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Viscosity estimation for 2D pipe flows I.

Construction, consistency, asymptotic normality

Thi Hien Nguyen∗ Armen Shirikyan†

Abstract

We consider the motion of incompressible viscous fluid in a rectan-
gle, imposing the periodicity condition in one direction and the no-slip
boundary condition in the other. Assuming that the flow is subject to an
external random force, white in time and regular in space, we construct
an estimator ν̂t for the viscosity ν using only observations of the L2 norm
of the vorticity on the time interval [0, t]. The goal of the paper is to
investigate the asymptotic properties of ν̂t as t → +∞. It is proved that
the estimator ν̂t is strongly consistent and asymptotically normal. The
proof of consistency is based on the explicit formula for the estimator and
some bounds for trajectories, while that of asymptotic normality uses in
addition mixing properties of the Navier–Stokes flow.
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1 Introduction

The problem of estimation of viscosity in a fluid flow arises in various applica-
tions. For instance, the paper [ZYZM17] describes the importance of calculating
viscosity in oil-water emulsion widely used in crude oil production and trans-
portation. In [DIG16], the authors argue that a real-time control of viscosity
may be used for increasing the efficiency of combustion in a fuel power plant.
There are many types of devices for measuring the viscosity of a fluid, and we
refer the reader to the papers [BS03, BKES18] that describe some of them used
in the oil industry. The aim of this paper is to justify theoretically the possi-
bility of measuring fluid viscosity based on observations of a one-dimensional
functional (not using the temperature and pressure) on relatively short time in-
tervals. A natural mathematical model for this type of problem would have been
the three-dimensional Navier–Stokes system in a cylindrical domain, with the
hypothesis that the flow stabilises to a constant velocity at infinity. However,
mathematical investigation of this problem is highly complicated due to the ab-
sence of global well-posedness of the PDE in question and the unboundedness
of the physical domain. Hence, we make two simplifications: the problem is
studied in a two-dimensional strip, assuming the periodicity in the unbounded
direction.

We thus consider the 2D Navier–Stokes system in the domain

D = {x = (x1, x2) ∈ R
2 : −1 < x2 < 1},

imposing the no-slip condition on the boundary and the periodicity condition
in the horizontal direction:

∂tu+ 〈u,∇〉u − ν∆u+∇p = η(t, x), div u = 0, (1.1)

u
∣∣
x2=±1

= 0, θau ≡ u. (1.2)

Here ν > 0 is the viscosity, (u, p) are the unknown velocity and pressure, η is
an external force whose exact form is specified below, and θa is a translation
operator in x1 taking a function v(x1, x2) to v(x1 + a, x2). In what follows,
with a slight abuse of notation, we write D for the direct product of the circle
Ta := R/(aZ) and the interval (−1, 1), so that any function defined on D is
a-periodic with respect to x1. Concerning the right-hand side η, we assume
that it is a spatially regular white noise:

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∞∑

j=1

bjβj(t)ej(x), (1.3)

2



where {ej} is an orthonormal basis consisting of the eigenfunctions of the Stokes
operator in D (see Section 2.2 for details), {βj} are independent standard Brow-
nian motions, and {bj} is a sequence of non-negative numbers going to zero
sufficiently fast. We denote

B :=
∞∑

j=1

b2j (1.4)

and emphasise that the number B can be arbitrarily small, so that there is no
restriction on the average size of the noise in (1.1).

It is well known that problem (1.1), (1.3) generates a Feller-continuous
Markov process in an appropriate function space (see Section 15.2 in [DZ96]
or Section 2.4 in [KS12]), and we denote by u(t) its trajectories, which are
vector functions with two components (u1, u2). For any t > 0, let us set

ν̂t =
Bt

2

(∫ t

0

‖∇u(s)‖2ds
)−1

, (1.5)

where ∇u stands for the 2 × 2 matrix (∂iuj), and ‖ · ‖ denotes the L2 norm
over D. The following theorem is the main result of this paper; see Section 2.2
for an exact formulation.

Main Theorem. Let B > 0. Then the properties below hold for trajectories of

the stochastic Navier–Stokes system (1.1), (1.2) with arbitrary ν > 0 and a > 0.

Correctness. The estimator ν̂t is well defined for almost every realisation of the

noise.

Consistency. For any ε > 0, the difference ν̂t−ν almost surely converges to zero

with the rate t−
1

2
+ε.

Asymptotic normality. Suppose, in addition, that bj > 0 for all j ≥ 1. Then,

for any ε > 0, the random variables
√
t (ν̂t − ν) converge weakly, with the

rate t−
1

4
+ε, to the centred normal law with some variance σ2

ν > 0.

