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ABSTRACT

The numerical simulation of the flow past a circular cylinder forced
to oscillate transversely to the incident stream is presented here for a
fixed Reynolds number equal to 100. The 2D Navier-Stokes
equations are solved with a classical Finite Volume Method with an
industrial CFD code which has been coupled with a user subroutine
to obtain an explicit staggered procedure providing the cylinder
displacement. A preliminary work is conducted in order to check the
computation of the wake characteristics for Reynolds numbers
smaller than 150. The Strouhal frequency fs, the lift and drag
coefficients C; and Cp are thus controlled among other parameters.
The simulations are then performed with forced oscillations f; for
different frequency ratios F=fy/fs in [0.50-1.50] and an amplitude 4
varying between 0.25 and 1.25. The wake characteristics are analysed
using the time series of the fluctuating aerodynamic coefficients and
their FFT. The frequency content is then linked to the shape of the
phase portrait and to the vortex shedding mode. By choosing
interesting couples (4,F), different vortex shedding modes have been
observed, which are similar to those of the Williamson-Roshko map.

1. INTRODUCTION

Flow around a fixed or oscillating cylinder has received
continued attention in the past few decades. In addition to
being a building block in the understanding of bluff body
dynamics, it has a large number of applications in many
engineering situations. This study is a prelude to investigate
the feasibility of coupled fluid-structure computations with an
industrial CFD code that could be used later on a tube bundle
configuration, like those existing in nuclear steam generators.
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The wake of a circular cylinder exhibits a large variety of
phenomena very rich and complex which come from the
diverse instabilities growing in the near wake. It is well-
known that for Reynolds numbers smaller than 50, two
recirculation zones attached to the cylinder wall can be
observed. As the Reynolds number is increased the wake
consists of two staggered rows of vortices forming the
classical Von-Karman streets, the vortices of each row being
shed alternately from either side of the cylinder. For larger
Reynolds numbers, three dimensional structures appear in the
wake which becomes progressively turbulent. The
classification of the different regimes is not simple and
changes according to the authors. The main reason is due to
the fact that the wake is very sensitive to the experimental
system or the numerical model. A rather clear classification
can be found in [23].

The flow around an oscillating cylinder is even more
complex, because of the interaction between the vortex
shedding phenomenon and the cylinder displacement. Indeed,
as the vortices are shed, a periodic force is exerted on the
cylinder, whose component in the transverse direction (lift
force) has the same frequency as the vortex-shedding cycle,
while the frequency of its streamwise direction (drag force) is
equal to twice the shedding frequency. In certain ranges of
amplitude and frequency of oscillation, the body motion can
control the instability mechanism which leads to vortex
shedding. One of the most interesting characteristics of this
fluid-structure interaction is the synchronization, or “lock-in”,



between the vortex shedding and vibration frequencies. The
vortex shedding frequency diverges from that corresponding
to a fixed cylinder and becomes equal to the natural frequency
of the cylinder, when the oscillation amplitude exceeds a
critical threshold.

This complicated fluid-structure interaction phenomenon
still draws the attention of researchers and has become the
typical test case for new numerical methods. A lot a study
involving RANS, LES or DNS simulations using Finite
Element or Finite Volume methods to solve the Navier-Stokes
equations can be found in the literature [1], [5], [14], [21] and
many others, for a large interval of Reynolds numbers. It is
also crucial to check that the numerical computation lead to
the same phenomena than those observed in experimental
works like [3], [11].

The numerical model used for the computations is first
presented; results obtained for the fixed cylinder are then
briefly exposed; cylinder response to forced oscillations is
then investigated.

