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ABSTRACT 

The present paper is the sequel of a previously published study which 

is concerned with the numerical simulation of vortex-induced-

vibration (VIV) on an elastically supported rigid circular cylinder in a 

fluid cross-flow (A. Placzek, J.F. Sigrist, A. Hamdouni; Numerical 

Simulation of Vortex Shedding Past a Circular Cylinder at Low 

Reynolds Number with Finite Volume Technique. Part I: Forced 

Oscillations, Part II: Flow Induced Vibrations; Pressure Vessel and 

Piping, San Antonio, 22-26 July 2007). Such a problem has been 

thoroughly studied over the past years, both from the experimental 

and numerical points of view, because of its theoretical and practical 

interest in the understanding on flow-induced vibration problems. In 

this context, the present paper aims at exposing a numerical study 

based on a fully coupled fluid-structure simulation. The numerical 

technique is based on a finite volume discretisation of the fluid flow 

equations together with i) a re-meshing algorithm to account for the 

cylinder motion ii) a projection subroutine to compute the forces 

induced by the fluid on the cylinder and iii) a coupling procedure to 

describe the energy exchanges between the fluid flow and solid 

motion. The study is restricted to moderate Reynolds numbers 

(Re~2.000-10.000) and is performed with an industrial CFD code. 

Numerical results are compared with existing literature on the 

subject, both in terms of cylinder amplitude motion and fluid vortex 

shedding modes. Ongoing numerical studies with different numerical 

techniques, such as ROM (Reduced Order Models)-based methods, 

will complete the approach and will be published in next PVP 

conference. These numerical simulations are proposed for code 

validation purposes prior to industrial applications in tube bundle 

configuration.  

INTRODUCTION 

Flow past an oscillating cylinder becomes unstable for 

Reynolds numbers beyond Re~47 and the cylinder therefore 

experiences unsteady hydrodynamic forces which result from 

the vortex shedding process. Motion of the cylinder induced 

by the unsteady forces alters in response the fluid flow field 

and the vortex shedding. Under some particular condition, the 

vortex shedding frequency can be tuned to the natural 

frequency of the oscillating cylinder: this fluid-structure 

coupling phenomenon is often referred to as 

“synchronization” or “lock-in”
1
 and is one of the most striking 

example of Vortex-Induced Vibrations (VIV) [2,3]. It can be 

encountered in numerous industrial situations, for instance in 

civil engineering (bridges, chimney stacks), in marine 

engineering (power transmission lines, marine towing cables) 

or even in nuclear engineering (heat exchangers, tube 

bundles). In propulsion systems, VIV is also the cause of 

structural vibrations (rudders, propellers) associated with 

sound radiation and/or fatigue phenomenon and has therefore 

to be accounted for in the design process. 

VIV has therefore received a lot of attention over the past 

decades, both from the engineers and researchers: early 

fundamental studies on the subject can be found for instance 

in the comprehensive review of Sarpkaya [19] as well as in the 

books of Blevins [2] and Chen [3]. A lot of experimental 

studies have also been conducted since the pioneer 

experiments of Feng [5], to the latest work of Govardhan and 

Williamson [7]. With the development of computer 

technology, VIV has also been extensively investigated by 

means of numerical simulations, including RANS (Reynolds 

Averaged Navier-Stokes), LES (Large Eddy Simulations), 

1
Definition of “lock-in” as a simple matching of the vortex shedding 

frequency and the cylinder natural frequency refers to a rather crude 

description of the process. A thorough discussion on the “true” definition of 

lock-in is developed by Govardhan & Williamson [7] or Khalak & Williamson 

[12], to which the reader is invited to refer for a deeper insight on the 

phenomenon. 
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DNS (Direct Numerical Simulations) approaches with DVM 

(Discrete Vortex Method), FEM (Finite Element Method) or 

FVM (Finite Volume Method), in 2D and 3D configurations; 

an extended bibliography on the subject is beyond the scope of 

the present paper, which only gives a few references on the 

matter [1,4,8,15,16,18,21,22,26,28]
2
. 

In the present paper, numerical simulations of VIV at 

moderate Reynolds numbers (Re~2.000-10.000) for a circular 

cylinder at low m
*
-ζ parameter are performed using a CFD

code with RANS equations. The main result of the present 

study is that the so-called “upper branch” response of the 

cylinder has been simulated for cylinder let free to oscillate 

from rest in the transverse direction; to the authors’ 

knowledge, such a result has never been reported in previous 

numerical studies
3
. 

