B) µ (ps' : gset A),

lts_step e (ActExt µ) e' ->
wt_set_from_pset_spec1 ps [co µ] ps' -> ps' ̸= ∅ ->
mustx ps' e')

: mustx ps e.2305

Lemma 66. For every LTS LA, LB and every X ∈ P+(A), we have that X mustaux r if2306

and only if for every p ∈ X. p musti r.2307

Lemma must_set_iff_must_for_all
`{Lts A L, !FiniteLts A L, !Lts B L, !LtsEq B L, !Good B L good}
(X : gset A) (e : B) : X ̸= ∅ ->

(forall p, p ∈ X -> must p e) <-> mustx X e.

Lifting of the predicates ≼cnv and ≼acc to sets of servers.2308

Definition bhv_pre_cond1__x `{FiniteLts P L, FiniteLts Q L}
(ps : gset P) (q : Q) := forall s, (forall p, p ∈ ps -> p ⇓ s) -> q ⇓ s.

Notation "ps ≼x1 q" := (bhv_pre_cond1__x ps q) (at level 70).

Definition bhv_pre_cond2__x
`{@FiniteLts P L HL LtsP, @FiniteLts Q L HL LtsQ}
(ps : gset P) (q : Q) :=
forall s q', q =⇒[s] q' -> q' ↛ ->

(forall p, p ∈ ps -> p ⇓ s) ->
exists p, p ∈ ps /\ exists p',

p =⇒[s] p' /\ p' ↛ /\ lts_outputs p' ⊆ lts_outputs q'.

Notation "ps ≼x2 q" := (bhv_pre_cond2__x ps q) (at level 70).

Notation "ps ≼x q" := (bhv_pre_cond1__x ps q /\ bhv_pre_cond2__x ps q)
(at level 70).

Lemma 67. For every LTS LA, LB and servers p ∈ A, q ∈ B, p ≼AS q if and only if2309

{p} ≼set
AS q.2310

Lemma alt_set_singleton_iff
`{@FiniteLts P L HL LtsP, @FiniteLts Q L HL LtsQ}
(p : P) (q : Q) : p ≼ q <-> {[ p ]} ≼x q.

Lemma 68. Let LA, LB ∈ OW. For every set X ∈ P+(A), and q ∈ B, such that X ≼set
cnv q2311

then2312



XX:76 Constructive characterisations of the must-preorder for asynchrony

1. q
τ−→ q′ implies X ≼set

cnv q′,2313

2. X ↓i, X
µ=⇒ X ′ and q

µ−→ q′ imply X ′ ≼set
cnv q′.2314

Lemma 69. Let LA, LB ∈ OW. For every X, X ′ ∈ P+(A) and q ∈ B, such that X ≼set
acc q,2315

then2316

1. q
τ−→ q′ implies X ≼set

acc q′,2317

2. for every µ ∈ Act, if X ↓i, then for every q
µ−→ q′ and set X

µ=⇒ X ′ we have X ′ ≼set
acc q′.2318

Lemma bhvx_preserved_by_tau
`{@FiniteLts P L HL LtsP, @FiniteLts Q L HL LtsQ}
(ps : gset P) (q q' : Q) : q −→ q' -> ps ≼x q -> ps ≼x q'.

Lemma bhvx_preserved_by_mu
`{@FiniteLts P L HL LtsP, @FiniteLts Q L HL LtsQ}
(ps0 : gset P) (q : Q) µ ps1 q'
(htp : forall p, p ∈ ps0 -> terminate p) :
q −→[µ] q' -> wt_set_from_pset_spec ps0 [µ] ps1 ->
ps0 ≼x q -> ps1 ≼x q'.

Lemma 77 Let LA, LB ∈ OW and LC ∈ OF. For every X ∈ P+(A) and q ∈ B such that2319

X ≼set
AS q, for every r ∈ C if ¬good(r) and X mustaux r then q V r

τ−→.2320

Lemma stability_nbhvleqtwo
`{@LtsObaFW P L Lbl LtsP LtsEqP LtsObaP,

@LtsObaFW Q L Lbl LtsQ LtsEqQ LtsObaQ,
!FiniteLts P L, !FiniteLts Q L, !Lts B L, !LtsEq B L, !Good B L good}

(X : gset P) (q : Q) e :
¬ good e -> mustx X e -> X ≼x2 q -> exists t, (q, e) −→{τ} t.

