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ABSTRACT

Within existing research on the automatic classification

of musical instrument playing techniques, few available

datasets include enough playing techniques to cover the

full range of a given musical instrument’s expressive abil-

ity. However, creating a new large dataset requires record-

ing many samples for many performance techniques, which

is costly and time-consuming. Therefore, in this study, we

attempt to augment data by increasing the number of record-

ing microphones without increasing the recording dura-

tion and verify the effectiveness of this data augmentation

method. As a result of recording flute playing techniques

using multiple microphones, the accuracy and macro F1-

Score of a convolutional neural network-based classifier

improved when using a combination of the five most close-

to-source microphones. The classifier’s performance fur-

ther improved when data were combined with a data aug-

mentation method based on pitch shifting.

1. INTRODUCTION

Throughout the history of contemporary art music, com-

posers have diversified Instrumental Playing Techniques

(IPTs) to foster musical innovation. In contemporary mixed

music, real-time digital audio effects are often applied to

the live performance of acoustic instruments. The per-

former, a foot pedal, or a computer operator usually trig-

gers these effects. However, automated triggering could

reduce the burden on the operator and expand creative pos-

sibilities. This burden originated the development of score

follower systems such as Antescofo [1]. Antescofo tracks

the performer’s temporal position on the score and auto-

matically switches effects, reducing the burden on the op-

erator. However, using Antescofo requires the score input

information for each piece of music which adds an extra

burden. Moreover, Antescofo’s machine listening is based

on pitch and rhythm detection, which does not allow for

the recognition of IPTs. This research aims to develop a

system that automatically recognizes IPT and switches au-

dio effects according to it, thereby reducing the burden on

the operator and the cost of music score input.

Copyright: ©2024 Nicolas Brochec et al. This is an

open-access article distributed under the terms of the

Creative Commons Attribution License 3.0 Unported, which per-

mits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Several existing studies demonstrate that the development

of automatic recognition of IPT systems suffers from a lack

of large common sound banks [2, 3], with proposed sys-

tems often relying on commercial sound banks. Commer-

cial sound banks are primarily recorded for industrial mu-

sic production that does not require advanced contempo-

rary instrumental techniques. These banks typically only

include one sample per pitch per instrumental playing tech-

nique, severely limiting the available audio samples to train

a classification algorithm.

One way to improve classification accuracy is to increase

the number of audio samples by using data augmentation

methods. Existing research [3, 4, 5, 6] proposes generat-

ing new audio samples by applying various digital audio

transformations to the original data such as pitch shifting.

However, these experiments have shown that the accuracy

is still too low to put automatic recognition of IPT into

practice.

Another possible data augmentation method is to record

audio samples at different distances from the sound source.

It would augment the number of samples without increas-

ing the recording duration. In this study, we propose a

novel method of data augmentation using multiple micro-

phone positions, and evaluate its efficacy for automatic

recognition of IPTs.

2. PROPOSED METHOD

To evaluate the efficacy of the microphone-based data aug-

mentation method, we first simultaneously captured audio

samples of flute playing techniques from different source-

to-microphone distances. We then made several datasets,

trained a neural network-based classifier, specifically Con-

volutional Neural Network (CNN), and tested it on a dataset

originating from a different sound bank. Finally, we as-

sessed the performance of the classifier with different met-

rics. We selected the flute as our instrument of focus be-

cause the first author of this study is familiar with this in-

strument. Furthermore, this study continues our previous

study on the automatic recognition of flute IPTs [4].

2.1 Microphone Set

Diverse flute playing techniques were captured with seven

microphones placed at different distances from the source,

as described in Table 1. The microphones A, B, C, D

were oriented toward the source, focusing on direct sound

capture. Microphones E were oriented toward the ceil-

ing to capture the room’s natural reverberation. The “main
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Microphone Distance Height Nbr of Mics Letter

DPA 4099 33 cm / 1 A

DPA 4011 80 cm / 1 B

DPA 4011 100 cm / 1 C

DPA 4006 140 cm 179 cm 2 D

DPA 4006 458 cm 277 cm 2 E

Table 1. Microphones used to record the sound bank.

