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ABSTRACT

This paper is the sequel of the work exposed in a companion
publication dealing with forced oscillations of a circular cylinder in a
cross-flow. In the present study, oscillations of the cylinder are now
directly induced by the vortex shedding process in the wake and
therefore, the former model used for forced oscillations has been
modified to take into account the effects of the flow in order to
predict the displacement of the cylinder. The time integration of the
cylinder motion is performed with an explicit staggered algorithm
whose numerical damping is low. In the first part of the paper, the
performances of the coupling procedure are evaluated in the case of a
cylinder oscillating in a confined configuration for a viscous flow.
Amplitude and frequency responses of the cylinder in a cross-flow
are then investigated for different reduced velocities U ranging from
3 to about 15. The results show a very good agreement at Re=100 and
the vortex shedding modes have also been related to the frequency
response observed. Finally, some perspectives for further simulations
in the turbulent regime (at Re=1000) with structural damping are
presented.

1. INTRODUCTION

Vortex-induced-vibrations (VIV) of structures is a
phenomenon commonly observed in many fields of
engineering: it can cause for example vibrations in heat
exchanger tubes, modify the dynamic response of bridge
decks or flexible risers used in petroleum production... The
case of an elastically mounted cylinder vibrating as a result of
fluid forcing is one of the most basic and revealing cases in
the general subject of fluid-structure interactions of bluftf-
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bodies. The first part of this study [18] has been conducted
with the aim of understanding the phenomena involved when
the cylinder is subjected to forced oscillations whose
characteristics are known. This previous work has provided
interesting results concerning the lock-in behaviour of the
cylinder in a certain range of frequency ratios and the different
vortex shedding modes appearing in the wake. Similar
phenomena are observed when the vibrations are induced by
the flow, but in this case, the frequency and amplitude
responses are not known a priori.

The vortex shedding process in the wake leads to
fluctuating drag and lift forces which cause the oscillations of
the cylinder. The phenomenon is self-limited: the fluid flow
adjusts so that the oscillation amplitude is restricted to a
certain upper limit. It has been observed [14] that the various
mechanisms by which the oscillator is able to self-limit its
vibration amplitude are a reduction in the amplitude of the
aerodynamic forces, appearance of additional frequency
components in the time histories of the fluid forces and de-
tuning of the vortex-shedding frequency from the structural
frequency. Although the phenomenon has been observed for a
long time, the maximal amplitude of vibration is not yet
clearly defined. Indeed, the cylinder response depends on
various parameters and particularly the mass-damping

parameter m'. Figure 1 taken from [9] illustrates the two

distinct amplitude responses for high or low m"¢ . In the first
case, only two branches are observed. The behaviour at low



m"{ is more complex and involves three branches. The

transitions between the branches are either hysteretic (H) or
intermittent (I).
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Figure 1. Amplitude responses of the cylinder for high and low
m*{ (taken from [9])

For hydrodynamic applications like ours, the values of the
mass-damping parameter are generally low and the cylinder
response should exhibit three branches. However the

parameter m ¢ is not only responsible for the number of

branches in the amplitude response. There is clearly an
influence of the Reynolds number at low Re values and
especially in the laminar shedding regime (Re=100). In a
companion paper [18], attention has been drawn on the fact
that the 2P shedding mode was not observed and the reason
seemed to come from the fact that in the presented
simulations, the Reynolds number was low. The differences in
the vortex shedding mode also exist for VIV and they prohibit
the jump to the upper branch. This is confirmed by the 2D
Direct Numerical Simulation data from Newman and
Karniadakis [15] for Re=100 and 200 and the low Re
experiments of Anagnostopoulos and Bearman [3] who did
not show the upper branch. The absence of the upper branch in
these simulations may be due to the fact that the vortex
shedding mode obtained at low Re does not give a net energy
transfer from the fluid to body motion over one cycle, unlike
the 2P mode at higher Re [9].