Lemma 78 Let LA, LB ∈ OW. For every X ∈ P+(A) and q, q′ ∈ B, such that X ≼set
AS q,2321

then for every µ ∈ Act, if X ⇓ µ and q
µ−→ q′ then X

µ=⇒.2322

Lemma bhvx_mu_ex `{@FiniteLts P L HL LtsP, @FiniteLts Q L HL LtsQ}
(ps : gset P) (q q' : Q) µ

: ps ≼x q -> (forall p, p ∈ ps -> p ⇓ [µ]) ->
q −→[µ] q' -> exists p', wt_set_from_pset_spec1 ps [µ] {[ p' ]}.

Lemma 79 For every LA ∈ OW, LB ∈ OF, every set of processes X ∈ P+(A), every2323

r ∈ B, and every µ ∈ Act, if X mustaux r, ¬good(r) and r
µ−→ then X ⇓ µ.2324

Lemma ungood_acnv_mu `{LtsOba A L, !FiniteLts A L, !Lts B L, !LtsEq B L,
!Good B L good} ps e e' : mustx ps e ->
forall µ p, p ∈ ps -> e −→[co µ] e' -> ¬ good e -> p ⇓ [µ].

Lemma 70. Let LA, LB ∈ OW and LC ∈ OF. For every set of processes X ∈ P+(A),2325

server q ∈ B and client r ∈ C, if X mustaux r and X ≼set
AS q then q musti r.2326



G. Bernardi, I. Castellani, P. Laforgue, and L. Stefanesco XX:77

Lemma soundnessx `{
@LtsObaFW A L Lbl LtsA LtsEqA LtsObaA,
@LtsObaFW C L Lbl LtsC LtsEqC LtsObaC,
@LtsObaFB B L Lbl LtsB LtsEqB LtsObaB,
!FiniteLts A L, !FiniteLts C L, !FiniteLts B L, !Good B L good}
(ps : gset A) (e : B) : mustx ps e ->

forall (q : C), ps ≼x q -> must q e.

Proposition 71. For every LA, LB ∈ OF and servers p ∈ A, q ∈ B, if FW(p) ≼AS FW(q)2327

then p ⊏∼must q.2328

Lemma soundness
`{@LtsObaFB A L IL LA LOA V, @LtsObaFB C L IL LC LOC T,

@LtsObaFB B L IL LB LOB W,
!FiniteLts A L, !FiniteLts C L, !FiniteLts B L, !Good B L good }

(p : A) (q : C) : p ▷ ∅ ≼ q ▷ ∅ -> p ⊑ q.

▶ Corollary 111. Let LA, LB ∈ OF. For every p ∈ A and q ∈ B, we have that p ⊏∼must q if2329

and only if p ≤fail q.2330

Section failure.

Definition Failure `{FiniteLts A L} (p : A)
(s : trace L) (G : gset (ExtAct L)) :=
p ⇓ s -> exists p', p =⇒[s] p' /\

forall µ, µ ∈ G -> ¬ exists p0, p' =⇒{µ} p0.

Definition fail_pre_ms_cond2
`{@FiniteLts A L HL LtsA, @FiniteLts B L HL LtsB}
(p : A) (q : B) := forall s G, Failure q s G -> Failure p s G.

Definition fail_pre_ms
`{@FiniteLts A L HL LtsA, @FiniteLts B L HL LtsB} (p : A) (q : B) :=
p ≼1 q /\ fail_pre_ms_cond2 p q.

Context `{LL : Label L}.
Context `{LtsA : !Lts A L, !FiniteLts A L}.
Context `{LtsR : !Lts R L, !FiniteLts R L}.

Context `{@LtsObaFB A L LL LtsA LtsEqA LtsObaA}.
Context `{@LtsObaFB R L LL LtsR LtsEqR LtsObaR}.

Theorem equivalence_pre_failure_must_set (p : A) (q : R) :
(p ▷ ∅) ≾ (q ▷ ∅) <-> (p ▷ ∅) ⋖ (q ▷ ∅).

End failure.



