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The Chandezon, or C-method, is an efficient and versatile numerical method for modeling diffraction
problems involving smooth surface relief gratings. For some grating profiles, the C-method is limited
when the height-to-period ratio exceeds a factor of 3. This is due to the formation of ill-conditioned
matrices for inversion. Here, the Stochastic C-method (SCM) is introduced as a solution which leverages
stochastic differential equations to overcome these numerical difficulties. The SCM is developed by
altering the physical model of the grating profile function to include an additive Brownian noise compo-
nent. The inclusion of noise, dramatically expands the applicability of the C-method and enriches the
physical model. Numerical experiments show that the SCM achieves a precision on the order of 10−5

for diffracted/transmitted amplitudes on sinusoidal profiles with height-to-period ratios as high as 72.
These results are in agreement with those obtained using multi-precision and the Rigorous Coupled Wave
Analysis (RCWA).

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION1

Introduced in 1980, the C method, or Chandezon method [1][2]2

[3], is a rigorous model for the diffraction of light by a grating.3

This method solves the propagation equation written in a co-4

ordinate system (u, v)such that the grating surface is a surface5

of constant v. In the (u, v) system, the propagation equation6

involves the non-linear profile function of the grating through7

its derivative. Taking into account the periodicity, this propa-8

gation equation is associated with a matrix operator called the9

Maxwellian, which is the electromagnetic wave equivalent of10

the Hamiltonian for matter waves. The incident and diffracted11

fields are expressed as a linear combination of Maxwellian eigen-12

vectors. This method yields excellent results provided the height13

of the grating profile function is not large relative to its period.14

However, for a sinusoidal grating with a period of a few wave-15

lengths, increasing the height encounters a numerical modeling16

limitation akin to a numerical wall that cannot be surpassed.17

This wall manifests as poor matrix conditioning when writing18

boundary conditions at the surface of the grating, rendering19

inversions impossible. Various methods have been developed20

to overcome these challenges, such as analytical regularization21

[4], or increasing the calculation precision, using a parametric22

coordinate system[5], or working with multi-precision [6] [7] [8].23

Despite making the calculations more complex, none of these24

methods are satisfactory.25

It is commonly believed that the wall is caused by accumu-26

lated rounding errors, but this is only partially true. The numeri-27

cal difficulties are not solely related to the calculation method but28

rather to the phenomenon itself; it is a consequence of the non-29

linearity of the propagation equation concerning the geometry30

of the diffracting objects. A slight perturbation in the grating’s31

shape leads to a significant variation in the solution, which is32

characteristic of non-linearity. A mathematical technique known33

as the resolution of stochastic differential equations (SDE) can be34

used to address this type of problem. With the SDE method, a35

deterministic solution is not sought, but rather a probabilistic or36

stochastic solution. It is straightforward to acquire a stochastic37

solution with the classical C method or CCM by introducing38

Brownian numerical noise onto the grating profile. This change39

yields the stochastic C method or SCM. With the SCM, a decisive40

result occurs: for sinusoidal gratings, the numerical problems41

are resolved. Whereas with the CCM, difficulties arise for sinu-42

soidal gratings with a height-to-period ratio of h/d ⪆ 3. With43

the SCM it is possible for the h/d ratio to exceed 50. What is44

most remarkable is that to achieve this improvement, it is unnec-45

essary to overhaul the CCM calculation code. Simply adding a46

line or two of code that introduces noise generation suffices.47

There are additional practical advantages to using the SCM48

method over the CCM. Summary statistics can be obtained by49

computing the confidence interval of a preset number of com-50
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puted results. Those summary statistics afford precision values51