The paper is organized as follows: in the first section, various 

features of VIV for cylinders with low mass-damping 

parameters are recalled; in the second section, basic principles 

of the numerical approach employed in the present simulations 

are exposed; in the third section, numerical results are 

discussed by comparison with experimental data available in 

the literature, both in terms of cylinder oscillation amplitude 

and frequency as well as in terms of vortex shedding mode. 

Relative agreement between numerical simulations and 

experimental observations yield promising results and give 

confidence in the use of CFD analysis for engineering 

applications. 

1. VORTEX-INDUCED VIBRATION ON A ELASTICALLY
MOUNTED RIGID CYLINDER

Figure 1 depicts the case under study in the present paper: 

one considers a rigid circular cylinder of diameter D , length 

H  and mass m  let free to oscillate on its elastic support (with 

stiffness k  and damping c ) in the direction transverse to a 

fluid of density ρ  and viscosity µ  with upstream velocity

U . 

When vortex shedding occurs, fluid forces on the cylinder 

become unsteady and the transverse (or “lift”) component of 

the force Lϕ induces motion of the cylinder y , governed by

the dynamic equation: 

Lkyycym ϕ=++ ��� (1) 

The latter equation can be re-written in a non-dimensional 

form using the non-dimensional ratios defined in Tab. 1: 

2
 The reader is invited to refer to acknowledged journals such as Computers 

& Fluids and Journal of Fluids & Structures for an overview on the numerous 

numerical studies on the subject.
3
 Previous studies by Guilmineau & Queutey [8] as well as Pan et al. [16], to 

which the present study will refer, have also presented numerical results 

yielding the “upper branch” response regime of the oscillating cylinder, but 

not with “from rest” initial conditions of motion of the cylinder; reaching the 

“upper branch” through simulations with a “from rest” initial condition is 

therefore the major contribution of the present work. 

*2*

2

**2*

2 244

m

C
Y

Udt

dY

Udt

Yd L

π
ππζ =++ (2) 

where 
D

tU
t =*

is the non-dimensional time, DyY /=  is the

non-dimensional displacement and 
DHU

C L
L 22/1 ρ

ϕ=  is the 

lift coefficient. 

y
Incompressible viscous fluid

ϕL

U m

D

k

c

Rigid  moving cylinder

ρ,ρ,ρ,ρ, µµµµ

Vortex shedding

Fig. 1. Elastically mounted rigid cylinder in fluid cross-

flow: vortex-induced vibration 

As can be inferred from Eq. (2), amplitude of the cylinder 

oscillation depends a priori on the mass ratio m
*
 and damping 

ratio ζ and/or a combination of both ratios. Experiments

conducted by Feng in 1968 [5] were concerned with VIV in a 

“light” fluid, i.e. with high mass ratio m
*
=�(100), and a 

typical cylinder response is represented by Fig. 2, extracted 

from [12]; in such a case the cylinder maximum amplitude can 

reach 60% of the cylinder diameter, but the “lock-in” range 

(i.e. the range of reduced velocity for which “resonant” 

behavior of the cylinder response under flow forcing is 

observed) is rather narrow. 

Non-dimensional ratio Symbol Definition 

Mass ratio m
*
 

4/2HD

m

ρπ
Damping ratio ζ 

)4/(2
2
HDmk

c

ρπ+
Velocity ratio 

(*)
 U

*
 

Df

U

N

Amplitude ratio A
*
 ( )

D

tyt )(max 0>

Frequency ratio 
(*)

 f
*
 

Nf

f

Reynolds number Re 

µ
ρUD

Tab. 1. Non-dimensional ratios 
(*) fN is the natural frequency of the cylinder in water
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Design guidelines were deduced from 

numerical/experimental studies which have been conducted in 

the sequel of Feng’s early experiments for applications in civil 

engineering for instance, accounting for wind/structure 

interaction. 

Complementary investigations have been carried out for 

lower mass ratios, which correspond to applications in 

offshore engineering for instance, and yielded some different 

behavior: experiments conducted by Khalak & Williamson in 

1997 [12] in a “heavy” fluid, i.e. with high mass ratio m
*
=�(1) 

showed that the cylinder response exhibited higher amplitude 

response regime with broader extension of the “lock-in” 

range, see Fig. 2, highlighting a clear effect of the mass ratio 

on the cylinder response. 