XX:78 Constructive characterisations of the must-preorder for asynchrony

K Mapping of results from the paper to the Coq code2331

Paper Coq File Coq name

Figure 2 TransitionSystems.v Class LtsOba
Figure 3 TransitionSystems.v Class Sts, ExtAct, Act, Label, Lts
Definition (2) Equivalence.v must_extensional
Definition (3) Equivalence.v pre_extensional
Equation (3) ACCSInstance.v proc
Figure 5 TransitionSystems.v LtsEq
Definition (2) MustEx.v must_extensional
Definition (6) TransitionSystems.v max_exec_from
p

s=⇒ p′ TransitionSystems.v wt
p ↓ Equivalence.v terminate_extensional
p ⇓ s TransitionSystems.v cnv
Lemma 51 TransitionSystems.v cnv_iff_prefix_terminate
Lemma 52 TransitionSystems.v stable_tau_preserved_by_wt_output, stable_tau_input_preserved_by_wt_output
Lemma 50 Must.v ungood_preserved_by_wt_output
Equation (5) TransitionSystems.v Class LtsObaFW
Definition (9) Must.v bhv_pre
Figure 6 TransitionSystems.v lts_fw_step
Definition (10) TransitionSystems.v MbLts
Definition (39) TransitionSystems.v strip
Definition (40) TransitionSystems.v fw_eq
Lemma 41 TransitionSystems.v lts_fw_eq_spec
Lemma 13 TransitionSystems.v Instance LtsMBObaFW
Lemma 14 Lift.v must_iff_must_fw
Lemma 14 Lift.v lift_fw_ctx_pre
Theorem 17 Equivalence.v equivalence_bhv_acc_ctx
Definition (19) Must.v bhv_pre_ms
Lemma 20 Must.v equivalence_bhv_acc_mst
Theorem 21 Must.v equivalence_bhv_mst_ctx
Lemma 5 ACCSInstance.v ACCS_ltsObaFB
Corollary 18 ACCSInstance.v bhv_iff_ctx_ACCS
Proposition 31 Bar.v extensional_implies_intensional
p ↓i TransitionSystems.v terminate
p musti q Must.v must_sts
Corollary 24 Equivalence.v terminate_extensional_iff_terminate
Table 1 Completeness.v Class gen_spec, gen_spec_conv, gen_spec_acc
Proposition 43 Completeness.v must_iff_cnv
Lemma 45 Lift.v must_output_swap_l_fw
Lemma 46 Completeness.v not_must_gen_a_without_required_output
Lemma 47 Completeness.v must_gen_a_with_s
Lemma 48 Completeness.v completeness_fw
Proposition 49 Completeness.v completeness
Lemma 66 Soundness.v must_set_iff_must_for_all
Figure 12 Soundness.v mustx
X ≼set

cnv q and X ≼set
acc q Soundness.v bhv_pre_cond1x and bhv_pre_cond2x

Lemma 67 Soundness.v must_set_iff_must
Lemma 68, Lemma 69 Soundness.v bhvx_preserved_by_tau, bhvx_preserved_by_mu
Lemma 77 Soundness.v stability_nbhvleqtwo
Lemma 78 Soundness.v bhvx_mu_ex
Lemma 70 Soundness.v soundnessx
Proposition 71 Soundndess.v soundness

2332

2333


	1 Introduction
	2 Preliminaries
	3 Behavioural characterisations
	3.1 The acceptance-set approach
	3.2 The `3́9`42`"̇613A``45`47`"603Amust-set approach

	4 Bar-induction: from extensional to intensional definitions
	5 Conclusion
	A Bar-Induction
	A.1 A visual introduction
	A.2 Inductive definitions of predicates

	B Forwarders
	C Completeness
	C.1 Testing convergence
	C.2 Testing acceptance sets

	D Soundness
	D.1 Technical results to prove soundness

	E Traces in normal form and further alternative characterisations
	F Asynchronous CCS
	F.1 Structural equivalence and its properties
	F.2 Client generators and their properties

	G Further related works
	H Co-inductive characterisation of the `3́9`42`"̇613A``45`47`"603Amust-preorder
	I Counter-example to existing completeness result
	J Highlights of the Coq mechanisation
	J.1 Preliminaries
	J.1.1 State Transition Systems
	J.1.2 Maximal computations

	J.2 The `3́9`42`"̇613A``45`47`"603Amust-preorder
	J.2.1 Client satisfaction
	J.2.2 Must testing
	J.2.3 The preorder

	J.3 Behavioural characterizations
	J.3.1 Labeled Transition Systems
	J.3.2 Weak transitions
	J.3.3 Product of LTS

	J.4 Typeclasses for LTS
	J.4.1 Termination
	J.4.2 Convergence along a trace

	J.5 Forwarders
	J.6 The Acceptance Set Characterisation
	J.7 The Must Set characterisation
	J.8 From extensional to intensional definitions
	J.9 Completeness
	J.10 Soundness

	K Mapping of results from the paper to the Coq code