which indicate how many significant figures should be consid-52

ered for these results, as well as confidence intervals for obtain-53

ing results.54

Obtaining results in a probabilistic form for diffraction prob-55

lems can be seen as a natural approach. When calculating a56

grating’s efficiency, what is calculated is not deterministic be-57

cause it is the probability for an incident photon to emerge in a58

given diffraction order. What may seem to be deterministic in59

the classical formulation of diffraction is, in fact, probabilistic.60

This is the source of the computational difficulties since to in-61

crease the precision of the results in determining probabilities,62

the volume of calculations must increase much more rapidly.63

Section 2 introduces the Maxwellian calculated from the prop-64

agation equation in the translation coordinate system (u, v). Sec-65

tion 3 recalls how the Maxwellian eigenvectors are used to deter-66

mine the waves diffracted by a grating. In Section 4, in the case67

of two very similar-shaped gratings, the effect of non-linearity68

is highlighted. In Section 5, the stochastic C method SCM is im-69

plemented in a few examples. Section 6 analyzes the precision70

achievable in a grating diffraction problem.71

2. THE 2D PROPAGATION EQUATION72

This study considers harmonic electromagnetic waves of fre-73

quency ν with angular frequency ω, and with a vacuum wave-74

length of λ = c/ν, where c is the speed of light in vacuum, and75

k = 2π/λ is the wave vector. The temporal dependence of the76

fields is given by ∂/∂t = iω. The propagation occurs in homo-77

geneous and isotropic media with a refractive index of n. The78

study is restricted to 2D problems for which ∂/∂z = 0.79

A. Propagation equation in Cartesian Coordinates80

Maxwell’s equation written in Cartesian coordinates shows that81

any component of the electromagnetic field, denoted by F, obeys82

the same scalar propagation equation, which is the Helmholtz83

equation:84

∂2F
∂x2 +

∂2F
∂y2 + n2k2F = 0. (1)

There are two types of independent solutions denoted as TE85

polarization and TM polarization. Only three Cartesian compo-86

nents of the field are non-zero for either polarization state: Ez,87

Hx, Hy for TE polarization and Hz, Ex, Ey for TM polarization.88

Since the propagation equation is identical for both polariza-89

tions in a homogeneous medium, we denote by the same letter90

F the Ez and the Hz field components for the TE and TM po-91

larizations, respectively. It is observed that during propagation,92

the electromagnetic wave behaves like a scalar wave. It is only93

when writing the boundary conditions at the grating profile’s94

surface that the electromagnetic field’s vectorial behavior be-95

comes apparent. The eigensolutions of the Helmholtz equation96

are propagating or evanescent plane waves, which are expressed97

as:98

F(x, y) = A(α)e−ikαxe−ikβydα (2)

, where α is the propagation constant along Ox and β is the99

propagation constant along(Oy). α and β satisfy the dispersion100

equation: α2 + β2 = n2. If the constant α is known, the determi-101

nation for β is as follows:102 {
β± = ±

√
n2 − α2 if α2 ≤ n2

β± = ∓i
√

α2 − n2 if α2 > n2 . (3)

For each polarization, there are two types of solutions:103

• F+, composed of plane waves propagating in the direction104

of increasing y and evanescent waves attenuating in the105

direction of increasing y.106

• F−, composed of plane waves propagating in the direction107

of decreasing y and evanescent waves attenuating in the108

direction of decreasing y.109

B. Propagation equation in translation coordinates110

New coordinates111

The 2D translation coordinate system (u, v) is defined from the112

2D Cartesian system (x, y) by the following transformation:113 {
u = x
v = y − ha(x)

and

{
x = u
y = v + ha(x)

. (4)

The z coordinate does not come into play in 2D problems. The114

coordinate surfaces v = const are invariant cylindrical surfaces115

along Oz with a section y = ha(x) + const, where a(x) is the116

normalized profile function such that 0 ≤ a(x) ≤ 1 and h is117

the amplitude. We define ȧ(x) = ha′(x) where a′(x) = da/dx.118

After the change of variables in (1), the propagation equation119

satisfied by F(u, v) in the (u, v) system is written as:120

∂2F
∂u2 + n2k2F − ∂

∂u
ȧ

∂F
∂v

+
∂

∂v

((
1 + ȧ2

) ∂F
∂v

− ȧ
∂F
∂u

)
= 0. (5)

This second-order propagation equation in v is nonlinear121

concerning ȧ. To solve it, we need to transform it into a system122

of two first-order equations in v. To do this, we introduce the123

following function G(u, v):124

ikG(u, v) = (1 + ȧ2)
∂F
∂v

− ȧ
∂F
∂u

. (6)

By setting c = 1/(1 + ȧ2), this yields a first-order equation in v:125

∂F
∂v

= ȧc
∂F
∂u

+ ikcG. (7)

By introducing the expression of G (Eq. 6) into the propagation126

equation (Eq. 5), we obtain the second first-order equation,127

allowing us to write the following system of two first-order128

equations in v:129

∂F
∂v

= ȧc
∂F
∂u

+ ikcG

∂G
∂v

=
i
k

(
n2k2 +

∂

∂u
c

∂

∂u

)
F +

∂

∂u
ȧcG

. (8)

Resolution of the propagation equation130

We seek solutions of the system (8) such that: ∂v = −ikr.131

By setting ∂/∂u = ∂u, we obtain the following eigenvalue132

system:133

r

 F

G

 =

 ik−1 ȧc∂u −c

−n2 − k2∂uc∂u ik−1∂u ȧc

 F

G

 . (9)

3. MAXWELLIAN134

This can be written as:135

rΨ = MΨ, (10)

where Ψ is an electromagnetic wave function, symbolically, this136

equation is of the same type as the Schrödinger equation in137

quantum mechanics, where the operator is the Hamiltonian;138

that’s why we call M the Maxwellian. The general solution to139

this equation is a linear combination of the eigensolutions ψn of140

M.141
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A. The Maxwellian in periodic coordinates142

We seek an expression of F in the Hilbert space of pseudo-143

periodic functions of v with period d, meaning periodic up to a144

phase factor. In this space, the continuous functional operators145

∂u and ȧ are represented by matrices.146

Propagation matrix The periodicity with respect to v leads to147

associating the derivative with respect to u with a diagonal148

matrix ∂u ⇒ −ikα, where:149

αm,m = α0 + m
λ

d
, and αm,n = 0 if m ̸= n. (11)

Normalized matrices associated with ȧ and c a(x) can be ex-150

panded as a Fourier series :151

a(x) =
+∞

∑
m=−∞

ame−i2πmx/d, (12)

where:152

am =
1
d

∫ d

x=0
a(x)e+i2πmx/ddx. (13)

The Fourier coefficients am of a(x) are dimensionless. If a(x) is153

differentiable, its derivative a′(x) can be written as:154

a′(x) = −i
2π

d

+∞

∑
m=−∞

mame−i2πmx/d. (14)

The function ha′(x), is associated with the dimensionless155

Toeplitz matrix ȧ whose coefficients are:156

ȧm,n = −i
2πh

d
(m − n)am−n. (15)

The function c(x) is associated with the matrix c such that:157

c = (I + ȧȧ)−1. (16)

B. The Maxwellian matrix158

In the (u, v) system, in matrix form, the Maxwellian is written159

as:160

r

 F

G

 =

 ȧcα -c

−n2 +α cα αȧc

 F

G

 . (17)

The set of functions F and G form an electromagnetic wave161

function Ψ with two components. To express vectors, we adopt162

Dirac’s "bracket" notation, where "bras" are row vectors denoted163

as < f | and "kets" are column vectors denoted as | f >. The164

Hermitian product is a "bracket" < f |g >. With these notations,165

the electromagnetic wave function is written as:166

|Ψ >=

 |F >

|G >

 . (18)

The eigenvalue equation is written as:167

r|Ψ >= M|Ψ > . (19)

The Maxwellian eigenvalues are denoted as rn and the eigenvec-168

tors as |ψn >. Any solution |Ψ > of the wave equation can be169

written as a linear combination of the |ψn >, i.e.:170

|Ψ >=
+∞

∑
n=−∞

An|ψn > . (20)

The coefficients An are either the given data or the unknowns of171

the diffraction problem.172

Maxwellian eigenvalues173

To be able to search numerically eigenvectors of the Maxwellian,174

we need to limit the size of the matrices, α and ȧ, to 2M + 1 rows175

and columns, retaining only M components in the Fourier space.176

We call this the M approximation. To numerically compute the177

Fourier coefficients am of a(x), we need to use 2M samples of the178

profile yi = a(xi). In the M approximation, the Maxwellian is a179

non-Hermitian square matrix of dimension 2(2M + 1), which180

has 2(2M + 1) eigenvalues rn. For a lossless medium, the real181

eigenvalues represent the far field whereas the imaginary or182

complex eigenvalues represent the near field. Depending on the183

nature of the eigenvalues, we can categorize the eigenvectors184

into four sets of dimensions 2M + 1. The set of eigenvectors ψn185

forms a 2(2M + 1) matrix, which is divided into 4 sub-matrices186

F±, G± according to Table 1. With these notations, on the surface

Re(r) Im(r) F G Propagation

> 0 0 F+ G+ v ↗

< 0 0 F− G− v ↘

∼ < 0 F+ G+ v ↗

∼ > 0 F− G− v ↘

Table 1. Distribution of the eigensolutions of the Maxwellian

187

v = 0, the electromagnetic wave function is written as:188

|Ψ >=

 |F >

|G >

 =

 F+ F−

G+ G−

 |A+ >

|A− >

 . (21)

