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Highlights

• design of an algorithm to post-process phase-field fracture simulations with Williams’ series

• accurate identification of fracture mechanics quantities of interest

• using Williams’ series the crack tip position is determined (and not associated with a unique

phase-field value)

• numerous convergence results including variations in both numerical and model parameters

Abstract

Fracture mechanics and damage mechanics are two theories that describe the degradation of

the bearing capacity of structures. Fracture mechanics is based on a discontinuous description of

cracking, while damage mechanics proposes a continuous description of material degradation. These

two approaches are often opposed in the literature, from both theoretical and numerical points of

view. This work suggests correlating the two approaches by applying Williams’ series, usually

dedicated to experimental results, to phase-field computations. Williams’ series are employed to

extract equivalent fracture mechanics parameters as a post-processing step. The proposed analysis

based on a fracture mechanics description excludes the fracture process zone. Typical fracture

mechanics parameters such as energy release rate, stress intensity factors, fracture process zone

size, and crack tip position are determined from the phase-field computations. The approach is

illustrated on a two-dimensional structure representing a beam whose notch opening displacement

is controlled. The dependence on the choice of the internal length of the phase-field model is

studied. Similarities and differences between both modeling routes are discussed.

Keywords: Phase-field fracture; Williams’ series; crack tip; stress intensity factor; fracture process

zone
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1 Introduction

Crack propagation in cementitious materials is a major domain in civil engineering studies to model in-

service changes of strength and sealing in structures. Fracture mechanics models have been developed

to describe precisely the state of cracks and their propagation within structures. The method was

first introduced for brittle materials [23]. Several extensions have been proposed from the lattice

method [31], cohesive zone models [8, 30], boundary element methods [16, 43], extended/generalized

finite elements [47, 21], or peridynamics [55].

In the case of quasi-brittle materials such as concrete, the crack is generated by a fracture process

zone (FPZ), namely, a region with numerous microcracks. Various damage mechanics models can

be used to predict the nonlinear behavior inside the FPZ. Several experimental works [62, 32, 15]

determined the FPZ size for cementitious materials, which are at the scale of centimeters for decimetric

to metric samples. In the case of damage mechanics for concrete, Mazars’ model [44] is one of the

most commonly used. A regularized extension [18] has been applied using an energetic formulation

of crack propagation [30]. Another approach closely related to damage mechanics is the (regularized)

phase-field method [39, 46], which is based on a variational approach to fracture [13, 11], considering

brittle fracture as an energy minimization problem [19]. A regularization method [2, 3], which was

first developed for image segmentation, is utilized to approximate lower-dimensional surfaces with

elliptic terms. In such phase-field (variational) fracture approaches, a phase-field variable describes

the damage state of the material [13, 1, 60, 12, 63, 17, 11, 39, 46, 9].

Due to the smeared transition zone from fully damaged to undamaged states, the crack tip location

is usually not precisely defined when using the phase-field method. This point is also mentioned in

a recent comparative review [17], the position of the crack tip is not encoded and is approximated.

Further fracture mechanics parameters are strain energy release rates, stress intensity factors, fracture

process zones, crack tip positions, crack opening displacements, crack densities, crack energies, and

bulk energies. Advancements in phase-field fracture have been made for instance using Taylor’s ex-

pansion of the displacement field for obtaining better crack opening displacements [50], extended finite

elements (XFEM) [22] (see also Ref. [52] for XFEM-damage coupling), further studies on level-set and

line integral formulas for crack opening displacements [64], or by mesh reconstruction techniques [58] to

better locate the crack path and the interface between the fractured and the unbroken zones. However,

further quantities of interest (except crack opening displacements) were not computed therein. Crack

initiation was investigated in Refs. [40, 56] and specifically in Ref. [56] utilizing a pacman geometry

to study stress fields in the vicinity of the crack tip and to identify stress intensity factors.

The phase-field displacement fields can be post-processed with Williams’ series. In particular,

Williams’ series may be employed to compute the previously mentioned fracture mechanics parame-

ters. Williams’ series are closed-form solutions to fracture mechanics problems that decompose the

resulting displacement and stress fields into unitary fields at several (usually positive) orders [61].

In experimental applications, truncated Williams’ series were successfully employed using digital im-

age correlation results [45], for integrated digital image correlation [53, 57], or post-processing finite

element solutions in the small scale yielding regime [29]. Correspondence between the phase-field
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approach and a coupled (i.e., stress and energy) criterion was investigated in Ref. [48]. In particular,

the mechanical significance of the internal length of phase-field models was discussed.

The current work uses a similar pacman geometry as in Refs. [57, 56] but is focused on crack

propagation instead of initiation [56]. The key advancement is to employ Williams’ series to obtain

estimates of crack tip positions, stress intensity factors, and fracture process zone sizes from displace-

ment fields computed by the phase-field method. To carry out computational convergence studies, fine

meshes in the phase-field simulations are needed, which yield a high computational cost with more

than one million degrees of freedom. To this end, efficient numerical solvers are required. Here, a

combined active set Newton-GMRES method [36] was employed in which the linear equation systems

are solved with a parallel matrix-free geometric multigrid method [37]. A final fundamental quantity

is the energy release rate, for which the J-integral is a well-known extraction method [51], which has

also been applied to phase-field simulations [7]. It is proposed to post-process phase-field displacement

fields through Williams’ series to extract equivalent fracture mechanics parameters. Such an approach

is illustrated on a beam represented as a two-dimensional structure whose notch opening displacement

is controlled as in actual experiments. The robustness of the approach is shown for various levels of

local mesh pre-refinement. The effect of the choice of the internal length on the results of Williams’

series during crack propagation is also studied.

The outline of the paper is as follows. In Section 2, the phase-field method is described. Next,

Williams’ series are introduced in Section 3. Section 4 is devoted to the algorithm. Details are given

on how phase-field displacement fields and Williams’ series are correlated. In Section 5, numerical

investigations are conducted on a notched beam. Several fracture mechanics quantities are extracted.

It is shown in Section 6 that various numerical features, such as the mesh discretization or the phase-

field regularization parameter, influence the identification set (crack length, energy release rate, stress

intensity factors and fracture process zone sizes). The results are discussed in Section 7.

2 Phase-field fracture modeling, discretization, and solution

Let us consider a material in domain Ω Ă R2 composed of two subdomains as depicted in Figure 1(a),

namely, the bulk B and the fracture surface C such that Ω “ B Y C with C “ C0 Y txpsq, 0 ď s ď lu.
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(a) (b)

Figure 1: Schematic view of the subdomains of the material with (a) a non-regularized fracture domain

and (b) a regularized fracture domain

2.1 Phase-field fracture model

The considered phase-field model [39, 46] is based on a variational formulation [11]. The two following

energy contributions [60] are applied
$

’

&

’

%

Surface Energy: Es “
ş

C Gc ds

Bulk Energy: Eb « 1
2

ş

B σ : ε dxdy
(1)

where the parameter Gc ą 0 is the critical energy release rate with reference to the Griffith theory [23].