The numerical results exposed in the present paper will
therefore be compared to those of Shiels et al. [19] who also
carried out simulations at Re =100. Moreover the main part
of their results is presented in the case of an undamped
oscillator like in the present case. The expected response
amplitude presented later will be only composed of the lower
branch.

To begin with the study, an evaluation of the performances
for the coupling procedures between the flow and the cylinder
motion is carried out. The various non dimensional parameters
commonly used to classify the response regimes of the
cylinder are then briefly reminded before turning to numerical
results. The first series of simulations is performed for an
undamped cylinder at Re =100 and the results are compared
to those of Shiels et al. Finally, several results obtained at a
higher Reynolds number Re =1000, i.e. in the turbulent
regime, are given.

2. DESCRIPTION AND PERFORMANCES OF THE
COUPLING PROCEDURES

The numerical simulation of vortex-induced vibrations needs
to take into account the effects of the cylinder motion. This
could be done artificially by modifying the boundary
conditions on the upper and lower side of the computation
domain. The mesh remains thus fixed and this avoids the use
of the Arbitrary Lagrangian-Eulerian formulation. However,
the use of the ALE combined with an explicit procedure for
the time integration of the cylinder motion has been preferred
here. Before addressing the problem of VIV, the accuracy of
the coupling procedures is evaluated, particularly regarding
the numerical damping. This artificial damping introduced can
have significant effects on the results: indeed it has been
mentioned in the introduction that the cylinder response is
dramatically different according to the values of the parameter

m ¢ . The problem of the numerical damping introduced by

the coupling procedure is not well documented in the VIV
literature. However it is a major issue because even if the
simulation is supposed to be performed without structural
damping, the unwanted numerical damping could lead to a

non null value of m'¢ and therefore to an unexpected
cylinder response.

2.1. Resolution of the Navier-Stokes equations

The Navier-Stokes equations are solved with the same
method as in [18]: the simulation uses the incompressible two-
dimensional Navier-Stokes equations written in an integral
formulation in which the Cartesian velocity components and
pressure share the same location at the center of the control
volumes. The Navier-Stokes equations are written in the ALE
formulation which allows the use of a moving mesh around



the cylinder. The pressure corrections are taking into account
thanks to the PISO algorithm. More details on the
discretisation scheme and the resolution of the algebraic
system can be found in [5] and [21].

2.2. Time integration of the cylinder displacement

The vertical cylinder motion y(¢) is governed by the
equation of the undamped harmonic oscillator:

my(t) +ky(1) = F, (1) 1)

where m is the cylinder mass, & is the rigidity of the spring

and F), is the resultant of the lift force. The cylinder natural

frequency f, which will be used later to drive the oscillations
of the cylinder is given by:

The resolution of Eq. (1) requires the knowledge of the lift
force F,(7), meaning that the flow field has to be computed

before. In fact, this is a typical fluid-structure interaction
problem because the lift force influences the cylinder
displacement which in turn modifies the flow field and
therefore Fy ,and so on...

The resolution of such problems can be conducted
relatively easily by using staggered procedures, i.e. the fluid
and the structure are solved successively for a given time step
[4], [17]. This leads inevitably to a time shift between the fluid
and the solid, which are not computed exactly at the same time
step. The problem can be by-passed with implicit procedures
introducing iterations for the same time step and leading to the
convergence of the displacement and fluid force (see examples
in [1], [7], [10], [22]). Implicit coupling has been particularly
used by Sigrist & Abouri [21] who have shown its superiority
for non-linear coupled problems. However, for our
application, an explicit algorithm adapted from [20] has
provided satisfactory results, since it combines a good
accuracy and a relatively small CPU time as it will be seen in
the following paragraph. Further simulations are currently
performed with the implicit procedure to assess its superiority.