Kets |A+ > and |A− > represent the amplitudes of the eigen-189

solutions.190

Wave function continuity191

At the surface Σ of the grating, the continuity of |Ψ > must be192

enforced for polarization TE and of σ|Ψ > for polarization TM,193

where σ is the following matrix:194

σ =

 I 0

0 I/n2

 . (22)

Energy considerations195

The Hermitian product < Fn|Gn > where F is the complex con-196

jugate of F, represents the energy diffracted by the eigensolution197

|ψn > through one period of Σ. If the eigenvectors |ψn > are198

normalized with the Hermitian product < Fn|Gn >, then the199

probability Pn that an incident photon is diffracted in direction200

n is given by Pn = An.An.201

4. APPLICATION TO DIFFRACTION BY GRATINGS202

A. Diffraction by gratings203

A surface relief grating (Fig. 1) consists of a cylindrical surface Σ204

separating two half-spaces Ω1 and Ω2 with different refractive205

indices. In the following, the medium Ω1 is vacuum and Ω2206

is a medium with optical index n. Surface Σ is an invariant207

cylindrical surface along Oz with cross-section y = ha(x). In208

the translation system, the grating surface is the surface with209

coordinate v = 0.210
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The grating is illuminated by a monochromatic plane wave211

with wavelength λ, incident angle θ0, and wave vector
−→
k , where212

k = ω/c and c is the speed of light in vacuum.213

The normalized component F of the incident field along Oz214

is given by:215

F = e−ik sin θ0xe−ik cos θ0y. (23)

Fig. 1. Plane wave diffraction by a grating

Due to the periodicity of a(x), in Cartesian Coordinates, the216

diffracted electromagnetic field can be expressed as a sum of217

plane waves and evanescent waves called the Rayleigh expan-218

sion. In Ω1, F is written as:219

F =
+∞

∑
n=−∞

Ane−ikαn xe−ikβny, (24)

with:220

αn = sin θ0 + n
λ

d
and β2

n = 1 − α2
n. (25)

Let Ud be the set of values of n such that |αn| < 1:221

Ud =

{
n ∈ Z,

∣∣∣∣sin θ0 + n
λ

d

∣∣∣∣ < 1
}

. (26)

If n ∈ Ud, then αn = sin θn, i.e., sin θn = sin θ0 + n λ
d , which222

gives βn =
√

1 − sin2 θn = cos θn. The corresponding term in223

the Rayleigh expansion (24) is a plane wave with diffraction224

angle θn. If n /∈ Ud, then βn = −i
√

α2
n − 1, corresponding to an225

evanescent wave attenuating in the y direction.226

B. Resolution in the translation coordinates system227

Solving the diffraction problem by the grating Σ consists of228

writing the continuity conditions of the wave function across Σ229

and determining the coefficients An of the Rayleigh expansion230

based on those of the incident wave.231

The perfectly conducting grating232

In this case, the resolution of the Maxwellian is only done in Ω1.233

For the TE polarization, F is zero on Σ, F−1 represents the matrix234

of incident waves with amplitudes |A−
1 >, and F+1 represents235

those of diffracted waves with amplitudes |A+
1 >. For the TM236

polarization, it is enough to replace F by G. The following linear237

system allows us to determine the amplitudes |A+ > of the238

diffracted field based on the amplitudes |A−
1 > of the incident239

field, with:240

S =
[
F+

]−1 F− for TE, and S =
[
G+]−1 G− for TM (27)