In the present work, this parameter will be assumed to be a material property (i.e., constant). It will

not be adjusted with respect to the mesh size or internal length as often performed [13, 56, 64]. Next,

σ P RDˆD denotes the Cauchy stress tensor, and ε P RDˆD the infinitesimal strain tensor with D “ 2

the space dimension. Linear and isotropic elasticity is assumed for the undamaged zones with Young’s

modulus E ą 0 and Poisson’s ratio ν P r´1, 0.5q (i.e., incompressibility is not accounted for in this

work). The crack propagates when the energy release rate G is greater or equal to its critical value Gc.

The displacement field UPFM over a time interval p0, T q is calculated using an energetic formulation

UPFM “ arg

˜

min
UPVU

DpΩq

pEspCq ` EbpC, Uqq

¸

in Ω ˆ p0, T q, (2)

with

V D
U pΩq “ tU P VU | U “ UD on BΩDu,

the trial space for the displacement field, where BΩD is the boundary where the condition U “

UD is prescribed. The integrals inside Es and Eb must be applied to the same domain to solve

Equation (2). The cracked region is regularized from the initial support (Figure 1(a)) to a domain

with no discontinuities (Figure 1(b)) using the variable φ and the characteristic (or internal) length

ℓφ. An Ambrosio-Tortorelli regularization [2, 3] is applied (i.e., the so-called AT-1 functional), where

the regularized surface energy reads

E ˚
S “

3

8

ż

Ω
Gc

ˆ

p1 ´ φq

ℓφ
` ℓφ}∇φ}2

˙

dxdy in Ω ˆ p0, T q, (3)
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and the regularized bulk energy

E ˚
b “

1

2

ż

Ω

`

p1 ´ ξqφ2 ` ξqσ : ε
˘

dxdy in Ω ˆ p0, T q, (4)

with ℓφ ą 0 the phase-field internal length, and 0 ă ξ ! 1 the bulk regularization parameter. The

phase-field variable 0 ď φpx, tq ď 1 equals 0 for the cracked region and 1 in the undamaged zone.

Finally, the irreversibility condition

Btφ ď 0 in Ω ˆ p0, T q (5)

is introduced on φ such that healing is excluded.

2.2 Discretization

The finite element method is used to discretize the minimization problem [60]

$

’

&

’

%

UPFM “ arg
´

minUPV D
U pΩq pE ˚

T q

¯

, with E ˚
T “ E ˚

s ` E ˚
b

Btφ ď 0.
(6)

The time variable (i.e., incremental step since quasi-static fracture is considered) t P r0, T s is discretized

in a sequence of time instants ttkukPrr1,NT ss with NT defined as tNT “ T ą 0 being the final time. The

time step size is defined for all k P N as δt “ tk`1 ´ tk ą 0.

The temporal derivative of the variable φ is approximated by the difference quotient

@k P N, Btφ «
φptk`1q ´ φptkq

δt
. (7)

Then, let us call tUuk “ tpU,φqpxn, t
kqunPr1,Nnodess P V ˆ W the degrees of freedom at each node xn

and instant ttkukPrr1,NT ss with V “ V D
U pΩq and W “ H1pΩq. The Hilbert space on the total domain Ω

is denoted H1pΩq “ tU P L2pΩq |∇U P L2pΩqu.

The minimization problem (6) becomes

@k P N˚

$

’

&

’

%

tUPFMuk “ arg
´

mintUukPV ˆW

`

E ˚
T

`

tUuk
˘˘

¯

on V ˆ W,

tUPFMuk ď tUPFMuk´1 on 0 ˆ W.
(8)

Uniform mesh pre-refinement is utilized (Figure 5). This choice avoids the interaction with Gc and

effective fracture toughness [13, 56, 64].

2.3 Nonlinear and linear numerical solutions

The numerical solution to Equation (8) is determined using a combined active set Newton primal-

dual active set method in which the irreversibility constraint and nonlinearities in the system are

treated simultaneously using a combined active set Newton method [26]. The linear equation systems

are solved with a parallel matrix-free geometric multigrid method [34, 37], related to the solution
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concepts designed in pfm-cracks [28], and based on the finite element library deal.II [4, 5]. Let us

consider the following linear system at each Newton iteration j P N˚ and at each instant tk

@k P N

$

’

’

’

’

&

’

’

’

’

%

tUPFMukj`1 “ tUPFMukj ` tδUPFMukj

∇2ET ptUPFMukj qtδUPFMukj “ ´∇ET ptUPFMukj q

tδUPFMukj ď 0 on 0 ˆ W.

(9)

The notations are simplified by dropping the indices k of time and j of the Newton iteration.

Let us consider the operator G symmetric and positive as G “ ∇2ET ptUPFMukj q and the operator

F “ ´∇ET ptUPFMukj q. The minimization problem (9) is solved using a Lagrange multiplier λ P 0ˆW ˚

(with W ˚ the dual space of W ) with a chosen value of c ą 0
$

’

’

’

’

&

’

’

’

’

%

@tZu P V ˆ W, pGtδUPFMu, tZuq ` pλ, tZuq “ pF , tZuq

CptδUPFMu, λq “ 0 on 0 ˆ W

with CptδUPFMu, λq “ λ ´ maxp0, λ ` ctδUPFMuq on 0 ˆ W.

(10)

For the primal-dual active set strategy, the condition CptδUPFMu, λq “ 0 on 0 ˆ W in Equation (10)

is replaced by tδUPFMu “ t0u when the x position is in the active set domain A and by λ “ 0 in the

inactive set domain I. These domains are defined for Newton iteration j P N˚

$

’

&

’

%

Active set domain: Aj “ tx |λjpxq ` ctδUPFMujpxq ą 0u

Inactive set domain: Ij “ tx |λjpxq ` ctδUPFMujpxq ď 0u.
(11)

The numerical solution consists in repeating for j P N˚ Equation (12) until there is no longer any

change of the active set domain Aj

$

’

’

’

’

&

’

’

’

’

%

@tZu P V ˆ W, pGtδUPFMuj`1, tZuq ` pλj`1, tZuq “ pF , tZuq

@µ P 0 ˆ W, ptδUPFMuj`1, µq “ 0 on Aj

λj`1 “ 0 on Ij .

(12)

The derivation of the governing complementarity system resulting in Equations (10) and (12) is ex-

tensively described in Ref. [36].

