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Lanthanide-Based Single-Chain Nanoparticles as “Visual”
Pass/Fail Sensors of Maximum Permissible Concentration
of Cu2+ Ions in Drinking Water

Jokin Pinacho-Olaciregui, Ester Verde-Sesto, Daniel Taton, and José A. Pomposo*

The maximum permissible concentration (m.p.c.) of Cu2+ ions in drinking
water, as set by the World Health Organization (WHO) is m.p.c. (Cu2+)WHO =
30 × 10−6 m, whereas the US Environmental Protection Agency (EPA)
establishes a more restrictive value of m.p.c. (Cu2+)EPA = 20 × 10−6 m.
Herein, for the first time ever, a family of m.p.c. (Cu2+) “visual” pass/fail
sensors is developed based on water-soluble lanthanide-containing
single-chain nanoparticles (SCNPs) exhibiting an average hydrodynamic
diameter less than 10 nm. Both europium (Eu)- and terbium (Tb)-based
SCNPs allow excessive Cu2+ to be readily detected in water, as indicated by
the red-to-transparent and green-to-transparent changes, respectively, under
UV light irradiation, occurring at 30 × 10−6 m Cu2+ in both cases.
Complementary, dysprosium (Dy)-based SCNPs show a yellow
color-to-transparent transition under UV light irradiation at ≈15 × 10−6 m
Cu2+. Eu-, Tb-, and Dy-containing SCNPs prove to be selective for Cu2+ ions
as they do not respond against other metal ions, such as Fe2+, Ag+, Co2+,
Ba2+, Ni2+, Hg2+, Pb2+, Zn2+, Fe3+, Ca2+, Mn2+, Mg2+, or Cr3+. These new
m.p.c. (Cu2+) “visual” pass/fail sensors are thoroughly characterized by a
combination of techniques, including size exclusion chromatography,
dynamic light scattering, inductively coupled plasma-mass spectrometry, as
well as infrared, UV, and fluorescence spectroscopy.

1. Introduction

Copper is an essential trace element for animals and plants.[1]

In fact, Cu2+ – the 3th most important metal ion present
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in biological system – is involved as cofac-
tor of numerous metalloenzymes.[2,3] Cu2+

ions are also essential for the human body
and defect of this crucial micronutrient can
impart cytopenia (a reduction in the num-
ber of mature blood cells) and profound
neurological deficits.[4,5] On the contrary, an
excessive Cu2+ intake from occupational ex-
posure or contaminated water can cause
gastrointestinal problems, liver and kidney
damage, hemolytic anemia and impaired
immune function, among other effects.[6,7]

Thus, Cu2+ ions act as one of the environ-
ment pollutants to control due to their in-
creased use at several levels (home, indus-
trial, and agricultural operations), as well as
environmental persistency.[8]

Different regulatory Organisms have
established the maximum permissible con-
centration (m.p.c.) of Cu2+ ions in drinking
water. The m.p.c. of Cu2+ ions in drinking
water by the World Health Organization
(WHO) is m.p.c. (Cu2+)WHO = 30 × 10−6 m,
whereas the US Environmental Protection
Agency (EPA) establishes a more restrictive
value of m.p.c. (Cu2+)EPA = 20 × 10−6 m.[9,10]

Although different analytical techniques are
available to accurately determine the concentration of Cu2+ ions
in drinking water (e.g., atomic absorption spectroscopy, ion chro-
matography, inductively coupled plasma mass spectrometry),
these techniques often involve sophisticated instrumentation
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Scheme 1. Schematic illustration of the synthesis of lanthanide (Ln)-based single-chain polymer nanoparticles (SCNPs) using an amphiphilic random
copolymer decorated with beta-ketoester functional groups, namely, poly(OEGMA-co-AEMA) (see text).