aeolian flatterzunge key click multiphonics

ordinario pizzicato play and sing staccato

tongue ram trill whistle tone

Table 2. Flute playing techniques in 11 categories.

stereo” pair D microphones were 38 cm apart, while the

microphones within the “ambient” pair E were 300 cm

apart. Microphone positions A, B, D, and E are typical of

contemporary studio and live recording/amplification mi-

crophone techniques. We placed microphone C at a dis-

tance of 1m from the source to the microphone because

this distance is typically used for acoustic and electroa-

coustic measurements. The DPA 4099 is frequently used

for live acoustic instrument amplification, while DPA 4011

and 4006 microphones were chosen for their flat frequency

response, allowing for more accurate acoustic information

capture. The height of A, B, and C is equal to the distance

from the floor to the flute head hole.

2.2 Selection of Flute Playing Techniques

The flute can produce a chromatic scale from medium

(C3≈261 Hz) to treble pitch (C6≈2093 Hz). The sound

of the flute is produced by the friction of the air on the

mouthpiece, while different changes in the velocity and

characteristics of the blown air allow for playing diverse

techniques [7, 8, 9]. In our previous study [4] we selected

19 different flute IPTs from the FullSOL library [10], and

we showed that some IPTs are unsuitable for our investi-

gation. Indeed, classifiers get confused when classifying

the harmonics, discolored fingering, and aeolian and ordi-

nario techniques because the ordinario technique is very

close to them. We also concluded that similar techniques

should be grouped together to reduce the number of classes

and increase the number of samples per class. For instance,

a minor second trill and a major second trill fall under the

trill category. Playing a whistle tone with or without glis-

sando is essentially performing a whistle tone. Playing and

singing at the same pitch or not is performing a play-and-

sing technique. As a result, we use in this study 11 flute

IPTs (see Table 2).

All seven microphones simultaneously captured each flute

playing technique played pitch by pitch chromatically

within their respective register at mezzoforte. Some tech-

niques have a small range of pitches (aeolian) or produce a

short duration sound (key click, staccato, pizzicato, tongue

ram). This can cause an imbalance in the training datasets

because of the difference in sample duration for each class.

We therefore recorded each short-duration playing tech-

nique twice more to increase available data. Our sound

bank includes 2.85GB of audio files recorded at 96 kHz /

24-bit resolution [11].

2.3 Datasets

We designed two experiments to investigate which micro-

phone combinations produce the best results for automatic

recognition of flute playing techniques. For this purpose,

we created multiple training datasets based on different mi-

crophone combinations and tested them on a separate test

dataset (heterogeneous datasets).

2.3.1 Training Datasets

We first made a dataset for each monophonic recording (A,

B and C), and for each stereo recording (D and E). We

then combined these monophonic and stereophonic record-

ings to make new training datasets. First, we combined A

and B, B and C, and C and A. Then, we combined A,

B and C. After, we combined A, B, C and D, and A,

B, C, and E. A final dataset was also created using all

the datasets (ABCDE). We created a total of 12 differ-

ent datasets. For stereo recordings D and E we use both

channels as two different monophonic signals.

2.3.2 Test Dataset

For a comprehensive evaluation of the classifier, we tested

it on a separate test dataset. The test dataset is made from

the FullSOL sound bank [10], and includes flute playing

techniques similar to those found within our datasets. To

match the flute playing techniques from FullSOL with those

from our training datasets, we deleted any unused tech-

niques, and combined similar techniques into the same cat-

egories, as we did for our own datasets.

2.3.3 Validation Dataset

Our experiments used a validation dataset to measure the

accuracy at each step of the training. This dataset is made

from 20% of the test dataset. The selection of samples is

stratified, which means that the proportion of samples in

each class is proportional to the original test dataset.

2.4 Audio File Pre-processing

To prepare our data, we followed an existing methodology

[4]. We downsampled the audio file sample rate to 24 kHz,

as 12 kHz (the Nyquist frequency) is sufficient to cover

most flute harmonics. We removed any silence within the

audio file, as it is irrelevant. We edited the audio file into

15-frame-long sequences (≈ 320ms). We analyzed the se-

quences with a Log-Mel-Spectrogram (LMS) analysis. We

computed the LMS on 128 bins, and the FFT window is

fixed at 2048 samples with a hop size of 512 samples (≈

21.3ms). The minimum frequency is set to 150 Hz because

bass frequencies are irrelevant for the flute. Each sound

file was edited into a maximum number of data samples

according to the number of frames used. When the length

of a given chunk was less than 15 frames, we padded the

audio sample with zeros. We then normalized the data.