2. NUMERICAL MODEL

2.1. Computation of the Navier-Stokes equations

The flow is assumed to be Newtonian, incompressible, and
laminar as the Reynolds number is small (Re <150). The
integral form of a conservation equation for any fluid variable
¢ (pressure, velocity) written on a moving domain Q(¢) is

the following:
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Equation (1) is discretised using a Finite Volume method on a
2D mesh, i.e. the conservation equation (1) is written for each

cell of the fluid domain. The grid velocity w;k appearing in the

left side of (1) is deduced from the known node displacement
imposed by the cylinder displacement and becomes then a
source term on the right-hand side. The time dependent term
in (1) is approximated by an Euler scheme. Diffusive and
convective fluxes are calculated using finite difference
approximations. The pressure corrections are taken into
account thanks to the SIMPLE algorithm for steady
computations and the PISO pocedure in unsteady cases.
Finally, an algebraic system is obtained and solved iteratively
until the convergence is reached. More details on the
discretisation scheme and the resolution of the algebraic
system can be found in [7] and [20].

2.2. Cylinder displacement and moving mesh

A sinusoidal motion is explicitly imposed to the cylinder in
a user subroutine handled by the CFD code at each time step
before solving the flow field. The displacement parameters are
the frequency f, and the amplitude of oscillation

A=y« /d. The vertical motion is thus governed by the
following equation:

y() = Asin(277 1) 2

The cylinder oscillates independently from the flow but the
wake can be strongly affected by the cylinder motion. The
different wake regimes are classified thanks to the frequency
ratio F' defined below:
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where fg refers to the Strouhal frequency for the fixed
cylinder, i.e. the vortex shedding frequency.

The movement of the cylinder is taken into account in the
fluid model which has been formulated in an Arbitrary
Lagrangian Eulerian (ALE) formulation. In this way, the mesh
can be updated from the knowledge of the wall cylinder
motion. The moving mesh algorithm used has been adapted
from the one developed in [19]. The displacements and
velocities of each cell of the interior moving mesh are then
computed to respect the mesh quality to the maximum. This
algorithm has been used successfully in [19] and [20] and as
the amplitude of oscillation remains here small, there is no
important mesh distortion.

Finally, the no-slip condition on the cylinder wall I" has to
be adapted. For each node in contact with the cylinder wall,
the fluid velocity u = (u,v) is explicitly set equal to the

cylinder velocity y(¢) so that the cinematic coupling condition
is respected:

v(t) = y(t) Om oar 4

2.3. Geometry and boundary conditions

The computational domain is represented on the Fig. 1.
The cylinder position has been chosen so that the downstream
length is long enough to observe the vortex shedding which
should not be influenced by the outlet boundary condition.
The mesh is block-structured and a ring has been introduced
around the cylinder. In order to reduce the computation time,
the mesh only moves in the interior of this ring (represented
with a dash line on Fig. 1). As the mesh has been refined near
the cylinder wall with a ratio in the ring, the total number of
cells stands at 28800.
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Figure 1. Geometry and boundary conditions of the
computational domain

3. FIXED CYLINDER WAKE

The wake of a fixed cylinder is investigated here for four
Reynolds numbers in the permanent regime (5 <Re <50 ) and
four others in the 2D periodic regime (50 <Re <150). The
mesh remains fixed and several characteristic parameters of
the wake are checked to control the validity of the numerical
model.

3.1. Results in permanent regime

The simulations are carried out in permanent regime until

the convergence residual becomes smaller than 107 . The
Reynolds numbers investigated are 10, 20, 30 and 40, all
below the bifurcation between the permanent and the periodic
regime. In this regime, the wake is characterized by two
recirculation zones attached to the cylinder wall. These zones
are recognizable by the strong vorticity, which is due to the
fact that the flow is rotational, and by low pressure levels, as it
can be seen on Fig. 2.

Figure 2. Vorticity and pressure contours at Re=40

The first parameter controlled is the length L, of the
recirculation zone which is defined by the downstream
distance where the velocity is null. Then the values of the
separation angle & are checked. &y is defined by the angular

position on the cylinder wall where the vorticity is null. The
evolution of these two parameters is deduced from the graphs
plotted on Fig. 3. The values obtained for L, are compared to
those found in [2], [9]; the separation angle is compared to the
results of [4] and [9], see Tab. 1. The errors remain inferior to
5% for all Reynolds numbers.
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Figure 3. Plots used for the determination of the
recirculation length and angle of separation

The values of the drag C), and suction coefficients C, are
also controlled. As expected, the lift coefficient C; remains
null because of the perfect symmetry of the flow field. The
expressions of the aerodynamic coefficients are given below:

F D F L

CD:72 :pm_po (5)
1/2pU2dl

C, = c,
T 2puldl 1/2pU2

Fpy (resp. F;) is the drag force (resp. the lift force), p,,is the
reference pressure and p, is the pressure at the rear
stagnation point. The values found for the aerodynamic
coefficients are also in good agreement (comparison with [2],
[9] and [10]) although the error on C, is slightly higher but
remains under 10%. This can be explained by the fact that C,

is a local variable which is from the computational point of
view very sensitive to numerical errors.

