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ABSTRACT 
Tube bundles in steam boilers of nuclear power plants and nuclear on-board 
stokehold are known to be exposed to high levels of vibrations. This coupled 
fluid-structure problem is very complex to numerically set up, because of its 
three-dimensional characteristics and because of the large number of degrees 
of freedom involved. A complete numerical resolution of such a problem is 
currently not viable, all the more so as a precise understanding of this system 
behaviour needs a large amount of data, obtained by very expensive 
calculations. We propose here to apply the now classical reduced order 
method called Proper Orthogonal Decomposition to this case. This choice 
could lead to reduced calculation times and allow parametrical investigations 
thanks to a low data quantity. But, it implies several challenges inherent to the 
fluid-structure characteristic of the problem. Previous works on the dynamic 
analysis of steam generator tube bundles already provided interesting results 
in the case of non flowing fluid – i.e. quiescent fluid [J.F. Sigrist, D. Broc; 
Dynamic Analysis of a Steam Generator Tube Bundle with Fluid-Structure 
Interaction; Pressure Vessel and Piping, July 27-31, 2008, Chicago]. A first 
step on the implementation of POD in academic cases (one-dimensional 
equations, 2D-single tube configuration) is presented. Future work will consist 
in working on the tube bundle configuration, first in the fixed case and then 
with structure motion allowed. Present study shows the efficiency of the 
reduced model to reproduce similar problems from a unique data set for 
various configurations as well as the efficiency of the reduction for simple 
cases. 

INTRODUCTION 

The running rate of a nuclear power plant or on-board 
stokehold steam boiler intrinsically induces several vibratory 
levels, especially concerning the boiler tube bundle [5], [10], 
[30], [36]. It is shown that fluid-elastic instabilities can occur 
in such a realistic configuration [8], [11], [12], leading to a 
certain destruction of one or more tubes: this is why the study 

and a precise comprehension of this vibrations phenomenon is 
crucial. But, this good comprehension stays difficult because 
of the high number of parameters that play a role in the 
generation of vibrations [31], [32]. Thus, the only contribution 
of experiments and/or on-site statements is not sufficient and 
it becomes necessary to develop accurate and robust CFD 
numerical codes [21], [39] in order to set up parametric 
studies that could help the understanding of violent 
phenomena like fluid-elastic instabilities. 

Another constraint is the high resource level that is 
necessary to set up this fluid/structure interaction problem: to 
be as close as possible to real conditions, a fully 3D turbulent 
flow has to be computed [17], added to the cost of the 
structure coupling. In an industrial configuration, such a 
computation is not possible, first because of the resource cost, 
second because of the CPU time involved. 

We propose here an alternative that could offer 
perspectives in the study of tube bundle vibrations, using 
reduced models. Theses models are well-known and widely 
used in the domain of fluid mechanics [9], [15] as well as 
structure mechanics [2], but they still represent a challenge 
within the frame of fluid/structure interaction [13], [25], [41]. 
They however could give a better comprehension of the 
physics of this fluid/structure interaction problem, making 
possible the access to some parameters or information. The 
reduced model that we propose to set up in this paper is the 
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Proper Orthogonal Decomposition (POD) [20], [23], which is 
now used in many domains [1], [20], [26]. 

This paper is organized as follows: a first part is dedicated 
to the main vibrations problems that can encounter a tube 
bundle in real conditions. Then, actual numerical models that 
are used to solve and study such a problem are presented in 
the second part. Proper Orthogonal Decomposition will be 
described as well as its potential contribution specifically for 
this crucial question of tube bundle vibrations. Finally, in the 
third part, first numerical results in the use of POD are 
proposed and perspectives for a future work are exposed. 

1. THE HEAT EXCHANGER TUBE BUNDLE AND ITS
VIBRATIONS PROBLEMS

Figure 1 shows the general functioning of an on-board
stokehold steam boiler of a water pressurized reactor (WPR). 
This functioning is quite the same for a civil nuclear steam 
boiler, which is also a WPR. Water of the primary circuit 
feeds the tubes (in red) driven by a pump. Liquid water of the 
secondary circuit comes from the top of the tube bundle and 
vaporizes by ascension along the tubes. 

Fig. 1. Steam boiler system 

The tube bundle is constituted of long, fine and numerous 
tubes that are close from each other. Thus, particularly 
because of the turbulent flow of the secondary circuit, theses 
tubes are leaded up to vibrate. A very large number of specific 
parameters have to be considered while studying this 
configuration. 

Main variables used in this paper are depicted in table 1: 

Variable Definition 
ρ Fluid density (kg m 3− )
µ Fluid dynamic viscosity (kg.m 1− .s 1− )
D  Diameter of one tube (m) 
P Step between two tube diameters (m) 

][M Total mass matrix
][C Damping matrix
][K Stiffness matrix
Tab. 1. Main variables of the system 

Classically, the motion equation of one tube is the 
following: 

{ } { } { } { }extFtQKtQCtQM =++ )(][)(][)(][ ��� (1) 

where { })(tQ represents the motion generalized coordinates

vector, { }extF  is the fluid forces vector to which the tube is 
subjected. 

A precise definition of these parameters is of high 
importance. If we denote 'D  the diameter of the neighbouring 
tubes of one tube by considering their confinement, total mass 
matrix ][M  contains the tube mass, the mass of the fluid 
conveying the tube, and the added mass that is function of the 
rate DD /'  and of the fluid density ρ . The confinement 
varies according to the tube arrangement. In the same manner, 
damping can be divided in three energy dissipation 
mechanisms: friction damping, viscous damping and squeeze-
film damping. Experimental data compiled by Pettigrew and 
Taylor [32], [33] helped them to define semi-empirical 
formulations for different damping components, according to 
the thickness of the grid supporting the tubes, the proper 
frequency of the considered mode, the total mass, and 
considerations on tube supports. Moreover, these formulations 
are different considering a single liquid phase, a single 
gaseous phase or a two phase flow. 

Before presenting different tubes excitation phenomena, it 
is necessary to redefine dimensionless numbers that govern 
the fluid flow, the Reynolds number and the Strouhal number. 
Table 2 gathers these dimensionless numbers. 

Variable Description 

eR
µ

ρ DU p

tS
p

s

U

Df

Tab. 2. Dimensionless numbers for a fluid-structure 
interaction problem in a tube bundle configuration 
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pU  is the step fluid velocity, it takes into account the tube 

confinement. It is defined as: 
DP

P
UU p −

= ∞ where ∞U is

the equivalent mean flow velocity that would have been 
imposed in an infinite domain. 

Four vibratory excitation mechanisms are susceptible to 
exist under transversal flow: turbulent excitation, vortex-
induced vibration, acoustic resonance and fluid-elastic 
instability.  

The apparition of each phenomenon depends on 
parameters that are not always known or easily observable. 
But researchers have collected information in order to predict 
and prevent this apparition in a functioning regime. 

Turbulent excitation is unavoidable: Reynolds number of 
the flow regime is ]10;10[ 74∈eR . Moreover, turbulence is 
recommended in order to produce a mixing as perfect as 
possible, to obtain good heat transfers. But, turbulence induces 
generally low structural motion amplitude [4] so this 
mechanism has to be considered in fretting-wear damage 
considerations [33].  

Vortex-Induced vibrations are well-known in the case of a 
single tube in semi-infinite domain [10], [42]. In the present 
case of tube bundles, this phenomenon is more complex. The 
presence of a “lock-in” [19], [22] has been detected by 
Pettigrew and Gorman [30] in air, but Axisa [4] never 
encountered the set up of such a mechanism. Pettigrew and 
Taylor [32] explain that the presence of turbulence tends to 
reduce the possibility of vortices to set up, that reduces vortex-
induced vibrations. Furthermore, Païdoussis [29] insists on the 
fact that the distinction between both mechanisms (turbulence 
and vortex shedding) is far from easy. 

Acoustic resonance is susceptible to appear in the context 
of a single gaseous phase exchanger. It strongly depends on 
the tubes arrangement. This phenomenon is not taken into 
account within the framework of this study since exchangers 
are fluid-fluid exchangers. Works on this mechanism have 
been led in different configurations [8], [43]. 

Finally, fluid-elastic instability is the most spectacular 
vibratory excitation phenomenon [7], [35]: it leads to a very 
quick ruin of the tubes that have been excited. For theses 
grounds, researchers particularly focused on this mechanism 
in order to avoid it at all costs. When flow velocity reaches a 
certain critical threshold CV , structural motion induces a fluid 
force with the same orientation than the structure motion 
direction, which leads to vibratory amplitudes much larger 
than those that are usually observed. Only the tube breaking, 
caused by repeated impacts between the tube and its support, 
will stop the excitation. This is precisely an interaction 
between fluid and elastic efforts, the first feeds the second and 
conversely: on that point, this mechanism differs from vortex-
induced vibrations, which are auto-limited in amplitude. A 
very large number of models, empirical or semi-empirical, 
have been set up in the hope of avoiding such a situation. A 

very widespread model is Connors’ [14], who proposed to 
express the critical mean fluid velocity CV  as: 

RC AKV = (2) 

CV is a function of the Scruton number 

2

2
D

m
AR ρ

πζ= whereζ is the global damping for the

considered mode and m is the lineic total mass. This 
dimensionless number measures the energy proportion that the 
system can dissipate thanks to its proper damping, compared 
to the energy proportion that the fluid provides to the structure 
through the fluid-elastic coupling force. A constant K weights 

this number; it is defined as 
21kk

K
π= where 1k and 2k are 

stiffness constants of two neighbouring tubes. When the 
global damping becomes negative, the system starts to be 
instable. This model has been enriched by many authors [18], 
[29], [31]. The notion of a delay between structure 
solicitations and the reaction of the flow is also introduced. 
This delay has a big influence on the velocity stability 
threshold. Price [35] shows that mathematically, a fluid-elastic 
instability phenomenon is set up by a negative work of fluid 
efforts. Price highlights three mechanisms that can explain this 
energy extraction to the fluid by the structure: first, the 
discrepancy between structure displacement and fluid forces, 
which presupposes that the damping governs the phenomenon, 
since it is the physics which is related to structure 
displacement. When this damping becomes negative, 
instability appears. The second mechanism appears when at 
least two degrees of freedom are involved and that there is a 
phase discrepancy between them. The structure displacement 
is impacted, that is why the mechanism is described as leaded 
by stiffness. The third mechanism is the apparition of 
hysteresis in fluid forces evolution because on non-linearities. 
Here, efforts amplitude depends on the structure motion 
direction. 

But, flow passing a tube bundle is a system containing a 
very high number of degrees of freedom, so a precise 
analytical description of exciting efforts is not possible; 
moreover, several modes can be excited, considering relatives 
cylinders motions.  

For each vibration mechanism, experimental data have 
been collected and exploited by various authors in order to 
define criteria to respect [11], [24], [33]. Sometimes, semi-
analytical models have been developed, particularly in the 
case of the fluid-elastic phenomenon; see [35] for example.  

CFD models have been set up in order to avoid 
experimental costs and to observe a large number of 
parameters. Vortex-induced vibrations have been numerically 
studied with high precision and most of their mechanisms are 
now well understood. However, when turbulence is present in 

3



Acc
ep

te
d 

M
an

us
cr

ip
t

   
        

      

    

the flow, fluid-structure interactions are more difficult to 
represent, notably because of the three dimensional 
characteristic of turbulence. Fluid-elastic instability is also 
very hard to model for the same reason and because of the 
number of parameters that play a role in its set up.  

A constant challenge in numerical modelling is based on 
interactions between fluid and structure motions. In order to 
solve these interactions, two classes of approaches exist [27]: 
the first is called monolithic approach, and consist in the use 
of a unique formulation for fluid and structure modelling. This 
approach is theoretically optimal, but costly and only adapted 
to simple geometries. The second is a partitioned approach: 
fluid and structure equations are resolved separately, with 
information communication between both of them. A good 
description of these approaches can be found in [38]. 

However, in both cases, a complete numerical resolution 
of the fluid-structure interaction in a tube bundle in 
functioning regime cannot be carried out. In this context, the 
use of Reduced Order Models (ROM) can be a solution to 
achieve the realization of such a study. A ROM allows solving 
a problem which formulation contains the bulk of the system 
information with a reduced number of degrees of freedom. 

In the framework of fluid dynamics, the criterion that 
ensures the fact that “the bulk of the system information” is 
kept can be an energetic criterion. Using this criterion, the 
optimal approach is the well-known Proper Orthogonal 
Decomposition (POD). This method is the subject of next 
section, as well as its potential applications for the study of 
fluid-structure interactions in tube bundles. 

2. PROPER ORTHOGONAL DECOMPOSITION (POD)

In classic computational fluid dynamics studies,
approximated Navier-Stokes equations are computed on a bi-
dimensional of three-dimensional domain Ω for a time 
interval [ ]T;0 . In the case of a large three-dimensional
domain, and if the flow is turbulent, calculation times can be 
very long. Moreover, if a parametric study has to be set up, it 
is necessary to lead as many calculations as there are values of 
the parameter in question to test. The Proper Orthogonal 
Decomposition allows saving calculation time on 
computations, and provides a projection basis that can be 
reused in parametric studies: in an industrial context, theses 
advantages have to be taken into account. 

Proper Orthogonal Decomposition has notably been 
introduced by Lumley [28] within the framework of coherent 
structure extraction of turbulent flows. A rigorous description 
of POD can be found in [20] for example; a large amount of 
domains are interested in using POD techniques, what leads to 
variant methods, see [13] or [37]. Here we briefly present the 
POD formulation. 

Let us consider a domain Ω  of the set of all real numbers 
and a time interval [ ]T;0 where T is a real maximal date.
Spatial and time variables are respectively Ω∈x and 

[ ]Tt ;0∈ . Let ),( txv be the unknown field, for example the
velocity field (unknown of Navier-Stokes equations), 
with ),(),( THtxv Ω∈ , H is a Hilbert space. Proper 
Orthogonal Decomposition consist in determining a 
determinist basis { }

Nnn , ,1=Φ of functions which give the

optimum representation of the field ),( txv . N is the size of 
the POD basis.  

A practical approach of POD has been proposed by 
Sirovich [40], it is called Snapshot POD: this method is based 
on making the most of samples of experimental or numerical 
data. Let consider M snapshots of the velocity field ),( txv  
(these snapshots can be equally taken from an experimental or 
numerical set), these snapshot have been sampled during a 
periodT . Snapshot POD consist in solving the following 
eigenvalue problem: 

( ) ik

L

M

k

ki AAtvtv
M

λ=
Ω=

∑
)(1 2

)(),(1
(3) 

For each Mi ,...,1= , where λ  contains eigenvalues. Each 
element of the POD basis is a linear combination of snapshots, 
coefficients are k

nA , Nn ,...,1= :

NntxvAx
M

n

n

k

nn ,...,1),()(
1

==Φ ∑
=

(4) 

The POD basis { }
Nnn , ,1=Φ has interesting

characteristics: it is orthonormal and if we study an 
incompressible flow, each element of the basis (each POD 
mode) satisfies the incompressibility condition as well as the 
boundary conditions of the problem. For a 
given [ ]Nn ,..,2,1∈ , the energetic contribution of the POD

mode nΦ is captured by the corresponding eigenvalue nλ  
and the eigenvalues are ranked in descending order 
( Nλλλ >>> ...21 ). Thus, the Proper Orthogonal 
Decomposition is optimal in an energetic sense. 

As the Proper Orthogonal Basis is fully spatial and based 
on time snapshots, its use within a fluid-structure interaction 
resolution is not immediate. Indeed, if the numerical sample 
from which the snapshots are extracted has been obtained 
thanks to a moving mesh technique, the construction of the 
POD basis has no sense, since the POD modes are not time-
dependants. Thus, in the case of fluid-structure interaction 
problems, an extension of the Snapshot POD is necessary. 
This has been proposed by Liberge [25] who propose to work 
on a static spatial domain using a projection of snapshots. 
Here, we present some POD properties working on very 
simple cases, as well as first applications on the case we are 
interested in. 

4



Acc
ep

te
d 

M
an

pt

   
        

      

     
 

When POD modes { }
Nnn , ,1=Φ are determined, a low

order dynamical system is solved. For that, the partial 
differential equations are projected on the POD basis 
constructed for the field ),( txv . Then, a system of ordinary 

differential equations, which size *
N  is less or equal to the 

POD basis size, is obtained. To determine this size *
N , an 

energetic criterion is used, based on eigenvalues of the 
problem; then the POD basis is truncated to *

N modes. 
For example, in the very simple case of the one-dimensional 
heat transfer equation, written as: 













+
+

Ω∈∈=
∂

∂−
∂

∂

IC

BC

xTt
x

txv

t

txv ],,0[0),(),(
2

2

 (5)  

Where BC and IC respectively signify boundary conditions 
and initial conditions; the dynamical system is: 

0,),(,),( =








∂
Φ∂

∂
∂+







 Φ
∂

∂
xx

txv

t

txv i

i  (6) 

with iΦ the ith POD mode and if we assume homogeneous 

boundary conditions. The field ),( txv projected on the POD 

basis { } *, ,1 Nnn =Φ is the following:

∑
=

Φ=
*

1

)()(),(
N

n

nn xtatxv (7) 

Thus the low order dynamical system becomes: 

∑
=








 ΦΦ−=
*

1

,
N

n

in

n

i

dx

d

dx

d
a

dt

da
(8) 

because of the orthonormal characteristic of the POD modes. 
A very interesting characteristic of the POD basis is its 

ability to represent a solution different from the problem 
which the basis is computed. Of course, the new problem has 
to be similar to the first one, which is precisely the case in the 
framework of a parametric study. An example on the one-
dimensional heat transfer equation with two different 
boundary conditions is proposed, based on works of Chinesta 
[13]: we define a first field with a heat flux step function for 
boundary condition, and a second field with a heat flux ramp 
function for boundary condition.  

A POD basis is computed from the first problem and both 
dynamical systems are computed by projection on this unique 
basis. The reconstruction gives good results, see figure 2. 

Fig. 2. POD reconstruction of two similar problems by 
projection on a unique POD basis 

In order to be close to a tube bundle problem, a POD 
basis is computed for the problem of a single circular cylinder 
in cross-flow at 100=eR  (the problem of lock-in for such a 
configuration have been previously studied, see [34]; here the 
cylinder stays fixed, calculations have been run thanks to 
Code_Saturne [3]). Figure 3 shows first and second velocity 
components of the flow at a date t  in the sample 
period [ ]T;0 . Then, figure 4 shows first component of the two
firsts POD modes obtained from this sample. The sample 
period [ ]T;0  corresponds to one period of lift force
fluctuations (i.e. around 6 s.) with a time step of 025.0=∆t s. 
150 snapshots have been taken to constitute the sample. In the 
case of a low Reynolds number flow around a circular 
cylinder, just one or two flow periods are necessary to make a 
good sample, with 100 – 150 snapshots per cycle. In the case 
of a turbulent flow, more pseudo-cycles are needed to take 
into account most of the energy of the flow. 

If we remember that the first mode energetic contribution 
is preponderant, it is easy to understand that the first POD 
mode is linked to the mean flow, while next modes (from 

2Φ to *
N

Φ ) contain the energy of mean flow fluctuations.
As the vortex shedding phenomenon comes from these 
fluctuations, they are visible only from the second mode. 
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elastic instability is one of the most violent vibration 
mechanisms and a lot of studies have been led in order to 
define the critical fluid velocity and avoid such a 
phenomenon. This problematic is well known but not well 
understood. A way to improve our comprehension of tube 
bundle vibrations is to work with reduced order models 
(ROM). The most widespread ROM method, called Proper 
Orthogonal Decomposition (POD) and its properties are 
briefly presented. Future work consists in the application of 
this method to the case of tube bundle. 
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