Let us mention that the problem of estimation of a drift parameter in finite-
dimensional diffusion processes is rather well understood. We refer the reader
to Chapter III in [IH81] and Chapter 2 in [Kut04] for various results on this
subject. The parameter estimation for infinite-dimensional diffusions usually
requires rather strong hypotheses on the diffusion operator. In the case of linear
SPDEs, this type of problems were studied in the papers [HKR93, HR95, LR99]
(see also the book [RL17] for more references), which are devoted to the inves-
tigation of MLEs based on finite-dimensional observations. Roughly speaking,
those papers establish the consistency and asymptotic normality of the estimator
as the dimension of observations goes to infinity. The case of the Navier–Stokes
system and some other parabolic SPDEs were studied in [CG11, Cia18, PS20].
Using again finite-dimensional observations of solutions on a fixed time interval,
some MLE-type estimators are constructed and their consistency and asymp-
totic normality are proved as the dimension goes to infinity. The setting of this
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paper differs from that used in the above-mentioned works in two respects dic-
tated by the applications discussed at the beginning of the introduction: first,
we are interested in a viscosity estimator based on a fixed scalar observable and,
second, we deal with a noise that is regular in the space variables. The latter
makes it impossible to use the MLE-type estimators because the measures aris-
ing in the space of trajectories for different values of viscosity are likely to be
singular and the very definition of MLE is far from being simple.

In conclusion, we note that a natural question in the context of the viscosity
estimation is a detailed description of probabilities of deviations of the esti-
mator ν̂t from its limiting value ν. That problem requires somewhat different
techniques coming from the theory of large deviations and will be addressed in
the second part of this project.

The paper is organised as follows. In Section 2, we give an exact formulation
of the main results and outline the scheme of their proofs. Section 3 is devoted
to the proof of the (strong) consistency of ν̂t. In Section 4, we establish the
asymptotic normality of ν̂t.

Acknowledgments
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Notation

As was mentioned before, we write D = Ta × (−1, 1), where Ta is a circle of
length a, and assume that all the functions defined on D are a-periodic with
respect to the variable x1. Given a separable Banach space X and a closed
interval J ⊂ R, we write Cb(J,X) for the space of bounded continuous functions
f : J → X and Lp(J,X) for the space of Borel-measurable functions f : J → X
such that

‖f‖Lp(J,X) :=

(∫

J

‖f(t)‖pXdt

)1/p

< ∞,

with the usual modification for p = ∞. We often use the following function
spaces arising in the theory of the Navier–Stokes system.

• Lp(D) is the usual Lebesgue space over the domain D. We use the same
symbol for spaces of vector and scalar functions and write (·, ·) for the L2

inner product.

• Hs(D) is the Sobolev space of order s ∈ Z on D. For s ≥ 1, we denote
by Hs

0(D) the closure of C∞
0 (D) in Hs(D).

• H is the space of divergence-free vector fields u : D → R
2 that belong

to L2(D) and whose second component vanishes on the boundary ∂D.

• V is the intersection of H and H1
0 (D).
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• We write ‖ · ‖ for the L2 norm and ‖ · ‖s for the Hs norm. For all other
spaces, the norm will be specified by an appropriate subscript (e.g., ‖·‖Lp).

For any κ > 0, we write wκ : H → R for the function wκ(u) = exp(κν‖v‖2).
Given a Polish space X , we denote by B(X) its Borel σ-algebra and by P(X)
the set of probability measures on (X,B(X)). If µ ∈ P(X) and f : X → R is a
µ-integrable function, then we write 〈f, µ〉 for the integral of f against µ.

2 Main results

2.1 Setting and construction of estimator

Let us denote by H the space of vector fields u = (u1, u2) ∈ L2(D,R2) such that
div u = 0 in D and u2 = 0 on the horizontal boundary of D and introduce the
space V = H ∩H1

0 . We write Π : L2(D,R2) → H for the orthogonal projection
to H . Let us recall that the Stokes operator defined formally by the formula
L = −Π∆ is a positive self-adjoint operator with the domain D(L) := V ∩H2.
It is well known that L has a discrete spectrum, and we denote by {ej} an or-
thonormal basis in H composed of the eigenfunctions of L with eigenvalues {αj}
indexed in the increasing order. Applying Π to the Navier–Stokes system (1.1)
and recalling that η has the form (1.3), we derive the following (nonlocal) SPDE

∂tu+ νLu+B(u) = η(t), (2.1)

where B(u) = Π((u1∂1 + u2∂2)u). The Cauchy problem for (2.1) is well posed,
so that for any u0 ∈ H there is a unique solution u(t, x) whose almost every
trajectory belongs to the space