Table 1. Values of the geometric characteristics and force
for the permanent regime

Reynolds number 10 20 30 40

Recirculation length L,/d 0250 0934 1.603 2.265
Separation angle 6, 28.4 47.2 48.6 52.5
Drag coefficient Cp 3.02 2.16 1.81 1.60
Suction coefficient Cy 0.67 0.54 0.50 0.48

3.2. Results in periodic vortex shedding regime

Transient simulations are now investigated. The simulation
time is chosen long enough to observe about fifteen vortices
shedding once the periodic regime is established. The time
step is set to about 1/150 of the Strouhal period during the
transient phase at the beginning of the computation. To obtain
the Von Karman streets, the symmetry of the wake has to be



numerically broken. This is done by introducing a 1%
amplitude arbitrary noise on the incident velocity. This
perturbation is only maintained during a small time interval.
Once the periodic regime is reached, the time step is divided
by 4 to increase the accuracy of the results. The CPU time
stand at about 26h. The Reynolds numbers tested now are 60,
80, 100 and 120. In this case, the wake consists of two
staggered rows of vortices being shed alternately from either
side of the cylinder. Figure 4 shows the vorticity contours in
the wake of the cylinder over a Strouhal period. At #=¢,, a

vortex is forming in the lower side of the wake and is then
completely detached from the cylinder wall at ¢ =¢, +1/37}.
At t =1, +2/3Ty, the vortex of the upper side is about to be
inserted between the lower vortex formed previously and a
new vortex which is forming. At ¢ =¢, + T, the vortex in the
upper side is completely detached and the wake topology is
exactly the same as the one observed at ¢ =¢ .

Figure 4. Vorticity contours in the wake over one Strouhal
period

The periodicity of the shedding leads naturally to the
fluctuation of the aerodynamic coefficients. The convergence
of the coefficients is show on Fig. 5 for Re =100. The first

part of the computation (t* <10) corresponds to the transient
phase during which the perturbation arrives on the cylinder.
The periodic state is then reached and it can be seen that the
drag coefficient oscillates at twice the lift or suction
coefficient frequency.

The Strouhal frequency fg can be defined as the lift

coefficient frequency or the fluctuation frequency of velocity
for any point in the near wake. The two frequencies are the

same and the Strouhal number is obtained by the following
relation:

S =fs—— (6)
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Figure 5. Convergence of the aerodynamic coefficients at
Re=100

Many empirical expressions have been proposed for the
evaluation of the Strouhal number [8], [15], [18], [22]. The
value obtained here is slightly greater than in other studies and
this could be explained by the small aspect ratio H /d used in
the simulations. The mean values of the drag and suction
coefficients are computed over several periods in the periodic
regime (without the transient phase). The mean value of the
lift is null and we therefore use the maximal value reached or
the root mean square value. The values of the parameters
controlled are listed in Tab. 2 with the Strouhal number. The
aerodynamic coefficients are compared to the results of [9]
and with [15], who gives an empirical relation for the rms lift
coefficient. Our results are still in very good agreement with
other studies, even if the Strouhal number is slightly greater.

Table 2. Values of the Strouhal number and force
coefficients for the periodic regime

Reynolds number 60 80 100 120

Strouhal number St 0.141 0.158 0.169 0.177
Mean drag Coefficient Cp 1.44 1.40 1.37 1.35
Max. lift coefficient C; 4, 0.12 0.25 0.33 0.39
RMS lift coefficient C 0.08 0.18 0.23 0.28
Mean suction coefficient. C, (.54 0.62 0.70 0.75

This first series of simulations has shown that the CFD
code is able to give an accurate description of the flow field
around a fixed cylinder. The geometric vortex shedding



characteristics and the intensity of the pressure and
aerodynamic forces are very well evaluated.