The method used for the time integration of Eq. (2) is
based on an explicit algorithm, better than the one tested in
[21]. Indeed, the numerical damping is dramatically reduced
by combining a centered upwind and downwind discretization
scheme for the prediction of the displacement. The steps of the
algorithm write:

1. Initialization for the first iteration
x" =xy V' =vy a"=ay FJ=F,
2. Evaluation of the cylinder acceleration
RN
m m
3. Evaluation of the cylinder velocity and displacement

N R
™ =y +d[(l —49)1/" +9V"+1]
4. Resolution of the flow field with the CFD code to
obtain F)' *

5. Return to step 2 (next time step)

The procedure is implemented in a user subroutine read by
the CFD code at each time step before solving the flow field.
Several numerical tests in [20] have shown that 8=0.5 gives
the smallest numerical damping for a perfect flow.

2.3. Results for the cylinder oscillating in a confined
configuration

Performances of the previous algorithm  with
0 =0.5 (referred to as the blended procedure in what follows)
are compared with the results given by the implicit algorithm
developed by Abouri [1]. The accuracy of the implicit
algorithm has been demonstrated by Sigrist & Abouri [21] for
a cylinder immersed in an annular space filled with a perfect
flow. The case tested is presented on Fig. 2: the cylinder
mounted on a spring is shifted from its equilibrium position
and is then released.

For equivalent time steps, explicit procedures lead
generally to a strong numerical damping. The blended
algorithm has been first tested for a perfect flow. The
comparison (see Tab. 1) with the undamped analytical
solution proposed by Fritz [6] shows that the numerical
damping produced by the blended algorithm is about ten times
better than the explicit procedure' but still about ten times
worse than the implicit one. The numerical damping is

evaluated thanks to the logarithmic decrement 9, -
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Figure 2. Description of the model used to test the performances
of the coupling procedures

! The so-called explicit procedure is obtained by doing only one iteration of
the implicit algorithm.



Table 1. Comparison of the numerical damping produced by
different coupling procedures for a perfect flow

Table 2. Comparison of the damping computed by the different
coupling procedures for a viscous flow

Tmplicit Blended Explicit v (m?/s) 1.0x10° 5.0x10° 10.0x10°
. 3 -3 -3

5 2 0254 38163 6.845-2 5 | Analytical 9.69x10 21.6x10 30.6x10
log log | Blended scheme | 17.7x107 24.7x10” 33.8x10”
. . o . Implicit scheme | 7.46x10” 31.5x10-3 43.9x10”
The influence of the blending parameter & is investigated AnI;l yical 9 26>:< 105 19 6>:<1 05 26 6>:< 105
br'leﬂy here for §=0.0, 0.§ and 1.0. The results pr.esented on a | Blended scheme | -163x10°  -22.0x10-5  -28.9x10°
Fig. 3 show the same behavior as the one observed in [20]: for Tmplicit scheme | -7.15x10°  -27.1x10-5 357x10°

6=0.0 the damping is negative, whereas for 8=1.0 it
becomes positive. The value 8 =0.5 gives in this case a very
good compensation of the positive and negative damping
produced by the scheme. However, this value is not universal
and has to be adapted to the problem considered.
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Figure 3. Influence of the blending parameter 8 on the numerical
damping produced by the blended algorithm

Comparison proceeds with viscous fluids for the same
configuration. The mesh is refined near the walls to obtain a
good description of the boundary layer. The viscosity of the
fluid causes the damping of the oscillations and we need an
analytical solution to distinguish the numerical damping from
the viscous one. Leblond [11] has developed an analytical
expression of the fluid forces acting on a cylinder in the case
where the boundary layer & is small enough relative to the
annular space AR =R, —R,. The forces exerted on the

cylinder wall are evaluated with a convolution product which
is numerically computed by an inverse Laplace transform.