H := L2
loc(R+, V ) ∩ C(R+, H)

and satisfies the initial condition

u(0) = u0. (2.2)

Moreover, the family of solutions corresponding to all possible initial conditions
u0 ∈ H form a Markov process, which is denoted by (ut,Pu0

). Here, ut = ut(ω)
stands for the trajectory and Pu0

denotes the probability associated with the
initial condition u0 ∈ H . If λ ∈ P(H), then we denote by Pλ the probability
associated with the initial measure λ,

Pλ(·) =
∫

H

Pv(·)λ(dv),

and write Eλ for the corresponding expectation. We refer the reader to the
books [DZ96, Chapter 15] and [KS12, Chapter 2] for further details and proofs.

The derivation of estimator (1.5) is based on an application of the Itô for-
mula. More precisely, applying the Itô formula to the L2 norm of a solution, we
derive

‖u(t)‖2 + 2ν

∫ t

0

‖∇u(s)‖2ds = ‖u0‖2 +Bt+ 2

∫ t

0

(
u(s), dζ(s)

)
, (2.3)
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where B is defined by (1.4); see [VF88, Section X.4] or [KS12, Section 2.4].
Dividing both sides of (2.3) by 2νt and rearranging the terms, we obtain

ξt :=
1

t

∫ t

0

‖∇u(s)‖2ds = B

2ν
+

1

2νt

(
‖u0‖2 − ‖u(t)‖2

)
+

1

νt

∫ t

0

(
u(s), dζ(s)

)
.

(2.4)
The right-most term in (2.4) is likely to converge to B

2ν due to a priori estimates
for solutions and law of large numbers for zero-mean martingales. It is therefore
natural to define an estimator for ν by the formula ν̂t =

B
2ξt

. This expression

coincides with (1.5). The following result shows that ν̂t is well defined.

Proposition 2.1. Let B > 0. Then, for any u0 ∈ H, there is a set of full measure

Ω∗ ⊂ Ω such that, for any ω ∈ Ω∗, we have ξt > 0 for all t > 0. In particular,

with probability 1, the estimator ν̂t is well defined for all t > 0.

Proof. Since tξt is an increasing function of t ≥ 0, and u ∈ H with probability 1,
it suffices to prove that, for any t > 0, we have

P
(
{ξt = 0} ∩ {u ∈ H}

)
= 0. (2.5)

Let ω ∈ Ω be such that u ∈ H and ξt = 0. Then ∇u(s) = 0 for almost every
s ∈ [0, t]. Since u(s) ∈ V almost everywhere and u is a continuous function
of time with range in H , we conclude that u(s) = 0 for s ∈ [0, t]. It follows
from (2.1) that η(s) = 0 for s ∈ [0, t]. Since B > 0, there is an integer j ≥ 1
such that βj(s) = 0 for s ∈ [0, t]. This event has probability zero, so that we
arrive at (2.5).

2.2 Statement of the results

To formulate our main results, we briefly recall some definitions. Let P(R) be
the space of Borel probability measures on R and let Nσ ∈ P(R) be the centered
normal law with variance σ2. For a random variable ξ, we write D(ξ) for its
law.

Definition 2.2. We shall say that the estimator ν̂t for ν is:

• strongly consistent if

Pu

{
ν̂t → ν as t → ∞

}
= 1 for any u ∈ H and ν > 0;

• asymptotically normal if for any ν > 0 there is σν > 0 such that

D
(√

t(ν̂t − ν)
)
⇀ Nσν as t → ∞ for any u ∈ H,

where the convergence holds in the weak topology of P(R).

In what follows, we shall always assume that the number B defined in (1.4) is
finite and strictly positive. The following two results give the precise statement
of the Main Theorem formulated in the Introduction.
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Theorem 2.3 (Strong consistency). For any ν ∈ (0, 1] and ε ∈ (0, 12 ), there is a

random time T ≥ 1 such that

|ν̂t − ν| ≤ t−
1

2
+ε for t ≥ T . (2.6)

Moreover, there is a number κ > 0 not depending on ν and ε such that, for any

integer m ≥ 1 and any initial measure λ ∈ P(H), we have

EλT
m ≤ Cm〈wκ , λ〉, (2.7)

where wκ(v) = exp(κν‖v‖2), and Cm > 0 is a number depending on ν and ε.
In particular, the estimator ν̂t is strongly consistent.

Let us emphasise that, in Theorem 2.3, we only assume that B > 0, without
requiring the positivity of all the coefficients bj . In particular, the Markov
process associated with (2.1) does not need to be mixing. The latter property
is, however, important in the proof of asymptotic normality. Let us denote
by Φσ the distribution function of the centred normal law with variance σ2 > 0.

Theorem 2.4 (Asymptotic normality). In addition to the above hypotheses, let

us assume that bj > 0 for any j ≥ 1. Then there is a constant σν > 0 depending

only on ν ∈ (0, 1] such that, for any number ε > 0 and an appropriate increasing

function Cε : R+ → R+, we have

sup
z∈R

∣∣Pλ

{√
t
(
ν̂t − ν

)
≤ z

}
− Φσν (z)

∣∣ ≤ Cε

(
〈wκ , λ〉

)
t−

1

4
+ε, (2.8)

where t ≥ 1 is arbitrary, λ ∈ P(H) is the law of the initial state, and the

number κ > 0 does not depend on ν, λ, and ε. In particular, the estimator ν̂t
is asymptotically normal.

These two theorems are established in Sections 3 and 4. Here we present the
main ideas of their proofs.

2.3 Scheme of the proofs

Consistency

Let us recall that the random process ξt is defined by (2.4), so that ν̂t =
B
2ξt

. It
follows that

|ν̂t − ν| = ν

ξt

∣∣∣∣ξt −
B

2ν

∣∣∣∣. (2.9)

We see that the required convergence will be established if we prove that the
expression |ξt − (2ν)−1B| does not exceed t−

1

2
+ε for t ≥ T , where T = Tε,ν > 0

is a random time all of whose moments are finite. Setting Mt =
∫ t

0
(u(s), dζ(s)),

we can write ∣∣∣∣ξt −
B

2ν

∣∣∣∣ ≤
1

2νt
‖u0‖2 +

1

2νt
‖u(t)‖2 + 1

νt
|Mt|.

The fact that the first two terms are bounded by t−
1

2
+ε follows from a priori

estimates for solutions. The last term will be treated with the help of a technique
based on estimates of moments; cf. [Lam96, Section 12].
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Asymptotic normality

A well-known consequence of Slutsky’s theorem (see [JP03]) is that the property
of asymptotic normality is preserved under smooth maps. In Section 4.1, we
prove a version of that result with an explicit estimate for the rate of conver-
gence. This and the explicit form of the estimator (1.5) reduce (2.8) to the proof
of the inequality

sup
z∈R

∣∣Pλ

{√
t
(
ξt − (2ν)−1B

)
≤ z

}
− Φσν (z)

∣∣ ≤ C̃ε

(
〈wκ , λ〉

)
t−

1

4
+ε, (2.10)

where C̃ε : R+ → R+ is an increasing function. Recalling (2.4), we see that
ξt − (2ν)−1B differs from the time-average of a martingale by a negligible
term. Various results on the CLT for discrete-time martingales are presented
in [HH80]. In particular, as is proved in [HH80, Section 3.5], the CLT for mar-
tingales can be reduced to the law of large numbers for the conditional variance.
The latter will be established with the help of the mixing property of the flow.

3 Consistency

In this section, we establish the strong consistency of the estimator ν̂t. To this
end, we shall need two auxiliary results that are discussed in the next subsection.
We always assume that the hypotheses of Theorem 2.3 are fulfilled.

3.1 Auxiliary results

In what follows, we assume that the numbers bj entering (1.3) are fixed and do
not follow the dependence of unessential constants on them. Let us denote by
α1 > 0 the smallest eigenvalue of the Stokes operator L and define

γ =
1

4
α1

(
sup
j≥1

b2j

)−1

.

The following result follows from Proposition 2.4.10 in [KS12].

Proposition 3.1. For any numbers ν ∈ (0, 1], ρ > 0 and any H-valued random

initial condition u0 such that E ‖u0‖2 < ∞, the solution of problem (2.1), (2.2)
satisfies the inequality

P
{
‖u(t)‖2 ≤ ‖u0‖2 +Bt+ ρ for t ≥ 0

}
≥ 1− e−γνρ. (3.1)

To formulate the second result, let us recall thatMt stands for the martingale
defined by the last term in (2.4).

Proposition 3.2. There is a number κ > 0 not depending on ν ∈ (0, 1] such that,

for any p ≥ 1, one can find a number Cp > 0 with the following property: if an
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H-valued initial condition u0 is such that E exp(κν‖u0‖2) < ∞, then for any

t ≥ 0 the martingale Mt satisfies the inequalities

E

(
sup

0≤s≤t
|Ms|2p

)
≤ Cp t

p
(
1 + t−1

E eκν‖u0‖
2)
, (3.2)

E

(
sup

t≤s≤t+1
|Ms −Mt|2p

)
≤ Cp

(
1 + e−κν2t

E eκν‖u0‖
2)
. (3.3)

Proof. In view of the Burkholder–Davis–Gundy (BDG) inequality (see [BDG72]
or [KS91, Theorem 3.28]), for any p ≥ 1, we have

E

(
sup

0≤s≤t
|Ms|2p

)
≤ c1 E

(∫ t

0

∞∑

j=1

b2ju
2
j(s) ds

)p

,

where uj = (u, ej) is the jth component of the solution u, and ci > 0 stand for
numbers that may depend only on p and ν. Estimating b2j by B and using the
Hölder inequality, we derive

E

(
sup

0≤s≤t
|Ms|2p

)
≤ c2 t

p−1

∫ t

0

E ‖u(s)‖2p ds. (3.4)

Now let κ > 0 be the number from Proposition 2.4.9 in [KS12], so that

E eκν‖u(s)‖2 ≤ e−κν2s
E eκν‖u0‖

2

+ c3, s ≥ 0. (3.5)

Using the inequality yp ≤ c4e
κνy with y = ‖u(s)‖2 and combining inequali-

ties (3.4) and (3.5), we arrive at (3.2).
To prove (3.3), we use again the BDG inequality. Arguing as in the case

of (3.2), we derive

E

(
sup

t≤s≤t+1
|Ms −Mt|2p

)
≤ c5

∫ t+1

t

E ‖u(s)‖2pds ≤ c6

∫ t+1

t

E eκν‖u(s)‖2

ds.

Using (3.5) to estimate the integrand in the right-most term of this inequality,
we obtain (3.3).

3.2 Proof of Theorem 2.3

Let us recall that the Navier–Stokes system (2.1) generates a Markov pro-
cess (ut,Pu0

) and denote by {Ft}t≥0 the associated filtration. The proof is
divided into three steps.

Step 1: Reduction to ξt. Suppose we have proved that there is a number
κ > 0 such that, for any ε ∈ (0, 12 ) and ν ∈ (0, 1], one can find a random time
T0 ≥ 1 for which

∣∣ξt − (2ν)−1B
∣∣ ≤ t−

1

2
+ε for t ≥ T0, (3.6)

EλT
m
0 ≤ Cm

∫

H

eκν‖u‖2

λ(du), (3.7)

9



where λ ∈ P(H) is an arbitrary initial measure, m ≥ 1 is any integer, and
Cm > 0 is a number depending on ε and ν. In this case, taking ε = 1

4 in (3.6),
we see that |ξt| ≥ (4ν)−1B for t ≥ T ′

0 := T0 ∨ (4B−1)4. Combining this with
relation (2.9) and inequality (3.6), in which ε is replaced with ε/2, we obtain

|ν̂t − ν| ≤ 4B−1t−
1

2
+ ε

2 for t ≥ T ′
0.

The right-hand side of this inequality does not exceed t−
1

2
+ε, provided that

t ≥ (4B−1)2/ε. We thus obtain inequality (2.6), in which T = T ′
0 ∨ (4B−1)2/ε.

The validity of (2.7) follows from a similar inequality for T0.
To prove (3.6) and (3.7), it suffices to construct random times T1, T2, T3 ≥ 1

such that (3.7) holds for each of them, and

(2νt)−1‖u0‖2 ≤ 1
3 t

−1/2 for t ≥ T1, (3.8)

(2νt)−1‖u(t)‖2 ≤ 1
3 t

−1/2 for t ≥ T2, (3.9)

(νt)−1|Mt| ≤ 1
3 t

−1/2+ε for t ≥ T3. (3.10)

This will be done in the next two steps.

Step 2: Estimates for ‖u0‖2 and ‖u(t)‖2. Inequality (3.8) is satisfied with

T1 =
(

3
2ν

)2‖u0‖4. The validity of (3.7) for T1 is obvious. To prove (3.9), we
introduce the random variables

Uk := sup
k≤t≤k+1

‖u(t)‖2, k ≥ 0,

and define the events Ak = {Uk > 2ν
3 k1/2}; cf. (3.9). Suppose we found positive

numbers C, c, and γ such that, for any initial measure λ ∈ P(H),

Pλ(Ak) ≤ C e−ck1/2〈wγ , λ〉, k ≥ 1. (3.11)

In this case, by the Borel–Cantelli lemma, the random time

T2 := min
{
N ≥ 1 : Uk ≤ 2ν

3 k1/2 for k ≥ N
}

is Pλ-almost surely finite. For k ≥ T2 and t ∈ [k, k + 1], we derive

‖u(t)‖2 ≤ Uk ≤ 2ν

3
k1/2 ≤ 2ν

3
t1/2.

We thus obtain the validity of (3.9). Moreover, for any integer m ≥ 1, we can
write

EλT
m
2 =

∞∑

k=1

km Pλ{T2 = k} ≤ 1 +

∞∑

k=2

km Pλ(Ak−1).

Combining this with (3.11), we see that (3.7) holds for T2 with κ = γ. Thus, it
remains to prove (3.11).
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To this end, we use inequality (3.1) and the Markov property. Namely,
applying (3.1) to a deterministic initial condition v ∈ H , we see that

Pv{U0 > r} ≤ exp
{
−γν(r −B − ‖v‖2)

}
for any r > 0.

Taking r = 2ν
3 k1/2 and assuming without loss of generality that γ ≤ κ, where

κ > 0 is the number in (3.5), we derive

Pλ(Ak) = Eλ

(
Pλ{Ak | Fk}

)
= EλPuk

{
U0 > 2ν

3 k1/2
}
≤ C e−ck1/2

Eλe
γν‖uk‖

2

.

Combining this with (3.5), at arrive at (3.11).

Step 3: Estimate for Mt. Let us set

Vk := sup
k≤t≤k+1

|Mt −Mk|, k ≥ 0.

To prove (3.10), it suffices to construct a random integer T3 ≥ 1 satisfying (3.7)
such that

|Mk| ≤
ν

10
k

1

2
+ε, Vk ≤ ν

10
k

1

2
+ε for k ≥ T3. (3.12)

Indeed, if these inequalities are established, then taking any t ≥ T3 and denoting
by k ≤ t the integer part of t, we can write

t−1|Mt| ≤ t−1|Mt −Mk|+ t−1|Mk| ≤ k−1(Vk + |Mk|) ≤
ν

5
k−

1

2
+ε ≤ ν

3
t−

1

2
+ε.

This coincides with (3.10). The proofs of inequalities (3.12) are based on (3.2)
and (3.3), and the argument is similar to that used in Step 2. Therefore, we
confine ourselves to the proof of the estimate for Mk.

Let us fix any ε ∈ (0, 12 ) and define the random time

T3 = min{N ≥ 1 : |Mk| ≤ ν
10 k

1

2
+ε}.

Using (3.2) and the Chebyshev inequality, for any p ≥ 1 we derive

Pλ

{
|Mk| > ν

10 k
1

2
+ε

}
≤

(
ν
10 k

1

2
+ε

)−2p
Eλ|Mk|2p ≤ C′

pk
−2pε〈wκ , λ〉, (3.13)

where the number C′
p > 0 does not depend on λ. Thus, taking p > (2ε)−1 and

using the Borel-Cantelli lemma, we conclude that T3 is Pλ-almost surely finite.
Moreover, in view of (3.13) and the definition of T3, for any m ≥ 1, we have

EλT
m
3 =

∞∑

k=1

km Pλ{T3 = k} ≤ 1 +
∞∑

k=2

km Pλ

{
|Mk| > ν

10 k
1

2
+ε

}

≤ 1 + C′
p〈wκ , λ〉

∞∑

k=2

km−2pε.

Taking p > m+1
ε , we see that the right-most term in this inequality can be

estimated from above by the right-hand side of (3.7). This completes the proof
of Theorem 2.3.
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Remark 3.3. Exactly the same argument as in Step 2 in the above proof enables
one to derive the following sharper version of (3.8) and (3.9): for any δ > 0
there is a random time T0 ≥ 1 satisfying (3.7) such that

‖u(t)‖2 + ‖u0‖2 ≤ tδ for t ≥ T0. (3.14)

This observation will be important in the next section when proving the asymp-
totic normality of ν̂t.

4 Asymptotic normality

4.1 Slutsky theorem with rate of convergence

As in the case of the consistency, the asymptotic normality is established with
the help of a reduction to the study of similar property for the random process ξt.
To this end, we shall need the following version of the δ-method which is a
consequence of Slutsky theorem; cf. [JP03, Chapter 18].

Proposition 4.1. Let {ηt}t≥0 be a real-valued random process such that

sup
s∈R

∣∣P{
√
t (ηt − a) ≤ s} − Φσ(s)

∣∣ ≤ C t−b for t ≥ 1, (4.1)

where a ∈ R \ {0}, b ∈ (0, 14 ], C > 0, and σ > 0 are some numbers. Then, for

any c > 0, we have

sup
s∈R

∣∣P{c
√
t (η−1

t − a−1) ≤ s} − Φσ̂(s)
∣∣ ≤ L t−b for t ≥ 1, (4.2)

where σ̂ = cσ/a2, and L > 0 is a number depending only on a, σ, and c.

Proof. There is no loss of generality in assuming that c = 1 and a > 0. To
prove (4.2) with c = 1, it suffices to establish the following upper and lower
bounds for any s ∈ R and t ≥ 1:

P
{√

t (η−1
t − a−1) ≤ s

}
≤ Φσ̂(s) + C1t

−b, (4.3)

P
{√

t (η−1
t − a−1) ≤ s

}
≥ Φσ̂(s)− C1t

−b. (4.4)

We confine ourselves to the proof of (4.3), since (4.4) can be established by a
similar argument.

In what follows, we always assume that t ≥ 1. Inequality (4.1) implies that,
for any interval1 I ⊂ R, we have

∣∣P{
√
t (ηt − a) ∈ I} − Φσ(I)

∣∣ ≤ 2C t−b, (4.5)

where Φσ(I) is the measure of I with respect to the centred normal law Nσ. Let
us set γt =

1
2at

1/4 and It = [−γt, γt]. In view of (4.5), we have

∣∣P
{
|ηt − a| ≤ 1

2 at
−1/4

}
− Φσ(It)

∣∣ ≤ 2C t−b. (4.6)

1The interval I may be bounded or unbounded and may contain or not its endpoints.
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It is straightforward to check that

Φσ(It) ≥ 1− 2
(√

2π γt
)−1

σe−γ2

t /2σ
2 ≥ 1− C1t

−b,

where we denote by Ci some numbers depending only on a, σ, and C. Combining
this with (4.6), we see that

P
{
|ηt − a| ≤ 1

2 at
−1/4

}
≥ 1− C2t

−b. (4.7)

Let us denote by At(s) and Bt the events under the probability signs in (4.3)
and (4.7), respectively. It follows from (4.7) that

P
(
At(s)

)
≤ P

(
At(s) ∩Bt

)
+ P(Bc

t ) ≤ P
(
At(s) ∩Bt

)
+ C2t

−b. (4.8)

Now note that if ω ∈ At(s) ∩Bt for some t ≥ 1, then

√
t (ηt − a) ≥ −a2s

(
1 + 1

2 (sgn s) t
−1/4

)
,

where sgn s stands for the sign of s. Therefore, denoting by Js,t the interval
with the endpoints −a2s and −a2s− 1

2a
2|s| t−1/4, we can write

P
(
At(s) ∩Bt

)
≤ P{

√
t (ηt − a) ≥ −a2s}+ P{

√
t (ηt − a) ∈ Js,t}.

The first term on the right-hand side can be estimated by

Φσ

(
[−a2s,+∞)

)
+ 2C t−b = Φσ̂(s) + 2C t−b,

while the second does not exceed C3 t
−b. Substituting these estimates into (4.8),

we arrive at (4.3).

4.2 Proof of Theorem 2.4

We begin with a number of reductions. In view of Proposition 4.1, it suffices to
prove inequality (2.10) with some number σν > 0. Given a random variable X ,
let us denote ∆σ(X, z) = FX(z) − Φσ(z), where FX(z) = P{X ≤ z} is the
distribution function of X . Then, for any ε > 0 and any random variables X
and Y , we have (e.g., see Lemma 2.9 in [Shi06])

sup
z∈R

|∆σ(X, z)| ≤ sup
z∈R

|∆σ(Y, z)|+ P{|X − Y | > ε}+ cσε,

where cσ = (σ
√
2π)−1. Recalling representation (2.4), using inequality (3.14),

and applying the argument in Step 1 the proof Theorem 2.8 in [Shi06], we see
that it suffices to establish the inequality

sup
z∈R

∣∣Pλ{k−1/2Mk ≤ z} − Φσ(z)
∣∣ ≤ Cε

(
〈wκ , λ〉

)
k−

1

4
+ε, k ≥ 1, (4.9)

where Cε : R+ → R+ is an increasing function. The proof of this inequality is
based on the study of the conditional variance.

13



Namely, following [HH80, Section 2.7], we define the conditional variance for
the zero-mean martingale Mk by the formula

V 2
n =

n∑

k=1

Eλ

{
(Mk −Mk−1)

2
∣∣Fk−1

}
,

where {Ft} is the filtration associated with the Markov process (ut,Pu0
). The

following result is a modified version of Theorem 3.7 in [HH80] and reduces
the proof of (4.9) to the law of large numbers for Vn. Its proof can be found
in [Shi06, Section 4.2].