4. FORCED OSCILLATIONS

Simulations are then performed for a cylinder forced to
oscillate at the frequency f, which is better described with
the frequency ratio F = f,/ fy. Computations are run from

the solution for the fixed cylinder, i.e. when the Von Karman
streets are already present. The Reynolds number is kept
constant and equal to 100 and only the natural frequency f,
and possibly the amplitude 4 are changed.

The lock-in zone is defined by the domain where the
vortex shedding frequency diverges from the value expected at

the Reynolds number considered and locks on the frequency
of the forced oscillations: this zone is represented Fig. 6.

A

|
I', Locksin zone |/

Figure 6. Lock-in zone for forced transverse oscillations

If the amplitude is kept constant and F varies over a wide
enough interval, the lock-in zone should be crossed and the
different regimes should be observed.

4.1. Cylinder response and lock-in zone

The cylinder response is studied for several frequency
ratios F between 0.50 and 1.50 while the amplitude A is
kept constant and equal to 0.25. We present in the following
two types of responses, the first in the lock-in zone and the
second out of the lock-in zone. For 4 =0.25, the upper and
lower limits are approximately located at F =0.75 and
F =1.25 [13].

*  Locked configurations

Two cases are presented here: F =0.90 and F =1.10.
The time evolutions of the aerodynamic coefficients show a
strong increase of the amplitude for each coefficient and a
pure sinusoidal response which is clearly highlighted with a
FFT. The spectra of the lift coefficient presented on Fig. 7

show that the main frequency is found at f "=1.0,

where f = f/f,. This indicates that the aerodynamic forces

Magnitude

are governed by the forced frequency (FFTs of the drag
coefficient not represented here would show a main peak at

f =20 ). This periodicity can also be observed in the wake:

visualisations of the vorticity contours in the wake are exactly
the same at two moments separated by one natural period

T, =1/f,.

The phase portraits of the system are a very practical tool
to analyse the response. Phase portraits for the two cases
under study are thus given on Fig. 7. The existence of a limit
cycle is the result of the perfect sinusoidal response and the
inclination of the cycle gives an estimation of the phase angle
between the imposed displacement and the lift. Finally, the
sense of the cycle is clockwise, which means that the energy
transfer takes place from the fluid to the cylinder.
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Figure 7. FFT of the lift coefficient (top) and phase
portraits (bottom) for F=0.90 (left) and F=1.10 (right)

*  Unlocked configurations

The frequency ratios F =0.50 and F =1.50 lead to an
unlocked wake. The pure sinusoidal response in the time
evolution of the aerodynamic coefficients is lost and a beating
behaviour is observed. The FFTs of the lift coefficient are now
composed of two main peaks even if it is not very clear at
F =150 (see Fig. 8, top). The peak at f* =1, which
corresponds to the forced oscillation frequency f,, is still
here and is still the main peak at F =1.50. The second peak
comes from the Strouhal frequency f evaluated for the fixed
cylinder. The two frequencies are now present but the main
peak is alternately that corresponding to f, or fs .

The phase portraits (Fig. 8, bottom) are dramatically
different from those obtained earlier. There is still a limit



cycle but the path is different between two cycles and as a
result, there are many ways in the interior of the cycle. This
should be related to the beating behaviour which causes a
fluctuation of the C; value between two successive cycles.

Like in [14], we choose to define the lock-in region as the
domain where the evolution of C; is purely sinusoidal and

governed by the forced oscillation frequency. This means that
there is only one peak at f " =1 in the FFT. The presence of

only one peak is immediately visible according to the shape of
the phase portrait and, combined with the FFT, it is a practical
tool to define when lock-in is observed or not.
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Figure 8. FFTs of the lift coefficient (top) and phase
portraits (bottom) for F=0.50 (left) and F=1.50 (right)
If we define T, as the beating period, the following
relations between the different periods can be written:

-7 =L
TB_TO_FTS (7)

T, = 8T, =%TS

F=0.50
F =150

The beating period is absent from the spectra but it plays
an important role for the vortex shedding process. The
visualizations of the contours of vorticity at different time
steps show that the wake is similar at two instants separated
by a beating period. Figure 9 represents the vorticity contours
at t=t,, t=t,+T,, t=t,+Tg, and t=¢,+Ty. It is clear
that the periodicity of the wake is governed by the beating
period (the first and last pictures are exactly the same) instead
of the Strouhal period T or the forced oscillation period 7,

as it could be expected by seeing the FFT. Inside the lock-in
zone, the wake was governed by the period T, of the forced

oscillation. This period was also the period of the lift
coefficient fluctuations. Outside the lock-in zone, the

03

behaviour is more complex: the lift coefficient is characterized
by the Strouhal frequency below the lower limit of the lock-in
zone (resp. the forced oscillation frequency upon the upper
limit) but the wake is governed by the beating period which is
a multiple of the forced oscillation period.

In addition to a shift of the shedding frequency, the lock-in
region is also characterized by an increase of the aerodynamic
coefficients, when compared to the fixed cylinder case. The
mean drag is practically always greater than the fixed cylinder
value whereas the rms lift coefficient is smaller at the
beginning of the lock-in zone and increases gradually through
as F increases. At the end of the lock-in zone, the lift
amplification seems to become less pronounced. The
evolution of these parameters is presented on Fig. 10 where
the dash line represents the fixed cylinder value. The evolution
of the mean suction coefficient is not given as it is quite
similar to the mean drag coefficient with a maximal value at
F=1.10.

t=t, t=t,+T,
t=t, +T t=t,+Ty
Figure 9. Vorticity contours at different strategic moments

for F=1.50

To conclude this first paragraph, it is worth mentioning
that a jump in the phase angle should be observed at the
beginning of the lock-in zone. In [3], the authors find
experimentally a jump in the phase angle ¢ and the lift

F=0.80. Below this value, ¢ is

approximately equal to 180° and sinks to 0° at the critical
value of F . The authors attribute this jump to a modification
of vortex shedding mode which appears in the wake. In the
present study, it is also observed that the lift coefficient
increases when F increases but [3] found out that the steepest
slope is at F =0.80, whereas in the present case this happens
later, between F =1.00and 1.25. The phase angle has only

coefficient at about



been evaluated in the lock-in zone where the fluctuations are
purely sinusoidal. The present simulations show a smooth
decrease of ¢ with F' and no real jump has been observed.

The first reason is that only three cases where treated in the
lock-in zone which lead to the values ¢ =113.8, ¢ =80.5 and

¢=477for F=0.90, F=1.00 and F =1.10. A second and

probably more subtle reason is the difference in the Reynolds
number between our study (Re =100) and [3] (Re =2300).
Although it is not yet clear, it has been noticed [12] that the
change of vortex shedding mode is most of the time not
observed [1], [14] at low Reynolds numbers, whereas it can be
seen at higher Reynolds numbers [23].
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Figure 10. Evolution of the mean drag and rms lift
coefficients with F

4.2. Vortex shedding modes

Attention is now paid to the topology of the wake: first the
beating phenomenon is analysed and associated to a vortex
merging mechanism at F =1.25; then greater values for the
amplitude A4 are used to observe different shedding modes,
which are commonly called the 2P and P+S modes.

*  Vortex merging
At F=1.25 and 4=0.25, a beating phenomenon similar
to those observed earlier appear. The beating period 7 spread

over seven forced oscillation periods 7,. This beating

behaviour could be explained by a vortex merging mechanism
which causes the break of periodicity in the time histories of
the aerodynamic coefficients. To understand it, we focus on

the time interval [¢, +27,,¢t, +47,] comprised in a beating
period.
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Figure 11. Details of the vortex merging mechanism
associated with the beating behaviour at F=1.25