Several cinematic viscosities V are tested in the interval
[10_6,10_5]. The pseudo-period, which is influenced by the

viscosity, is very well evaluated by the two algorithms (the
errors remain inferior to 1%). The damping coefficients
calculated from numerical simulations are presented in Tab. 2
for three viscosities. The damping is also evaluated with a
linear decrease whose slope is given by a. Indeed for viscous
flows, the damping is not necessarily governed by an
exponential envelope but rather by a combination of linear and
exponential decrease.

The results indicate that the implicit procedure is still
better for small viscosities. As V increases, the blended
algorithm seems to provide a better description of the viscous
damping. However it should be mentioned that the condition
0 << AR is not respected anymore since the boundary layer
represents 30% of the annular space. The analytical model is
perhaps not adapted in the last cases, what could explain the
discrepancies between the analytical solution and the implicit
calculation. On the contrary, the blended procedure is all the
more accurate as the viscosity is high. This result is surprising
and it could be due to the combination of numerical and
viscous damping. Instead of only evaluating the damping with

o)

logand a, a second criterion which shows the evolution of

the error is used: the instantaneous absolute error is plotted on
Fig. 4 for v =5.0%107% m%s.
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Figure 4. Absolute instantaneous error of the blended and
implicit procedures for v=5x10

Although the blended procedure gives in this case a more
accurate value for the damping than the implicit algorithm, the
error produced by the former becomes progressively higher.
On the other hand, the behaviour of the implicit algorithm is
very satisfactory because as the simulation goes on, the
absolute error decreases. The evolution observed on Fig. 4 is
less pronounced for smaller viscosities: the error produced by
the blended algorithm is smaller than the one produced by the
implicit procedure over a longer period. The blended
algorithm will however be used for the following simulations
after having adjusted the blending parameter to the model.



3. ADIMENSIONNAL PARAMETERS

The parameter m'¢ (or multiples of it like the Scruton
number or the Skop-Griffin number) is adapted to determine
whether the cylinder response is composed of two or three
branches, but for a given response shape, it remains to
determine the best parameter which collapses the different
response regimes of the cylinder for a large interval of

structural parameters. The reduced velocity U " has often been
used to plot the results (see Fig. 1) but the width of the
amplitude peak varies with the mass of the system. A “true”
reduced velocity U i f " used in [9] seems to collapse ideally
the results over a wide range of cylinder mass. However the
adimensional parameters used in different studies are quite
diversified and it is difficult to compare the results between
them. This comes from the different techniques employed to
make the cylinder equation adimensional. The general
equation of the oscillator with structural damping reads:

my(t) +cy(0) +ky(r) = F, (1) 3)
where m is the cylinder mass, ¢ is the structural damping, &
is the rigidity and F), is the resultant of the lift force. The
natural frequency f, of the cylinder defined above (see Eq.
[2]) and the frequency f;, in water (defined by Eq. [4]) are
often used in the adimensionalisation process.

7 :%T mfm with m, =m, = prR°L (4)

The frequency in water depends on the added mass m, which
can be approximated here by the displaced mass of water m,

since the cylinder is placed in an infinite domain and the
viscosity is small. The sets of adimensional parameters listed
in Tab. 3 will be adopted here to compare our results. D is the
cylinder diameter and L its length. U, is the inlet velocity

and o is the density of the fluid.

Table 3. Adimensional sets of parameters commonly used

Adimensional
parameter [8] [9] [19]
Amplitude y/D y/D y/D
A *
Frequency f* f/fo sy /DIU,
Velocity U* U, (fyD) U, I(f,D) U, /21f,D
Mass m* m/lmy mimy m/(0.50D*L)
Damping { c/Nkm c/\Jk(m+my) c/(0.50U,DL)

The frequency f is the actual frequency of the cylinder, i.e.
its oscillation frequency in response of VIV. The variables
used by Shiels et al. [19] have been especially developed to
by-pass the problem of definition for the structural frequencies
f, and f; in extreme cases where k and/or m are null. A

complementary adimensional rigidity k" =k /(0.50U2L) is also
introduced in [19]. The natural frequency f, is only found in

the expression of the velocity, but this variable is only used to
compare the results with others, when the structural frequency
exists. A new parameter called the so-called effective rigidity
is finally defined as:

koy =k =4 fPm’ ®)
This parameter is always defined, even if the mass or the

rigidity (or both) are null. Moreover, it collapses very well the
data for different structural parameters.