Fig. 2. Cylinder amplitude response from experiments 

conducted by Khalak & Williamson (1997) ■:m
*
=2.4

and Feng (1968) ◊:m
*
=268 (from Khalak &

Williamson [12]) 

Khalak & Williamson also investigated the effect of the 

combined “mass-damping” parameter m
*
-ζ and evidenced two

types of responses, see Fig. 3, extracted from [12]: 

• for high m
*
-ζ, the cylinder response is characterized

by two modes of response, the so-called “initial

excitation branch” and the “lower branch”. Maximum

amplitude reached in such a case is around 60% of

the cylinder diameter, as made conspicuous in Feng’s

experiments. Furthermore, a hysteretic behavior in

the initial↔lower branch transition is observed with

respect to the initial conditions in terms of reduced

velocity U
*
,

• for low m
*
-ζ, the cylinder response is characterized

by three modes of response, namely the “initial

excitation branch”, the “upper branch” and the “lower

branch”. Maximum amplitude reached in such a case

is around 90% of the cylinder diameter, as observed

in Khalak & Williamson’s experiments. Transitions

between the initial and upper branches have been

found to be hysteretic, while intermittent switching

between the “upper branch” and “lower branch” is 

observed in the “synchronization” regime. 

Fig. 3. Amplitude of cylinder vibration under vortex 

shedding excitation: high and low m
*ζζζζ-type responses

(from Khalak & Williamson [12]) 

Khalak & Williamson’s experiments also evidenced that 

the “synchronization regime” extent is driven by the mass 

ratio: the lower m
* 

is, the more extended U
*
 range for “lock-

in” is (this can be also observed in numerical simulations: 

Shiels et al. found a mass ratio-dependency of the “lock-in” 

zone extend for a circular cylinder at low m
*
-ζ and low Re

flow regime, as conveyed by Fig. 4 below, extracted from 

[21]). 

m*=2 m*=10 

Fig. 4. Lock-in range for low (m
*
=2) and high (m

*
=10) 

mass ratios (from Shiels et al. [21])

At “resonance” or “lock-in”, the cylinder experiences a 

periodic motion, which can be defined by a frequency ratio f
*
, 

formed as the ratio of the observed cylinder frequency to the 

cylinder natural frequency in the fluid (according to non-

dimensional ratios given in Tab. 1 and [12]). In the 

experiments conducted at high mass ratios, it was observed 

3



that the frequency of vortex shedding matched the natural 

frequency of the cylinder and collapsed with the frequency of 

cylinder oscillations, so that 1* ≈f . “Synchronization” or

“lock-in” has therefore long been characterized by equality of 

the frequency ratio with unity. However, as made conspicuous 

by Govardhan & Williamson’s experiments in 2000 [7] and 

noted by several authors before, resonance with frequency 

ratios departing from unity can be observed at low mass ratios. 

Govardhan & Williamson clarified this mass ratio-dependency 

of the frequency ratio at resonance and highlighted that i) the 

velocity ratio range at resonance was all the more extended as 

the mass ratio was low and ii) the frequency ratio at resonance 

was all the greater than unity as the mass ratio was low, see 

Fig. 5, extracted from [7]. 

Fig. 5. Reduced frequency f
*
 at “resonance” as a function 

of mass ratio m
*
 (from Govardhan &Williamson [7]) 

Behavior of the cylinder undergoing VIV is experimentally 

demonstrated to be radically different at low mass (m
*
) and 

mass-damping (m
*
-ζ) ratios; the growing industrial concerns

in marine and offshore engineering have therefore encouraged 

numerical simulations of VIV under these conditions: question 

of the oscillation amplitude of a cylinder experiencing VIV for 

m
*
→0 and m

*
-ζ→0 is still open and numerical simulations are

expected to provide some insights on the matter since one can 

set ζ=0 in numerical experiments; validation of numerical

approaches is however a prerequisite, hence the numerous 

amount of numerical studies related to VIV at low mass-

damping parameters. 

