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ABSTRACT

This paper considers the problem of obtaining a low-rank fac-
torization of a given correlation matrix. In order to handle
possible spurious correlation coefficients within the input, a
robust formulation is proposed with a criterion based on the
Huber loss function. Minimizing this fitting criterion under
the low-rank correlation structure constraint is then addressed
using the block majorization-minimization framework. Sev-
eral algorithm options are explored and compared in terms of
computational complexity. The merits of the proposed correl-
ation fitting method are then validated on simulations, and for
the process of dimension reduction of microarray data.

Index Terms— Correlation matrix, low-rank factoriza-
tion, majorization-minimization, robust estimation.

1. INTRODUCTION

The correlation matrix is a fundamental quantity in multivari-
ate statistical analysis, signal processing, and machine learn-
ing. Among many applications, we can mention its use as a
discriminating feature in EEG classification processes [1], as
an input variable to compute interferograms in remote sens-
ing [2], and as weighting coefficients in financial engineering
[3, 4] and chemometrics [5]. The most common estimate of
this quantity is the sample correlation matrix, i.e., the sample
covariance matrix of the standardized data. Obtaining a low-
rank approximation of this matrix is often beneficial in order
to perform correlation cleaning (improving the estimate). A
low-rank factorization is also useful in terms of memory stor-
age, as handling a p X p matrix can be problematic for large
dimension p. In terms of dimension reduction, it also offers
a structure-compliant alternative to principal component ana-
lysis (PCA) for standardized data (as the eigenvalue trunca-
tion of a correlation matrix does not yield an actual correla-
tion matrix). In this scope [4, 6, 7] proposed algorithms to
perform least squares (LS) low-rank correlation fitting. How-
ever, LS fitting is sensitive to outliers and thus susceptible to
fit spurious correlations rather than the true underlying low-
rank structure.
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To overcome the aforementioned issue, we propose an
alternate fitting criterion that leverages the Huber criterion,
which offers a robust alternative to LS [8]. The correspond-
ing low-rank covariance fitting problem is then tackled us-
ing the block majorization-minimization (MM) framework
[9, 10, 11], resulting in a computationally efficient algorithm.
The interest of the proposed method is then validated on syn-
thetic data, and for the dimension reduction of microarray
datasets [12].

2. LOW-RANK CORRELATION FITTING

2.1. Background

Given a n-sample of p-dimensional observations X € RP*"™,
the empirical correlation matrix is obtained as C=XxXXT /n,
where X is the standardized data, i.e., each variable (line in
X)) is centered and normalized by its standard deviation. The
space of correlation matrices C,, is the space of p x p positive
semi-definite symmetric matrices with unit diagonal, and off-
diagonal elements in [—1,1]. Finding the nearest low-rank
correlation matrix to a plug-in estimate C e C,, consists in
tackling the optimization problem
minimize 62(C, C)
CeC, (1)

subject to rank(C) <k,

where §(-,-) is a matrix distance, and k denotes the desired
maximal rank. In this scope, the least-squares (LS) fitting
relies on the squared Frobenius norm as distance, i.e., 634 =
||C — C|[%. For this cost function, various algorithms have
been proposed in order to evaluate the solution of (1) [4, 6].
More recently, [7] considered additionally masking entries in
an LS fitting formulation in order to obtain a sparse solution.

2.2. Proposed robust formulation

As LS fitting is sensitive to outliers” abnormal values, we pro-
pose an alternative robust cost to alleviate this issue. We con-
sider leveraging the Huber loss function [8], defined by:

1.2 3
pelx) = {zx ifl| < c 2)

clz| — $c®  otherwise



where ¢ € R} is a chosen threshold that pilots whether a
quadratic or linear loss is applied to the input x. This yields
the corresponding matrix distance

ch i — Cij), 3)

which acts as a smooth trade-off between the two limit cases
¢ — 0 (¢1-norm fitting, also referred to as median estimator),
and ¢ — oo (LS fitting). In practice c is either set to a toler-
ance threshold to obtain a smooth mimic of the ¢;-norm, or
adaptively tuned so that a desired proportion of the entries are
treated with the LS criterion [8].

In order to derive computationally efficient optimization
algorithms, we also consider a tall matrix as root parameter-
ization for a rank k correlation matrix, i.e., C = WW T, with
W € RPXF The i*! line of W is denoted w, € R1** Vi ¢
[1,p], i.e., we have W = [wy, - -+, w,]". Thus parameter-
ized, the matrix C = WW T is a correlation matrix in Cp if
and only if all the vectors w;, Vi € [1, p] are of unit norm.

Combining the considered cost function and parameter-
ization, we formulate the Huber low-rank correlation fitting
through the optimization problem

minimize (W) a

WeRpxk Zij pC(C”
subject to  w, w; =1, Vi € [1,p],

§%(C,C) =

—w, w;)

(€]
which is tackled in the next section.

3. BLOCK MM ALGORITHMS

The problem (4) has no direct solution and requires to develop
iterative algorithms for evaluating a local minimum. To do so,
we leverage block MM framework, which is briefly reviewed
below. More details can be found in the overviews [9, 11],
and papers [13, 14] also provide some general guidelines for
deriving algorithms under normalization constraints. In the
context of our partitioned variable W = [wy, ---, w,] T,
the block MM algorithm will operate a cyclic update of the
blocks w; by solving sub-problems of the form:

minimize  g;(w;|Wy)
wiekt 5)

subject to  w, w; =1

where g; is a surrogate function, i.e., a tight global upper-
bound of the function f at the current point denoted W; =
[wi, .-+, wi]T. The goal is then to obtain a surrogate g;
such that it is easily minimized over the feasible set, and that
it respects the conditions to ensure the convergence of the pro-
cedure: g; is a global upper-bound of f, with equality and

matching directional derivatives at the considered point.

3.1. Building blocks

This section provides the key propositions to obtain a surrog-
ate g; and solving its minimization step. The first proposition

gives a global upper-bound of f that appears as a weighted
least-squares correlation fitting criterion.

Proposition 1. pThe objective f in (4) is majorized at point
W, by the surrogate function

2(C

with wij = pl(et;)/2(et;) and et; = Cy — (wh)Twt .
Equality is achieved at W = W .

gwrs(W|W,) = —w, w;)? (6)

Proof. The upper-bound is obtained on each term of the sum
by using the majorization of the Huber function at point y [11]

pe(r) < M

< 2% + const. @)
2y

with equality at point y. O

The second proposition gives a block-wise linear upper-
bound for a weighted least-squares correlation fitting criterion
when restricting blocks w; to lien on the unit k-sphere.

Proposition 2. At point W, and given an active block wj,
the surrogate gwtis in (6) is majorized on the unit k-sphere
by the surrogate function

9i(wi|Wy) = w, vl + const. (8)
with A
= 2(Bf — \iT)w; — 2 Zwijcijwj 9
J#i
with B} = 32, wiyw;w, and where X, is any constant

t
larger than )\ng, the largest eigenvalue of B. Equality is
t

achieved at w; = w.
Proof. The function gw1,g in (6) with only w; as active block
reduces to the expression
gwrs(Wi| W) = w, Blw; — 2w, Zwij(jijwj -+ const.
J#
(10)
When restricting to the unit k-sphere, we have that the first
term w,; Blw; = w,| (B! —\!I;,)w;+const., forany \! € R.
Hence, the minimization of gwrs(w;|W?) is not affected by
this constant shift. When setting )\5 > AEZX, the quadratic
form w,” (B! — AT )w; is concave so it is majorized by its
first- order Taylor approximation [11]. This yields the desired
result
gwLs (Wi W) < g;(w;[W*) + const. (11)

with g; defined in (8) and (9). L]

The last proposition concerns the minimization of a linear
function on the unit k-sphere, which will allow us to compute
simple updates when applying the previouly obtained surrog-
ates.



Proposition 3. The constrained optimization problem

minimize w'v
wiERE (12)

subjectto w'w =1
has for solution w* = —v /|v|.

Proof. When constrained to have a unit-norm, the vector w*
that minimizes the value of the inner product (w, v) is the one
aligned with the direction of —v O

3.2. Algorithmic options

The chaining of Propositions 1 and 2 offers various pos-
sible MM strategies for the construction of the block updates,
which are summed up in the box Algorithm 1. In details:

e Proposition 1 (updating wfj) can be applied at each global
loop or at each block w;: the first option mimics the min-
imization of a sequence of weighted least-squares, while the
second minimizes a tight upper-bound at each step, yielding
a faster convergence. The computational trade-off is that the
update of wfj at each step can be costly for large p.

e The eigenvalue upper-bound of B! in Proposition 2 can be
set to )\ﬁéx, which offers a tight upper-bound. By construc-
tion of this matrix (weighted sum of normalized vectors with
weights w;; < 1), an alternate loose upper-bound is A} = p.
As previously, a tighter upper-bound offers a faster conver-
gence, but the other option yields a lower computational cost
per update (as it requires no SVD computation).

e In a block-coordinate descent fashion, the block index ¢ can
be hold for multiple applications of Proposition 2 (then min-
imization with Proposition 3). The resulting loop appears as a
modified power method for minimizing a quadratic plus linear
function on the k-sphere [14], which offers a slight accelera-
tion of each block step for a low computational cost.

3.3. Algorithm analysis

Convergence: By construction of the MM procedure, each
variable update yields a monotonic decrement of the objective
[9, 11]. As the constraint set is not convex, the general results
to a local minimum [10] do not directly apply. However, the
guarantee of convergence to a local minimum still holds as
the variables belong to a compact set satisfying the linear
independence constraint qualification [15, 14].

Complexity and implementation: In the common case n <
p, we notice that all matrix multiplications can be efficiently
factorized using X "W instead of directly computing CwW,
hence the complexity of basic matrix operations is O(npk).
The main and only computational bottleneck is the SVD of
B!, which is O(k3). This is not expected to be too demanding
since we aim to address k < p scenarios. This bottleneck can
be avoided with the universal upper-bound A! = p, at the cost
of requiring more total iterations.

Algorithm 1 MM for Huber low-rank correlation fitting

1: Input: plug-in C, Huber threshold ¢
2: MM options: inner-or-outer w;; updates inpg,, €
t
{in, out}, Aﬁgx upper-bound up, € {SVD,const. =
p}, inner-loops ny00p € N*, convergence criterion.
3: while (convergence criterion) do

4 if iny,, = out update wj; with Proposition 1

5 fori=1,..., p do

6: if inyg,, = in update wfj with Proposition 1

7 Compute B! with A! chosen according to up,,
8 for{e1, ..., nigop do

9: Compute v! with Proposition 2

10: Update w! with Proposition 3

11: tt+1

12: end for

13: end for

14: end while
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Fig. 1. Convergence of MM algorithms (options in Algorithm 1) versus
number of outer-loop iterations (one point represents an update of all blocks
w;) and time for p = 100, k = 10 (top), p = 1000, £ = 100 (bottom). In
the legend, the first parameter is inpyp, the second up, and the third 7je0p-

4. SIMULATIONS

Algorithms comparison: For a randomly generated plug-in
C, Figure 1 displays the convergence of Algorithm 1 for
various options (cf. Section 3.2) and dimensions p and k.
It shows that the algorithms scale well for high dimensions.
We observe that when using the loose upper-bound ! = p,
the loss in convergence speed is not compensated by the gain
in computational complexity of the universal when assessing

t
total computation time (so A\! = /\,'igx should be favored). It
also shows that the outer acceleration loops can be beneficial,
but should be set depending on the dimensions.

Performance validation: We investigate the robustness of
the proposed method to corruption of the sample correlation
matrix. Firstly, a sample covariance matrix 3 = XX /n
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Fig. 2. MSE on the recovery of the low-rank correlation matrix with respect
to the percentage of corrupted entries, SNR = 35 dB, number of trials = 50.
p = 100, k = 10, n = 50 (left) or n = 500 (right).

is generated from n observations distributed according to the
Gaussian probabilistic PCA model [16]

x <L Wos+n (13)

with Wy € RP** and normalization diag(WoW ) = I,
s ~ N(0,0%1), and n ~ N(0,021,). Thus x ~ N (0, %),
with ¥ = 02WoW/{ + 021, and we have the signal to noise
ratio SNR = 02 /02. Secondly, a percentage b € [0,100] of
random entries of 3 are corrupted by generating a uniform
noise as follows

DS - {g, [E]m[ﬁ:]ﬁ} if |[Z],;] <e a4
a€=£[0,¢ otherwise
where [i]ji = [i]w and where ¢ = min(e, [2}”[2]”)

with a low thres ¢, set a bound so that the corrupted matrix re-
mains symmetric positive semi-definite. The corrupted matrix
3 is then normalized to obtain a corrupted correlation mat-
rix C = (X o I)"/23(Z © I)~'/2. Finally, the C serves
as a plug-in to various low-rank correlation factorization al-
gorithms (LS fitting and Huber fitting with various threshold
coefficient c). We then assess the merits of the algorithms in
terms of mean squared error (MSE) for the recovery of the
true underlying low-rank correlation Cy = Wy W, . Figure
2 displays the MSE with respect to the percentage of corrup-
ted entries in C. We observe that the low-rank factorization
helps in lowering the error compared to the raw plug-in estim-
ate. This observed behavior remains the same at low and large
sample support n, though the floor error is naturally lower for
larger n. Interestingly, Huber fitting with low ¢ can support a
higher percentage of corruption before breakdown (i.e. devi-
ation from the MSE of the oracle uncorrupted plug-in).

5. APPLICATION TO MICROARRAY DATA

Context and protocol: Linear dimension reduction is a
standard process when dealing with large p. The most
common method is PCA, which produces linear embeddings
from the k leading eigenvectors of the sample covariance
matrix. For standardized data, the covariance matrix is also a

Datasets

(1) (2) B | @)

PCA 13.66 | 16.94 | 28.73 | 274
CorFitLS | 13.66 | 1742 | 289 | 26.26
Cor Fit-Hub | 13.29 | 15.87 | 28.34 | 26.38

Table 1. Average clustering error in percent (%) on various embedding di-
mensions k € [3,23]. CuMiDa datasets are Brain_.GSE50161(1) (p=54676,
n=130, 5 cancer types), Colorectal GSE21510(2) (p=54676, n=147, 3 can-
cer types), Colorectal_GSE41657(3) (p=33468, n=86, 4 cancer types), Leuk-
emia_GSE28497(4) (p=22284, n=281, 7 cancer types).

correlation matrix, so it appears interesting to consider this
additional structure, and rather project the data on span(W),
where W is obtained from a low-rank correlation matrix
factorization algorithm (such as the proposed MM for Huber
fitting). In this scope, we compare the effectiveness of these
approaches on the CuMiDa microarray dataset [12]. We
assess the linear embedding method’s ability to preserve
a priori unknown class clusters in an unsupervised setting
(actual labels are still used to validate the process afterward).
This property is here quantified by the clustering accuracy of
the K-means++ [17] applied on the projected data. For each
compared method, we average the clustering error over 20
values of k € {3,4,...,23} used as lower dimension.

Data Pre-processing: From the raw data, we first select vari-
ables with the highest variances (baseline approach to feature
selection [18, 19]) up to a certain total variance percentage
(30% gave the best overall PCA’s results). The data is then
standardized before applying dimension reduction methods.

Adaptive tuning of Huber threshold c: For Huber low-rank
fitting, we compute a sequence of solutions for various ¢, and
select the solution for which 85% of entries in the plug-in C
are treated with |z| > ¢ as in (2).

Results: Table 1 summarizes the mean clustering error for
several CuMiDa datasets. We observe that the embedding
based on correlation fitting can favor to PCA in this unsuper-
vised clustering setting. The Huber fitting also slightly out-
performs LS fitting in most cases, highlighting the interest in
the proposed approach.

6. CONCLUSION

We proposed a robust low-rank correlation fitting method
based on the Huber function, and derived MM algorithms to
solve the corresponding problem. Simulations evidenced the
method’s interest in computational efficiency and robustness
to data corruption. An application to microarray data cluster-
ing illustrated that the proposed method also offers an inter-
esting alternative to the PCA.
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