Remark If we interchange F+1 with F−1 and G+
1 with G−

1 we241

obtain the results for the opposite surface Σ− with profile −a(x).242

Other gratings243

Other gratings include pure dielectric gratings and gratings for244

which the optical index in Ω2 is complex. In that case, one must245

also solve the Maxwellian in Ω2 to determine the matrices of the246

eigenvectors F+2 , F−2 , G+
2 and G+

2 .247

B.1. Polarization TE248

At the surface Σ the wave function is known:249  F−1 F+1
G−

1 G+
1

 |A−
1 >

|A+
1 >

 =

 F+2 F−2
G+

2 G−
2

 |A+
2 >

|A−
2 >

 ,

(28)
where the ket |A±

p >, p = 1, 2 are the amplitude of the incident250

and diffracted waves at Σ. According to table 1, for the physical251

problem at hand, we have the following correspondence:252

• |A−
1 > amplitude of the incident wave in Ω1,253

• |A+
1 > unknown amplitudes of the reflected waves in Ω1,254

• |A−
2 > unknown amplitudes of the transmitted waves in255

Ω2,256

• |A+
2 > amplitudes of the incident waves in Ω2 which are257

assumed to be zero.258

We are searching for the diffracted amplitudes |A+
1 > and trans-259

mitted amplitudes |A−
2 > as functions of the incident ampli-260

tudes |A−
1 > and |A+

2 >, which leads to the following scattering261

matrix S:262  |A+
1 >

|A−
2 >

 =

 S1,1 S1,2

S2,1 S2,2

 |A−
1 >

|A+
2 >

 , (29)

with:263

S =

 F+1 −F−2
G+

1 −G−
2

−1  −F−1 F+2
−G−

1 G+
2

 . (30)

In practice, there is no incident wave in Ω2, so |A+
2 >= 0, which264

gives:265

|A+
1 >= S1,1|A−

1 > and |A−
2 >= S2,1|A−

1 > . (31)

B.2. TM Polarization266

The calculation is practically identical to that of TE polarization,267

the only difference being that one must connect G/n2 instead of268

G. The diffraction matrix S is expressed as:269

S =

 F+1 −F−2
G+

1 −G−
2 /n2

−1  −F−1 F+2
−G−

1 G+
2 /n2

 . (32)

As for TE polarization, if |A+
2 >= 0, we obtain:270

|A+
1 >= S1,1|A−

1 > and |A−
2 >= S2,1|A−

1 > . (33)
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Fig. 2. Comparison of the shape of profiles P1 and P2.

5. SENSITIVITY OF DIFFRACTION TO THE GEOMETRY271

OF THE PROFILE272

Mathematically, if the quantum aspect of the field is disregarded,273

the C-method is a rigorous deterministic method. Theoretically,274

with sufficient computational resources, it is possible to calculate275

efficiencies with the C-method as precisely as desired, based on276

the geometry of the grating. Computational implementations of277

the original C-method have an envelope of parameters where278

solutions can be successfully obtained. Ill-conditioned matrices279

are most commonly encountered when the height of a grating280

profile is large relative to the grating period. This is especially281

evident in the case of sinusoidal gratings. The poor conditioning282

could be interpreted as a defect of the C method; in reality, the283

underlying reason is quite different.284

In general, the poor conditioning of a linear system results285

from the sensitivity of the solution to the problem’s data. This286

sensitivity is encountered in nonlinear differential systems, such287

as diffraction by a grating. In this case, the grating geometry288

intervenes non-linearly in the Maxwellian through the deriva-289

tive a′(x) of the profile. It is this non-linearity that causes the290

computational difficulties.291

Demonstrating sensitivity to geometry292

The high sensitivity of diffraction to geometry can be highlighted293

by comparing the results obtained with the C method for two294

gratings with very similar shapes: P1 with profile a1(x) =295

1 −
(
sin6 πx/2

)4
and P2 with profile a2(x) = 1/

(
1 + (2x)8).296

Grating P1 is the one considered by Xu and Li in [8]. Figure2297

shows how close to each other these two profiles are.298

The non-linear behavior of the geometry is illustrated in Fig-299

ures 3 and 4. Figure 3 shows the zeroth order efficiencies for300

perfectly conducting gratings P1 and P2 when height h is varied301

whereas Figure 4 shows the distribution of the eigenvalues rn in302

the complex plane. The chosen operating point is: d = 1.25µm,303

λ = 0.75µm, θ0 = 20◦. It is observed that although the two304

profiles are geometrically very similar, the results are dissimilar.305

This is a consequence of the nonlinear behavior of geometry in306

the Maxwellian which is the main cause of poor conditioning.307

6. THE STOCHASTIC C METHOD308

A. Stochastic aspect of diffraction309

In classical numerical modeling, it is assumed that the param-310

eters of the grating are known with absolute certainty. These311

parameters include the Fourier spectrum of the derivative of312

the profile a′(x), the period d, and the refractive index n of the313

Fig. 3. zeroth order reflected efficiencies of both polarization
states for perfectly conducting gratings with profiles P1 or P2
when height is varied

