
HAL Id: hal-04642324
https://hal.science/hal-04642324v2

Preprint submitted on 10 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RETRACTION TO A PARABOLIC SUBGROUP AND
APPLICATIONS

François Digne, Eddy Godelle, Jean Michel

To cite this version:
François Digne, Eddy Godelle, Jean Michel. RETRACTION TO A PARABOLIC SUBGROUP AND
APPLICATIONS. 2024. �hal-04642324v2�

https://hal.science/hal-04642324v2
https://hal.archives-ouvertes.fr


RETRACTION TO A PARABOLIC SUBGROUP AND

APPLICATIONS

FRANÇOIS DIGNE, EDDY GODELLE AND JEAN MICHEL

Abstract. We continue the study of the retraction from an Artin group to
a standard parabolic subgroup introduced by Blufstein, Charney, Paris and
the second author. Using right and left retractions we obtain new results
on minimal parabolic subgroups, intersection of parabolic subgroups, double
cosets with respect to parabolic subgroups and conjugacy classes in Artin
groups.

0. Introduction

Given a non-empty set S, a Coxeter matrix is a symmetric matrix (ms,t)s,t∈S

such that ms,s = 1 and ms,t ∈ N≥2 ∪ {∞} for s 6= t. To such a Coxeter matrix one
can associate a group, namely its associated Coxeter group, defined by the following
presentation

(∗) W =

〈
S

∣∣∣∣
s2 = 1 for s ∈ S

sts · · ·︸ ︷︷ ︸
ms,t terms

= tst · · ·︸ ︷︷ ︸
ms,t terms

for s 6= t and ms,t 6= ∞
〉

Given a copy S of S one can also define the associated Artin group

(∗∗) B =

〈
S

∣∣∣∣ sts · · ·︸ ︷︷ ︸
ms,t terms

= tst · · ·︸ ︷︷ ︸
ms,t terms

for s 6= t and ms,t 6= ∞
〉

We denote by B+ the submonoid of B generated by S; its elements are called
positive braids. We denote the length on W with respect to S by ℓS : W → N and
we denote by ℓZ : B → Z the group morphism which sends S to 1. It immediately
follows from the presentations that the map s ∈ S 7→ s ∈ S induces a morphism
pr : B → W . Its kernel is called the pure Artin group associated to B (or the
coloured Artin group) and will be denoted by P . Moreover, the inverse bijection
s 7→ s extends by lifting reduced expressions to a canonical section (of sets) from W
to B. In the sequel W will denote the image of this section. This is a subset of B+.
The elements of W are called simple braids. We will use the following notations:
for w ∈ W the notation w means pr(w) and for w ∈ W the notation w means the
lift of w to W. In other words w is the unique element in B+ such that pr(w) = w
and ℓZ(w) = ℓS(w).

Many papers focus on Artin groups, but whereas Coxeter groups are almost well-
understood, this is not the case for Artin groups. Even the word problem remains
open in general. The strategy used to prove most of the results obtained is to use a
particular family of subgroups, namely the family of standard parabolic subgroups.
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This is why in [5] the authors claim that “any result on these subgroups is likely to
be useful”. For I ⊆ S, the standard parabolic subgroup BI (resp. WI) of B (resp.
of W ) is the subgroup generated by I ⊆ S lifting I (resp. generated by I). Such a
subgroup is an Artin group (resp. a Coxeter group) for the submatrix (ms,t)s,t∈I

(cf. [19], see also Proposition 2.5). A parabolic subgroup is any subgroup that is
conjugate to a standard parabolic subgroup.

The present article studies the properties of a retraction on standard parabolic
subgroups which has been defined in [2]. This is a continuation of a series of
articles [15, 5, 2, 14] on this topic. A complex Sal(B), called the Salvetti complex,
can be associated with each Artin group. Furthermore, for every standard parabolic
subgroup BI there exists a canonical embedding Sal(BI) → Sal(B). In [15], the
authors prove that this embedding admits a retraction. Then in [5, Theorem 1.2],
the authors use the above retraction to prove that standard parabolic subgroups
of Artin groups are convex (see also Proposition 4.7). Along the way, they use
the above retraction to construct a retraction πI from the Artin group B to its
standard parabolic subgroup BI . The construction was implicit in the proof of the
main result of [5] and is made explicit in [2]. In [14] an alternative construction
of this retraction is obtained, which is based only on algebraic and elementary
arguments; several algebraic properties of the retraction are also obtained.

The present article will take this approach further. One of the aims is to relate
the definition of the retraction to root systems and make it sufficiently explicit that
it is easy to calculate. The retraction is not a morphism, and a goal is to better
understand the retraction of a product. In particular, we extend results of [2, 14].
We recall that B+ is a locally Garside monoid; each element b ∈ B+ has a so-
called Garside normal form which is the unique sequence (b1, . . . ,bn) such that
b = b1 . . .bn where bi is the greatest left-divisor of bi . . .bn in B+ which is in W

and n ≥ 0 is minimal. The following proposition summarises some of our results
on the retraction of a product (we postpone the definition of reduced elements and
of the morphism ϕpr(b) to the next sections).

Proposition 0.1. Let B be an Artin group and BI be a standard parabolic subgroup
for some I ⊆ S. Let b be in B.

(1) (Proposition 2.6(7)) If pr(b) ∈ WI then for b′ ∈ B we have πI(bb
′) =

πI(b)πI(b
′).

(2) (Proposition 2.6(9)) Assume for J ⊆ S that pr(b) is I-reduced-J . Then for
j ∈ BJ we have πI(bj) = πI(b)ϕpr(b)(πJ1(j)) where J1 = Ipr(b) ∩ J .

(3) (Proposition 2.11) For b ∈ B+, let (b1, · · · ,bn) and (i1, · · · , im) be the
Garside normal forms of b and πI(b) respectively. Then, m ≤ n and for
1 ≤ i ≤ m, the element πI(b1 · · ·bi) left divides i1 · · · ii.

In the next proposition we consider the case of Artin groups of spherical type,
that is when W is finite. In this case W has a unique longest element relative
to ℓS . Its lift in W, denoted by ∆, is a Garside element of B+. For I ⊆ S, the
corresponding element of B+

I lifting the longest element of WI is denoted by ∆I .

Proposition 0.2. (Proposition 2.12) Assume W is finite. Then for any b ∈ B,
I ⊆ S and i ∈ Z we have πI(b∆

i) = πI(b)πI(∆
i) = πI(b)∆

i
I .

For b ∈ B, define tI(b) by b = πI(b)tI(b). Then, the map b 7→ tI(b) gives
a transversal of the right coset BIb in B (see Proposition 2.9). Exchanging left
and right, one can define a right retraction π

r
I(b) such that b = trI(b)π

r
I(b) and



RETRACTION TO A PARABOLIC SUBGROUP AND APPLICATIONS 3

b 7→ trI(b) gives a transversal of the left coset bBI in B. These two retractions
are closely related (see Proposition 3.1). We use them to address the question of
how to solve the double coset problem in Artin groups. A solution to the double
coset problem for Coxeter groups is known since [3]: every double coset has a
unique element of minimal length which is easy to compute starting from any (word
representing an) element of the double coset. Very few results have been obtained
for Artin groups. The only result on the subject known to the authors is in the
unpublished article [16]. It gives a partial answer in the case of braid groups, that
is when W is of type A. Using left and right retractions, we obtain a partial result
with the same flavour as in the case of Coxeter groups:

Proposition 0.3. Let I, J ⊆ S and b ∈ B be such that pr(b)WJ ∩WI = {1}. Then
the element b0 = trJ(tI(b)) = tI(t

r
J(b)) is the unique element of BIbBJ such that

πI(b0) = π
r
J(b0) = 1.

This is proved after Remark 3.10 as a consequence of that remark and of the
more general result Corollary 3.9.

It is a conjecture that the intersection of any two parabolic subgroups is a par-
abolic subgroup. The validity of the conjecture is proved for several families of
Artin groups [1, 6, 7, 8, 17] but remains open in general. Using the retraction we
address the conjecture and we show that starting from any element b in B, the
study of BI ∩ bBJ can be reduced to the case where b = p is in P and J = I (see
Proposition 3.12). In this case we prove

Proposition 0.4. Let I be a subset of S and p be in P such that πI(p) = 1; then

BI ∩ pBI = CBI
(p)

where CBI
(p) = {b ∈ BI | pb = bp}, the centraliser of p in BI .

One of the main long-standing open problems for braid groups is the existence
of a polynomial-time algorithm for the conjugacy problem. The partial results
obtained on the subject are related to the Nielsen-Thurston classification (reducible,
periodic or pseudo-Anosov) of braids. The conjugacy problem, and even the word
problem remain open in the general case. In the last part of the article, we focus on
the study of the conjugacy class of an element. In the spirit of the Nielsen-Thurston
classification, we focus on what might be called “reducible” elements.

Denote by ℓS±1 : B → N the length function on B with respect to the generating
set S±1. For b ∈ B, it is equal to ℓ(b), the length of any minimal word b ∈ (S±1)∗

representing b. By convexity any such word b is written on the same set I ⊆ S, the
image I ⊆ S of which we call the support of b, denoted by supp(b). The following
result is a part of Propositions 4.8, 4.12 and Corollary 4.11.

Proposition 0.5. Let b ∈ B and let ConjB(b) denote the conjugacy class of b.

(1) For I ⊆ S, either ConjB(b)∩BI is empty or it contains an element h such
that ℓS±1(h) is minimal in ConjB(b).

(2) If ℓS±1(b) is minimal in Conj(b) and if b′ ∈ Conj(b) satisfies ℓS±1(b′) =
ℓS±1(b), then supp(b) and supp(b′) are conjugate in W .

(3) If ℓS±1(b) is minimal in Conj(b), then Bsupp(b) is a minimal parabolic
subgroup containing b (among all parabolic subgroups, not only the standard
ones).
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Note that point (3) above does not state the uniqueness of a minimal para-
bolic subgroup since as mentioned above, the question remains open whether the
intersection of two parabolic subgroups is parabolic.

In Section 4, we will prove that the existence of a unique minimal parabolic
subgroup containing a given element is equivalent to the following conjecture:

Conjecture 0.6. Let b ∈ B such that ℓS±1(b) is minimal in Conj(b) and let
I = supp(b), then any p ∈ P which centralises b and is such that πI(p) = 1
centralises BI .

We also obtain a partial result on the conjugacy problem: one can say that
we provide a solution to the conjugacy problem for “reducible” elements in Artin
groups with S finite.

Proposition 0.7. (Propositions 4.17 and 4.18) Assume S is finite and let Λ be a
non-empty set of subsets of S such that for any I in Λ, the word problem and the
conjugacy problem are solvable in BI . Then the two following problems are solvable.

(1) Given I in Λ and a word b on I±1 = I ∪ I−1, decide whether the word b
represents the unity in B.

(2) Given two finite subsets I, J in Λ and words i, j on I±1 and J±1, respec-
tively, decide whether or not i and j represent conjugate elements in B.

The paper is structured as follows.
In Section 1 we focus on words. If X is a set, we denote by X∗ the set of words

on X . Using root systems, we give an alternate definition of the retraction π̂I from
(S±1)∗, the words on S∪S−1, to (S±1

I )∗ and extend some results of [14]. We obtain
new results for words in (S±1)∗ whose image in W is I-reduced-J .

In Section 2, we introduce the retraction πI on the Artin group and use the
results of the previous section to prove Propositions 0.1 and 0.2. Using the notion
of biclosed subset and results of Dyer we study the compatibility of the retraction
with lcm’s and gcd’s.

In Section 3 we turn to the projection π
r
I and prove Propositions 0.3 and 0.4.

In Section 4 we consider the conjugacy classes, prove Propositions 0.5, 0.7 and
state Conjecture 0.6 .

Finally, we provide in Section 5 (assuming S finite) a new topological version of
πI restricted to pr−1(WI), using the Tits cone and results of Van der Lek [19].

1. Retraction on words

For I ⊆ S, we recall that an element w ∈ W is said to be I-reduced (resp.
reduced-I) if ℓS(iw) = ℓS(i)+ ℓS(w) (resp. ℓS(wi) = ℓS(i)+ ℓS(w)) for any i ∈ WI ,
or equivalently for any i ∈ I. We say that an element is I-reduced-J if it is both
I-reduced and reduced-J . For w ∈ W the unique element of minimum length in
the coset WI w is I-reduced; we denote it by tI(w).

Lemma 1.1. If w is I-reduced and s ∈ S, then the property that ws ∈ WI is
equivalent to ws not being I-reduced. Furthermore, in this case ws ∈ I.

Proof. Assume first that ℓS(ws) > ℓS(w). If ws is not I-reduced, then there exists
s′ ∈ I such that ℓS(s

′ws) < ℓS(ws), which by the exchange lemma implies that
s′ws is either equal to w or to ŵs where ℓS(ŵ) < ℓS(w) . But s

′ws = ŵs contradicts
the fact that w is I-reduced, so that s′ws = w, that is ws = s′ ∈ I. Conversely if
ws ∈ WI then ws ∈ WIw so is not I-reduced.
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Now if ℓS(ws) < ℓS(w), write w = w′s, then ws = w′ is I-reduced and by the

first case ws = w′

s is not in WI . �

Definition 1.2 (Retraction). Write b ∈ (S±1)∗ as b = sε11 | . . . |sεkk where εi = ±1
and si ∈ S. For 1 ≤ j ≤ k let wj = s1 . . . sj be the image in W of the j first
letters of b. We apply Lemma 1.1 to tI(wj−1) (with w0 = 1) to deduce that if

x = tI(wj−1)sj ∈ WI then x ∈ I; we denote then x by sf(j) and say that j is good;
otherwise we say that j is bad and set sf(j) = 1. The retraction π̂I(b) is the word

in (I±1)∗ whose letters are the s
εj
f(j) for j good taken in increasing order.

This definition is equivalent to that in [2, Page 1522] though the notation there
makes it a little bit difficult to see.

Remark 1.3. The following points are clear from the definition.

(1) π̂I(b) = b if and only if b ∈ (I±1)∗.
(2) If the word b is a prefix of the word b′ then π̂I(b) is a prefix of π̂I(b

′).
(3) π̂I sends S∗ (positive words) to I∗.
(4) π̂I commutes with the map (S±1)∗ → (S±1)∗ induced by s 7→ s−1 for s ∈

S±1.
(5) We denote by ℓ(b) the length of b ∈ (S±1)∗. For any word b we have

ℓ(π̂I(b)) ≤ ℓ(b), with equality if and only if b ∈ (I±1)∗.

An efficient way to compute tI(wj) is given by the following lemma.

Lemma 1.4. In the setting of Definition 1.2, for 1 ≤ j ≤ k we have

(1) tI(wj) is equal to the product of the sl such that l is bad and 1 ≤ l ≤ j,
(2) tI(wj−1)sj = sf(j)tI(wj).
(3) For all j, we have wj = sf(1) · · · sf(j)tI(wj).

Proof. We prove items (1) and (2) at the same time by induction on j. Assume that
tI(wj−1) is the product of the sl for l bad and l ≤ j−1. We write wj−1 = vtI(wj−1)
with v ∈ WI . If j is good then wj =

wj−1sjwj−1 = wj−1sjvtI(wj−1) with
wj−1sjv ∈

WI so that tI(wj) = tI(wj−1), hence tI(wj−1)sj = sf(j)tI(wj−1) = sf(j)tI(wj). If
j is not good then we write wj = vtI(wj−1)sj . We have to prove that tI(wj−1)sj
is I-reduced, so is equal to tI(wj), which is equal to sf(j)tI(wj) since sf(j) = 1 in

this case. If tI(wj−1)sj was not I-reduced, by Lemma 1.1 tI (wj−1)sj would be in
WI and then also wj−1sj ∈ WI , contradicting j bad.

Now, (3) results immediately by induction from (2). �

Lemma 1.5. If b = sε11 | . . . |sεkk ∈ (S±1)∗, where εi = ±1, is such that s1| . . . |sk,
is a reduced decomposition of an I-reduced element of W , then π̂I(b) is the empty
word.

Proof. This follows from the definition of π̂I by using that any prefix of an I-reduced
element is I-reduced and so, using Lemma 1.1, all indices are bad. �

We now give another definition of π̂I .
We call reflections of W the W -conjugates of the elements of S and denote their

set by T (and similarly denote by TI the set of reflections of WI).
As in [3, Chapter V, §4] we consider a faithful representation of W on a vector

space with a basis Π = {αs}s∈S whose elements are called simple roots. We call
root system of W the set Φ of images of Π under W . We call positive roots, the
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elements of Φ which are linear combinations of Π with positive coefficients, and we
denote their set by Φ+; similarly, we denote by ΦI ,Φ

+
I ,ΠI the subsets associated

with WI . For any α ∈ Φ we denote the associated reflection by sα, and for t ∈ T
we denote the corresponding positive root by αt.

Let Φ∗ denote the set of finite sequences of elements of Φ, and let (±Π)∗ be the
subset of Φ∗ whose terms are in Π or −Π. For α = α1| . . . |αn ∈ Φ∗ we denote
by prod(α) the product sα1 · · · sαn

∈ W and for w ∈ W we write wα for the
sequence wα1| . . . |wαn. For α ∈ Φ∗ we denote by α ∩ΦI the sequence obtained by

keeping only the terms lying in ΦI . We define ~N : Φ∗ → Φ∗ by ~N(α1| · · · |αn) =
α1|sα1α2| · · · |sα1sα2 ...sαn−1αn = α1|prod(α1)α2| . . . |prod(α1|...|αn−1)αn.

Lemma 1.6. ~N has the following properties for any sequence α

(1) ~N(α|α′) = ~N(α)|prod(α) ~N(α′) for any sequence α′.

(2) prod( ~N(α)) = prod(α)−1.

(3) For any w ∈ W we have w ~N(α) = ~N(wα).

(4) ~N( ~N(α)) = α.

Proof. Properties (1) and (3) are clear. It results from the equality swα = wsα that

prod( ~N(α)) = sα1 · sα1sα2 · . . . · sα1sα2 ...sαn−1sαn
= sαn

sαn−1 . . . sα1 = prod(α)−1,

whence (2). Now the i-th term of ~N( ~N(α)) is the image of sα1 ···sαi−1αi by the

product
∏j=i−1

j=1
sα1 ···sαj−1sαi

= sαi−1sαi−2 · · · sα1 hence is equal to αi, whence (4).
�

We define p : S±1 → ±Π by s 7→ αs and s−1 7→ −αs for s ∈ S and we extend p
to a map p∗ from (S±1)∗ to (±Π)∗ in the obvious way.

Lemma 1.7. A positive word b ∈ S∗ has a simple image in B (that is an image in

W) if and only if all terms in ~N(p∗(b)) are positive.

Proof. Let b = s1| · · · |sk with si ∈ S. As is well known l(s1 . . . sk) = l(s1 . . . sk−1)+
1 if and only if s1...sk−1αk ∈ Φ+. This gives the result by induction on k. �

The following proposition is a reformulation of the definition of retraction in [14,
Definition 2.1] and of Definition 1.2.

Proposition 1.8. For b ∈ (S±1)∗, we can define π̂I(b) as p
∗−1( ~N( ~N(p∗(b))∩ΦI));

this is well-defined since ~N( ~N(p∗(b)) ∩ΦI) ⊆ (±ΠI)
∗.

Proof. We retain the notation of Definition 1.2. For i = 1, . . . , k, let αi =
wip(sεii ),

that is α1| · · · |αk = ~N(p∗(b)). For any good index i, let Ai = prod((α1| · · · |αi−1)∩
ΦI), so that Aiαi (for i good) are the terms of the sequence ~N( ~N(p∗(b)) ∩ ΦI).
We prove by induction on good indices i that for i good we have Aiwi = tI(wi)si.
Assume the property for i and let j be the next good index. We have Aj = Aiti,
hence Ajwj = Aitiwisi+1 · · · sj = Aiwi−1si+1 · · · sj = tI(wi)si+1 · · · sj , the second
equality since tiwi = wisiwi = wisi = wi−1, and the last equality by induction.
We have Ajwj = tI(wi)si+1 · · · sj = tI(wj)sj , the second equality by Lemma 1.4,
whence the assertion.

We deduce that for i good we have Aiαi = Aiwip(sεii ) = tI (wi)p(sεii ), which is

in ±ΠI by Lemma 1.1, since tI(wi) being I-reduced tI(wi)si ∈ I is equivalent to
tI(wi)αsi ∈ ΠI . We get the proposition since by definition the retraction π̂I(b) is
p∗−1 of the sequence of the tI(wi)p(sεii ) for i good. �



RETRACTION TO A PARABOLIC SUBGROUP AND APPLICATIONS 7

Corollary 1.9. For I, J subsets of S we have π̂I ◦ π̂J = π̂I∩J . In particular if
J ⊆ I we have π̂J ◦ π̂I = π̂J .

Proof. By Proposition 1.8 we have

π̂I ◦ π̂J(b) = p∗−1( ~N( ~N(p∗
(
p∗−1( ~N( ~N(p∗(b)) ∩ ΦJ))

)
) ∩ ΦI))

= p∗−1( ~N
(
~N( ~N

(
~N(p∗(b)) ∩ ΦJ

)
) ∩ ΦI

)
)

= p∗−1( ~N( ~N(p∗(b)) ∩ ΦJ ∩ΦI))

= π̂I∩J(b)

where the equality before last is from Lemma 1.6(4). �

We define a map p̂r from (S±1)∗ toW by prod ◦p∗ (this factors obviously through
the map pr : B → W of the introduction).

Proposition 1.10. For b ∈ (S±1)∗ we have p̂r(b) = p̂r(π̂I(b))tI(p̂r(b)).

Proof. With the notation of Lemma 1.4 we prove by induction on j that p̂r(bj) =
p̂r(π̂I(bj))tI(p̂r(bj)) where bj = sε11 | · · · |sεjj , so that wj = p̂r(bj). We have p̂r(bj) =

p̂r(bj−1)sj = p̂r(π̂I(bj−1))tI(p̂r(bj−1))sj = p̂r(π̂I(bj−1))sf(j)tI(p̂r(bj)), the second
equality by induction and the third by Lemma 1.4(2). We get the result since
p̂r(π̂I(bj)) = p̂r(π̂I(bj−1))sf(j) by definition of π̂I . �

Proposition 1.11. We have π̂I(b|b′) = π̂I(b)|p∗−1( ~N( ~N(tI (p̂r(b))p∗(b′)) ∩ΦI)). In
particular if p̂r(b) ∈ WI then π̂I(b|b′) = π̂I(b)| π̂I(b

′).

Proof. By Lemma 1.6(1) we get ~N(p∗(b|b′)∩ΦI) = ~N(p∗(b)∩ΦI)|p̂r(b) ~N(p∗(b′)∩ΦI)
where we have used that prod(p∗(b)) = p̂r(b). Using again Lemma 1.6(1) we get
~N( ~N(p∗(b|b′) ∩ ΦI)) = ~N( ~N(p∗(b) ∩ ΦI))|prod( ~N(p∗(b))∩ΦI) ~N(p̂r(b) ~N(p∗(b′)) ∩ ΦI).
Applying p∗−1to this equality and using Proposition 1.8, we get

π̂I(b|b′) = π̂I(b)|p∗−1(prod(
~N(p∗(b))∩ΦI ) ~N(p̂r(b) ~N(p∗(b′)) ∩ΦI)).

The right-hand side becomes π̂I(b)|p∗−1(p̂r(π̂I(b))
−1 ~N(p̂r(b) ~N(p∗(b′)) ∩ ΦI)) using

Lemma 1.6(2). Using Lemma 1.6(3) and that p̂r(π̂I(b)) normalises ΦI this formula

becomes π̂I(b)|p∗−1( ~N(p̂r(π̂I (b))
−1 p̂r(b) ~N(p∗(b′))∩ΦI)). We get the proposition using

once more Lemma 1.6(3) and then Proposition 1.10. �

Corollary 1.12. For b1, . . . bn ∈ (S±1)∗ we have

π̂I(b1| · · · |bn) =
i=n∏

i=1

p∗−1( ~N( ~N(tI (p̂r(b1···bi−1))p∗(bi)) ∩ ΦI)).

If all bi are positive words that have simple images in B the same is true for each
term of the product on the right-hand side.

Note that if all bi are in S±1 one recovers Definition 1.2.

Proof. The formula is obtained by recursively applying Proposition 1.11. We prove
the second assertion. By Lemma 1.7 a positive word b has a simple image in

B if and only if all terms of ~N(p∗(b)) are positive. Since ~N is an involution by

Lemma 1.6(4), ~N(tI(p̂r(b1···bi−1))p∗(bi)) ∩ ΦI is equal to ~N(p∗(b′i)), where b′i is the
i-th term of the product on the right-hand side of the statement; and all terms
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of ~N(tI (p̂r(b1···bi−1))p∗(bi)) ∩ ΦI = tI (p̂r(b1···bi−1)) ~N(p∗(bi)) ∩ ΦI are positive by the
simplicity assumption on the image of bi, using the fact that tI(p̂r(b1 · · · bi−1)) is
I-reduced. �

Lemma 1.13. Let I, J ⊆ S and let w ∈ W be I-reduced-J ; then I1 = I ∩ wJ is
the unique maximal subset of I such that Iw1 ⊆ J . Equivalently J1 = Iw ∩ J is the
unique maximal subset of J such that wJ1 ⊆ I.

Proof. This is clear. �

Definition 1.14. Let I ⊆ S; an element w ∈ W which is I-reduced and such that
Iw ⊆ S is called an I-ribbon. If J = Iw we also call it an I-ribbon-J or a ribbon-J ,
in order to specify J .

In this situation w is also reduced-J and w−1 induces a bijection ϕw : J
∼−→ I,

which lifts naturally to a bijection from (J±1)∗ to (I±1)∗ that we still denote by ϕw.

Remark 1.15. Under the assumptions of Lemma 1.13, the element w is a I1-
ribbon-J1; indeed we have Iw1 = J1 and w is I1-reduced-J1. Moreover I1 and J1 are
the maximal subsets of I and J respectively with that property.

Proposition 1.16. For I, J ⊆ S, let b, b′ ∈ (S±1)∗ be such that p̂r(b) is an I-
ribbon-J . Then π̂I(b|b′) = π̂I(b)|ϕp̂r(b)(π̂J(b

′)).

Proof. Proposition 1.11 gives π̂I(b|b′) = π̂I(b)|p∗−1( ~N( ~N(p̂r(b)p∗(b′)) ∩ΦI)). Using

that Φ
p̂r(b)
I = ΦJ the second term of the right-hand side is equal to

p∗−1(p̂r(b) ~N( ~N(p∗(b′)) ∩ ΦJ)) = ϕp̂r(b)(p
∗−1( ~N( ~N(p∗(b′)) ∩ ΦJ ))) = ϕp̂r(b)(π̂J(b

′)).

�

If we lift an expression w = s1 · · · sk to a word ŵ ∈ S∗, the image N(w) in

Z/2Z[T ] of ~N(p∗(ŵ)), obtained by associating to each root the corresponding re-
flection, depends only on w. Indeed N(w) =

∑
i=1,...,k

s1···si−1si ∈ Z/2Z[T ] can
also be considered as the subset of T consisting of elements which appear an odd
number of times in the sequence {s1···si−1si}1≤i≤k; it is known that N depends only
on w (see [3, Chapter IV, §1.4, Lemme 2]). It is also shown in loc. cit. that N is
injective and that |N(w)| = ℓS(w). For v, v

′ ∈ W one has N(vv′) = N(v)+ vN(v′).
The next proposition is [18, Lemma 2]. The proof we give, in the setting of the

elementary Coxeter group theory, is shorter that the original proof.

Proposition 1.17. Let I, J be subsets of S and w ∈ W be I-reduced-J . Then
WJ ∩Ww

I = WJ1 where J1 = Iw ∩ J .

Proof. If y ∈ WJ ∩Ww
I then wy ∈ WIw so we can write wy = xw with x ∈ WI .

We get thus N(w)
∐

wN(y) = N(x)
∐

xN(w) where the sums are disjoint because
w is reduced on both sides. But since w is I-reduced N(w) does not meet WI , thus
N(w) ⊆ xN(w) and we must have equality since these sets have same cardinality.
Thus in turn we must have wN(y) = N(x). We claim that by induction on ℓS(y)
the assertion wN(y) ⊆ WI implies y ∈ WJ1 . Let y = sy′ where s ∈ J and
ℓS(y

′) = ℓS(y)−1. By Lemma 1.1 the fact that ws ∈ WI implies ws ∈ I thus s ∈ J1,
and ws = tw for some t ∈ I. Using N(sy′) = s

∐
sN(y′) we get wsN(y′) ⊆ WI ,

and since ws = tw this implies wN(y′) ⊆ WI and we conclude by induction. �

Corollary 1.18. Let I, J be subsets of S and w ∈ W be I-reduced-J . Then ΦJ ∩
Φw

I = ΦJ1 where J1 = Iw ∩ J .
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Proof. We have α ∈ ΦJ ∩ Φw
I if and only if sα ∈ WJ ∩ Ww

I = WJ1 by Proposi-
tion 1.17, which in turn is equivalent to α ∈ ΦJ1 . �

Proposition 1.19. Let I, J ⊆ S and b ∈ (S±1)∗ be such that p̂r(b) is I-reduced-
J . Let J1 = I p̂r(b) ∩ J ; Then for any word b′ ∈ (J±1)∗, we have π̂I(b|b′) =
π̂I(b)|ϕp̂r(b)(π̂J1(b

′)).

Proof. Using that ti(p̂r(b) = p̂r(b) since p̂r(b) is I-reduced, and using Lemma 1.6(3)

twice, Proposition 1.11 becomes in our case π̂I(b|b′) = π̂I(b)|p∗−1(p̂r(b) ~N( ~N(p∗(b′))∩
Φ

p̂r(b)
I )). Now by assumption ~N(p∗(b′)) ⊆ ΦJ , and by Corollary 1.18 we have

ΦJ ∩ Φ
p̂r(b)
I = ΦJ1 . The second term is thus p∗−1(p̂r(b) ~N( ~N(p∗(b′)) ∩ ΦJ1)), and

we conclude by Proposition 1.11 since p∗−1(p̂r(b) ~N( ~N(p∗(b′)) ∩ ΦJ1)) is equal to

ϕp̂r(b)(p
∗−1( ~N( ~N(p∗(b′)) ∩ΦJ1))), that is to ϕp̂r(b)(π̂J1(b

′)). �

2. Retraction on braids

We say that a subgroup ofW is parabolic if it is conjugate to a standard parabolic
subgroup of W .

As a direct application of Proposition 1.17, we get

Lemma 2.1. the intersection of any two parabolic subgroups D and Q of W is a
parabolic subgroup of each of them.

Proof. Up to conjugacy, we may assume that Q is standard, say Q = WJ . Assume
D = W v

I . Write w = iwj with i ∈ WI , j ∈ WJ and w I-reduced-J . Then
D ∩Q = (WJ ∩Ww

I )v, and we conclude by Proposition 1.17. �

Lemma 2.2. For any parabolic subgroups Q,D of W where D is dihedral the set
T ∩Q∩D is either empty, or is reduced to one reflection or is the set T ∩D of all
reflections of D.

Proof. By Lemma 2.1 the intersection of the two parabolic subgroups D and Q of
W is a parabolic subgroup of each of them. The possible parabolic subgroups of D
are {1}, a subgroup generated by one reflection, or D itself. This gives the three
cases of the statement. �

Lemma 2.3. Let b, b′ ∈ (S±1)∗ and assume one of the following for two words r
and r′ in (S±1)∗:

(1) r, r′ are the two members of a braid relation,
(2) r = s|s−1 or s−1|s and r′ is the empty word,

then the two words π̂I(b|r|b′) and π̂I(b|r′|b′) are either equal or differ by a relation
in (I±1)∗ of the same type as the relation r ≡ r′.

Proof. Applying Corollary 1.12 to b|r|b′ and b|r′|b′, since p̂r(r) = p̂r(r′), it is suf-

ficient to compare p∗−1( ~N( ~N(tI (p̂r(b))p∗(r)) ∩ΦI)) and p∗−1( ~N( ~N(tI (p̂r(b))p∗(r′)) ∩
ΦI)). Using Lemma 1.6(3) it is equivalent to compare for any I-reduced element

w ∈ W the words p∗−1( ~N (w ~N(p∗(r)) ∩ΦI)) and p∗−1( ~N(w ~N(p∗(r′)) ∩ ΦI)).

In case (1) the sequences in ~N(p∗(r)) and ~N(p∗(r′)) are reversed from each other
and consist of all the positive roots of a standard dihedral parabolic. Hence the

roots in ~N(p∗(r)) ∩ w−1

ΦI and ~N(p∗(r′)) ∩ w−1

ΦI are all the positive roots in the

intersection of that dihedral subgroup with w−1

WI . By Lemma 2.2 there are three



10 FRANÇOIS DIGNE, EDDY GODELLE AND JEAN MICHEL

cases for this set of roots: either it is empty or it is reduced to one root or it is the

set of all the positive roots of a dihedral parabolic subroup of w−1

WI .

In the first two cases we get clearly the equality of the sequences ~N(w ~N(p∗(r))∩
ΦI) and ~N(w ~N(p∗(r′)) ∩ ΦI). In the third case we have ~N(w ~N(p∗(r)) ∩ ΦI) =
~N(w ~N(p∗(r))) = wp∗(r) and ~N(w ~N(p∗(r′)) ∩ ΦI) = ~N(w ~N(p∗(r′))) = wp∗(r′) and
these two sequences are reversed from each other and are sequences in Π∗

I . Thus
applying p∗−1 gives the two members of a braid relation in BI , whence the result.

In case (2) we have w ~N(p∗(r)) = α| − α for some root α. If α /∈ ΦI , then
w ~N(p∗(r)) ∩ ΦI) is the empty sequence and π̂I(b|r|b′) and π̂I(b|r′|b′) are equal. If

α ∈ ΦI then the two words p∗−1( ~N(w ~N(p∗(r))∩ΦI )) and p∗−1( ~N(w ~N(p∗(r′))∩ΦI))
differ by a relation of type s|s−1 ≡ ∅ or s−1|s ≡ ∅ with s ∈ I. �

Proposition 2.4. For b ∈ (S±1)∗ of image b in B, the image in B of π̂I(b) depends
only on b. We call it πI(b).

Proof. This is an immediate consequence of Lemma 2.3. �

The following proposition was first proved by Van der Lek. In [19], S is assumed
to be finite but the result for infinite S is an almost immediate consequence.

Proposition 2.5. For I ⊆ S, the natural morphism from the braid group of WI to
BI is an isomorphism.

Proof. The morphism is clearly surjective. We show the injectivity. Let b be a word
in (I±1)∗. We have to show that if b ≡ ∅ in B, then the same equivalence occurs
using only relations in (I±1)∗. Let b = b1 ≡ b2 ≡ . . . ≡ ∅ be a chain of equivalences
in B by relations of the type considered in Lemma 2.3. Apply π̂I to this chain. The
first and the last term are unchanged, and by Lemma 2.3 each other equivalence is
mapped to an equivalence in (I±1)∗. This proves the result. �

Statements of Section 1 translate to the following (sometimes weaker) properties
of πI :

Proposition 2.6. For b ∈ B we have the following:

(1) πI(b) = b if and only if b ∈ BI .
(2) πI sends B+ to B+

I .
(3) If b ∈ B+ left-divides b′ ∈ B+ then πI(b) left-divides πI(b

′).
(4) πI commutes with the automorphism inv : B → B induced by s 7→ s−1 for

s ∈ S.
(5) If b ∈ W and pr(b) is I-reduced, then πI(b) = 1.
(6) pr(b) = pr(πI(b))tI(pr(b)).
(7) Assume that pr(b) ∈ WI ; then for b′ in B we have πI(bb

′) = πI(b)πI(b
′).

In particular the restriction of πI to pr−1(WI) is a group homomorphism.
(8) Let b′ ∈ B and let I, J ⊆ S be such that pr(b) is an I-ribbon-J . Then

πI(bb
′) = πI(b)ϕpr(b)(πJ(b

′)).
(9) For I, J ⊆ S such that pr(b) is I-reduced-J and any j ∈ BJ , we have

πI(bj) = πI(b)ϕpr(b)(πJ1(j)) where J1 = Ipr(b) ∩ J .
(10) If b is a product of n elements of W, then πI(b) is a product of at most n

elements of WI.

Proof. (1), and (4) are (1) and (4) of Remark 1.3. (2), (3) follow respectively
from (3) and (2) of Remark 1.3. (5) is Lemma 1.5, (6) is Proposition 1.10, (7) is
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Proposition 1.11, (8) is Proposition 1.16, and (9) is Proposition 1.19. Finally (10)
follows from Corollary 1.12. �

Lemma 2.7. Let b ∈ B be such that pr(b) ∈ NW (WI); then there exists a unique
w ∈ W such that w is an I-ribbon-I and such that pr(b) ∈ WIw. For any b′ ∈ B
we have πI(bb

′) = πI(b)ϕw(πI(b
′)).

Proof. The unicity of w comes from the fact that w is the I−reduced element in
WI pr(b). By [11, Lemme 6.1.7] (the result is implicit in [4]) the I-reduced element
w in WI pr(b) is an I-ribbon-I. Let w ∈ W be the lift of w and b1 = bw−1;
then pr(b1) ∈ WI and, by items (7) and (8) of Proposition 2.6, we have πI(bb

′) =
πI(b1)πI(wb′) = πI(b1)ϕw(πI(b

′)). The equality of the lemma follows since
πI(b) = πI(b1) by the last equality applied with b′ = 1. �

Definition 2.8. Given I ⊆ S,

• For b in B, we define tI(b) = πI(b)
−1b.

• For w ∈ W , we define πI(w) = wtI(w)
−1.

The following lemma shows that the definitions tI , ti and πI ,πI are compatible.

Lemma 2.9. Let I ⊆ S and b be in B.

(1) πI(tI(b)) = 1.
(2) pr(tI(b)) = tI(pr(b)). In particular, pr(tI(b)) is I-reduced.
(3) pr(πI(b)) = πI(pr(b)).
(4) If b′ is in B, then BIb = BIb

′ ⇐⇒ tI(b) = tI(b
′).

Note that (3) can be seen as a part of the commutative diagram in Proposi-
tion 2.22.

Proof. We have πI(b) = πI(πI(b)tI(b)) = πI(πI(b))πI(tI(b)) = πI(b)πI(tI(b)),
the second equality by Proposition 2.6(7). So πI(tI(b)) = 1. The second and third
items come from pr(πI(b)) pr(tI(b)) = pr(b) = pr(πI(b))tI(pr(b)) where the first
equality is by definition and the second by Proposition 2.6(6). For (4), clearly, if
tI(b) = tI(b

′) then BIb = BIb
′. Conversely, assume ib = i′b′ with i, i′ in BI .

Then iπI(b)tI(b) = i′ πI(b
′)tI(b

′), thus to prove that tI(b) = tI(b
′) it suffices to

prove that iπI(b) = i′ πI(b
′). But by Proposition 2.6(7) we have iπI(b) = πI(ib)

and i′ πI(b
′) = πI(i

′b′) so they are equal by assumption. �

Note that tI(B
+) 6⊂ B+. For instance, in type A2 with S = {s, t} and I = {s},

we have πI(tts) = s, thus tI(tts) = s−1tts.

Proposition 2.10. For w ∈ W , πI(w) is the unique element v ∈ WI such that
N(w) ∩ TI = N(v).

Proof. Since N is injective it is sufficient to prove that v defined by w = vtI(w)
satisfies N(v) = N(w) ∩ TI . We have N(w) = N(v) + vN(tI(w)). We want to
show that vN(tI(w)) does not meet WI or equivalently that N(tI(w)) does not
meet WI . But if tI(w) = s1 . . . sk is a reduced expression this is equivalent to
s1 . . . sjsj−1 . . . s1 /∈ WI for all j or equivalently s1 . . . sj /∈ WIs1 . . . sj−1, which is
a consequence of s1 . . . sj being I-reduced. �

Since B+ is a locally Garside monoid, elements have a greatest common left-
divisor (left-gcd) and if they have a common right-multiple they have a right-
lcm. