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ABSTRACT

Nuclei detection and characterization in histopathological tis-
sue assessment is of utmost importance for different clinical
workflows, such as the characterization of tumor micro-
environments. Utilizing robust computational models for
such a task could allow streamlining the process. However,
obtaining accurate segmentation maps for histopathological
slides can be quite tedious and expensive, while also being
subject to inter/intra-reader variability. Learning robust and
precise segmentation models from only a small amount of
data would be therefore a very interesting alternative to fully
supervised methods relying on a huge amount of annotations.
Inspired by diffusion models’ recent advances, this paper
proposes a method for obtaining nuclei segmentation maps
under low data regimes. In particular, diffusion models are
used for learning powerful pixel-level representations of dig-
ital pathology patches that could require only a few amounts
of annotated data to provide multiclass segmentation maps
of different nuclei. Various insights about the use of these
models for the representation of digital pathology patches are
provided. Comparisons with other self-supervised and fully
supervised methods highlight the advantages of the use of
these models for nuclei segmentation.

Index Terms— multiclass nuclei segmentation, histopathol-

ogy, denoising diffusion probabilistic models.

1. INTRODUCTION

Histopathology is one of the gold standards for the diagnosis
and treatment selection for cancer patients. However, assess-
ing these gigapixel-sized images is quite challenging and can
suffer from inter-observer variability. Digital pathology seeks
to develop automatic methods, aiming to simplify clinical
practices and standardize treatment decisions across various
centers and protocols. While these tools could improve work-
flows for clinicians, incorporating them into clinical practice
isn’t always straightforward. One example that highlights this
need is the problem of nuclei quantification and segmentation
on gigapixel-sized images, which is of utmost importance
for the categorization of different types of cancers and the

selection of different treatment protocols, yet it remains quite
challenging.

Recently, deep learning architectures could provide ro-
bust models for a variety of applications, including different
medical image analysis tasks [1]. Semantic segmentation of
medical images is one of them, with recent methods based on
U-Net-like [2]] or Vision Transformer-based [3]] architectures
reporting impressive performance. However, these methods
usually require a lot of pixel-wise annotations to be trained,
something that is not always possible for medical datasets on
which the availability of annotations can be quite hard to ac-
quire and expensive. Indeed, this is one of the main problems
that slow down the adaptation of deep learning models to clin-
ical practice and reduce their robustness.

Different directions have been explored in the recent years
to address the problem of deep learning training on low data
regimes. Among the different approaches, methods based on
few-shot learning [4], using only a small number of exam-
ples enable the model to generalize well to new, unseen data
despite the limited amount of training samples. Moreover,
methods based on self-supervision and contrastive learning
are currently gathering the attention of the community, pro-
viding interesting alternatives for the training of powerful fea-
ture representations that could be adapted to different tasks,
including image segmentation. Additionally, denoising dif-
fusion probabilistic models (DDPM) [3] could also be used
to provide useful representations, something that has only re-
cently started to be explored by the community [6].

In this work, we investigate whether diffusion models are
able to learn semantically meaningful representations in the
context of digital pathology. Our approach follows the in-
tuition that the unsupervised training of generative diffusion
models results in robust features, which can be useful for a
number of downstream tasks such as semantic segmentation,
especially in limited-annotation schemes. We focus on the
DDPM class of models, and we re-purpose them for a non-
generative task, aiming to assess their performance on a dis-
criminative task for the histopathology image domain. The
main contributions of this work are summarized as follows:

* We train a DDPM for representation learning of digital
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Fig. 1. Overview of the proposed method. The first step of the method trains in an unsupervised way a DDPM using a pancancer
dataset of digital pathology patches. Then, the features of the different levels of the pretrained DDPM are upsampled, and pixel-
wise representations are obtained. These pixel-wise features are then classified in each of the available classes with an ensemble

of MLPs.

pathology slides. Our model is trained in an unsupervised
way using patches extracted from different cancer types.

* We demonstrate that DDPMs could provide better repre-
sentations for semantic segmentation tasks compared to
other self-supervised methods.

* We provide insights about the use of DDPMs in the con-
text of digital pathology and nuclei segmentation, where
the structures are very small, making self-supervised seg-
mentation methods particularly challenging.

2. RELATED WORK

Automatic nuclei segmentation in digital pathology has gath-
ered the attention of the community due to a wide range of
clinical applications. Indeed, a single tissue slide typically
contains around a million nuclei, making their quantification
and annotation very tedious for pathologists. Various publicly
available datasets have already been proposed to ease this
need, providing a very interesting playground for deep learn-
ing algorithms. CoNSeP [7], MoNuSeg [8] and PanNuke [9]
are only some of the publicly available datasets that provide
pixel-wise nuclei segmentation. However, even though these
datasets are available, trained models usually fail to general-
ize well on other samples due to big stain variability between
centers and protocols. Indeed, the generalization of these al-
gorithms is quite challenging [[LO], highlighting the need for
methods that could be easily trained with only a few amount
of annotated data.