3 Williams’ series

This section provides details on Williams’ series, which is the analytical solution of a conventional

fracture mechanics problem [54]. A continuous medium Ω1 in the complex plane is considered. The

positions z P Ω1 are written in the Cartesian px, yq P R2 or polar coordinate pr, θq P R` ˆ r´π,`πs

systems.

3.1 Model and hypothesis

The material model and hypotheses are the same as in Ref. [54]. The medium Ω1 is considered as an

infinite plate in the complex plane except in the cracked region C1 “ tz “ x`iy P C, x P r´a, 0s, y “ 0u
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with a P R` being the length of the crack. The material is isotropic linear elastic in Ω1 “ CzC1. The

origin of the coordinate system (z “ 0) is at the tip of the crack, which propagates along a straight

path. The displacement field, defined for z P Ω1, reads Upzq “ Uxpzq ` iUypzq P C. The pi, jq

components of the stress tensor σ P R2ˆ2 are σij , and are also defined for z P Ω1. Because the material

is considered as linear elastic, the fields U and pσijqi,j“x or y are holomorphic in Ω1.

The medium is considered to be remotely controlled by uniaxial tension σ8
yy and in-plane shear

loading σ8
xy such that

lim
|z|Ñ`8

σyypzq “ σ8
yy ; lim

|z|Ñ`8
σxypzq “ σ8

xy ; lim
|z|Ñ`8

σxxpzq “ 0. (13)

Moreover, traction-free boundaries are assumed in the region of the crack C1

@z˘ P Ω1 with x ă 0 and y Ñ ˘0, σxypz˘q “ σyypz˘q “ 0. (14)

3.2 Definition of Williams’ series

Williams’ series [61] are based on the stress and displacement fields derived from the Muskhelishvili

and Kolosov potentials [49] in 2D elasticity. Williams’ displacement field UWS is written as

@z P Ω1, UWSpzq “

N1
ÿ

n“N0

“

γIn ¨ ΓI
npzq ` γIIn ¨ ΓII

n pzq
‰

, (15)

where, N0 P Z and N1 P N are the minimum and maximum orders that are taken into account

for truncated series. The influence of the chosen values is discussed in Section 3.3. The coefficients

tγInunPvN0, N1w and tγIIn unPvN0, N1w are called Williams’ series amplitudes, respectively in modes I and II.

The unitary displacement fields ΓI
n and ΓII

n corresponding to modes I and II, respectively, are defined

at order n P Z by

@z P Ω1,

$

’

&

’

%

ΓI
npzq “ rn{2

2µ
?
2π

´

κe
iθn
2 ´ n

2 e
iθp2´n

2 q `
`

n
2 ` p´1qn

˘

e´ inθ
2

¯

,

ΓII
n pzq “ irn{2

2µ
?
2π

´

κe
iθn
2 ` n

2 e
iθp2´n

2 q `
`

´n
2 ` p´1qn

˘

e´ inθ
2

¯

,
(16)

where µ ą 0 is the shear modulus of the undamaged material, and κ Kolosov’s parameter. Considering

plane strain conditions, the latter becomes κ “ 3 ´ 4ν.

3.3 Extraction of fracture mechanics parameters from Williams’ series

Let us consider a pure mode I crack propagation case. The displacement fields are called “supersin-

gular” when n ă 0 [24], and “subsingular” when n ě 0. The “supersingular” fields are of interest in

the present analysis. More specifically, let us focus on the case n “ ´1. To avoid a singularity of

the elastic energy at z “ 0, the displacement field at order n “ ´1 should reduce to zero provided

the crack tip is correctly positioned [24, 29]. Otherwise, it leads to a crack tip shift da defined from

Williams’ amplitudes γI´1 and γI1 as

da “ ´2
γI´1

γI1
. (17)
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The extent (i.e., diameter) of the Fracture Process Zone (FPZ) is proportional to

d2FPZ “ ´8
γI´3

γI1
. (18)

Last, the Stress Intensity Factors (SIFs) in modes I and II are obtained by

KI “ γI1 P R`, (19)

KII “ γII1 P R. (20)

The energy release rate G ě 0 is determined from KI and KII in plane strain hypothesis as

G “ p1 ´ ν2q
K2

I ` K2
II

E
. (21)

4 Post-processing phase-field displacement fields by Williams’ series

Phase-field models provide a regularized description of the development of damage in quasi-brittle

materials. Such a continuous description offers a numerical framework that can be merged into the

finite element method, and models quite well the fracture process zone observed experimentally in such

materials. Conversely, fracture mechanics explicitly describes displacement discontinuities observed

during crack propagation. The discontinuous description generally ignores the fracture process zone.

It is proposed to search for a kinematic equivalence between both analyses to provide the crack tip

positions for phase-field results in addition to equivalent fracture mechanics parameters.

4.1 Crack tip position

The phase-field displacement fields (Section 2) are post-processed via Williams’ series (Section 3) first

to determine the crack tip position. Two superimposed geometries are used (Figure 2). The first one,

Ω, is the structure of interest arbitrarily chosen by the user, with corresponding boundary conditions

and material behavior. The phase-field model is applied to compute the phase-field variable and

the displacement field in Ω. The second geometry with internal and external diameters di and de,

respectively, is called “pacman”. It belongs to the domain Ω1 defined in Section 3. It is chosen as a

consequence of Williams’ fields that are defined in polar coordinates (Section 3). The inner diameter

di is such that the “mouth” of the pacman excludes both the crack and the fracture process zone. The

crack tip corresponds to the center of the pacman.
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Figure 2: Domain for post-processing phase-field simulations using Williams’ series to determine

fracture mechanics parameters

Figure 3 gives an overview of the post-processing algorithm. The method starts with the phase-field

analysis of the structure of interest, which is solved for the whole time-space domain Ω ˆ p0, T q. The

distribution of the phase-field variable φ at the final time T is used to determine the inner diameter

di of the pacman such that its domain does not contain the phase-field region where φ ą 0.5 for any

time step (first assumption of the size of the FPZ). Once the pacman geometry has been defined, the

mesh for Williams’ series is generated and kept identical for the whole analyses.