Proposition 4.2. Suppose there are positive numbers θ and Θ such that

Eλ exp(θ |Mk −Mk−1|) ≤ Θ for k ≥ 1. (4.10)

Then, for any σ̄ > 0 and ε ∈ (0, 1
4 ), there is a constant Aε(σ̄) > 0 depending

on θ and Θ such that, for any q > 0, σ ≥ σ̄, and n ≥ 1, we have

sup
z∈R

∣∣∆σ(n
− 1

2Mn, z)
∣∣ ≤ Aε(σ̄)n

− 1

4
+ε + σ−4qnq(1−4ε)

Eλ

∣∣n−1V 2
n − σ2

∣∣2q. (4.11)

Thus, to prove (4.9), it suffices to establish (4.10) and to estimate the second
term on the right-hand side of (4.11). This is done in the next two steps.

Step 1: Proof of (4.10). Let us define the martingales

Xt(k) = Mt −Mk−1 =

∫ t

k−1

(
u(s), dζ(s)

)
, t ∈ [k − 1, k], k ≥ 1.

In view of the inequality e|y| ≤ ey + e−y, to prove (4.10), it suffices to estimate
the quantities Eλe

θXk for |θ| ≪ 1, where Xk = Xk(k). To this end, we first note
that the quadratic variation of Xt(k) on the interval [k− 1, k] can be written as

〈X(k)〉 =
∞∑

j=1

∫ k

k−1

b2ju
2
j(t) dt ≤ B

∫ k

k−1

‖u(t)‖2dt,

where uj(t) = (u(t), ej). By the Cauchy–Schwarz inequality, for any θ ∈ R we
have

Eλe
θXk = Eλe

θXk−θ2〈X(k)〉+θ2〈X(k)〉

≤
(
Eλe

2θXk−2θ2〈X(k)〉
)1/2(

Eλe
2θ2〈X(k)〉

)1/2

. (4.12)

The second expectation in the right-most term of (4.12) is bounded by a number
not depending on k, provided that θ2 is sufficiently small; see inequality (3.6)
in [Shi06]. In particular, the Novikov condition is satisfied for the martin-
gale 2θXt(k), so that the first expectation in the right-most term of (4.12)
is equal to 1; see Proposition 5.12 in [KS91]. We thus obtain the required
bound (4.10) with 0 < θ ≪ 1 and a number Θ not depending on k.
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Step 2: Law of large numbers for Vn. Recalling that Xk = Mk − Mk−1,
suppose we have established the relation

Eλ{X2
k | Fk−1} = g(uk−1), k ≥ 1, (4.13)

where the equality holds Pλ-almost everywhere, and g : H → R is a continuous
function satisfying the following condition for any δ > 0 and some number
α ∈ (0, 1) depending on δ:

‖g‖α,δ := sup
u∈H

|g(u)|
wδ(u)

+ sup
u,v∈H
u6=v

|g(u)− g(v)|
‖u− v‖α

(
wδ(u) + wδ(v)

) < ∞.

In this case, as is proved in Step 3 of [Shi06, Section 3.2], for any integer q ≥ 1
we have

Eλ

∣∣n−1V 2
n − 〈g, µν〉

∣∣2q ≤ Cq,ν〈wκ , λ〉n−q, n ≥ 1, (4.14)

where µν ∈ P(H) is the unique stationary measure of (1.1)–(1.3), and Cq,ν > 0
is a number not depending on n and λ. Let us assume, in addition, that

σ2
ν := 〈g, µν〉 > 0. (4.15)

Combining inequalities (4.11) and (4.14), in which σ = σν , ε > 0 is arbitrary,
and q = (16ε)−1, we derive (4.9). Thus, it remains to establish (4.13) and (4.15).

In view of the Markov property, relation (4.13) holds with

g(v) = EvX
2
1 = Ev

(∫ 1

0

(
u(t), dζ(t)

))2

=

∞∑

j=1

b2j

∫ 1

0

Evuj(t)
2dt,

where v ∈ H . Denoting fj(v) = (v, ej)
2 and writing {Pt}t≥0 for the Markov

semigroup associated with (2.1), we see that

g(v) =
∞∑

j=1

b2j

∫ 1

0

(Ptfj)(v) dt. (4.16)

Applying Lemma 3.2 in [Shi06], we see that ‖Ptfj‖α,δ ≤ C for any t ∈ [0, 1]
and j ≥ 1. Taking the norm in (4.16), we see that ‖g‖α,δ ≤ BC. Finally,
integrating (4.16) against µν and using the stationarity of µν , we derive

〈g, µν〉 =
∞∑

j=1

b2j

∫

H

v2jµν(dv).

Since all the numbers bj are positive and µν cannot be concentrated at zero, we
conclude that (4.15) holds. This completes the proof of Theorem 2.4.
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