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Abstract:
We address the analysis of a nonlinear navigation filter used in Magneto-Inertial Dead-
Reckoning (MIDR) whose input data are provided by a home-made device. This filter takes
the measurements given by the magnetic sensors as inputs and returns the velocity of the body.
Therefore, any unmodeled time-varying disturbance in the measurements impacts the estimation
of the velocity and yields errors that distort the estimation. For dimensioning purpose, we aim to
identify the bandwidth of the linearized part of this filter. To derive a model of this bandwidth,
we first simplify our filter as a time-invariant Single-Input Single-Ouput (SISO) system in the
situation where the steady-state regime is reached. The Best Linear Approximation (BLA) of
this nonlinear system can hence be described by a conventional transfer function. We justify
the validity of such a linear approximation for Extended Kalman Filters (EKF) and identify
it with different methods, yielding a model for the bandwidth depending on the experimental
conditions of navigation. We show that our filter is actually suitable for pedestrian navigation.
Finally, simulations in realistic physical situations are used for validation.

Keywords: Calibration, Dead-Reckoning, Experimental Settings, Magnetic Navigation, Model
Validation, Nonlinear Systems, Statistical Analysis, Volterra Series, Time Series Analysis.

1. INTRODUCTION

Filtering sensors data is used in navigation for estimating
the displacement of a rigid body. In particular, Magneto-
Inertial Dead-Reckoning (MIDR) is a category of algo-
rithms relying on the addition of the equation of mag-
netism in the filter, e.g. an Extended Kalman Filters
(EKF). To this extent, Magneto-Inertial Measurement
Units (MIMU), consisting in the combination of an in-
ertial unit and an array of magnetic sensors are used as
hardware devices for recording the data (Vissière et al.
(2007); Chesneau et al. (2016)). With known geometry,
the measurements of this array allow to compute both local
average magnetic field and Jacobian matrix – the magnetic
gradient. This magnetic gradient is crucial in the estima-
tion of the velocity, since it conditions its observability,
and increases the signal-to-noise ratio (SNR).

This navigation technology is particularly used for indoor
pedestrian navigation (Zmitri et al. (2021); Neymann et al.
(2023a)), since space variations of the magnetic field are
there mostly available. However, indoor environments are
also subject to many time-varying electromagnetic per-
turbations. Some undesired and unmodelizable events –
e.g. opening doors, air conditioning pulses, or to a lesser
extent power-line interferences (Chesneau et al. (2016))
– are high frequency (HF) phenomena that significantly
disturb the navigation performances. Lower frequencies
disturbances – e.g. calibration errors (Chesneau et al.

(2016, 2019); Neymann et al. (2023b)) – also alter the
estimation. Furthermore, MIMU are facing industrial chal-
lenges as systems tend to be miniaturized. This seek to
miniaturization firstly consists in making the device more
wearable or ergonomic, but also implies many changes in
the electronics, e.g. changing the sampling rate.

In this paper, we are interested in well sizing a MIMU
and its MIDR filter to determine the best setting for a
more accurate pedestrian navigation. Given the size of the
MIMU, and its sampling rate, we aim to characterize its
response in velocity to unmodeled time-varying magnetic
disturbances by determining a bandwidth. The knowledge
of this bandwidth is crucial for classifying naturally fil-
tered disturbances and those that decrease the navigation
performances. Another important point is miniaturization:
having a model of the filter with respect to the hard-
ware parameters allows to predict the expected navigation
performances, and conversely to tune these parameters.
Moreover, since velocity and gradient are closely tied, it
is important to link the behavior with different velocity-
gradient trajectory scenarii.

The identification of a filter bandwidth needs the knowl-
edge of a Single-Input Single Output (SISO) linear system.
Since a MIDR algorithm inputs the calibrated multidimen-
sional magnetic measurements of the sensors array and
outputs a 3D velocity, we first consider a simplified 1D
MIDR algorithm, which outputs a scalar velocity and in-



puts the measurements of two parallel scalar magnetome-
ters whose only one is disturbed. Given this SISO nonlin-
ear system and assuming a steady-state regime, we identify
its Best Linear Approximation (BLA) (Schoukens and
Ljung (2019)). We prefer a kernel-based strategy (Rugh
(1981)) rather than a block-oriented approach (Schoukens
and Tiels (2017)), since a first order kernel directly pro-
vides the BLA and consequently its time constants.