Figure 11 shows the fluctuations of the lift (blue) and drag
(red) coefficients over a whole beating period. The circles
represent the time steps used for the visualizations in the rest
of the Fig. 11. At ¢, +27,, the vortices are shed alternately

from the upper and lower side of the cylinder, as in the
classical 2S mode. On the following snapshot, it is clear that
the vortices B; and B, are distinct, as they have been shed over
two successive cycles. The situation is identical in the upper



side with the vortices H; and Hy. At ¢, +37,, the vortices By

and B;s begin to merge: B, is not energetic enough and cannot
be inserted between H; and Hy Vortex B, is therefore
swallowed by Bs, and the pure sinusoidal response of the 2S
mode is lost. The fusion goes on until the two vortices form
only one structure called Bs+B,4. The phenomenon destabilizes
the upper side of the wake: as B, is not between H; and Hy, it
prevents H; to be convected downstream as long as the
structure Bs+B; is not completely merged. A similar
coalescence phenomenon appears thereby in the upper side
and gives birth to the structure Hs+H,. This merging could be
related to the C(2S) mode of Williamson and Roshko [24] in
which a coalescence of the classical 2S streets appears.

An important consequence of the merging is the
modification of the longitudinal space between the vortices.
At ¢, +2T,, the vortices are regularly spaced out, whereas at

t, +4T, a group of structures is concentrated in the near

wake. This accumulation of vortices in the near wake explains
why the lift and drag coefficients are greater at these moments.
Indeed, the forces exerted on the cylinder are more important
when the vortices are merging, because the fusion delays the
shedding and leads to the accumulation of vortices in the near
wake.

Case F' =1.25 is situated on the upper limit of the lock-in
zone and the beating behaviour could also be interpreted as a
transition between a locked and unlocked wake. However, this
phenomenon is still present at F =1.50 or F =0.50, i.e.
really outside the lock-in zone. The lock-in zone could thus be
characterized as the domain where the wake reponse is purely
sinusoidal and governed by the forced oscillation frequency.
Outside of it, the wake seems to loose its sinusoidal form and
vortex merging phenomena are observed. For relatively small
amplitude of oscillation (like the one chosen here, 4 =0.25),
we did not observe a “true” modification of the vortex
shedding mode: the emission remains close to the classical 2S
mode, but this emission is sinusoidal or not depending on
whether the wake is synchronized or not. Our results
corroborates other studies, such as [1], in which a change in
the vortex shedding mode has not been observed either, but
exhibited a vortex merging phenomenon for oscillation
amplitudes of the same order as in the present case
(A<0.50). In the following, the 2P and P+S modes are tried
to be simulated, by choosing greater amplitudes of oscillation
for which the vortex shedding modes are clearly distinct.

e 2P like vortex shedding mode

The values used to investigate other shedding modes are
deduced from the vortex shedding map proposed by
Williamson & Roshko [24]. The couple (4, F) =(1.00,0.90)

is chosen in the middle of the 2P shedding mode domain.

The wake looks like a 2S shedding mode but the vortices
are stretched in the vertical direction because of the higher
amplitude of oscillation. And yet if we look in details at the
wake structure, it is possible to discern a secondary vortex,
whose intensity is very small. At ¢ =¢, on Fig. 12, the vortex
V| seems to have a tail which is composed of the small vortex
V,. Although V, is over V; at ¢ =¢,, the small vortex V; slips
progressively over V; and is then attached to V. The same
process appears for V3 and V,: as the vortex Vs has not been
inserted between V; and V,, the small vortex V, slips over Vs
and attaches to the tail of V3.

v

t=t,+3T,/4

t=t,+T,
Figure 12. 2P like shedding mode for (4;F)=(1.00,0.90)

The vortices are still alternately shed from the upper and
lower side of the cylinder as in a 2S mode, but as they move
downstream, a weakly energetic vortex slips over its following
neighbour and forms the tail of its preceding neighbour. The
vortices are then assembled by asymmetric pairs. Over one
cycle period, two pairs (here V4+Vs and V4+V;) are shed, so
the vortex shedding mode looks like a 2P mode in which the
vortices would not be identical in a same pair. As the small
vortex is weakly energetic, it quickly disappears in the far
wake. The vortex shedding mode obtained in the far wake
looks therefore like a 2S mode with deformed vortices.