Fig. 4. Distribution of the computed eigenvalues for profiles
P1 and P2
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medium. In a linear problem, the assumption that the parame-314

ters are perfectly known poses no problem, which is not the case315

in a non-linear problem like diffraction. Stochastic resolution316

involves assuming that the data are affected by an irreducible317

uncertainty, which is numerically modeled as Brownian noise318

added to their theoretical values. The direct consequence is that319

modeling, which was perfectly deterministic, becomes proba-320

bilistic.321

To overcome this numerical barrier, we have sought a solu-322

tion to the difficulties attributable to the classic C-method by323

using stochastic differential equations [9], [10], [11]. Instead324

of seeking a rigorous, possibly inaccessible solution, a proba-325

bilistic solution that inherently contains uncertainty due to the326

stochastic nature of the equations is obtained.327

B. Uncertainty on the shape of the grating328

Once it is acknowledged that the profile is not deterministic but329

rather stochastic, instead of performing calculations for a profile330

a(x), calculations are conducted for a random profile close to331

a(x), such as a(x) + δa(x), where δa(x) is a random function.332

From a numerical perspective, this involves randomly perturb-333

ing the samples (xi, yi) describing a(x). This perturbation is334

created using a random number generator with a normal dis-335

tribution, which, after normalization, provides Brownian noise336

δi such that −0.5 < δi < 0.5. In the numerical model, the set337

of samples (xi, yi = a(xi)) is replaced by a new stochastic set338

(xi, yi + τδi), where τ is a perturbation parameter of the order339

10−6 of the unit normalized profile. From an experimental stand-340

point in optics, the perturbation is typically so small that the341

perturbed profile appears identical to the unperturbed one.342

Once this very small change is made in the numerical model-343

ing, the numerical barrier disappears, allowing for the treatment344

of very deep gratings. In the case of sinusoidal gratings, heights345

of up to 100λ can sometimes be reached, albeit with a slight loss346

of precision.347

The results obtained with the stochastic C-method approach348

are nondeterministic in that each program execution yields349

slightly different results. This presents the advantage, when350

using Monte Carlo methods, of determining a confidence inter-351

val for the efficiencies, avoiding the need to provide results with352

many non-significant decimal places.353

C. Uncertainty on the period of the grating354

The Maxwellian involves the nonlinear dependence of the355

diffraction directions matrix α on the grating period d. This356

indicates that, similar to a(x), α can be affected by numerical357

noise. Numerical experiments show that, in the case of a sinu-358

soidal grating, a very small noise on the order of 10−8 is also359

sufficient to eliminate poor conditioning.360

D. Uncertainty on the optical index361

In the modeling, the propagation medium is assumed to be362

perfectly homogeneous, with a known refractive index n that is363

constant throughout space. Similar to the approach with a(x),364

we can introduce Brownian noise to the refractive index. The365

index is then represented by a diagonal matrix, with each term366

chosen randomly close to n. Like with a(x) and α, this method367

also helps remove the numerical barrier.368

E. Revisiting the C-method369

The introduction of numerical noise in the data leads to the370

abandonment of classical rigorous solutions in favor of stochastic371

solutions. However, it allows the elimination of the numerical372

barrier and greatly extends the application domain of the C373

method. This upgrade only involves very minor modifications374

to a few lines of the code.375

In our case, we introduced noise on a(x) because by vary-376

ing the noise on the profile shape, it is easy to determine the377

uncertainty of the results based on the acceptable uncertainty378

in geometry, and vice versa. It is entirely possible, if deemed379

necessary, to introduce noise simultaneously on a(x), α, and n.380