The identification procedure begins by placing the pacman where the crack is expected to initiate

(e.g., for a notched beam, centering the pacman around the root of the notch). During the loading

history, the fracture process zone grows away from the initial notch. Consequently, the position of the

equivalent crack tip has to be determined and the pacman is moved. Knowing the crack tip location

for time tk, a loop aims to determine the crack tip location for time tk`1 (inner dashed rectangle in

Figure 3). It first calculates Williams’ amplitudes tγInuknPJN0,N1K (mode I) and tγIIn uknPJN0,N1K (mode II)

via least squares minimization between Williams’ displacement field UWS and that from the phase-

field model UPFM . From these amplitudes, the crack tip shift daj is estimated (Equation 17), the

pacman position is updated, and the process is iterated until the absolute value of daj becomes less

than dalim

aptk`1q “ aptkq `

m
ÿ

j“1

daj with dam ă dalim. (22)

The value of the critical crack tip shift dalim is chosen to be equal to 0.2hWmin, with hWmin the minimum

element size of the pacman mesh. Thus, contrary to Ref. [56], the algorithm iteratively tracks the

crack tip and translates the pacman to ensure that it is centered about the crack tip at each time

step. Once convergence has been reached for time tk, the tip position is determined for the following

time tk`1 through the iterative loop illustrated by the external dashed rectangle in Figure 3.
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Figure 3: Workflow of the global algorithm

4.2 Equivalent fracture mechanics parameters

Knowing the crack tip location and the associated Williams’ series for any time step, the equivalent

fracture mechanics parameters, namely, the energy release rate G, the stress intensity factors KI

and KII and the size of the fracture process zone dFPZ (Equation 18) are identified for any given

time step. It is worth noting that the present goal is not identifying the parameters used for the

phase-field model [38], but to extract equivalent fracture mechanics parameters. Further, the way the

energy is dissipated is different in both approaches [42]. Volume dissipation occurs using phase-field

models. Conversely, surface dissipation associated with the creation of new surfaces along the crack

is accounted for in fracture mechanics.

5 Application to a notched beam

The post-processing procedure (Section 4) is applied to a two-dimensional case, namely, a beam with

controlled notch opening displacement inspired by the crack tip opening displacement (CTOD) and

crack mouth opening displacement (CMOD) of three-point flexural tests on notched beams [6]. The

geometry of the beam is shown in Figure 4. The crack propagates by prescribing the Notch Opening

Displacement (NOD) δ between points A and B, i.e., the Dirichlet boundary conditions are chosen

as UDpA, tq “ ´δptqx{2 and UDpB, tq “ δptqx{2 with a constant speed 9δ “ 3 µm/s. To cancel

out rigid body motions, the displacement of point C is equal to 0, namely, the Dirichlet condition

UDpC, tq “ 0. Mathematically, the prescription of point values in a two-dimensional domain requires

sufficient regularity of the domain and the solution functions.
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Figure 4: Geometry of the beam, notch opening displacement δ between points A and B. The

simulations are run in a two-dimensional setting accounting for a constant thickness of W “ 100 mm

in the third dimension

The phase-field solutions are computed following Ref. [37]. Williams’ series are evaluated using

the Correli 3.0 library [41]. The data are exchanged between the two codes via Matlab scripts.

5.1 Phase-field simulations

The displacement fields for parameter identification, which is performed in Section 6, are delivered

by finite element simulations to solve the aforementioned phase-field model for brittle fracture. The

computations are performed on 5 different meshes, which are created by globally pre-refining an

initial mesh 2, 3, 4, 5 and 6 times. The number of global pre-refinements is denoted by Nref , and

the corresponding meshes are displayed in Figure 5. The phase-field material parameters are gathered

in Table 1, and the numerical parameters in Table 2. The minimum element size hmin describes the

minimum diagonal diameter over all elements of the mesh.

Table 1: Mechanical parameters of the notched beam

Parameter Value

Young’s modulus, E 21 GPa

Poisson’s ratio, ν 0.22

Critical energy release rate, Gc 25 J/m2

For rigorous computational convergence studies, the internal length ℓφ is usually chosen dependent

on hmin to satisfy Γ-convergence [2, 3, 14], see also a closely related work on image segmentation [10,

Section 3], and for phase-field fracture studies, the reader is referred to Refs. [26, 59, 60, 35]. In the

present case, ℓφ “ 16hmin, thus a unique relationship between ℓφ and hmin was prescribed. Such

dependence with factors, for instance, 2, 4, or 16 as here, is enforced in most published studies using

phase-field methods. This choice is made for phase-field fracture, but also phase-field methods used

in multiphase flow or material sciences (see references cited in Ref. [60, Section 5.5, Remark 40]).
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Table 2: Numerical parameters for the phase-field simulations using five different meshes (Figure 5)

Parameter Value

Minimum element size, hmin r2.3, 1.1, 0.55, 0.27, 0.14s mm

Internal length, ℓφ r36, 18, 8.8, 4.4, 2.2s mm

Bulk regularization parameter, ξ r2.3, 1.1, 0.55, 0.27, 0.14s ˆ 10´10

Newton lower bound, ρcr 10´6

Maximum number of Newton iterations, Nmax
it 50

Time step size, δt 10 ms

As incremental step size δt for the quasi-static simulations, δt “ 10 ms is chosen. Larger and

smaller time step sizes were also tested (Figure 15). The chosen one yielded the best results in terms

of accuracy and computation time.
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(a) NDOF “ 4, 370 ` 2, 185 “ 6, 555; hmin “ 2.3 mm

(b) NDOF “ 16, 930 ` 8, 465 “ 25, 395; hmin “ 1.1 mm

(c) NDOF “ 66, 626 ` 33, 313 “ 99, 939; hmin “ 0.55 mm

(d) NDOF “ 264, 322 ` 132, 161 “ 396, 483; hmin “ 0.27 mm

(d) NDOF “ 1, 052, 930 ` 526, 465 “ 1, 579, 395; hmin “ 0.14 mm

Figure 5: Beam meshes with (a) Nref “ 2, (b) Nref “ 3, (c) Nref “ 4, (d) Nref “ 5 and (e) Nref “ 6.

The total number of degrees of freedom NDOF of the finite element simulation is composed of the

degrees of freedom for the displacement and the phase-field variable. Since the displacement is a

2-dimensional field, there are 2 DOFs per displacement node, and 1 DOF per phase-field node
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Figure 6 shows the phase-field variable φ when t “ 50 s (i.e., for an NOD of 150 µm) for the

different meshes. The coarser the mesh, the larger the internal length ℓφ due to the dependence on

hmin. A larger internal length ℓφ leads to a more smeared damaged zone since the transition from

fracture to the non-broken material is larger. This is due to the gradient term inside the Ambrosio-

Tortorelli regularization functional [2, 3] as for bigger ℓφ this term dominates. These results show a

slightly asymmetric distribution of the phase-field variable concerning the y-direction, which implies

some asymmetries in the global results, such as for the displacement field in the x-direction (Figure 7).

This is the reason for working in the full domain, rather than considering one half-beam only. However,

these asymmetries are sufficiently small to assume the hypothesis of vertical crack propagation as a

straight line in the y-direction.

(a)

(b)

(c)

(d)

(e)

Figure 6: Phase-field variable φ field for an NOD of 150 µm for the meshes with various global pre-

refinements (Figure 5). (a) Nref “ 2, (b) Nref “ 3, (c) Nref “ 4, (d) Nref “ 5 and (e) Nref “ 6
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Figure 7 shows the displacement field in the x-direction after 50 s of loading (i.e., an NOD of

150 µm) for Nref “ 5. Very steep displacement gradients appear in one line of elements regardless of

the choice of Nref . The localization of the displacement field is a consequence of the choice of a very

small bulk regularization parameter ξ [33]. The effect of this parameter on the final output will be

studied in Section 5.3.4.

Figure 7: Horizontal displacement field Ux in the beam for an NOD of 150 µm and Nref “ 5

Figure 8 shows the change of the reaction force, which is obtained by evaluating the weak-form

gradient F (defined in Section 2.3) of the AT-1 energy functional (i.e., the so-called residual of the

coupled variational inequality system) by setting the test function to zero everywhere; except on those

Dirichlet boundaries, where one wants to evaluate the reaction forces. Consequently, as only two point

values were considered as Dirichlet nodes, the test function is set to one there and zero otherwise. The

ultimate levels are close for the different meshes. However, the higher the number of mesh refinements,

the more brittle the overall response. This trend is due to the fact that the internal length ℓφ decreases

and the brittle fracture Γ-limit is approached [11, 13].

Figure 8: Reaction forces for different global refinement levels (for a beam width W “ 100 mm)

5.2 Pacman meshes

Williams’ displacement fields are calculated on pacmen, which exclude the damaged region around the

crack path. Each pacman is thus defined by an outer radius re and an inner radius ri. Figure 9 shows

different pacman geometries with the corresponding meshes on which Williams’ series are computed

depending on the value of ℓφ. The value of re “ 30 mm is chosen to obtain an area of the pacman
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large enough to encompass the fracture process zone for the largest internal length but not too large

to avoid the edge of the beam as much as possible (see Section 5.3).

The inner radius is chosen according to the value of ℓφ such that the domain covered by the pacman

is always associated with a phase-field level φ ě 0.5. Therefore, the contour φ “ 0.5 is determined at

the last time step for each internal length. The value of ri corresponds to the smallest inner radius

for which the contour lies outside of the pacman. The change of the radius ri with ℓφ is shown in

Figure 9(e). The dependence of ri with ℓφ (Figure 9(e)) is approximated by a least-squares regression

leading to a coefficient of determination R2 “ 0.991, which indicates that an affine approximation is

consistent. The slope of the linear regression is 0.49. Thus, setting ri “ ℓφ{2 as the inner radius turns

out to be a very good choice. This observation is justified by the choice of the elliptic regularization

functionals [2, 3].

(a) (b) (c)

(d) (e) (f)

Figure 9: Pacman geometry and mesh adapted to the phase-field internal length ℓφ. (a) Pacman 1;

(b) Pacman 2; (c) Pacman 3; (d) Pacman 4; (f) Pacman 5. (e) Evolution of the inner radius of the

pacman with the value of the internal length ℓφ

The pacman mesh parameters (length scale, diameter, number of nodes, mean value of h, and

minimal value of h) are provided in Table 3 once the inner radius was determined (Figure 9(e)). Even

though the inner radius is significantly different for the five pacmen, the number of nodes to evaluate

Williams’ series and the mean element size are of the same order of magnitude.
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Table 3: Pacman mesh parameters. The inner radius ri is adapted to the value of ℓφ. Nnodes denotes

the number of nodes, hWmean and hWmin the mean and minimum element sizes, respectively. For triangular

elements, their size corresponds to the diameter of the circumscribed circle

Pacman # 1 2 3 4 5

ℓφ, mm 2.2 4.4 8.8 18 36

ri, mm 1.5 2.8 5.5 10.5 18

Nnodes 2,608 2,735 2,886 2,815 2,373

hWmean, mm 1.3 1.2 1.2 1.1 0.9

hWmin, µm 240 255 280 275 260

5.3 Convergence of Williams’ series applied to the phase-field solution

Using the fracture mechanics solution via Williams’ series requires choosing specific subsingular and

supersingular displacement fields. The values of the minimum and maximum orders are denoted by

N0 and N1 (Equation (16)). Figures 10 and 11 show the difference fields of respectively |UWS
x ´UPFM

x |

and |UWS
y ´ UPFM

y | when N0 “ ´3, N1 “ 9 for various time instants. These residuals are globally

very low compared to the amplitudes of phase-field displacements that reach up to 75 µm for the

displacement component in the x-direction (Figure 7).
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(a) (b)

(c) (d)

Figure 10: Residuals |UWS
x ´ UPFM

x | expressed in µm between the displacement fields in the x-

direction UWS
x from Williams’ series (N0 “ ´3, N1 “ 9, Pacman 2) and UPFM

x from the phase-field

model (ℓφ “ 4.4 mm and Nref “ 5). (a) t “ 15 s, (b) t “ 30 s, (c) t “ 40 s and (d) t “ 50 s

The pacman meshes are moved to the new crack tip location each time increment. Thus, the

pacman reaches the top edge of the beam at approximately 30 s, and the part of the mesh with no

results increases with time. Williams’ series are defined for an infinite medium Ω1 contrary to the

phase-field model defined inside the beam Ω. The free-edge conditions of the phase-field simulation

eventually lead to an increase in the residuals. However, they remain very small, thus the following

analyses are deemed trustworthy.
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(a) (b)

(c) (d)

Figure 11: Residuals |UWS
y ´ UPFM

y | expressed in µm between the displacement fields in the y-

direction UWS
y from Williams’ series (N0 “ ´3, N1 “ 9, Pacman 2) and UPFM

y from the phase-field

model (ℓφ “ 4.4 mm and Nref “ 5). (a) t “ 15 s, (b) t “ 30 s, (c) t “ 40 s and (d) t “ 50 s

5.3.1 Convergence of truncated Williams’ series

Figure 12 shows different results at 50 s from the least squares minimization of Williams’ series for the

different quantities of interest. For the three investigated parameters, it is observed that convergence

is ensured when N1 ě 9. Besides, given the mesh fineness, it is assumed that the choice N0 “ ´3 is

sufficient to get Williams’ amplitude of order ´3 to determine the size of the fracture process zone

(Equation (18)). As a result, in the following, N0 “ ´3 and N1 “ 9 are used.
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(a)

(b) (c)

Figure 12: Fracture mechanics parameters identified between the phase-field displacement field (ℓφ “

4.4 mm and Nref “ 5) and Williams’ displacement fields at t “ 50 s for different choices of N0 and N1

using Pacman 2 with Mesh M3 (Figure 13). (a) Crack length, (b) energy release rate and (c) RMS

displacement residuals

5.3.2 Convergence with respect to the pacman mesh

The convergence with respect to the pacman discretization is studied for an inner radius ri “ 2.8 mm

when ℓφ = 4.4 mm (i.e., Pacman 2). Williams’ displacement fields are constructed inside the pac-

man discretized with various meshes (i.e., M0, M1, M2 and M3) displayed in Figure 13, and whose

characteristics are gathered in Table 4.
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(a) M0 (b) M1

(c) M2 (d) M3

Figure 13: Meshes for convergence study for Pacman 2 (ri “ 2.8 mm and re “ 30 mm)

Table 4: Mesh characteristics for convergence studies for Pacman 2, where Nnodes denotes the number

of nodes, hWmean and hWmin the mean and minimum sizes of elements, respectively. For triangular

elements, their size corresponds to the diameter of the circumscribed circle

Mesh M0 M1 M2 M3

Nnodes 222 722 1,324 2,735

hWmean, mm 4.5 2.4 1.8 1.2

hWmin, µm 810 480 395 255

The influence of the mesh size of the pacman on the identification residuals, crack length, energy

release rate, and the size of the Fracture Process Zone (FPZ) is shown in Figure 14. Only very small

changes are observed. The RMS residuals (Figure 14(a)) have a level less than 0.15 µm at each time

step for any choice of pacman mesh. After t “ 30 s, the increase of the residuals is due to boundary

effects (Figures 10 and 11). However, because these residuals did not degrade too much, the results

after t “ 30 s are still considered reliable. In the following parts, the calculations will be carried out
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with the lowest possible residuals using the M3 discretization (Figure 13(d) and Table 4). It is worth

noting that the mesh used in Figures 10 and 11 was also M3.

(a) (b)

(c) (d)

Figure 14: Fracture mechanics quantities determined from the phase-field model (ℓφ “ 4.4 mm and

Nref “ 5) using Williams’ series (N0 “ ´3, N1 “ 9) with Pacman 2 and different meshes (Figure 13).

(a) RMS displacement residuals, (b) crack length, (c) energy release rate, and (d) size of the fracture

process zone (FPZ)

5.3.3 Influence of the time step size in the phase-field simulations

Figure 15 shows the histories of energy release rate G (computed with Equation (21)) and mode I

SIF KI (Equation (19)) based on different time step sizes used for the phase-field simulations. All

simulations are performed on the mesh and regularization parameters according to Nref “ 5. It is

observed that the time step size of the simulation influences the results. If the time step size is chosen

too large, the simulation fails in representing the brittleness of the material. Conversely, very small

time step sizes lead to unrealistic peaks when propagation starts. Additionally, the amount of data and

computation time become very large. The choice δt “ 10 ms yields satisfying results while keeping the

computational expense on a reasonable level. Thus, all the following results are based on δt “ 10 ms.
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(a) (b)

Figure 15: Identification of the energy release rate (a) and mode I stress intensity factor (b) for

different time step sizes of the finite element simulations with Nref “ 5

5.3.4 Influence of the bulk regularization parameter

The parameter ξ regularizes the bulk energy (Equation (4)) and influences the phase-field displace-

ments in the vicinity of the crack mouth. A very steep gradient of the displacements in the x-direction

along the crack path is observed for ξ “ 10´12 in Figure 16(a), which implies strongly localized strain

fields. This strained region becomes shallower with an increase of the bulk regularization parameter

ξ “ 10´2 (Figure 16)(b)).

(a) (b)

Figure 16: Influence of the bulk regularization parameter ξ on the phase-field displacement field in

the x-direction when t “ 50 s with ℓφ “ 4.4 mm on a mesh with Nref “ 5. Only the zone close to the

notch (i.e., from 310 mm to 450 mm in the x-direction) is shown for the sake of legibility. (a) ξ “ 10´12

and (b) ξ “ 10´2

It may be anticipated that with a smoother displacement field, the identification results differ.

Figure 17 shows the effect of ξ on the equivalent fracture mechanics parameters. The low RMS
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displacement residuals, when ξ ď 10´5 (Figure 17(a)) show that the regularization parameter does

not affect the levels of equivalent fracture parameters. Besides, the value of ξ does not influence the

crack length and energy release rate histories (Figures 17(b,c)) when ξ ď 10´5. This observation also

applies to the FPZ size (Figures 17(d)).

Large values of ξ reduce the crack length in the remainder of the test. Because the crack length is

bigger for smaller values of ξ, the pacman reaches the top edge of the beam earlier than in the other

cases, which means that the boundary effect (Section 5.3) occurs earlier. This effect is visible in the

RMS displacement residuals displayed in Figure 17(a). The FPZ size (Figure 17(d)) is also affected; it

decreases when ξ becomes small. It is concluded that the boundary effect from the phase-field model

tends to reduce the size of the FPZ. One may also note that the size of the FPZ does not increase

farther than the inner radius ri of the pacman, which validates the choice of the pacman geometry.

(a) (b)

(c) (d)

Figure 17: Influence of the regularization parameter ξ on the fracture parameters identified from

phase-field calculations with ℓφ “ 4.4 mm and Nref “ 5 using Williams’ series with Pacman 2 and

mesh M3 with N0 “ ´3 and N1 “ 9. (a) RMS displacement residuals, (b) crack length, (c) energy

release rate, (d) size of the FPZ

The selection for the following analyses corresponds to FE simulations with δt “ 10 ms and ξ

equal to 10´10. The phase-field simulation parameters are also gathered in Table 2. For the fracture

mechanics analyses, Pacmen 2-6 (depending on ℓφ) are used with refinements according to mesh M3.
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6 Extracting fracture mechanics parameters

The algorithm displayed in Figure 3 is first used to locate the crack tip. Williams’ amplitudes γn

(Equation (16)) are determined by minimizing the least square differences between Williams’ solution

and the phase-field displacement fields. The crack path is considered as a straight vertical line ema-

nating from the middle of the notch root. Besides the crack length, this section further studies the

equivalent energy release rate, stress intensity factors, and FPZ sizes. The results are reported for

the five pacman meshes due to the different finite element meshes related to the internal length ℓφ

(Table 2).

Figure 18(a) shows the RMS displacement residuals obtained from the least squares minimization

with respect to the number of mesh refinements. The residuals corresponding to 2 or 3 refinements

are significantly higher than those obtained with more refinements. Conversely, the residuals for 4 to

6 refinements are close and reach very low levels. The residuals increase suddenly at the beginning

of crack propagation (ca. t “ 22 ´ 24 s). Then, they decrease a bit before increasing again but more

progressively. Before crack propagation, the smallest residuals are obtained for the smallest internal

lengths. As the number of refinements increases, the residuals converge to very low levels. The

highest residuals observed for the final time step remain very low (i.e., less than 0.15 µm for 4 to 6

mesh refinements) in comparison to the displacement amplitudes (i.e., 75 µm for the final propagation

step). This result validates the proposed equivalence between phase-field simulations and the fracture

mechanics kinematics away from the fracture process zone, especially for the smallest internal lengths.

Figure 18(b) displays the history of crack lengths aptq for each mesh. The number of mesh pre-

refinements has a clear influence on the results. This observation was expected given the global

response of the structure (Figure 8). The value of ℓφ has a small effect on the maximum crack length

that tends to « 4 cm when ℓφ ď 8.8 mm. The crack propagation onset is observed when the crack

length increases quickly (i.e., ca. t ě 20 s). The crack propagation onset time depends on the internal

length ℓφ (between 20 s and 25 s); there is no clear trend between ℓφ and the onset of propagation.

After a fast increase, the velocity of the crack gradually decreases. This observation means that

propagation can be decomposed into fast followed by slow stages. Even though the NOD is controlled,

it did not prevent fast crack growth from occurring at the onset of propagation.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Identification results from phase-field simulations using meshes with 2, 3, 4, 5 or 6 pre-

refinements (i.e., different internal lengths and corresponding pacman geometries, see Figure 9).

(a) RMS displacement residuals, (b) crack length, (c) energy release rate, (d) mode I stress inten-

sity factor, (e) mode II stress intensity, and (f) fracture process zone size as functions of time

In Figure 18(c), the histories of equivalent energy release rates are shown for each number of

mesh refinements (and thus different internal lengths). The evolution of G vs. time converges as the

number of refinements increases. A first increase of G is observed until crack propagation occurs

(when t « 20 ´ 25 s) where G falls off. This event coincides with the fast crack growth observed in

Figure 18(b). Then, G slightly increases again with time when the crack propagates on. The smaller

the internal length, the steadier the energy release rate after the onset of propagation (and closer

to the reference level, namely, 25 J/m2). When the meshes are too coarse (i.e., using only 2 or 3
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refinements) the energy release rate remains farther away from the lower bound observed for 5 and 6

refinements.

Figure 18(d,e) displays the SIF histories for modes I (KI) and II (KII). As expected, the levels of

KII are negligible compared to KI for converged results. As for the previous variables, Figure 18(d)

also illustrates the convergence of KI with the number of mesh refinements for the phase-field model

beyond the onset of propagation. The evolution of the stress intensity factor in mode I follows the

same pattern as that of the equivalent energy release rate (Figure 18(c)). This result is expected

with negligible mode II contributions (Figure 18(e)), as the SIF KI then is proportional to the square

root of the energy release rate G. For KII , the trend is also clear regarding convergence for different

pre-refinements. For the finest refinements (i.e., lowest internal lengths), the offsets to the zero level

(i.e., pure mode I) are lower.

The last parameter is the FPZ size indicator expressed by Equation (18)(Figure 18(f)). The FPZ

size history is composed of two stages. First, before the crack propagates, there is a gradual increase

related to the development of the damaged area around the notch root. In the second period when

propagation occurs, different trends are observed depending on the mesh refinement. The FPZ size

is stable, but slightly decreases over time when its extent becomes large and the pacmen reach the

top edge of the beam. The FPZ size depends on the internal length ℓφ. The smaller the internal

length, the smaller the FPZ size. For the coarser mesh, the FPZ size further increases after the onset

of propagation. This trend is not found for the other four meshes.

The minimum energy release rate and SIF after propagation onset are reported in Figure 19.

These levels depend on ℓφ and range from 34 J/m2 and 0.85 MPa
?
m for ℓφ “ 36 mm to 25.5 J/m2

and 0.75 MPa
?
m when ℓφ “ 2.2 mm, which is very close to the levels associated with a brittle

material (i.e., 25 J/m2 and 0.74 MPa
?
m). It is observed that the mode I SIF linearly depends on

ℓφ (Figure 19(b)), and thus the energy release rate follows a quadratic evolution (Figure 19(a)). The

coefficients of determination for the two regressions are R2 “ 0.997 (Figure 19(b)) and R2 “ 0.998

(Figure 19(a)), which indicate that both approximations are consistent with the corresponding data.

(a) (b)

Figure 19: (a) Energy release rate and (b) mode I stress intensity factor as functions of the internal

length of the phase-field model. The solid lines depict quadratic and linear regressions, respectively.

27



As shown in Figure 9(e), the inner radius of the pacmen was selected to exclude the FPZ. Fig-

ure 20(a) shows a comparison between their inner radius and the maximum FPZ size obtained using

Williams’ amplitudes (Equation (18)). The results validate the hypothesis that the pacman meshes

lay outside of the FPZ (i.e., the FPZ size was always less than the inner radius). Hence, isotropic

linear elasticity is applicable in the region covered by the pacman. Good consistency is reached be-

tween Williams’ displacement fields and phase-field outputs in this region (i.e., very low residuals in

the least squares minimization (Figure 18(a))). Figure 20(b) shows the change of the maximum FPZ

size with the internal length ℓφ. The convergence with mesh refinements is excellent. The value of

ℓφ affects, by construction, the extent of the region where φ ă 1, and a linear trend is observed. For

Figure 20(a), the determination coefficient is given by R2 “ 0.989 and the slope is equal to 0.66. For

Figure 20(b), R2 “ 0.996 and the slope is 0.32. This last result shows that the estimator dFPZ of the

FPZ size extracted from the mode I supersingular field of order ´3 (Equation (18)) is linearly related

to the internal length ℓφ. These results further validate this estimator that was initially introduced

for the analysis of an elastoplastic medium containing a crack [29].

(a) (b)

Figure 20: Maximum FPZ size identified over time from the phase-field results on meshes with 2, 3, 4,

5 or 6 pre-refinements for (a) different inner radii ri of the pacmen and (b) different internal lengths

ℓφ for the phase-field model

Last, the value of the phase-field variable at the crack tip is investigated using Williams’ series

results. The underlying question is whether a constant value of φ may be used as a simple criterion to

locate the crack tip. The crack tip is not encoded in phase-field modeling and is estimated using ap-

proximations [17]. The analyses are based on meshes with five refinements (Figure 5). Williams’ series

give access to the crack tip positions and thus crack length (Figure 18(b)). The small displacement

residuals (Figure 18(a)) give confidence in the previous estimates.

The phase-field variable is calculated at the estimated crack tip position (Figure 21(a)). The

position of the crack tip is illustrated in Figure 21(b) and changes at every time step. The histories

of the phase-field level at the crack tip are shown for all internal lengths ℓφ. Two parts in the curves

are distinguished. The first part is before crack propagation. The choice of ℓφ has a limited influence
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on the value of φ at the crack tip. After t « 20 s, the crack propagates. The value of φ at the crack

tip slightly decreases with time for small internal lengths. The value of φ at the crack tip depends on

the value of ℓφ. The lower ℓφ, the higher the phase-field value at the estimated crack tip position.

(a) (b)

Figure 21: (a) Phase-field variable identified over time at the estimated crack tip position from phase-

field results on meshes with different refinements. (b) Schematic view of the crack, the crack tip and

the FPZ

In Figure 22(a), the changes with time of the phase-field value φ at the top point of the FPZ

(vertical distance to the crack tip equal to dFPZ{2, see Figure 21(b)) have similar overall changes

for all internal lengths. The values depend on ℓφ. Figure 22(b) illustrates the effect of ℓφ on the

mean value of φ at the identified crack tip at propagation onset (i.e., between t “ 25 s and 30 s).

The number of mesh refinements for the phase-field model has a strong influence on the results, and

considering all meshes, the mean value of the phase-field converged for the last two refinements. The

average phase-field value during propagation decreases according to the chosen value of the internal

length. Therefore, the FPZ estimator cannot be obtained with any fixed value of φ.
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(a) (b)

Figure 22: Phase-field values within the FPZ. (a) Phase-field value at the top of the FPZ (Figure 21(b))

as a function of time for different internal lengths. (b) Average phase-field value between t “ 25 s and

t “ 30 s

7 Discussion

In this part, a discussion is provided about the main findings of the previous sections. Considering the

notched beam, phase-field simulations were run with different meshes using uniform refinements with

up to 1.5 million degrees of freedom. Even though the present implementations allow for local mesh

refinements, it was decided to use uniform meshes to avoid the influence of different mesh levels and

element sizes on the pacman of the post-processing methodology. In line with other studies [13, 56,

25, 64, 20], the internal length ℓφ was kept proportional to the minimum mesh size hmin by prescribing

ℓφ “ chmin with c “ 16. Variations were shown in other studies [26, 59, 27] (with different goals

though).

Concerning the post-processing step with Williams’ series, the unitary fields were constructed on

a pacman geometry. The design of the pacman mesh is an important aspect of the analyses reported

herein. The choice of inner radius was made a priori to ensure that the pacmen did not contain the

FPZ. It was checked a posteriori that it was consistent with estimates of the FPZ size. The outer

radius was selected to remain small enough to avoid edge effects as much as possible. Once the external

radius was selected, the next step was to choose the truncation of Williams’ series. The choice of the

lower bound N0 was dictated by the fact that n “ ´3 allows for an estimate of the FPZ size [29].

The upper bound N1 was determined by performing a convergence study in terms of the crack length,

energy release rate, and displacement residuals. Last, the level of discretization for the pacman mesh

had a very limited effect on the residuals and all extracted fracture mechanics parameters.

One key novelty was the determination of crack tip positions. In the present analyses, it was

based on the use of the first supersingular field as performed in digital image correlation analyses [24].

This approach differs from that proposed by Yoshioka et al. [64], which was based on surface energy

equivalence. It was also shown herein that a simple criterion based on the phase-field variable could

not be used to determine the crack tip position. It was not independent of time for a given internal
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length and depended on the internal length.

Once the crack tip position was obtained, equivalent fracture mechanics parameters were de-

termined for different internal lengths. Five mesh refinements proved sufficient in terms of RMS

displacement residuals, which remained very low compared to the displacement amplitudes. This

observation validated the use of Williams’ series to analyze phase-field displacements in the vicinity

(but outside) of the damaged zone. The levels of equivalent fracture energy and toughness were higher

than the value used in the phase-field model, except for very small internal lengths. This trend was

expected [13, 56, 64] as the energy is dissipated over a larger domain (i.e., the fracture process zone)

than the equivalent crack surface. With the present framework, an estimate of the FPZ size was also

possible. It was shown that it was linearly related to the internal length.

It was observed that the quality of the fracture mechanics parameter identification depended on the

mesh size of the finite element mesh, and to a lesser degree on the pacman mesh. For the phase-field

simulation meshes, one has to deal with discretization and regularization errors. On the one hand,

the discretization errors increase as the element size increases. On the other hand, due to the hmin

dependence on ℓφ, the regularization error increases as well, which yields a smeared damage pattern.

Depending on how coarse the mesh is chosen, the regularization error may lead to biased phase-field

simulation results as a starting point for the post-processing analysis. To ensure an accurate parameter

identification using the introduced method requires sufficiently fine finite element meshes. Such results

could obtained with a newly developed parallel matrix-free geometric multigrid preconditioner in order

to cope with the computational cost. At the same time, the present findings indicate that care must be

taken when too coarse meshes are utilized in phase-field fracture analyses as the accuracy of quantities

of interest may be too low to be meaningful (Figure 18).

8 Conclusions

This work proposed a post-processing scheme for evaluating equivalent fracture mechanics parameters

from phase-field simulations. Specifically, the phase-field transition zone (aka. fracture process zone)

induces some challenges, in particular, the estimation of crack tip positions. To this end, Williams’

series were employed to compute crack tip positions and other fracture mechanics quantities of interest

such as energy release rate, stress intensity factors, and size of fracture process zones.

A quasi-static phase-field model was run for simulating crack initiation from a notch and propa-

gation in quasi-brittle materials. A modern implementation with an efficient matrix-free geometric

multigrid preconditioner of a combined active set Newton-GMRES method was used. This solver al-

lowed multiple mesh levels to be investigated with (very) detailed computational convergence studies.

The use of regularization led to the development of fracture process zones. Analyses were performed

with different element sizes to evaluate the influence of the finite element discretization. Via least

squares minimization, the simulated displacement fields were then projected onto Williams’ basis

written in a linear elastic fracture mechanics framework. Williams’ series were assessed in pacman-

like regions designed to exclude a first guess of the fracture process zone extent. The pacman was

moved until being centered about the crack tip by canceling out the amplitude associated with the first
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supersingular displacement field of Williams’ series. The residuals between the displacement fields of

the phase-field simulations and Williams’ series were very small, which validated the proposed bridge.

The size of the fracture process zone was also determined. When based on the third supersingular

Williams’ field, it was shown that the estimator of the fracture process zone size was linearly corre-

lated to the internal length of the phase-field model. Other parameters such as stress intensity factors

and equivalent energy release rates were estimated as well. The influence of the pacman size and

mesh density was studied and convergence was shown in terms of extracted parameters. They were

complemented with temporal computational convergence studies in which a clear dependence on the

choice of the time step sizes became visible.

The influence of the internal length was discussed as it directly determines the phase-field transition

zone. The choice of the internal length directly affected the identified equivalent fracture mechanics

parameters such as the onset of crack propagation, the energy release rate, the stress intensity factor

and the size of the fracture process zone. As the internal length was decreased (and the element size

accordingly), the previous quantities converged toward the brittle material limit. The internal length

changed the level of the phase-field variable at the estimated crack tip positions, which shows that

estimating the crack tip position from phase-field contours is not very reliable.
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