To conclude with the general description of the coupled 

fluid-structure dynamics in VIV on circular cylinder it is 

worth describing the vortex shedding mode process which is 

associated with the cylinder response regime. Detailed 

experiments conducted by Govardhan & Williamson with 

DPIV (Digital Particle Image Velocimetry) have provided 

firm answers to questions raised by several authors regarding 

the relation between the cylinder response regimes and the 

vortex shedding mode [7]. Main features can be summed up as 

follows: Govardhan & Williamson have shown that i) the 

vortex shedding mode in the “initial branch” is characterized 

by the so-called “2S mode” according to the definition of 

Williamson & Roshko [27], in which two single vortices are 

shed downstream the cylinder during one period of oscillation 

(see Fig. 6, extracted from [7]), ii) the vortex shedding mode 

in the “upper” and “lower” branches is characterized by the 

so-called “2P mode”, in which two pairs of vortices are shed 

downstream the cylinder during one period of oscillation (see 

Fig. 6); as indicated by the experimental visualizations, in the 

“upper branch”, the “2P mode” is characterized by a vortex 

with high vorticity level and a second vortex with lower 

vorticity level and in the lower branch, the “2P mode” is 

characterized by vortices that stretch downstream, see Fig. 6 

below. 

Initial branch Upper branch Lower branch 

2S shedding mode 2P shedding mode 

Fig. 6. Vortex shedding mode (from Govardhan 

&Williamson, 2000 [7]) 

Numerical simulations conducted by several authors over the 

last years have provided interesting results which overall agree 

well with the experimental observations. However, reaching 

the “upper branch” response still remains a challenge: for 

instance, neither the 2D-FEM simulations of Singh & Mittal 

[22], nor the 3D-DVM simulations of Yamamoto et al. [28] or 

the 2D-FVM simulations of Placzek et al. [18] have been able 

to capture the “upper branch” response of the cylinder, even 

though other interesting features of VIV (such as hysteretic, 

three dimensional as well as low mass-damping effects) have 

been highlighted in these studies. As the “upper branch” 

regime is observed for moderate and high Reynolds numbers, 

and therefore appears as Re-dependant, simulations have to 

account for turbulence phenomena; Al-Jamal & Dalton [1] 

performed 2D-LES simulations at Re=8000, without however 

reaching the “upper branch”, Guilmineau & Queutey [8] and 

Pan et al. [16] performed 2D-RANS simulations in a wide 

range of Reynolds numbers (2000<Re<10000), which yielded 

promising results, since the “upper” branch regime was 

observed when using “U
*
-increasing” conditions of 

simulations (i.e. by performing continuous simulations and 

gradually increasing the fluid upstream velocity – and the 

Reynolds number – while keeping all other parameters 

constant). However, the “upper branch” was not observed 

when using the “from rest” conditions (i.e. setting the fluid 

upstream velocity at a given value and letting the cylinder 

freely oscillate under VIV). 

Purpose of the present paper is to investigate the numerical 

simulation of the VIV behavior of a rigid cylinder at low 

4



mass-damping and moderate Reynolds numbers with a 2D
4
 

RANS CFD approach, using a “from rest” initial condition for 

the cylinder motion. As will be made conspicuous in the third 

section of the paper, our simulations have been able to predict 

a higher amplitude response for the cylinder in the “upper 

branch” regime with a “from rest” initial condition; to the 

authors’ knowledge, such numerical results have not been 

reported yet. However, as will be detailed further on, our 2D 

RANS approach failed to capture the whole extent of the 

“upper branch” regime in terms of reduced velocity; the 

results are however encouraging and therefore worth 

publishing, even if complementary numerical investigations 

will be needed for further validations. 

2. FLUID-STRUCTURE COUPLED SIMULATION OF 
VORTEX-INDUCED VIBRATION

In the present section, the basic principles of the coupled 

fluid-structure strategy for VIV simulation are discussed. The 

numerical procedure is rather classical for this class of coupled 

problems and lies on: i) finite volume CFD computations with 

RANS approach to consider a fluid flow at Reynolds numbers 

varying from 10
3
 to 10

4
 and ii) coupled fluid/structure 

procedures with fluid re-meshing technique to account for 

flow-structure interactions. 

2.1. RANS approach for turbulent flow modeling with the 

k-ωωωω SST model of Menter

Turbulent fluid flow is described through CFD 

computations with a numerical code equipped with RANS 

model (in the present case, the ω−k  SST model of Menter

[13]). The underlying modelling is recalled in what follows. 