Figure 1. Schematic representation of the proposed architecture.

2.5 Methods of Classification

2.5.1 Classifier Architecture

To perform our experiments, we chose to implement a deep

Convolutional Neural Network (CNN) architecture, which

has been shown in several previous studies to have high ef-

ficiency for instrument-related audio classification tasks [3,

5, 6, 12, 13, 14, 15, 16]. In the domain of automatic recog-

nition of IPT, existing research proposes design strategies

to create CNN architectures [3]. We propose augmenting

the capacity of these CNN architectures by adding several

layers and by selecting the hyper-parameters that favored a

rise in accuracy. A schematic representation of our archi-

tecture can be seen in Figure 1. We found that a kernel size

of 2x3 works better for conv1, conv2, and conv3 modules

than square-like sizes. Conv4, conv5, and conv6 use a 2x2

kernel size. We use batch normalization [17] and dropout

layers [18] after each convolutional layer to speed up the

training process and reduce overfitting. After the sixth con-

volutional layer, we connect three fully connected layers

(fc7, fc8, and fc9) with a linear activation function.

2.5.2 Training

The neural network weights are initialized using Xavier

Normal Initialization [19]. Training minimizes

cross-entropy loss through mini-batch gradient descent with

ADAM optimization. The learning rate begins at lr =

0.001, decaying exponentially, with validation accuracy

monitored on the last 10 epochs. Training lasts for a max-

imum of 100 epochs on an A100 GPU machine, halting if

validation accuracy has not improved in the last 20 epochs.

3. EXPERIMENTS

We performed two experiments to test whether microphone-

based data augmentation can be effective. We first trained

our classifier on the original data with different combina-

tions of microphones. Then, in a second experiment, we

augmented the number data by applying pitch shifting to

the original audio data.

3.1 Transformation-based Data Augmentation

For audio classification tasks, digital audio transformations

are often applied to the original data to augment the num-

ber of samples within the training datasets [20]. In the case

of IPT classification, audio transformations are commonly

utilized to represent the real-world environment(s) of mu-

sical performances [3, 4, 5, 6]. The aim of adding trans-

formed audio data samples to our original data is to ver-

ify whether combining microphone-based data augmenta-

tion with transformation-based data augmentation would

increase the accuracy. We only chose pitch shifting for that

purpose because it increases accuracy [20]. The tuning of

each of our audio samples is randomly modified in a range

of 200 Hz around the tuning frequency (440 Hz).

3.2 Metrics

We evaluated our classifier by conducting two types of

measurements. Firstly, we measured the accuracy of the

model state achieving the highest accuracy on the valida-

tion dataset. Due to variations in sample durations per

class, our datasets are unbalanced. To address this, we

opted for the macro F1-Score, providing a more repre-

sentative measure of classifier performance considering no

difference between highly and poorly populated classes [21].

We repeated the training and testing five times per dataset

and calculated the average accuracy and macro F1-Score

on the five tests.

We computed confusion matrices to understand how well

our classifier identified the playing techniques. For each

of the five tests, a confusion matrix is generated. The final

confusion matrix is the average of five individual matrices

from the tests. We provided the average confusion matrices

for the best-performing models based on average accuracy

scores.

4. RESULTS

We performed two experiments, with and without the ad-

dition of pitch-shifted audio samples.

4.1 Accuracy and Macro F1 Score

Dataset Original Pitch-shifted

Accuracy Macro F1 Accuracy Macro F1

A 84.83 66.38 84.78 69.12

B 86.00 65.28 85.42 64.02

C 80.96 60.06 84.16 65.62

D 81.40 59.98 85.45 63.79

E 71.74 51.74 82.53 54.99

AB 86.19 68.05 89.18 73.18

BC 86.66 66.92 88.71 71.55

CA 85.78 69.19 87.07 71.03

ABC 87.86 70.76 89.72 72.82

ABCD 84.47 68.95 91.32 75.56

ABCE 85.40 68.89 90.35 72.36

ABCDE 84.91 67.98 90.84 74.05

Table 3. Comparison of accuracy and F1-Score results with and without

adding pitch-shifted audio samples. Results averaged on five tests (%).



Figure 2. Original audio samples. ABC microphones. Confusion ma-

trix averaged on five tests (%).

Figure 3. Pitch-shifted audio samples added to original audio samples.

ABCD microphones. Confusion matrix averaged on five tests (%).

With original audio samples, we measured the highest ac-

curacy and macro F1-Score of 87.86% and 70.76% with

the combination of ABC microphones. When adding the

pitch-shifted audio samples, we measured accuracy and

macro F1-Score of 91.32% and 75.56% with the combi-

nation of ABCD microphones.

4.2 Confusion Matrices

The confusion matrix Figure 2 shows that the majority of

playing techniques are well-identified when the classifier

is trained with original audio samples. However, the key

click and the tongue ram techniques are misidentified. The

confusion matrix Figure 3 shows that the majority of play-

ing techniques are better identified when the classifier is

trained with the addition of pitch shifted audio samples.

5. DISCUSSION

We found that the combination of ABC microphones gave

the best accuracy (87.86%) and macro F1-Score (70.76%)

when using original audio data samples. The ambient sound

microphones E, placed farthest from the source and ori-

ented towards the ceiling, yielded the lowest accuracy and

macro F1-Score. This indicates that for the classifier, the

acoustic information of the room’s natural reverberation is

less important than the direct signal. Adding more micro-

phones increased the accuracy by 1.86% and the macro F1-

Score by 5.48% compared to the best-performing single

microphone B. However, using more than three micro-

phones caused drops in accuracy and F1-Score.

Adding pitch-shifted audio samples to the original sam-

ples improved accuracy and F1-Score. The best scores

were achieved with microphone combination ABCD, with

an accuracy of 91.32% and macro F1-Score of 75.56%.

The lowest accuracy and macro F1-Score were measured

with the microphones E. Adding microphones improved

accuracy by 5.9% and macro F1-Score by 11.54% com-

pared to microphone B. Using more than five microphones

decreased accuracy and F1-Score.

For a single microphone, the microphone B yielded the

highest score in both experiments. When included in other

datasets, it also yielded high accuracy scores. We think

this is likely because the microphone used to record the

FullSOL sound bank was placed at a similar distance.

Using more than three microphones in both experiments

improved the classifier’s generalization ability. However,

using more than five microphones degraded performance.

We think using more than seven microphones would not

enhance the classifier’s performance.

The confusion matrices show that key click and tongue

ram techniques are poorly identified when using original

audio samples. Using pitch-shifted audio samples improved

the accuracy of key click, but tongue ram remains misiden-

tified. We think leveraging self-supervised learning for

general-purpose audio representation systems such as

BYOL-A [22, 23] is an approach to consider. The model

learns meaningful representations from massive unlabeled

audio data using self-supervised learning during pre-training.

The variety of internal representations would improve the

model’s robustness when fine-tuned for a specific task. Fur-

ther research is required to assess BYOL-A’s efficiency in

automatically recognizing IPT.

6. CONCLUSION

In this study, we proposed a microphone-based data aug-

mentation method for automatically recognizing instrumen-

tal playing techniques (IPTs). We created datasets of au-

dio samples recorded at different distances from the sound

source. Training a classifier with these datasets improved

its performance, especially with close-to-source

microphones and the addition of pitch-shifted audio sam-

ples. This method achieved state-of-the-art results with an

accuracy score of 91.32% and a macro F1 Score of 75.56%

on heterogeneous datasets. Although our study focused on

flute IPTs, our method can be applied to other musical in-

struments as well.

The proposed classifier has shown high performance in

most flute playing techniques included in the two exper-

iments. However, the accuracy of short-duration IPTs is

low, and adding pitch-shifted audio samples to the origi-

nal audio samples did not enhance the accuracy. We will

address this particular concern in a future study.
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