Any or all of these modifications to the C-method are possible381

to offer a stochastic C-method.382

7. NUMERICAL STUDY OF SCM383

A. Accuracy of results384

From a quantum standpoint, the efficiency of a grating in the nth
385

order corresponds to the probability Pn that an incident photon,386

illuminating the grating in the zeroth order, is diffracted in the387

nth order. Maxwell’s equations enable us to compute this proba-388

bility. Experimentally, this probability corresponds to the ratio389

between the number Nq of photons diffracted in the nth order390

and the total number N of incident photons, i.e., Pn = Nq/N.391

Similar to the dice game analogy, the diffraction of an incident392

photon into the nth order follows a binomial probability distribu-393

tion. If we use N incident photons, the dispersion of estimates of394

P around the exact value Pn decreases as 1/
√

N as N increases.395

This relationship illustrates that, as demonstrated in Lifeng Li’s396

article, calculating efficiencies with a precision of 10−36 would397

require 1072 incident photons, whereas Avogadro’s number is398

only 6.02 × 1023. Most of the time a precision of ∼ 10−5 should399

be sufficient to obtain a result that appears deterministic rather400

than probabilistic.401

Analysis of precision on efficiencies402

To verify the precision of the SCM, we compared our results403

for both dielectric and metallic sinusoidal gratings with those404

obtained by Tishchenko using multi-precision and the Rigorous405

Coupled Wave Analysis (RCWA) method. For simplicity, we406

only present the results for the zeroth reflected order E0.407

Dielectric grating in TE polarization λ = 0.6328µm, d = 1µm,408

h = 2µm, refractive index n = 2.5 − 0i, θ0 = 19.471221◦409

• Rayleigh multi-precision20 × 64 bits, M =375 : E0 =410

0.004703635612724411

• RCWA, M = 64,1600 slices: E0 = 0.004701051643882412

• SCM, τ = 10−5, M = 170 : E0 = 0.004703 ± 0.0000015413

Metallic grating in TM polarization λ = 0.6328µm, d = 1µm,414

h = 1, 6µm, indice n = 0 − 5i, θ0 = 19.471221◦415

• CCM, M =35, zero-order efficiency: E0 = 0.8204481009416

• Rayleigh multi-precision 25 × 64 bits, M = 405 : E0 =417

0.820444416116999418

• SCM, τ = 10−5, M = 170 : E0 = 0.82044 ± 0.00001419

In these examples, we observe that the Stochastic C Method420

achieves a precision on the order of 10−5, with results in per-421

fect agreement with those obtained by Tishchenko [6] [7]. This422

precision appears to be what is achievable with the SCM, and423

require knowledge of the grating profile with an accuracy on424

the order of 0.01 nanometers. This accuracy is comparable to425
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the size of atomic radii. With very precise adjustments of the426

parameters τ and M, and calculations in multi-precision, it is427

certainly possible, if necessary, to achieve higher precision.428

B. Deep sinusoidal grating429

Despite that the eigenvalues may be calculated with very high430

precision using the C-method, sinusoidal profiles exhibit poor431

conditioning when the height h increases. In the following, the432

calculations were performed using the Scilab software, which433

handles poorly conditioned matrices less effectively than Matlab.434

Therefore, the results may differ slightly between Scilab and435

Matlab.436

With Scilab, for a given height, if the dimension 4M + 2 of437

the Maxwellian is too large, poor conditioning appears even for438

very shallow gratings. Introducing numerical noise eliminates439

this problem; increasing M no longer leads to poor conditioning.440

Table (2) shows results for a silver sinusoidal grating up to a441

height-to-period ratio of 72.442

The experimental parameters are the following: λ = 0.75µm,443

d = 1µm, θ0 = 20◦, complex optical index of silver [12] n =444

0.031165 − 5.1949i, τ = 1/100000.

h/d M ETE
0 ETE

−1 ETM
0 ETM

−1

1 11 0.3143 0.6758 0.1810 0.7924

3 33 0.5311 0.4394 0.6127 0.3243

6 60 0.1500 0.7961 0.0560 0.8278

12 90 0.8048 0.0873 0.7720 0.0033

24 120 0.2603 0.5320 0.4105 0.2205

48 240 0.0051 0.6662 0.1379 0.1120

72 320 0.3893 0.1122 0.1274 0.1203

Table 2. Efficiencies as a function of height for a sinusoidal
grating, the uncertainty in the results is less than 10−4.