The remaining of this paper is organized as follows: we
first recall the basics of an MIDR-EKF and derive a 1D
toy-model, yielding a simple SISO system. This toy-model
is useful for understanding the physical behavior of the
dynamic system with respect to the input parameters:
sample rate, size of the device, and the values of the
velocity and the magnetic gradient (Section 2). We there-
after provide some results about expansion in Volterra
kernels for linear time-invariant (LTI) systems and prove
that this decomposition is justified for EKF (Section 3).
We then derive a simulated model of the BLA of this
SISO system for diverse velocities or magnetic gradients
(Section 4). Finally, the model is challenged with simulated
but realistic three-dimensional trajectories and validated
in these real-life use cases (Section 5).

2. MAGNETO-INERTIAL DEAD-RECKONING
EXTENDED KALMAN FILTER (MIDR-EKF)

We recall in this section the basic knowledges about
MIDR-EKF, as it was first established in Vissière et al.
(2007), as well as the 1D MIDR-EKF toy-model from
Neymann et al. (2023a), and define the filter to identify.

2.1 Classic MIDR-EKF

In this paper, we denote by B the magnetic flux density,
expressed in 1 G = 10−4 kg ·A−1 · s−2. Moreover, a vector
un = Rub ∈ R3 in the navigation frame is denoted with
an upperscript (n), whereas (b) denotes the body frame,
with R ∈ SO3(R) is a rotation matrix. The rotation rate,
provided by the gyrometer, is a skew-symmetric matrix
ΩΩΩb/n ∈ so3(R), the tangent space of SO3(R).

The classic MIDR-EKF consists in a usual inertial filter
with a magnetic correction through equation

Ḃb(t) = −Ωb/n(t)Bb(t) +∇Bb(t)vb(t), (1)

where ∇Bb denotes the – stationar – Jacobian matrix –
gradient – of the magnetic field, and vb the velocity.

2.2 Measurements of a 1D magnetometers array

Consider a scalar displacement along the coordinate x, on
which a stationar magnetic field B(x) is defined. Neymann
et al. (2023a) simplified the MIMU with two parallel
and aligned single-axis magnetometers 1 and 2 referenced
from the origin of the device by algebraic distances p1
and p2, s.t. the size of the MIMU is p2 − p1. At each
timestamp k∆t, the calibrated measurement of the i-th
magnetometer is given by Mi,k ∈ R, which corresponds to
the actual magnetic field B(xk + pi) + νi,k at the position
xk = x(k∆t) where νi,k ∼ N (0, σ2

mag). The average field
is computed as Bk = (p2M1,k − p1M2,k)/(p2− p1) and the
gradient as λk = (M2,k −M1,k)/(p2 − p1). The coefficient

ρ =
√

(p2 − p1)2/(p21 + p22) allows to define the saturation
velocity as v0 = ρ(p2 − p1)/(2∆t): the maximal velocity
that can be processed by the filter, i.e. the velocity of the
body moving from its own size during the inverse of the
Shannon frequency fsh = 1/(2∆t).

2.3 Design of a 1D study filter

From Neymann et al. (2023a), we recall the velocity v̂k
and magnetic field B̂k estimator Kalman filter given by(

v̂k+1|k
B̂k+1|k

)
=

(
1 0

λk∆t 1

)(
v̂k|k
B̂k|k

)
+

(
∆t

1

2
λk∆t2

)
γk

Bk = B̂k|k

(2)

where γk denotes the proper acceleration provided by an
(unbiased) accelerometer over the period (k∆t, (k+1)∆t).

The nonlinearity of the filter comes from the cross term
λkv̂k|k in (2), since the computation of the gradient de-
rives from the difference of magnetic measurements, the
gradient is also altered by any disturbance.

2.4 Considered Filter in this Study

The filter (2) of Section 2.3 does not model potential
nongaussian time-dependent measurement disturbances.
Therefore, we aim to identify the bandwidth of the BLA
of the SISO system

(∆M1,k)k≥0 7−→ (∆vk)k≥0 (3)

where ∆M1,k is the disturbance in M1,k and ∆vk the
estimation error in v̂.