and require skilled users. Consequently, alternative methods
based on “visual” pass/fail sensors providing operational sim-
plicity, sensitivity, and selectivity are highly desirable. To tackle
that challenge, we envisioned to design single-chain polymer
nanoparticles (SCNPs) incorporating lanthanide metal ions as a
versatile platform towards a new generation of m.p.c. (Cu2+) “vi-
sual” pass/fail sensors. SCNPs are individual polymeric chains
intramolecularly folded through intrachain interactions.[11] The
folding of discrete synthetic polymer chains into SCNPs attempts
to mimic the natural folding of biomacromolecules, such as
proteins.[12] The chain folding process leads to locally compact
domains within SCNPs, which can be of practical use to bind
active species (e.g., metal ions,[13] luminophores,[14] drugs.[15]).
Consequently, SCNPs offer interesting opportunities for the
development of improved sensors,[16] innovative drug delivery
vehicles,[17] and biomimetic catalysts,[18] including bimetallic
Eu(III)/Pt(II)-SCNPs with both luminescent properties and cat-
alytic activity.[19] On the other hand, a variety of complexes based
on lanthanide ions.[20–23] have been investigated as fluorescent
“turn-off” sensors of Cu2+ ions. However, most of these molec-
ular sensors are not directly operative in water, but instead, in
organic solvent/water mixtures.

We hypothesized that, by using an amphiphilic random
copolymer featuring beta-ketoester functional groups able
to complex with lanthanide ions, water-soluble lanthanide-
containing SCNPs could be achieved via intrachain beta-
ketoester/ lanthanide complexation. The resulting lanthanide-
based SCNPs were thus employed as innovative m.p.c. (Cu2+)
“visual” pass/fail sensors in drinking water. Here we report the
synthesis of europium (Eu)-, terbium (Tb)-, and dysprosium
(Dy)-based SCNPs, as well as their use−for the first time ever−as
efficient “visual” pass/fail sensors of maximum permissible
concentration of Cu2+ ions in water.

2. Results and Discussion

2.1. Eu-SCNPs as m.p.c. (Cu2+) “Visual” Pass/Fail Sensors

Europium-based single-chain nanoparticles (Eu-SCNPs) were
prepared at a concentration of 1 mg mL−1, following the proce-

dure depicted in Scheme 1. A linear amphiphilic random copoly-
mer, namely, poly(OEGMA-co-AEMA) was first synthesized by
RAFT copolymerization of the hydrophilic monomer OEGMA
and the hydrophobic monomer AEMA. Poly(OEGMA-co-AEMA)
was found to contain 35 mol% of beta-ketoester functional
groups, as determined by 1H NMR spectroscopy (see Figure
S1 in the Supporting Information). Poly(OEGMA-co-AEMA)
showed a weight-average molecular weight of Mw = 80.7 kDa
and relatively low dispersity, Đ= 1.11 (Table S1, Supporting Infor-
mation). Eu-SCNPs resulted from the complexation of Eu3+ ions
in solution by beta-ketoester functional groups of poly(OEGMA-
co-AEMA) (see Scheme 1). The formation of Ln3+/beta-ketoester
complexes involving low molecular weight organic compounds
is well documented.[24–26] To the best of our knowledge, however,
there are no precedents of single-chain polymer nanoparticle
formation via intrachain lanthanide/beta-ketoester complex
formation. Successful preparation of Eu-SCNPs was confirmed
by a combination of structural and size characterization tech-
niques. Hence, SEC results confirmed a shift of the SEC elution
time at peak maximum towards longer retention time and,
hence, smaller hydrodynamic size for Eu-SCNPs when com-
pared to the parent poly(OEGMA-co-AEMA) (see Figure 1a).
Eu-SCNPs showed Mw = 85.0 kDa and Đ = 1.12, suggesting
the folding of individual copolymer chains and the absence
of multichain aggregates by intermolecular crosslinking.[11]

Complementary, DLS measurements showed a decrease of
the average hydrodynamic diameter from 8.3 to 7.3 nm upon
formation of Eu-SCNPs via intrachain Eu3+/beta-ketoester com-
plexation (see Figure S2 in the Supporting Information). The
Eu-SCNPs were found to exhibit fluorescent properties under
UV irradiation (𝜆exc = 254 nm), in a range of pH between 7.5
and 11 (see Figure 1b; Figures S3–S5, Supporting Information)
even if the precursor Eu(III) salt was not fluorescent in water.
Thus, at low pH value the Ln/beta-ketoester interactions were
disrupted, whereas high pH caused the aggregation of the
Eu-SCNPs, which ultimately led to their macroscopic precipi-
tation from the solution. FTIR spectroscopy provided further
evidence of the presence of Eu3+/beta-ketoester complexes in
Eu-SCNPs. As illustrated in Figure 1c, an intense band located
at 1632.4 cm−1 indeed appeared in the FTIR spectrum of the
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Figure 1. Europium-based single-chain nanoparticles (Eu-SCNPs) as “visual” pass/fail sensors of maximum permissible concentration (m.p.c.) of Cu2+

ions in water: a) SEC traces of the precursor, poly(OEGMA-co-AEMA), and the Eu-SCNPs, b) illustration of the reddish fluorescent Eu-SCNPs under UV
light irradiation (𝜆exc = 254 nm), c) FTIR spectra of poly(OEGMA-co-AEMA) (blue color) and Eu-SCNPs (red color), d) PL spectra of Eu-SCNPs in water
in the presence of increasing amounts of Cu2+ ions, e) demonstration of the utility of Eu-SCNPs as “visual” pass/fail sensors of m.p.c. of Cu2+ ions in
water according to the WHO criterion ((i): 5 × 10−6 m, (ii): 10 × 10−6 m, (iii): 15 × 10−6 m, (iv): 22.5 × 10−6 m, (v): 25 × 10−6 m, (vi): 27.5 × 10−6 m,
and (vii): 30 × 10−6 m), f) Stern–Volmer plot (I0 / I = 1 + KSV [Cu2+]) of Eu-SCNPs (error bars estimated from triple measurements) and g) selectivity
of Eu-SCNPs for Cu2+ ions against other metal ions.

Eu-SCNPs, which could be assigned to the stretching vibration
of the enol tautomer of the beta-ketoester groups bonded to Eu3+.
Figure 1d shows the PL spectra of Eu-SCNPs in water in the
presence of increasing amounts of Cu2+ ions (𝜆exc = 254 nm). As
shown in Figure 1e, Eu-SCNPs can be used as “visual” pass/fail
sensors of m.p.c. of Cu2+ ions in water, according to the WHO
criterion (m.p.c. (Cu2+)WHO = 30 × 10−6 m).[9] A clear red color-
to-transparent change under UV light (𝜆exc = 254 nm) is indeed
observed in Figure 1e on passing from [Cu2+] ≤ 27.5 × 10−6 m to
[Cu2+] = 30 × 10−6 m (or above, data not shown). Analysis of the
data in Figure 1d using the Stern–Volmer equation.[27] (I0 / I =

1 + KSV [Cu2+]) provided a value of KSV = 1.4 × 105 m−1

and a squared coefficient of linear regression of R2 = 0.99 (see
Figure 1f). Remarkably, Eu-SCNPs proved highly selective for
Cu2+ ions against other metal ions, such as Fe2+, Ag+, Co2+,
Ba2+, Ni2+, Hg2+, Pb2+, Zn2+, Fe2+, Ca2+, Mn2+, Mg2+, and Cr3+

(Figure 1g). Eu3+ emission quenching is due to energy transfer
to Cu2+ and, then, nonradiative relaxation to the ground state of
Cu2+.[28,29] Additional characterization data of the Eu-SCNPs can

be found in the Supporting Information (Figures S6–S8, Sup-
porting Information).

2.2. Tb-SCNPs as m.p.c. (Cu2+) “Visual” Pass/Fail Sensors

Tb-SCNPs were obtained from the complexation of Tb3+ ions in
solution by beta-ketoester functional groups of poly(OEGMA-co-
AEMA), as displayed in Scheme 1. The average hydrodynamic
diameter of the Tb-SCNPs was 7.2 nm (Figure 2a), a value
smaller than that of the poly(OEGMA-co-AEMA) precursor (8.3
nm). The SEC trace of Tb-SCNPs (Mw = 88.9 kDa, Đ = 1.36, see
Table S1 in the Supporting Information) confirmed the absence
of multi-chain aggregates, in accordance with DLS results shown
in Figure 2a. The Tb-based SCNPs were visualized as greenish
fluorescent nanomaterials under UV light irradiation (𝜆exc =
254 nm) in a range of pH between 7.5 and 9 (see Figure 2b;
Figures S9–S11, Supporting Information). Under strong acidic
conditions the fluorescence disappeared due to the disruption
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Figure 2. Terbium-based single-chain polymer nanoparticles (Tb-SCNPs) as “visual” pass/fail sensors of maximum permissible concentration (m.p.c.)
of Cu2+ ions in water: a) DLS size distribution of the precursor, poly(OEGMA-co-AEMA), and the Tb-SCNPs, b) illustration of the greenish fluorescent
Tb-SCNPs under UV light irradiation (𝜆exc = 254 nm), c) FTIR spectra of poly(OEGMA-co-AEMA) (blue color) and Tb-SCNPs (green color), d) PL spectra
of Tb-SCNPs in water in the presence of increasing amounts of Cu2+ ions, e) demonstration of the utility of Tb-SCNPs as “visual” pass/fail sensors of
m.p.c. of Cu2+ ions in water according to the WHO criterion ((i): 2.5 × 10−6 m, (ii): 5 × 10−6 m, (iii): 15 × 10−6 m, (iv): 22.5 × 10−6 m, (v): 25 × 10−6 m,
(vi): 27.5 × 10−6 m, and (vii): 30 × 10−6 m), f) Stern–Volmer plot of Tb-SCNPs (error bars estimated from triple measurements), and g) selectivity of
Tb-SCNPs for Cu2+ ions against other metal ions.

of Tb3+/beta-ketoester complexes, whereas under high basic
pH a decrease in fluorescence was noted, as a consequence of
aggregation of the Tb-SCNPs. The stretching vibration of the
enol tautomer of the beta-ketoester groups bonded to Tb3+ was
observed at 1637.3 cm−1 in the FTIR spectrum of Tb-SCNPs
(Figure 2c). PL spectra of Tb-SCNPs in water in the presence of
increasing amounts of Cu2+ ions (𝜆exc = 254 nm) are given in
Figure 2d. A clear green color-to-transparent change under UV
light (𝜆exc = 254 nm) was thus observed by the naked-eye, on pass-
ing from [Cu2+] ≤ 27.5 × 10−6 m to [Cu2+] = 30 × 10−6 m or above
(Figure 2e). In other words, Tb-SCNPs proved very useful as
“visual” pass/fail sensors of m.p.c. of Cu2+ ions in water, accord-
ing to the WHO criterion (m.p.c. (Cu2+)WHO = 30 × 10−6 m).[9]

Analysis of the data in Figure 2d using the Stern–Volmer equa-
tion provided KSV = 8.2 × 105 m−1 and R2 = 0.98 (see Figure 2f).
The higher value of KSV for Tb-SCNPs relatively to Eu-SCNPs
indicates a strong sensing ability of Tb-SCNPs when compared
to Eu-SCNPs. Moreover, Tb-based SCNPs display high selectivity
for Cu2+ ions against a variety of other metal ions (Figure 2g).

Additional data of Tb-SCNPs are available in the Supporting
Information (Figures S12–S14, Supporting Information).