4. RESPONSE OF THE CYLINDER UNDERGOING
VORTEX INDUCED VIBRATIONS

The model used for the simulations is the same as the one
used in the first part of the study [18]. However, the
oscillations of the cylinder are not imposed anymore, but they
are induced by the incident flow. A first series of simulations
are performed without structural damping and thus the
movement is governed by Eq. (1). The time integration is
realized with the blended algorithm, but further simulations
are currently tested with the implicit procedure. Our results are
compared to those of Shiels et al. [19] and to those of Khalak
& Williamson [9].

The behaviour of the cylinder is summarized on the curves
plotted on Fig. 5. The response regimes for the amplitude, the
actual frequency of the cylinder and the aerodynamic
coefficients are plotted against k:ﬁ (see Eq. [5]). The

amplitude response is only composed of the lower branch
because the Reynolds number is low [9]. The results show a
very good agreement with those of Shiels et al., for each
parameter. A “resonant” zone is observed in the range [0 —5],

where the maximal amplitude of oscillation reaches A* =0.58
at k:ff =2.32. The peak of amplitude is naturally associated

with an increase of the aerodynamic coefficients. The values
of the lift coefficient plotted are the maximal values, as the
mean fluctuating lift is null. This is not true for the mean drag
coefficient which is plotted on the last graph. A detailed

analysis of three cases (k. =17.5 k. =2.32and
k:/]- =0.05) is done in the following paragraphs; the

frequency content, vortex shedding modes and lock-in zone
are studied and the phenomena observed are linked together.
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Figure 5. Amplitude, frequency and aerodynamic response of the
cylinder undergoing VIV

4.1. Frequential content and phase portraits

Time histories of the cylinder displacement are now very
interesting data, because the movement is not known a priori
as it was the case for forced vibrations. The graphs in the left
column (Fig. 6) show the difference of amplitude obtained
between the different regimes. In the “resonant” zone, the
amplitude is maximal but remains limited. This is due to the
self-limitation phenomenon mentioned in the introduction.
The periodic regime is reached quickly: about ten cycles only
are necessary for the maximal amplitude response. The
corresponding FFT of the cylinder displacement response are

plotted versus the frequency ratio f* = f/ f5 - It can be seen

that the peak moves from the left to the right as k:ﬁ-

decreases. For k:ff =232, f" =1 indicates that the cylinder

oscillates at the natural frequency of the structure instead of
the Strouhal frequency fg for a Reynolds number Re =100.

The Strouhal frequencies at Re =100 in the three cases are

given in Tab. 4. The values corresponding to k:/]- =0.05and

k:/]- =17.5 indicate that in these two cases, the oscillations of

the cylinder are driven by the Strouhal frequency, because the
peak of the FFT is at f~ =fslf.

When k: i 18 increased, the cylinder response exhibits an

amplification of the amplitude and aerodynamic coefficients
which can be related to the synchronization of the cylinder
frequency on its natural frequency: this is typical for the lock-

in zone, which has been defined as the domain where the
cylinder frequency shifts from the Strouhal frequency and is
locked on the structural one.
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Figure 6. Time histories and FFT of the cylinder displacement

Table 4. Strouhal frequencies for a fixed cylinder

*

ko 0.05 2.32 17.5
sl fi 1.35 0.82 0.51

The phase portraits of the oscillator are represented on Fig.
7. The amplification of the lift coefficient is still visible on the
second portrait. The global inclination of the portrait is always
in the first quadrant meaning that the phase angle between the
lift force and the displacement remains in the interval
[0°=45°]: no phase jump is observed. For higher Reynolds

numbers, a phase jump appears generally at about U "=56
[8], [9], i.e. when the amplitude increases sharply. One reason
for the absence of phase jump can be the low Reynolds
number used, which prohibits the modification of the vortex
shedding mode as it will be seen later.
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Figure 7. Phase portraits of the cylinder