Low frequencies situations are not detailed in this paper.
Indeed the authors of Neymann et al. (2023a) already
derived from (2) the error in the velocity due to a static
measurement error ∆M – e.g. wrong calibration:

∆v/v = −∆M/ [λ(p2 − p1)] = −∆λ/λ, (4)

where ∆λ = ∆M/(p2 − p1) is the error in the gradient.

3. VOLTERRA KERNELS AND KALMAN FILTERS

After providing elements about expansion in Volterra ker-
nels for SISO-LTI systems, we extend this decomposition
for linearized steady-state EKF under the assumption of
a finite fading memory of length m ≥ 1.

3.1 Theory overview

For discretized systems, a version of the decomposition in
Volterra kernels can be derived (Schetzen (1980)). For the
sake of simplicity, assume that this expansion is made at
the second order, which reads

yk = h0+

m−1∑
k1=0

h1
k1
uk−k1

+

m−1∑
k1=0

m−1∑
k2=0

h2
k1,k2

uk−k1
uk−k2

, (5)

where hi is the i-th order kernel of the expansion and m
is the length of the finite-time memory – supposed shared
for all discretized kernels. The constant zeroth kernel h0

denotes the offset of the system. The first kernel h1 is
exactly the BLA (Schoukens and Ljung (2019)). Its Fourier
Transform is exactly the transfer function of the linearized



filter. Moreover, the second kernel h2 depicts the time
cross-correlations, and extends to higher orders i > 2.

This expansion is only valid over a compact subset of the
input signals. In practice, the fading memory hypothesis
makes of any bounded pertubation subset a valid compact
subset for the norm defined in Boyd and Chua (1985).

Theorem 1. Continuity of the Volterra kernels.

Let n ≥ 1 and m ≥ 1 be the maximal order of the
Volterra expansion and the length of the memory. More-
over, let (uk)k≥0 be a scalar bounded sequence, i.e. ∥u∥∞ =
supk≥0 |uk| < ∞. Then the response (yk)k≥0 to the n-th
order Volterra expansion is bounded and satisfies

∥y∥∞ ≤
n∑

i=0

∥hi∥1∥u∥i∞, ∥hi∥1 =

m−1∑
k1,...,ki

|hi
k1,...,ki

|. (6)

The regularity of Volterra kernels hence controls the re-
sponse of the filter to a given input. In this paper, we
restrict the analysis to second order expansions.

3.2 Kernels for Kalman Filters

Kalman filtering is used when noisy data have to be
integrated, and relies on the following state-space repre-
sentation (Anderson and Moore (1979))

xk+1|k = Fkxk|k +Gkuk, yk = Hkxk, (7)

where xk|k,xk+1|k ∈ Rn are the corrected and predicted
states, uk ∈ Rm is the input, yk ∈ Rp is the observation.
Matrices Fk ∈ Rn×n, Gk ∈ Rn×m and Hk ∈ Rp×n

are respectively the transition, the input transfers and
observation matrices. The correction is achieved by an
outer measurement zk ∈ Rp.

In this section, we analyze the transfer from zk to xk|k.
In particular, we prove that the transfer from an error in
zk to an error in xk|k can be approximated at first order
in a steady-state regime by a LTI system. Recalling that
the transfer of (3) is SISO, we prove that a SISO transfer
derives from this LTI system.

The case of LTI systems is easily achieved with a Wiener
approach (Radix (1993)) or by taking the z-transform of
the transfer from zk to xk|k for z = ei2πf∆t, which reads:

HLTI(z) = z−1
[
I− z−1

(
F−KH⊤)]−1

K ∈ Rn×p, (8)

where K ∈ Rn×p is the Kalman gain matrix. In the case
of EKF, the matrices Fk, Hk, and Kk may depend on
the measurements and are then disturbed by perturbations
in the data and the previous technique no longer applies.
Hence, the error of estimation should be taken in expected
value, i.e. ∆xk = E[x̂k|k− x̄k], where x̂k|k is the estimated
state and x̄k the actual state.

Theorem 2. Dynamic of the error of estimation.

The estimation of error has the following dynamic:

∆xk+1 = (I−Kk+1H
⊤
k )Fk+1∆xk +Kk+1∆zk+1, (9)

where Kk is the Kalman gain and ∆zk = E[zk −Hkx̄k].

Proof 1. The reader may refer to App. A.

Assuming that ∆x0 = 0 – i.e. the state is initially well
estimated in average – and that ∆zk has finite support, a
recursion provides

∆xk =

+∞∑
i=0

hk,i∆zk−i = (hk ∗∆zk), (10)

with hk,i =
[∏i−1

j=0(I−Kk−jH
⊤
k )Fk−j

]
Kk−i ∈ Rn×p.

This result is a convolution formula between the first
order time-variant matrix kernel hk : i 7−→ hk,i – which
naturally includes the transient period of the Kalman filter
– and the input perturbation ∆zk – i.e. the innovation
relatively to the actual state – corresponding to the input
uk in the Volterra expansion of (5), whereas yk is there
replaced by ∆xk.

Yet, the system is still not LTI-SISO. In a steady-
state regime, and assuming that the matrices are inputs-
independent, all the indices k drop out and one can take
the z-transform of (9), yielding the LTI transfer matrix
from ∆zk to ∆xk:

H(z) =
[
I− z−1(I−KH⊤)F

]−1
K ∈ Rn×p. (11)

The time constants of the filter are fully determined by
the eigenvalues of the square matrix (I −KH⊤)F, whose
spectral radius must be < 1 to ensure the stability of
the system. We hence derived a LTI first order response.
However, this transfer is multidimensional and not SISO.
Finally, extracting a SISO subsystem from (11) is compo-
nentwisely achieved by taking Hij(z).

4. IDENTIFICATION OF THE MIDR-EKF

In this section, we identify the bandwidth of (3) by
computing the BLA in the framework of Section 2. We
simulated straight line trajectories with constant velocities
v and magnetic gradient λ, s.t. B(x) = B0 + λx. Only the
measurements M1 of magnetometer 1 were disturbed. We
also showed that, once the steady-state regime reached,
the expansion in Volterra kernels is equivalent to (11).

4.1 Implementation of the computation of Volterra kernels

The measurements of magnetometer 1 were excited with a
centered gaussian noise ∆Mk of variance σ2

mag = (1 mG)2.
This input signal excites all the frequencies and is time-
decorrelated. The simulations lasted 180 s and the kernels
were identified with a finite memory of 12 s from t0 = 60 s,
after the convergence of the EKF. The Volterra kernels
were identified with order phase separations (Bouvier et al.
(2017)). Compared with other algorithms (Birpoutsoukis
et al. (2017, 2018)), the phases separations are more
resilient to actual signal without a priori. For comparison,
we also implemented (10).

4.2 Validity of a linear approximation of the MIDR-EKF

The identification yields an offset h0 which numerically
equals 0 m · s−1, i.e. the MIDR-EKF is an unbiased filter.
The first order h1 was processed and compared to the
theoretical kernel from (10) (Fig. 1). Both estimations are
equivalent up to ∼ 20 · 10−6 in maximum, which impacts
the estimation of the velocity with a neglegible disturbance
of ∼ 10−8 m · s−1, so both methods are equivalent. More-
over, we identified ∥h2∥∞ ≈ 10−5 m · s−1 ·G−2, which
is also negligeable since the related error in velocity is
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Fig. 1. Theoretical and Volterra normalized 1st order
kernels are numerically identical up to a maximal
difference under 20 · 10−6.

∼ 10−11 m · s−1. Consequently, the MIDR-EKF can be ap-
proximated by a first linear filter with impulsional response
h1. In the Fourier space, the filter can be modeled by
F(∆v)(f) = H1(f)F(∆M)(f), where f is the frequency
of the input and H1(f) = F(h1)(f).

4.3 Model for the MIDR-EKF

We now aim to characterize the Bode plot of H1 de-
pending on the trajectory scenario (v, λ). We process the
impulsional response h1(t) for different scenarii, providing
different BLA of the filter. We compute the gain as G(f) =
20 log |H1(f)/H1

0 |, where H1
0 is a normalization factor de-

fined such that maxf∈(0,fsh) G(f) = 0 dB, and the phase is

ϕ(f) = argH1(f). The complete Bode plots for a complete
batch of trajectories are provided on Fig. 2. The general
shape of the filter is band-pass 1 , which is consistent with
the fact that static errors in the measurements are already
modeled by (4). The global slopes of the gain are +20 dB
and−20 dB per decade, which respectively correspond to a
real zero and a real pole. Moreover, the phase ϕ cancels at
the upper cutting frequency, and tends to π/2 as f goes to
0 Hz. The lower and upper cutting frequencies flow and fup
are computed such that G(f) = −3 dB. The bandwidth
strongly depends on the gradient. For low gradients (in
red), the lower cutting frequency is not reachable due to
the resolution of the frequency step, which means that
most of signals are not filtered. The larger the gradient,
the smoother the filter: the bandwidth becomes larger
but it does not impact the estimation, since the relative
perturbation ∆λ/λ decreases, whereas if λ is smaller, this
ratio tends to be very high. Hence, the filter becomes
sharper with a very long time constant. The maximal gain
H1

0 is also a function of (λ, v) (Fig. 3).

The bandwidth is presented on Fig. 4. The cutting fre-
quencies reported to the velocity are functions of λv−2.
The model for the lower frequency can hardly be identified
for small λ or v, due to the lack of observability of the
system: the magnitude of the second order kernel is smaller

1 The band-pass nature of the filter is due to signal digitalization:
the gain at f = 0 Hz glues with the gain at the Shannon frequency
f = fsh = 1/(2∆t) since a discretized Bode plot is a fsh-periodic
function.
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Fig. 2. Bode plots for a range of magnetic gradients λ
from 1 mG ·m−1 in red to 50 G ·m−1 in blue – with
a displacement velocity of 0.5 m · s−1.
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Fig. 3. Gain H1
0 for a velocity range from 0.25 m · s−1 in

red to 4 m · s−1 in blue, and different gradients.

in magnitude compared with the noise of the amplitude
of the perturbation, so the signal-to-noise ratio (SNR)
of this second-order perturbation is very low and this
kernel can not be identified. Yet, the upper frequency is
fully modeled, with a plateau for low λ/v, which can be
explained by the settings of the Kalman filter: the relative
ratio ∆λ/λ is equivalent to the noise process of the filter.

4.4 Computation of a Bode plot with Monte-Carlo

For LTI systems, Bode plots can be experimentally com-
puted by analyzing the response of the system to diverse
frequencies, since LTI systems are theoretically indepen-
dent of the phase and the amplitude of the input. There-
fore, the Bode plots of the linearized MIDR-EKF can be
identified by testing several inputs with different frequen-
cies in Monte-Carlo simulations. However, this method is
very greedy and requires many more computations than
a kernel identification. Furthermore, the identification of
the gain requires to determine the peaks in the Discrete
Fourier Transforms, which is numerically very sensitive to
the convolution window (Rockwood and Erve (2014)), and
to spectral leakage (Harris (1978)). The cutting frequen-
cies identified by Monte-Carlo simulations are presented
in black stars on Fig. 4. Only one simulation is at 1%
consistent with the kernel-based model. This shows that
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Fig. 4. The bandwidth (flow, fup) as a function of (v, λ) for
a velocity range from 0.25 m · s−1 in red to 4 m · s−1

in blue. Monte-Carlo results are shown in black stars.

this brute-force method is not reliable and not consistent
for complex systems such as EKF.

4.5 A suitable bandwidth for indoor navigation

The MIDR-EKF is mostly used for pedestrian navigation,
and should preserve the magnetic variations due to the
movement of the operator and filter all the perturbations
that disturb the navigation. With the settings of the
MIMU, the upper plateau is around (fv0)/(fshv) ≈ 0.18,
i.e. ∼ 9 Hz. For instance, a regular walk is around 1
to 2 Hz, which is inside the bandwidth: the motion is
saved by the filter. Moreover, indoor navigation can be
perturbated by power line interferences, which induces
electromagnetic alternating signals at 50 Hz in Europe or
60 Hz in America. These frequencies are hence naturally
filtered. Other high frequency phenomena, e.g. opening
doors or electromagnetic pulses, are also filtered.

5. VALIDATION WITH 3 DIMENSIONAL
SIMULATION

We now validate our 1D model with 3D trajectories.
Since we need controlled constant magnetic gradient and
velocities, we require numerical simulations for validation.

5.1 Set Up of the simulations

We model a 3D linear magnetic field Bn(xn) = Bn
0 +

∇Bn
0x

n in the navigation frame withBn
0 = (0, 0.15, 0.45)⊤ G

and ∇Bn
0 = diag(0.05, 0.01,−0.06) G ·m−1. This trace-

less symmetric gradient satisfies to Maxwell’s equation
(Neymann et al. (2023a)). Since a nonrotative motion
is assumed, navigation and body frames are identical so
the upperscripts (n) and (b) drop out. The trajectory is
assumed to be towards the line ∆ = {(x, 0, 0)⊤, x ∈ R},
on which a constant magnetic gradient λ = 0.05 G ·m−1

is applied, and the motion is uniform s.t. ẋ = v. All
the N 3D-magnetometers are disturbed with the same
gaussian noise N (0, σ2

mag). With a symmetric geometry of
the array, the resulting average sensor has also a gaussian
noise ∆M ∼ N (0, σ2

mag/N). The simulations were run on
180 s and the perturbations were added in the magnetic
data after the filter reaches its steady state regime.

Table 1. Relative upper bounds of the pertur-
bation in the estimation of the velocity (in %)
for different velocities and n = 20 simulations,
compared with the prediction of the model.

Simulation v = 0.25 m · s−1 v = 0.50 m · s−1

1 0.120 % 0.066 %
2 0.084 % 0.109 %
3 0.105 % 0.079 %
4 0.084 % 0.091 %
5 0.077 % 0.112 %
6 0.081 % 0.065 %
7 0.114 % 0.070 %
8 0.089 % 0.075 %
9 0.081 % 0.072 %
10 0.094 % 0.121 %
11 0.106 % 0.071 %
12 0.102 % 0.118 %
13 0.120 % 0.112 %
14 0.101 % 0.097 %
15 0.096 % 0.100 %
16 0.103 % 0.071 %
17 0.090 % 0.090 %
18 0.096 % 0.092 %
19 0.089 % 0.090 %
20 0.122 % 0.090 %

Maximum 0.122 % 0.121 %
Average 0.098 % 0.090 %

Uncertainty ± 0.009 % ± 0.012 %

Model 0.390 % 0.105 %

5.2 Assessment of the performance

The velocity error ∆vk = v̂k − v̄ is processed for each
simulation. Notice that v̂k is as the best estimation of the
state by a Kalman filter already an expected value. The
assessment of the performance relies on Theorem 1. Recall-
ing that h0 = 0 and that h2 were negligible, we have, for a
disturbance ∆M , ∥∆v∥∞ ≤ ∥h1∥1∥∆M∥∞. The value of
∥h1∥1 is especially given by the knowledge of this kernel
thanks to Fig. 2 and 3. In our case, we have at 99.73%,
∥∆M∥∞ ≈ 3σmag/

√
N , i.e. ∥∆v∥∞ ≤ ∥h1∥1 · 3σmag/

√
N .

The average value ∥∆v∥∞ of ∥∆v∥∞ is evaluated over a
series of n = 20 simulations. The uncertainty around this
average value is quantified at 99.73% as 3σ̂n/

√
n, where

σ̂n =
√

n/(n− 1) ·Var(∥∆v∥∞) is the unbiased estimator
of the standard deviation. In particular, we verify that

∥∆v∥∞ + 3σ̂n/
√
n ≤ ∥h1∥1 · 3σmag/

√
N. (12)

5.3 Results

The assessment of the relative error ∥∆v∥∞/v over all
the simulations and the identification uncertainty for v =
0.25 m · s−1 and 0.50 m · s−1 are displayed on Table 1.
Considering the uncertainty interval around the estimated
average, the simulated upper bound ∥∆v∥∞/v is consistent
with the inequality (12) for each batch of simulations. Yet,
the model is less efficient for v = 0.25 m · s−1 than for
v = 0.50 m · s−1, with an overestimated upper bound 3
times larger than the simulated value.

6. CONCLUSION

In this paper, the bandwidth of a MIDR-EKF was deter-
mined up to the hardware constants and to the navigation



scenario. We relied on a 1D toy-model of the system and
linearized the equations to higlight a SISO transfer from
magnetic disturbances to the velocity and to identify the
BLA of this latter. We proved that, under some conditions,
the result extends to any EKF through the derivation
of a LTI transfer matrix. We showed the consistency of
this result with the decomposition in Volterra kernels, and
derived an abacus of the bandwidth with respect to the
navigation scenario. The analysis of the bandwidth of the
MIDR-EKF emphasized that this algorithm is suitable for
indoor navigation and naturally filters some unmodeled
outliers. Finally a validation with 3D simulations proved
that this model was reliable and statistically consistent in
realistic use case situations. As a future research, some at-
tention should be payed to understand how the navigation
scenario impacts the gain and the bandwidth, e.g. through
a computation of the LTI transfer matrix. Furthermore,
some phenomena, s.t. noise aliasing, still remain unmod-
eled. Experiments with real-life data should also be done.
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Bouvier, D., Hélie, T., and Roze, D. (2017). Homophase
signal separation for Volterra series identification. 20th
International Conference on Digital Audio Effects. doi:
10.1109/CDC.2018.8619740.

Boyd, S. and Chua, L. (1985). Fading memory and
the problem of approximating nonlinear operators with
Volterra series. IEEE.

Chesneau, C.I., Hillion, M., and Prieur, C. (2016). Motion
estimation of a rigid body with an EKF using magneto-
inertial measurements. 2016 International Conference
on Indoor Positioning and Indoor Navigation (IPIN).

Chesneau, C.I., Robin, R., Meier, H., Hillion, M., and
Prieur, C. (2019). Calibration of a magnetometer array
using motion capture equipment. Asian Journal of
Control, 1459–1469. doi:hal-02368023.

Harris, F. (1978). On the use of windows for harmonic
analysis with the discrete Fourier transform. Proceedings
of the IEEE, 66(1), 51–83. doi:hal-02368023.

Neymann, R., Berthou, A., Jourdas, J.F., Lhachemi, H.,
Prieur, C., and Girard, A. (2023a). Magneto-inertial
dead-reckoning navigation with walk dynamic model in
indoor environment. 13th International Conference on
Indoor Positioning and Indoor Navigation (IPIN).

Neymann, R., Meier, H., Lhachemi, H., Prieur, C., and
Girard, A. (2023b). Minimization of parameter sensi-
tivity to pre-estimation errors and its application to the
calibration of magnetometer arrays. European Control
Conference (ECC).

Radix, J.C. (1993). Systèmes Inertiels à Composants
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Appendix A. PROOF OF THEOREM 2

Let x̂k = x̂k|k be the estimated state of an actual quantity
x̄k = x̄k|k, which are ruled by the following dynamics:

x̂k+1 = Fkx̂k +Gkuk

+Kk+1 (zk+1 −HkFkx̂k −HkGkuk)
x̄k+1 = F̄kx̄k + Ḡkuk,

where Fk = F̄k + ∆Fk and Gk = Ḡk + ∆Gk. By
substracting x̂k+1 to x̄k+1, it comes

x̂k+1 − x̄k+1 = Fk(x̂k − x̄k) + ∆Fkx̄k +∆Gkuk

+Kk+1 (zk+1 −HkFkx̂k −HkGkuk)

= Fk∆x̂k +∆Fkx̄k +∆Gkuk

+Kk+1 (zk+1 −HkFkx̂k −HkGkuk) .

The differentiation of the propagation equation around the
truth x̄k and uk yields

Fkx̂k = HkF̄kx̄k −Hk∆Fkx̄k −HkFk(x̂k − x̄k)

Gkuk = (Ḡk +∆Gk)uk,

which implies

x̂k+1 − x̄k+1 = (I−Kk+1Hk) [Fk(x̂k − x̄k)

+∆Fkx̄k +∆Gkuk]

+Kk+1

(
zk+1 −HkF̄kx̄k −HkḠkuk

)
.

Now, due to x̄k+1 = F̄kx̄k + Ḡkuk, we have

x̂k+1 − x̄k+1 = (I−Kk+1Hk) [Fk(x̂k − x̄k)

+∆Fkx̄k +∆Gkuk]

+Kk+1 (zk+1 −Hkx̄k+1) .

Finally, we take the expected value of the expression and
assume that E[∆Fk] = 0 and E[∆Gk] = 0 and that
they are uncorrelated with x̄k and uk conversely. With
∆xk = E[x̂k − x̄k] and ∆zk = E[zk −Hkx̄k], one has:

∆xk+1 = (I−Kk+1Hk)Fk∆xk +Kk+1∆zk+1. (A.1)