2.3. Dy-SCNPs as m.p.c. (Cu2+) “Visual” Pass/Fail Sensors

Dy-SCNPs synthesized via complexation of Dy3+ ions in solution
by beta-ketoester functional groups of poly(OEGMA-co-AEMA)
showed an average hydrodynamic diameter of 7.6 nm, a value
smaller than that of the poly(OEGMA-co-AEMA) precursor
(Figure 3a). Dy-SCNPs displayed yellowish fluorescence under
UV light irradiation (𝜆exc = 254 nm) in a pH range between 7.5
and 9. Similar to the case of Eu-SCNPs and Tb-SCNPs, the flu-
orescence of Dy-based SCNPs could be switched-off at very low
pH, owing to rupture of Dy3+/beta-ketoester complexes or high
pH (because of the appearance of aggregation and precipitation
phenomena). Dy-based SCNPs were found to display yellowish
fluorescence by the naked eye under UV light irradiation at 𝜆exc
= 254 nm (Figure 3b). In the FTIR spectrum of the Dy-based
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Figure 3. Dysprosium-based single-chain polymer nanoparticles (Dy-SCNPs) as “visual” pass/fail sensors of maximum permissible concentration
(m.p.c.) of Cu2+ ions in water: a) DLS size distribution of the precursor, poly(OEGMA-co-AEMA), and the Dy-SCNPs, b) illustration of the yellowish
fluorescent Dy-SCNPs under UV light irradiation (𝜆exc = 254 nm), c) FTIR spectra of poly(OEGMA-co-AEMA) (blue color) and Dy-SCNPs (green color),
d) PL spectra of Dy-SCNPs in water in the presence of increasing amounts of Cu2+ ions, e) demonstration of the utility of Dy-SCNPs as “visual” pass/fail
sensors of m.p.c. of Cu2+ ions in water according to the EPA criterion ((i): 1 × 10−6 m, (ii): 2.5 × 10−6 m, (iii): 10 × 10−6 m, (iv): 15 × 10−6 m, (v): 20 ×
10−6 m, and (vi): 30 × 10−6 m), f) Stern–Volmer plot of Dy-SCNPs (error bars estimated from triple measurements), and g) selectivity of Dy-SCNPs for
Cu2+ ions against other metal ions.

SCNPs, the stretching vibration of the enol tautomer of the
beta-ketoester groups bonded to Dy3+ was observed at 1642.1
cm−1 (Figure 3c). Interestingly, Dy-SCNPs show a yellow color
-to-transparent transition under UV light irradiation at ≈15 ×
10−6 m of Cu2+ ions (Figure 3d,e) – very close to the US-EPA cri-
terion (m.p.c. (Cu2+)EPA = 20 × 10−6 m) – making these Dy-based
SCNPs practical “visual” pass/fail sensors of m.p.c. of Cu2+

ions in water according to the EPA regulation. A Stern–Volmer
plot for Dy-SCNPs provided KSV = 2.9 × 105 m−1 and R2 = 0.99
(see Figure 3f). Similarly to Eu-based and Tb-based SCNPs,
Dy-based SCNPs proved selective for Cu2+ ions against other
metal ions in solution. Additional data of Dy-SCNPs are available
in the Supporting Information (Figures S15–S19, Supporting
Information).

3. Conclusion

We introduced a new generation of m.p.c. (Cu2+) “visual”
pass/fail sensors based on water-soluble lanthanide (Eu, Tb,

or Dy)-containing SCNPs of sub-10 nm size range. Under UV
light irradiation at 𝜆exc = 254 nm, Eu-SCNPs and Tb-SCNPs
showed naked-eye red color-to-transparent and green color-to-
transparent transitions, respectively, near [Cu2+] = 30 × 10−6 m
in water at pH = 7.5. As for Dy-based SCNPs, they displayed
a yellow color-to-transparent transition at approximately [Cu2+]
= 15 × 10−6 m. The characteristic FTIR stretching vibration of
the enol tautomer of the beta-ketoester groups bonded to Eu3+,
Tb3+, and Dy3+ ions in Eu-SCNPs, Tb-SCNPs, and Dy-SCNPs
was located at 1632.4, 1637.3, and 1642.1 cm−1, respectively.
These “visual” pass/fail sensors show high selectivity towards
Cu2+ ions against a variety of other metal ions (Fe2+, Ag+, Co2+,
Ba2+, Ni2+, Hg2+, Pb2+, Zn2+, Fe2+, Ca2+, Mn2+, Mg2+, and Cr3+).
Consequently, Eu-SCNPs and Tb-SCNPs can be used as “visual”
pass/fail sensors of m.p.c. of Cu2+ ions in water according to
the WHO criterion (m.p.c. (Cu2+)WHO = 30 × 10−6 m). Comple-
mentary, Dy-SCNPs can be useful as “visual” pass/fail sensors
of m.p.c. of Cu2+ ions in water according to the EPA regulation
(m.p.c. (Cu2+)EPA = 20 × 10−6 m).
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4. Experimental Section
Materials: Oligo(ethylene glycol) methyl ether methacrylate

(OEGMA) (average Mn ≈ 300 g mol−1), (2-acetoacetoxy)ethyl
methacrylate (AEMA) (95%), 2,2-azobis(2-methylpropionitrile) (AIBN)
(≥98%), triethylamine (Et3N) (>99%), methyl acetoacetate 99%,
1,4-dioxane (anhydrous, 99.8%), n-hexane (anhydrous, 95%), 4-cyano-
4-(thiobenzoylthio)pentanoic acid (≥ 97%), europium trichloride
hexahydrate (EuCl3∙6 H2O) (99.99% trace metals basis), terbium trichlo-
ride hexahydrate (TbCl3∙6 H2O) (99.99% trace metals basis), dysprosium
trichloride hexahydrate (DyCl3∙6 H2O) (99.99% trace metals basis),
copper (II) acetate (98%), iron (II) acetate (95%), cobalt (II) acetate
tetrahydrate (99%), barium acetate (99%), nickel (II) acetate tetrahydrate
(99%), mercury (II) acetate (≥ 98.0%), lead (II) acetate tetrahydrate
(99%) zinc (II) acetate dehydrate (99%), iron (III) acetylacetonate (97%),
calcium acetate monohydrate (99%), manganese (II) acetylacetone
(98%), magnesium chloride (98%), and chromium(III) acetate (98%)
were supplied by Merk (Sigma-Aldrich). Potassium hydroxide (KOH) (≥
85%, pellets) was supplied by PanReac AppliChem (ITW Reagents). Silver
(I) acetate (99%) was supplied by ITW Reagents (Acros Organics). Deion-
ized water was obtained from a Thermo Scientific apparatus (Barnstead
TII Pure Water System). Tetrahydrofuran (THF) was supplied by Schar-
lab. Deuterated chloroform (CDCl3) (99.8 atom % D) was supplied by
Merk.

Techniques: 1H nuclear magnetic resonance (NMR) spectra were ob-
tained at room temperature (r.t.) using a Bruker spectrometer operating at
400 MHz with CDCl3 as the solvent. Size exclusion chromatography (SEC)
measurements were conducted at 30 °C in an Agilent 1200 system that
was equipped with PLgel 5 μm Guard and PLgel 5 μm MIXED-C columns.
The measurements employed a triple detection system, which included
a differential refractive index detector (Optilab Rex, Wyatt), a multi-angle
laser light scattering (MALLS) detector (MiniDawn Treos, Wyatt), and a
viscosimetric (VIS) detector (ViscoStar-II, Wyatt). SEC data were analyzed
using Wyatt’s ASTRA Software (version 6.1). Tetrahydrofuran (THF) was
used as the eluent with a flow rate of 1 mL min−1. For both the precur-
sor and the single-chain nanoparticles, a value of dn/dc = 0.1150 was
applied. Dynamic light scattering (DLS) measurements were carried out
at r.t. on a Malvern Zetasizer Nano ZS apparatus. Metal content in the
single-chain nanoparticles was determined by inductively coupled plasma
mass spectrometry (ICP-MS). Fourier transform infrared (FTIR) spectra
were recorded at r.t. on a JASCO 3600 FTIR spectrometer. UV spectroscopy
was carried out in an Agilent 8453A spectrometer. Photoluminescence
(PL) spectra were recorded at r.t. on an Agilent Cary Eclipse spectrometer.
Horiba Laquatwin-pH-33 compact pH-meter was used for pH measure-
ments.

Methods—Synthesis of Amphiphilic Random Copolymer Featuring Beta-
Ketoester Functional Groups: OEGMA (1.54 mL, 5.6 mmol), AEMA (0.26
mL, 1.38 mmol), 4-cyano-4-(thiobenzoylthio)pentanoic acid (18.3 mg,
0.065 mmol), and AIBN (2.15 mg, 0.013 mmol) were dissolved at r.t. in
1,4-dioxane (3 mL). The resulting mixture was degassed by purging with
argon for 15 min. Then, the mixture was subjected to reversible addition
fragmentation chain-transfer (RAFT) copolymerization at 70 °C for 24 h.
The resulting poly(OEGMA-co-AEMA) copolymer, a pink oil, was isolated
by precipitation in hexane. Subsequently, the product was dissolved in a
minimal amount of THF and added to an excess of hexane (twice). After
removal of volatile organic solvents, further drying was carried out at r.t.
under vacuum.

Synthesis of Lanthanide-Based Single-Chain Polymer Nanoparticles (SC-
NPs): Poly(OEGMA-co-AEMA) (15 mg, 0.03 mmol) and the correspond-
ing lanthanide trichloride hexahydrate (LnCl3∙6 H2O; Ln = Eu, Tb, Dy) (30
× 10−6 m) were dissolved in water (15 mL) at r.t. and pH = 7.5 for 24 h. The
resulting lanthanide-containing SCNPs were purified by dialysis against
deionized water. ICP-MS data about the lanthanide content in the SCNPs
are provided in the ESI. Successful formation of SCNPs was confirmed
by SEC and DLS measurements, according to well-established literature
procedures.[11] To mitigate possible interference from molecular oxygen,
all lanthanide-based SCNPs were subjected to an extensive degassing (N2)
process before performing the fluorescence measurements.
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the author.

Acknowledgements
The authors gratefully acknowledge Grant PID2021-123438NB-
I00 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A
way of making Europe”, Grant TED2021-130107A-I00 funded by
MCIN/AEI/10.13039/501100011033 and Unión Europea “NextGen-
erationEU/PRTR” and Grant IT-1566-22 from Eusko Jaurlaritza (Basque
Government). J. P.-O. acknowledges a predoctoral contract for the com-
pletion of his Ph.D. thesis under a joint supervision between University
of the Basque Country (UPV/EHU) and University of Bordeaux (UB). The
authors thank for technical and human support provided by SGIker of
UPV/EHU.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
environmental sensors, Cu2+ ions, lanthanide complexes, single-chain
nanoparticles (SCNPs)

Received: February 27, 2024
Revised: March 22, 2024

Published online:

[1] R. A. Muttkowski, Science 1921, 53, 453.
[2] W. Kaim, J. Rall, Angew. Chem., Int. Ed. 1996, 35, 43.
[3] B. E. Kim, T. Nevitt, D. J. Thiele, Nat. Chem. Biol. 2008, 4, 176.
[4] T. R. Halfdanarson, N. Kumar, C. Y. Li, R. L. Phyliky, W. J. Hogan, Eur.

J. Haematol. 2008, 80, 523.
[5] M. C. Linder, Int. J. Mol. Sci. 2020, 21, 4932
[6] F. Pizarro, M. Olivares, R. Uauy, Contreras, P. C, A. Rebelo, V. Gidi,

Environ. Health Perspect. 1999, 107, 117.
[7] G. Brewer, Clin. Neurophysiol. 2010, 121, 459.
[8] P. G. Georgopoulos, A. Roy, M. J. Yonone-Lioy, R. E. Opiekun, P. J.

Lioy, J. Toxicol. Environ. Health B Crit. Rev. 2001, 4, 341.
[9] Copper in Drinking-water, World Health Organization (WHO), 2004.

[10] Copper Facts, US Environmental Protection Agency (EPA), 2008.
[11] Single-Chain Polymer Nanoparticles: Synthesis, Characterization, Sim-

ulations and Applications (Ed. J. A. Pomposo), Wiley-VCH, Weinheim
2017.

[12] A. Latorre-Sánchez, J. A. Pomposo, Polym. Int. 2016, 65, 855.
[13] M. A. J. Gillissen, I. K. Voets, E. W. Meijer, A. R. A. Palmans, Polym.

Chem. 2012, 3, 3166.
[14] J. De-La-Cuesta, E. Verde-Sesto, A. Arbe, J. A. Pomposo, Angew.

Chem., Int. Ed. 2021, 60, 3534.
[15] C. C. Cheng, D. J. Lee, Z. S. Liao, J. J. Huang, Polym. Chem. 2016, 7,

6164.

Macromol. Rapid Commun. 2024, 2400116 2400116 (6 of 7) © 2024 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH

 15213927, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

arc.202400116 by Portail B
ibC

N
R

S IN
C

, W
iley O

nline L
ibrary on [09/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.mrc-journal.de


www.advancedsciencenews.com www.mrc-journal.de

[16] A. Latorre-Sánchez, J. A. Pomposo, Chem. Commun. 2015, 51, 15736.
[17] N. M. Hamelmann, J. W. D. Paats, Y. Avalos-Padilla, E. Lantero, I.

Siden-Kiamos, L. Spanos, X. Fernandez-Busquets, J. M. J. Paulusse,
ACS Infect. Dis. 2023, 9, 56.

[18] S. Garmendia, S. B. Lawrenson, M. C. Arno, R. K. O’Reilly, D. Taton,
A. P. Dove, Macromol. Rapid Commun. 2019, 40, 1900071.

[19] N. D. Knöfel, H. Rothfuss, P. Tzvetkova, B. Kulendran, C. Barner-
Kowollik, P. W. Roesky, Chem. Sci. 2020, 11, 10331.

[20] T. Gunnlaugsson, J. P. Leonard, K. Sénéchal, A. J. Harte, Chem. Com-
mun. 2004, 782.

[21] A. Nonat, A. J. Harte, K. Senechal-David, J. P. Leonard, T.
Gunnlaugsson, Dalton Trans. 2009, 4703.

[22] Z. Ekmekci, Tetrahedron Lett. 2015, 56, 1878.
[23] L. M. Aroua, R. Ali, A. E. A. E. Albadri, S. Messaoudi, F. M. Alminderej,

S. M. Saleh, Biosensors 2023, 13, 359.
[24] B. S. Sankha, R. N. Kapoor, Can. J. Chem. 1966, 44, 1369.
[25] N. K. Dutt, S. Rahut, J. Inorg. Nucl. Chem. 1969, 31, 3177.
[26] A. M. Mishchenko, E. K. Trunova, A. S. Berezhnytska, J. Solution

Chem. 2015, 44, 2117.
[27] O. Stern, M. Volmer, Z. Phys. 1919, 20, 183.
[28] M. L. Aulsebrook, B. Graham, M. R. Grace, K. L. Tuck, Coord. Chem.

Rev. 2018, 375, 191.
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