Conservation equations for incompressible fluid flow read: 

0=
∂
∂

j

j

x

U
(3) 

jj

i

ij

i
j

i

xx

U

x

P

x

U
U

t

U

∂∂
∂+

∂
∂−=















∂
∂+

∂
∂ 2

µρ (4) 

where )( iU is the fluid velocity field and P  is the fluid 

pressure field. Using the Reynolds decomposition, these latter 

fields are written as the sum of a mean and a fluctuating parts, 

i.e. iii uUU +=  and pPP += , respectively (with •
standing for the mean part). Substituting the Reynolds 

decomposition in the Navier-Stokes equation yields the RANS 

equations : 

4
VIV involves complex 3D phenomena that will be not correctly captured by 

2D simulations. Apart from the obvious computational cost, 2D simulations 

can still be resorted with reasonable confidence in VIV simulations; Al-Jamal 

& Dalton give some physical argument which support (up to some extent) the 

physical signification of 2D modeling in VIV: “2D calculation does allow for a 

reasonably accurate estimate of global parameters (…/…) when VIV begins 

since the correlation length increases significantly when VIV is established” 

[1]. 

0=
∂
∂
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j

x

U
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and: 
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(6) 

which account for the mean flow. Interaction of the fluctuating 

fields with the mean flow is accounted for through the 

Reynolds tensor: 

ij
i

j

j

i
ji k

x

U

x

U
uu δτ

3

2+














∂
∂

+
∂
∂−= (7) 

where τ  stands for the turbulent viscosity and iiuuk
2

1= is

the turbulent kinetic energy. τ  and k  are to be calculated

with an appropriate turbulence model. As made conspicuous 

further on, τ  is calculated from the turbulent kinetic energy

k  and the turbulent dissipation ω . The ω−k  SST model of

Menter [14] combines a description of the turbulent shear 

layer (close to wall boundaries) with the standard ω−k  

model and a description of the turbulent flow (far from wall 

boundaries) with the ε−k  model. The ω−k  SST model is

therefore particularly well suited for RANS simulations of 

flows with adverse gradient pressure, as in the present case for 

VIV. Additional transport equations for the turbulent

quantities k  and ω  are to be solved in conjunction with the

equations of the mean flow:

• Transport equation for the turbulent kinetic energy

k
x

k

xx

U

x

U

x

U

x

k
U

t

k

jkjj
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• Transport equation for the turbulent dissipation
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with 
*

2

*
βσ

κ
β
βα

ω

−= . Function F  indicates whether the 

current location is “inside” the boundary layer ( 1→F ) or

“outside” the boundary layer ( 0→F ); from the practical

point of view, the SST model states that F  is calculated 

according to )tanh( 4η=F where η  is defined as

)
4

,min(
2

D
k

ψσ
η

ω
∆= , with )

500
,

09.0
max(

2ωψ
ν

ωψ
k=∆ , 
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)10,
2

max( 10−

∂
∂

∂
∂=

jj xx

k
D

ω
ωσω

 and ψ  is the distance from

the wall. The various coefficients of the model (see Eqs. [8] 

and [9]) are defined as follows: 
*** )1( εω βββ F−+= , εω βββ )1( F−+= (10.a) 

εω σσσ kkk F )1( −+= , ωεωωω σσσ )1( F−+= (10.b) 

and are specified in Tab. 2 below. 

075.0=ωβ  0828.0=εβ  85.0=ωσ k 1=εσ k  41.0=ωκ
09.0* =ωβ  09.0* =εβ  168.1=ωεσ  2=ωωσ  41.0=εκ

Tab. 2. Parameters of the k-ωωωω SST model [14]

According to the SST model, the turbulent viscosity τ  is

calculated as: 

),max( Ga

ak

Ω
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ω
τ (10) 

with 31.0=a , )tan( 2η=G  and 2
iiΩ=Ω , where ijΩ is the

vorticity tensor, defined as 
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2.2. Finite volume method for CFD analysis 

RANS simulations with the SST model consist in solving 

Eqs. (5), (6) and (7) together with the turbulent transport 

equations (8) and (9) and the turbulent viscosity model (10). 

In the present case, this is achieved with a CFD code based on 

the Finite Volume Method [6]. The computational domain is 

represented in Fig. 7(a) below: its dimensions are set-up in 

such manner to account for the unbounded configuration, i.e. 

to avoid blockage effects. Grid refinement is performed in the 

vicinity of the cylinder, as depicted by Fig. 7(b). A moving 

mesh procedure is employed to adjust the finite volume mesh 

to the cylinder motion and therefore account for flow-cylinder 

interactions. In order to save computational time, only a 

refined zone, represented in orange in Fig. 7(b), around the 

cylinder is handled with the dynamic mesh. 

(a) Global CFD mesh (b) CFD mesh around the cylinder

Fig. 7. Finite volume mesh 

The re-meshing algorithm is based on geometrical 

considerations and is designed in order to handle moderate 

mesh deformations around the cylinder [23]. Previous 

numerical studies on forced and free vibrations of a cylinder in 

this configuration have been extensively tested, which validate 

the procedure, see for instance Placzek et al. [17,18]. 

Since turbulent flow modeling is performed with a low-

Reynolds type RANS model, no wall functions are used; the 

finite volume mesh has therefore to be such as the Y
+
 value at 

the cylinder boundary should not exceed unity. Several mesh 

refinements are considered: as conveyed by Tab. 3 below, a 

mesh with 60 cells in the moving annular zone around the 

cylinder fulfills the requirement for a Reynolds number of 

5000; this corresponds to a 27720 cell finite volume mesh of 

the computational domain, which is acceptable in order to 

perform numerous computations
5
. 

Ncylinder 35 45 50 60 70 

Ncells 18720 22320 24120 27720 31320 

Y
+
 6.752 2.729 2.851 0.970 0.372 

Tab. 3. Mesh refinement around the cylinder and 

corresponding Y
+
 at the cylinder boundary for 

Re=5000 

For a Reynolds number of 10000, the Y
+
 value exceeds the 

unity limit in some locations around the cylinder but the 

criteria is overall respected (see Fig. 8); quality of the FV 

mesh will thus be considered as valid for the present study. 

Fig. 8. Y
+
 at the cylinder boundary for Re=10000

To conclude with the general features of the numerical method 

for CFD computations, it is mentioned that discretization in 

space of Eqs. (5) to (10) is performed with the MARS scheme 

and discretization in time with the Crank-Nicholson scheme; 

the so-called PISO algorithm handles the pressure-velocity 

coupled equations through an implicit decoupling scheme 

[9,10]. 

2.3. Coupled fluid-structure calculation procedure 

In the present paper, a coupled fluid-structure calculation 

procedure is used for VIV simulations. Either explicit [24] or 

implicit [25] methods can be used in coupled simulations; 

time integration of Eq. (1) is based here on an explicit 

algorithm [17,18,23,24], most suited than the implicit 

algorithm presented in [25]. Indeed, the numerical damping is 

5
In the present study, CFD computations of VIV on the cylinder are 

performed with a “from rest” condition for the cylinder motion. Indeed, 

computation is re-started for each Reynolds number (and each reduced 

velocity); This approach is much more demanding in terms of computational 

time than the strategy resorted to by Guilmineau & Queutey [8] and Pan et al. 

[16], who both used an “increasing” condition, for which computations were 

performed in a continuous manner with increment on the Reynolds number 

(reduced velocity). 
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dramatically reduced by combining a centered upwind and 

downwind discretization scheme for the prediction of the 

displacement. 

The steps of the algorithm write: 

1. Initialization for the first iteration

0000 φϕ ==== n
L

nnn
yyyyyy ������

2. Evaluation of the cylinder acceleration

nn
n
Ln y

m

c
y

m

k

m
y ��� −−=+ ϕ1

3. Evaluation of the cylinder velocity and displacement

( )[ ]11

11

1
++

++

+−+=

+=
nnnn

nnn

yytyy

ytyy

��

����

θθδ

δ

4. Resolution of the flow field with the CFD code to

obtain 1+n
Lϕ

5. Return to step 2 (next time step)

The procedure is implemented in a user subroutine read by 

the CFD code at each time step before solving the flow field. 

Several numerical tests performed in [17,23] have shown that 

5.0=θ  gives the smallest numerical damping for a perfect

flow; the coupled method has also been extensively tested in

the case of VIV at low Reynolds number [18] and therefore

validated for the problem of concern here.

3. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations are performed at low mass ratio 

(m
*
~2.4) and low mass-damping ratio (m

*ζ~0.014), which

corresponds to the conditions of experiments in Khalak & 

Williamson [11,12] and of computations in Guilmineau & 

Queutey [8] and Pan et al. [16]. 

Simulations are performed for increasing values of U
*
 (or 

Re), starting with “from rest” conditions of motion for the 

cylinder in a range of reduced velocities which extends from 

U
*
~1 to U

*
~17, i.e. Re varying from 10

3
 to 10

4
.

Response of the cylinder undergoing VIV is analyzed in 

terms of amplitude and frequency of oscillations, as well as of 

vortex shedding modes. 

3.1. Amplitude of oscillations 

Figures 9.a to 9.d give time histories of the cylinder 

transverse motion, with different reduced velocities. Each of 

the situations can be related to a) the initial branch (U
*
=3.75), 

b) the upper branch (U
*
=4.45), c) the lower branch (U

*
=6.85)

and d) the desynchronization regime (U
*
=13.75).

At U
*
=3.75, features of the cylinder response are characteristic

of the initial branch (aperiodic response, with a maximum

amplitude A
*
~0.52). Times histories of Fig. 9.a show identical

trends as those highlighted by Guilmineau & Queutey for

U
*
=3.63 (see Fig. 2.(b) in [8]). At U

*
=4.45, the response of the

cylinder seems of upper branch-type, according to the

description of Khalak & Williamson recalled in the first

section: the cylinder vibration amplitude reaches A
*
~0.77 and

drops to A
*
~0.60: this can be interpreted as a switch between 

the upper and lower branches, which seems to be captured by 

the RANS approach: A
*
~0.8 could therefore be interpreted as 

a mean value between A
*
=0.6 in the lower branch and A

*
=1.0 

in the upper branch. 
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Fig. 9.a. Cylinder oscillations for Re=2750 – U
*
=3.75

(initial excitation) 
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Fig. 9.b. Cylinder oscillations for Re=3250 – U
*
=4.45

(upper branch) 
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Fig. 9.c. Cylinder oscillations for Re=5000 – U
*
=6.85

(lower branch) 
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Fig. 9.d. Cylinder oscillations for Re=10000 – U
*
=13.75

(desynchronization) 

Time histories in Fig. 9.b are similar to those obtained by 

Guilmineau & Queutey for U
*
=4.37 (see Fig. 4.(a) in [8]). 

At U
*
=6.85, the cylinder response exhibits a perfect sinusoid 

with amplitude A
*
~0.52, which is consistent with the lower 

branch type response. 

Figure 9.c gives similar trends as those observed by 

Guilmineau & Queutey (see Fig. 2.(e) in [8]) and Pan et al. 

(see Fig. 3 in [16]). At U
*
=13.75, the cylinder response is 

periodic with low amplitude motions (A
*
~0.05): 

desynchronization is reached; plots of Fig. 9.d are quite 

identical with those presented by Guilmineau & Queutey in 

the desynchronization regime (see Fig. 2.(h) in [8]). 
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Present

Fig. 10. Amplitude of cylinder vibration under vortex 

shedding 

Figure 10 gives the maximum amplitude A
*
 computed 

throughout the reduced velocity range 1<U
*
<17 and compares 

the present numerical results with the experiments of Khalak 

& Williamson [11,12] and with the computations in 

Guilmineau & Queutey [8] and Pan et al. [16]
6
. 

Quantitative agreement of our numerical results, when 

compared to the preceding experiments and computations, is 

observed as far as the initial branch, lower branch and 

synchronization range are concerned. Qualitative agreement of 

our numerical results with the experiments is observed as far 

as the upper branch is concerned. Amplitude response of the 

cylinder around A
*
~0.85 is obtained for a reduced velocity 

about U
*
~4.65, but the extent of this higher amplitude zone is 

rather narrow when compared to the experiments. However, 

the present numerical results are rather promising since no 

similar trend has been observed with VIV simulations based 

on a “from rest” initial condition. 

3.2. Cylinder oscillating frequency 

Figure 11 gives the evolution of the frequency ratio f
*
 of 

the cylinder oscillations throughout the reduced velocity range 

1<U
*
<17 and compares the present numerical results with the 

experiments of Khalak & Williamson [11,12] and with the 

computations in Guilmineau & Queutey [8] and Pan et al. 

[16]. 
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f
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=1,35

f
*
= �t × U

*

Fig. 11. Oscillation frequency of cylinder vibration under 

vortex shedding 

The present numerical simulations are in very good 

agreement, both from the quantitative and qualitative points of 

view, with the preceding experiments and simulations; in 

particular, the frequency ratio remains constant at value 

f
*
=1.35 throughout the synchronization regime, which is in 

agreement with the experiments of Khalak & Williamson for 

low mass-damping cylinders. 

6
 In computations of Guilmineau & Queutey and Pan et al., only the “from 

rest” conditions are considered. Higher amplitude responses have been 

obtained by these authors with the “increasing” condition. For the sake of 

comparison, only the “from rest” computation results are presented here 

since it corresponds to our numerical approach. 
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3.3. Vortex shedding modes 

Figures 12.a to 12.c give the computed vorticity contours 

in the fluid at various positions of the cylinder and for various 

flow conditions. 

At Re=2750 (U
*
=3.75), the vortex shedding mode is

clearly of 2S-type: a single pair of vortices is shed during a 

period of oscillation of the cylinder, which is characteristic of 

the initial branch response. 

y/D=–0,22 y/D=+0,03 

y/D=+0,03 y/D=–0,02 

Fig. 12.a. Vortex shedding modes at Re=2750 

(initial branch) 

y/D=–0,59 y/D=–0,05 

y/D=+0,63 y/D=–0,08 

Fig. 12.b. Vortex shedding modes at Re=3250 

(upper branch) 

y/D=–0,56 y/D=–0,15 

y/D=+0,55 y/D=–0,01 

Fig. 12.c. Vortex shedding modes at Re=5000 

(lower branch) 

The simulated flow pattern is similar to the observed pattern in 

the experiments of Govardhan & Williamson (see Fig. 6 

above, and Fig. 11 in [7]) as well as in the computations of 

Pan et al. (see Fig. 5 in [16]). At Re=3250 (U
*
=4.45), the

vortex shedding mode is obviously of 2P-type, two pairs of 

vortices being shed during one oscillation cycle of the 

cylinder, which is experimentally observed by Govardhan & 

Williamson (see Fig. 6 above, and Fig. 12 in [7]) and 

evidences the upper branch response. 

The simulated flow pattern is similar to the one obtained 

by Pan et al. with “increasing” initial conditions for equivalent 

flow conditions (see Fig. 6 in [16]). At Re=5000 (U
*
=6.85),

the vortex shedding mode is 2P-like: two pairs of vortices are 

shed downstream the cylinder, but a merging/stretching 

process is observed, in which the vortex with higher activity 

somehow “swallows” the vortex with lower activity. Our 

simulations are consistent with the experimental and 

numerical observations of Govardhan & Williamson on the 

one hand (see Fig. 6 above and Fig. 13 in [7]) and of Pan et al. 

on the other hand (see Fig. 7 in [16]). 

CONCLUSION 

Numerical simulation of the VIV response of a cylinder 

freely vibrating transversely to a fluid flow at moderate 

Reynolds numbers (10
3
 to 10

4
) has been performed in the 

present study under low mass-damping conditions. 

Simulations have been performed using a coupled 

CFD/CDS procedure, with a 1-DOF modeling for the structure 

and RANS modeling for the fluid. 

Numerical results have been exposed and compared with 

experiments of Khalak & Williamson (1997), Govardhan & 
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Williamson (2000) on the one hand and simulations of 

Guilmineau & Quetey (2004), Pan, Cui & Miao (2007) on the 

other hand. Quantitative agreement has been highlighted as far 

as the cylinder oscillation amplitude and frequency is 

concerned; quantitative agreement has also been observed in 

the vortex shedding patterns. 

Furthermore, the presented numerical simulations yield the 

“upper branch” response with “from rest” initial conditions, 

which has never been reported so far in CFD computations. 

The simulations results are therefore very encouraging, in 

particular from the engineering point of view, since the 

proposed coupled analysis can be considered as valid for 

practical applications. Application of the coupled analysis in 

tube bundle configuration is in such context under 

consideration. 

Further investigations of the problem will be devoted to 

CFD computations with LES or DNS, as well as ROM 

approaches and will be presented in future communications. 
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