The convergence towards the limit cycle has also been tested
to check if the equilibrium state reached was stable or not. A

new simulation is performed at k:ﬁ- =2.32 with an initial

velocity imposed equal to the incident flow speed. The “true”
phase portraits (adimensional velocity against displacement)
are plotted in the two cases on Fig. 8. The limit cycle is the
same, which means that the state reached is stable, whatever
the initial condition may be.
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Figure 8. Convergence towards the limit cycle with null
(¥',V)=(0,0) or non null (¥*,F"")=(0,1) initial condition

4.2. Vortex shedding modes

The vortex shedding patterns are illustrated on Fig. 9 with
the vorticity field. The vortices are shed alternately from the
upper and lower sides of the cylinder, according to the
classical Von Karman streets or 2S mode. The shedding mode

is very similar to the results of Shiels et al. [19], but no clear
modification of the wake has been observed. The vortices are

more stretched in the vertical direction at k:ff =2.32 than in
the other cases. This slight modification is certainly due to the

increased amplitude of oscillation in the intermediate case,
which deforms the wake in the vertical direction.

ko =17.5

ko =0.05

Figure 9. Vortex shedding modes inside and outside the lock-in
zone

For higher Reynolds numbers, a change between a 2S and
2P mode is often observed (see [8], [9]) and can be linked to
the transition between the upper and lower branch of
excitation (see Fig. 1). This transition has also been connected
to the phase jump in the case of forced oscillations or VIV.
However, the low Reynolds number used here prohibits the
change of the mode shape. Moreover, the numerical
simulations fail sometimes to capture this mode change, even
if the Reynolds number is high: in their study Al-Jamal &
Dalton [2] do not obtain the 2S and 2P modes although they
use Large Eddy Simulations at Re =8000 . The authors argue
that these modes are only observed for sinusoidal oscillations.
When oscillations are not purely sinusoidal, as it is the case in
VIV for certain reduced velocities, the 2S, 2P, etc... structures
may not become fully established because the amplitude of
oscillation and phase angle are both time dependent. The lack
of constancy in amplitude and phase angle could likely lead to
the lack of repeatability in vortex formation which certainly
could suppress the standard mode patterns.

The oscillations of the cylinder are not always purely
sinusoidal and a beating behaviour is observed for example at

ky; =7.79 (i.e. U" =4.00) as it is illustrated on Fig. 10. The

displacements are not periodic between two successive cycles,
but over several cycles. The spectrum exhibits therefore two



peaks, between f*=0.68 and 1. The first value corresponds to
the Strouhal frequency whereas the second is the cylinder
natural frequency. The beating behaviour can be understood as
a desynchronization phenomenon: the cylinder oscillation
frequency progressively shifts from the natural frequency f;,

which is predominant at k:ff =2.32, to the Strouhal frequency
which drives the wake at k:/]- =17.5. There is a progressive

change of the main peak in the spectrum, which is the sign of
the response modification.
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Figure 10. Beating behavior observed at k*eff=7.79

This beating behaviour is often observed [2], [9], [14], [19]
and has been related to a mode change, or a mode competition.
Khalak & Williamson [9] have shown that this beating is
associated which the transition between the lower and upper
branch of excitation, and therefore with the transition between
the 2S and 2P modes. We do not have a significant mode
change, but the beating is however connected to the little

modification of the vortex patterns between k:/]- =2.32 and

k:ﬁ- =17.5. Finally, the low Reynolds number prohibits the

observation of the classical mode change 2S to 2P, but a little
modification of the wake appears and a similar beating
phenomenon happens, which is related to this vortex pattern
change and to the progressive transition between a cylinder
response driven by the natural frequency f, to a response

driven by the Strouhal frequency f5 .

4.3. Lock-in zone

The amplitude response plotted on Fig. 5 has shown an
amplification over a certain range of k:ﬂ_ or reduced velocity

U defined by Khalak & Williamson (see Tab. 3). This latter
parameter is often used to plot the response, instead of k:ﬁ.

The “resonant” zone can also be easily identified by plotting
the frequency response with the adimensional frequency

f* = f'/ f; used in [9]. The evolution is presented on Fig. 11.

The horizontal line f "=1 indicates that the cylinder

oscillation frequency is the natural frequency. On the contrary,
the oblique lines give the Strouhal frequencies over the range
of reduced velocities studied. Two lines are represented since

the results of Khalak and Williamson are obtained at higher
Reynolds numbers where the Strouhal number is slightly
greater. From the results of [9], it can be seen that for small or
high U ", the cylinder oscillations are driven by the Strouhal.
In the range [4-6], the cylinder frequency [ is exactly
equal to the natural frequency of the cylinder: this is the upper
branch. Over the range [6—10], the frequency f is still not
equal to the Strouhal frequency but to a multiple of the natural
frequency f,: this is the lower branch. The interval [4 —10]
can be defined as the lock-in zone because the cylinder
frequency shifts from the Strouhal frequency. The transition
zone between the upper and lower branch is characterized by
the simultaneous existence of two frequencies in the response.
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Figure 11. Frequency response and lock-in zone. e Present
simulation, o Khalak & Williamson [9]

In our case, the response is less complex since the upper and
lower branches are not observed. However, the two first and

last points (U~ =3 -4 and U" =11.32-14.12) show that the
cylinder oscillations are in this case driven by the Strouhal
frequency. In the range [4.4 —11.32], the actual frequency of

the cylinder shifts from the Strouhal frequency and follows an
oblique line whose slope is very smooth and quasi horizontal.
Over this interval, the cylinder is locked on, near the natural
frequency of the cylinder. In the present case, the lock-in zone
is not exactly horizontal but rather oblique. This is due to the
mass of the system as it is shown by Shiels et al. In [19], the
authors perform several series of simulations for different

mass ratios m  between 0 and 20 . For small masses, the



lock-in zone is not very pronounced. On the contrary, for high
mass ratios the lock-in zone is immediately visible and forms

a horizontal zone located at [  =1. In most cases tested here,

we choose a mass ratio m" = 3.3, which explains the absence
of strictly horizontal level. There is no evident relation

between the effective rigidity k:ﬁ of Shiels et al. and the

reduced velocity U~ used by Khalak & Williamson because

k:f is defined from the actual cylinder oscillation frequency

f which is not known a priori. The relation between the two

parameters is given in the subplot on Fig. 11 to facilitate the
link with the previous paragraphs.

5. FURTHER DEVELOPMENTS

The results presented before have been obtained for a low
Reynolds number without structural damping. These
assumptions have been made to begin with relatively simple
models. In the future, our aim is to work with structural
damping in order to try to capture the lower and upper
branches of excitation and at higher Reynolds numbers which
would be nearer from industrial applications.

The structural damping can be easily introduced in the
coupling procedure used to integrate the cylinder motion. The
equation solved is now Eq. (3). The blended scheme is
adapted by adding only a damping term in the expression of
the acceleration (Step 2 of the algorithm):

S I VY ()

m m m

For the implicit procedure, the modification is not more
difficult. Indeed, the iterative scheme (extensively presented
and studied in [21]) is not modified by the introduction of the
damping: the evaluation of the velocity by the Newton-
Raphson method is not affected since the gradient is obtained
with the acceleration which has been computed before with
(6). Comparisons between the explicit, blended and implicit
schemes have been performed for the configuration exposed
on Fig. 2. The difference is that there is now a combination
between numerical, viscous and structural damping. The
results are not presented here but it is worth mentioning that
the implicit procedure remains the best. The blended
algorithm still provides an accurate solution and is a
straightforward procedure to study the coupled problem.

n+l

Another difficulty arises from the increase of the Reynolds
number which is synonymous with the apparition of
turbulence. The present study has been conducted for
Re =100, i.e. a Reynolds number small enough to have a
laminar wake. The Reynolds number is now multiplied by ten
and solutions must be found to take into account the
turbulence of the wake. The Navier-Stokes equations are thus
averaged and the fluctuations introduced by the turbulence are

modelled by the Reynolds tensor. This latter is evaluated with
a turbulent viscosity which depends on the turbulent kinetic
energy and the specific dissipation rate. These variables are
obtained by solving transport equations which are deduced
from the Navier-Stokes equations. Finally the flow is
computed with the classical Navier-Stokes equations,
completed by a turbulence model composed of two transport
equations. Among the numerous models existing, we choose
the k-w SST model developed by Menter [13]. This model
combines the classical k—w and k —& turbulence models
and is particularly adapted to capture the recirculation zones
after airfoils or bluff bodies. It has been successfully used by
Le Pape & Lecanu [12] for profiles in wind engineering or by
Guilmineau & Queutey [8] in the case of a cylinder
undergoing VIV like ours.

The model has been first tested for a fixed cylinder. The
Strouhal frequency found St = 0.23 is slightly greater than the
empirical value Sf=0.21 given by Norberg [16] but is in
good agreement with other numerical studies: St=0.25 in
[14], St=0.23 in [2]. The error remains small but the
evaluation of the fluctuating lift is more difficult. The rms
value computed is very far from the one proposed by Norberg.
Indeed, for Re =1000, the rms values exhibits a wide
scattering (see [16] for more details) and it is difficult to find a
good agreement. This could explain the results obtained for
VIV simulations at Re =1000.
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Figure 12. Amplitude response at Re=1000 and m*{=0.013.
e Present simulation, o Khalak & Williamson [9]

The simulations are performed with the k£ — @ SST turbulence
model and the blended procedure to take into account the
effect of the high Reynolds number and the coupling between
the flow and the cylinder displacement respectively. Only four
cases have been tested for reduced velocities ranging from
U'=2 to U =10. The graph on Fig. 12 shows the
amplitude response of the cylinder at Re =1000 for a

combined mass-damping parameter m'¢ =0.013, a value
equal to the one used in [8] and [9].



It can be seen that the amplitude is not always accurately
evaluated. However the shape of the amplitude curve is
respected, apart from the upper branch. For high reduced
velocities, the amplitude is under-evaluated and falls rapidly.
The upper branch does not seem to be reached, but more tests

should be conducted in the range U " =4-6 to confirm this.
Moreover, further developments are actually made to use the
implicit procedure. This latter would perhaps provide a better
description of the flow field and we hope that the upper
branch could be reached, without using an increase or a
decrease of the reduced velocity, as used in [8].

6. CONLUSION

The numerical results detailed in the present paper have
proved that our industrial code is able to represent the vortex
induced vibration phenomenon. Restrictions must be taken
into account since the results are for instance in good
agreement for low values of the Reynolds number and without
structural damping. In this case, the response amplitude,
frequency content and mode patterns correspond to others
experimental or numerical studies. For higher Reynolds
numbers the results are not yet very satisfactory: the amplitude
response is under-evaluated for high reduced velocities.
However further developments are actually made to
understand the effects of the structural damping and the higher
Reynolds number. This needs to analyze on the one hand the
effect of the structural damping at low Reynolds numbers (i.e.
without turbulence), and on the other hand the influence of the
turbulence model by testing several ones. Interesting results
could then be obtained by using the implicit procedure which
would certainly provide a better description of the flow field.
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