445

In this table, we can see that the numerical barrier with the446

original C-method, which is around h/d = 4, has disappeared.447

It is easy to determine the number of significant digits provided448

by the code by performing multiple calculations and obtaining449

uncertainties in the calculated values. The results in this experi-450

ment have at least 4 significant digits over a very wide range of451

heights.452

8. CONCLUSION453

By employing the mathematical methods of stochastic differen-454

tial equations, we have developed the SCM, which significantly455

expands the applicability of the CCM. This improvement only456

entails very minor modifications to the calculation’s code. The457

difference between the CCM and the SCM is that while the CCM458

results are deterministic, the SCM results are probabilistic. Over459

a wide range of heights, efficiencies are calculated with 4 or 5460

significant figures; using a Monte Carlo method, it is possible to461

determine the uncertainty in the results. Ultimately, the SCM462

opens up new horizons for the C method, which, with the SCM,463

is no longer limited by height. In conclusion, for smooth pro-464

files, current modeling based on the CCM should be updated465

by transitioning to the SCM, which is straightforward from a466

programming standpoint.467

For the moment, SCM has shown its effectiveness for smooth468

profiles. On the other hand, the parameterization of piecewise469

linear profiles, with discontinuous derivatives, combined with470

the adaptive spatial resolution technique makes it possible to471

treat trapezoidal profiles with quasi-vertical slopes. It is clear472

that a complete parametric study would be necessary to have473

a precise understanding of the SCM—a study that has not yet474

been conducted.475

ANNEX476

This annex shows that the G function introduced for solving the477

scalar propagating wave equation in translation coordinates is478

proportional to the tangential field component Eu and Hu for479

TM and TE polarizations, respectively.480

Tangential components and the G function.481

The tangential components to Σ are, for TE polarization: Ez = F482

and Hu, and for TM polarization: Hz = F and Eu, where Eu and483

Hu are t<he covariant components of
−→
E and

−→
H in the translation484

coordinates.485

Coordinate Transformation from Cartesian to Covariant486

In the (u, v) coordinate system, the covariant component Vu of487

a covariant vector
−→
V (x, y) like

−→
E or

−→
H is calculated from the488

Cartesian components Vx and Vy using the following relation:489

Vu =
∂x
∂u

Vx +
∂y
∂u

Vy ⇒ Vu = Vx + ȧVy. (34)

TE Polarization490

The only non-zero Cartesian components of the fields are Ez = F,491

Hx, and Hy. Maxwell’s equations written in the Cartesian system492

(x, y) lead to the following expressions for Hx and Hy in terms493

of F:494

Hx = i
Z0
k

∂F
∂y

⇒Hx = i
Z0
k

∂F
∂v

Hy = −i
Z0
k

∂F
∂x

⇒Hy = −i
Z0
k

(
∂F
∂u

− ȧ
∂F
∂v

)
(35)

, where Z0 =
√

µ0/ε0. This leads to the following expression495

for Hu in terms of F:496

Hu = i
Z0
k

(
(1 + ȧ2)

∂F
∂v

− ȧ
∂F
∂u

)
. (36)

TM Polarization497

The only non-zero components of the fields are Hz = F, Ex, and498

Ey. Maxwell’s equations lead to the expressions for Ex and Ey in499

terms of F as follows:500

Ex = −i
1

n2kZ0

∂Fz

∂y
⇒Ex = − i

n2kZ0

∂F
∂v

Ey = i
1

n2kZ0

∂Fz

∂y
⇒Ey =

i
n2kZ0

(
∂F
∂u

− ȧ
∂F
∂v

)
(37)

This leads to the following expression for Eu in terms of F:501

Eu = −i
1

n2kZ0

(
(1 + ȧ2)

∂F
∂v

− ȧ
∂F
∂u

)
(38)
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Continuity of the tangential components at Σ502

Let’s consider the function G defined as follows:503

ikG = (1 + ȧ2)
∂F
∂v

− ȧ
∂F
∂u

. (39)

For both polarizations, G is proportional to the tangential com-504

ponent of the field Hu in TE polarization and Eu in TM polar-505

ization. When passing through the cylindrical surface Σ with506

profile y = a(x) separating two media with different indices,507

continuity of Eu and Hu must be enforced. This implies the508

following continuity rule for F and G:509

• TE polarization : F and G are continuous510

• TM polarization: F and G/n2 are continuous511
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