It is not surprising to obtain a deformed shedding mode
instead of the regular 2P mode. The reason comes certainly
from the fact that the Reynolds number used here is relatively
small. As already mentioned, the vortex shedding modes are
quite different at low Reynolds numbers. Indeed, it has been
noted [12] that the 2P is not observed at low Reynolds
numbers but the reasons why the wake is different remain
obscure. Experiments presented in [17] exhibited only the P+S
mode for Re<190; the 2P mode in their laminar-regime
studies has nonetheless never been observed.

Finally, it should be mentioned that the vortex shedding
process shown on Fig. 12 respects the lock-in behaviour: the
cycle period is T, , i.e. the forced oscillation period. The FFT

of the lift coefficient would show only one peak at f T =1,

*  P+S vortex shedding mode

The choice of the oscillation parameters is still based on
the  Williamson-Roshko ~ map.  Thus the couple
(4,F)=(1.25,1.50) is located in the middle of the P+S

shedding mode. The wake is now composed of two distinct
rows of vortices. In the upper row, the vortices are grouped by
pairs (P) whereas a single vortex (S) is shed in the lower row.
The configuration of the wake is shown on Fig. 13. It should
be noted that the cycle period of the wake is T, , i.e. the forced

oscillation period. The wake is however not locked because
the spectrum of the lift coefficient does not contain only one
peak. This was already the case for /' =1.50 and 4 =0.25. A
major difference between these two cases concerns the
position of the second peak relative to the first. For a small
amplitude of oscillation 4 =0.25, the second peak is a low-
frequency peak. As a result, a low-frequency beating
behaviour is observed (Fig. 14, top): the fluctuations of the lift
are not periodic over one period 7, but over several periods.

On the contrary, for 4 =1.25, the secondary peak in the
spectrum is a high frequency peak. The fluctuations of the lift
are therefore modulated by a signal which influences the
response during one cycle 7, (Fig. 14, bottom). The

fluctuations of the lift are periodic between two successive
cycles, but over one cycle, a small fluctuation is observed. We
suppose that this fluctuation could be related to the emission
of the pair in the upper side of the wake.

The influence of the amplitude on the vortex shedding
mode is crucial. Indeed, according to the values, high- or low-
frequency phenomena are observed. For small amplitudes, the
low-frequency leads to a vortex merging in the wake, which is
associated with a beating behaviour in the time histories of
C; . On the contrary, for high amplitudes, the high frequency

phenomenon leads to the emission of a pair of vortices in the
upper side of the wake, which could be related to the

modulation observed in the time evolution of the lift
coefficient.

t=1 ) t= f()"‘]/jT()

= t()+2/5T()

t= t,+4/5T, ' t= t,+ T,
Figure 13. P+S vortex shedding mode
for A=1.25 and F=1.50
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Figure 14. Time evolution of the lift coefficient for F=1.50.
A=0.25 (top) , A=1.25 (bottom)



5. CONCLUSION

The present work has shown that the phenomena
commonly observed in the case of a cylinder forced to
oscillate in a transverse flow can be predicted with our
industrial code, however small the CPU time may be (about
2.5 days). The first task of validation for the fixed cylinder
demonstrates the ability of the code to provide a rather
accurate description of the flow. The vortex shedding modes
observed with forced oscillations have been related to the
frequency content of the lift coefficient spectrum. The
influence of the amplitude has been investigated and we have
been able to observe the modification of the vortex shedding
mode according to the value of 4 and F .
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Figure 15. Representation of our results on the
Williamson-Roshko vortex shedding mode map
adapted in a F-scale

Although the 2P shedding mode has not been obtained
(certainly because of our low Reynolds number), the other
classical 2S, P+S and C(2S) modes have been found. The
different simulations performed in this study are summarized
on the Williamson-Roshko map adapted in an F -scale and
sketched in Fig. 15. The filled squares indicate that lock-in is
observed, whereas the empty ones mean that the wake is
desynchronized. Simulations at the limits of the lock-in zone
are identified with the lozenges.
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