The most prevalent nuclei segmentation methodologies
currently depend on manually acquired, careful pixel-based
annotations of nuclei [7, [11] tailored to specific staining pro-
tocols. Some semi-supervised approaches, like [[12], have
been proposed to address this requirement, yet they need
manual interactions, making their application at the whole
slide level time-consuming. On the other hand, existing un-
supervised segmentation methods, such as those utilizing
color clustering, exhibit inadequate performance, precluding
their use in clinical settings. Researchers have also explored

self-supervised learning for nuclei segmentation. In [13], the
authors train a network to precisely classify the magnification
of an input tile using an attention module and demonstrate
that the attention maps can be employed to generate detection
maps of nuclei in H&E staining, subsequently transformable
into nuclei segmentation maps. Moreover, in [[14], the authors
proposed a dense contrastive scheme for the segmentation of
nuclei. Even if, self-supervised methods could provide very
interesting research directions, most of the time are not able
to provide multiclass segmentation maps.

In the context of the limited amount of available data,
powerful pretrained models such as DINOv2 [15] and other
recent foundation models would also be used to extract pow-
erful representations of the data and provide segmentation
maps as a downstream task. In a similar idea, DDPMs has
been recently introduced for the development of generative
representation learning [16, [6]. Nonetheless, even if these
models had been proposed and validated for natural images,
their application on medical data and, in particular, digital
pathology images is not assured. Especially, in the case of
digital pathology and nuclei segmentation and identification,
the very small structure of the objects of interest makes the
use of such models very challenging. In this work, we inves-
tigate exactly this point, providing new insights for the use of
DDPM in digital pathology.

3. METHODOLOGY

DDPM Background. In this work, we adopt the formula-
tion of Denoising Diffusion Probabilistic Models as presented
in [5]. DDPMs are able to transform noise into data samples
by learning to reverse a progressive forward noising process,
which can be described as:

q($t|$t—1) = N(xtQ v1- 5t$t—175t—7) (D



Making use of Gaussian parametrization allows directly get-
ting an arbitrary timestep’s x; through:

T = Varxg + V1 —age, € ~N(0,1) 2)
where oy = 1 — By and oy = Hizl a. The reverse diffusion
process, commonly parameterized through a U-Net network
variant €g(x,t) is trained to predict the noise added at each
timestep, substantially implementing a multi-step denoising
task. Once trained, this model can be used to generate realis-
tic data samples just from random noise by solving a reverse
process:

po(Ti—1|zs) = N(z4—1; po(ze, ), Lo, 1)) 3

DDPM Representations. Our method relies on a trained
DDPM on histopathology data using the approach proposed
in [18]. By training an in-domain DDPM, we aim to build a
robust encoder from which we will be extracting image rep-
resentations. We note, that this training procedure is unsu-
pervised; no manual annotations are needed, thus making the
approach especially useful for low-data settings. After train-
ing such a model, we employ it to extract representations in
order to investigate whether they can capture meaningful in-
formation related to nuclei. For this task, our method is based
on [6], where we corrupt input images with noise correspond-
ing to selected timesteps and extract the feature maps that the
hidden blocks of the U-Net decoder output, when we pass the
corrupted images through them. We choose the timesteps and
blocks to keep in our setting by combining the intuition pro-
vided by [6] with our experimental results. Specifically, the
most descriptive features correspond to the latter timesteps of
the reverse diffusion process, while regarding the blocks, the
intermediate ones are found to perform best.

Semantic Segmentation. To assess the information cap-
tured by these representations, we use them for a downstream
task, namely, multiclass semantic segmentation of nuclei in
histopathology images. An overview of the method is pre-
sented in Fig. [l We follow the approach of [6], firstly in-
terpolating the extracted hidden activations for an image into
the spatial dimensions of the initial input and then stacking
them into a single feature map. Thus, each pixel is finally
represented by a feature vector of size equal to that of the
whole feature map along its concatenated axis. Under this
formulation, the encoded pixels are then passed to an ensem-
ble of MLP classifiers, where the predicted class for the pixel
is determined via a majority voting. Despite its simplicity,
this segmentation approach is quite robust, providing valu-
able insights into the knowledge embedded in the proposed
pixel-level features.

4. IMPLEMENTATION DETAILS

Dataset. We conducted our experiments using the Pan-
Nuke [9] dataset. Initially, we merged the three independent

folds comprising the entire dataset, totaling 7901 images, into
a single dataset. The intuition behind this decision is to help
provide a sufficiently large dataset split for pretraining the
DDPM within the specific data domain. Thus, we then split
80% of the dataset (6321 patches) for pretraining the DDPM
while retaining the rest 20% (1580 patches) for evaluation on
the semantic segmentation task to avoid data leakage. This
was done by splitting these 1580 patches into 448 and 1132
for training and testing, respectively. Every time we split
the dataset, we maintain the nuclei distribution of the initial
dataset, keeping representative samples from all nuclei types.

Training. We pretrain our DDPM using a diffusion pro-
cess of 1000 steps with a linear noise schedule and a learning
rate of le — 4. After assessing multiple model checkpoints
based on the training steps, we determined that the model
checkpoint at 50K steps performed best in downstream
segmentation. Notably, while the 100K model checkpoint
showed better sampling performance i.e., generating more
realistic samples, it did not lead to improved segmentation
performance. Taking into consideration the specific charac-
teristics of our dataset i.e., nucleis’ small structure, variability
and heterogeneity, we finetune over the selection of timesteps
and blocks (comprising hyperparameters of the method) in
order to come up with an optimal configuration for our task.
Thus, we run all our experiments extracting representations
for timesteps [50, 150, 250] and from [6, 8, 10, 12] blocks of
the DDPM, resulting in pixel-level features with a shape
of 2688. Extracting features from earlier timesteps or even
maintaining a broader range of blocks seemed to degrade
the segmentation performance. Moreover, to account for the
background class covering a high percentage of the pixels
among histopathology images, we train the MLP classifiers
keeping only 10% of the background pixels, avoiding the
background class signal from overwhelming the training pro-
cess. Finally, we train and test our segmentation models on
448 and 1132 images, respectively.

5. EXPERIMENTAL RESULTS

Baselines. We compare the performance of our method
against a series of baselines for the task of semantic segmen-
tation. U-Net refers to the vanilla model, while Attention
U-Net [19] incorporates attention mechanisms, to focus on
informative regions by dynamically weighting feature maps
during the encoding and decoding phases. The DINOv?2 vari-
ants denote Vision Transformer [20] models pretrained on a
vast dataset through self-supervised learning. The Linear and
SETR-PUP variants refer to the segmentation layers on top
of the pretrained backbone model. The former is described in
[L5], while the latter integrates multiple deconvolution lay-
ers as a decoder to generate segmentation outputs [21]]. For
DINOV2 models we train only the task layers; the rest of the
models parameters are kept frozen. DDPMjpagenet follows the
same approach as our proposed method with the exception of
being pretrained on ImageNet [22].



Method Neoplastic Inflammatory Connective Dead Epithelial Mean
Fully Supervised methods
U-Net [17] 0.6975 0.5151 0.486 0.2363 0.6145 0.5099
Attention U-Net [[17] 0.7039 0.5351 0.4833 0.2584 0.6445 0.52504
Pretrained Models with low data regimes
DINOV2 jnear [15]] 0.5511 0.38 0.321 0.0298 0.4339 0.3432
DINOV2sgTr-pUP[LS] 0.6368 0.5094 0.4284 0.1527 0.5341 0.4523
DDPMjpageNet 0.5445 0.426 0.3344 0.1016 0.39 0.3593
DDPMp,nnuke (Ours) 0.6211 0.4945 0.4094 0.1919 0.5601 0.4554

Table 1. Quantitative results for the different types of nuclei and the mean performance. The table presents the intersection
over union (IoU) results on the test set. Methods are grouped as supervised, semi-supervised, and diffusion-based.

[
2
=]
2
ki
&

@ Background ® Neoplastic

Inflammatory

Connective Dead Epithelial

Fig. 2. Qualitative results of the proposed DDPM method for different types of nuclei. The first row depict different patches,
the second the ground truth with different colors, and the last one our prediction.

The segmentation results are presented in Table [T} While
it is clear that fully supervised methods yield superior models,
their dependence on abundant data might pose limitations in
various scenarios. Notably, within low data regimes, DDPMs
exhibit a slight performance edge over DINOv2 counterparts,
despite the latter being pretrained on a significantly larger
dataset. Furthermore, when comparing the two DDPMs, the
importance of in-domain pretraining for achieving enhanced
downstream performance is underscored, particularly in the
segmentation of very small structures such as different classes
of nuclei.

Proposed DDPM
# of Images Mean IoU
28 0.3298
56 0.3667
112 0.3964
224 0.4341
448 0.4554

Table 2. Ablation on the number of training images used for
the segmentation task.

Table 2] demonstrates an ablation of our model, indicating
how the performance of the proposed DDPM method con-

sistently improves with an increase in the number of training
images, with the best results achieved when utilizing all 448
training images. Qualitative evaluation of this selected model
is presented in Fig. 2] demonstrating different histopathology
patches from the test set (first row) alongside their ground
truth segmentation (second row) and our predictions (third
row). Overall, our model demonstrates consistent and pre-
cise performance across all the different patches originating
from different cancers and locations.

6. CONCLUSIONS

We investigate the representations learned by DDPMs in the
histopathology domain, affirming their ability to capture se-
mantically meaningful information, as demonstrated in the
segmentation setting. The proposed method leverages the
generative pretraining of DDPMs, producing robust represen-
tations without requiring a large number of manual annota-
tions, thereby enhancing their generalizability and applicabil-
ity in scenarios with limited access to labels. Our results move
towards the direction of using generative models for discrim-
inative tasks. Future works include the further testing of our
method on different segmentation tasks of digital pathology
and the extension of the method integrating spatial relations
between pixels to refine the segmentation map.
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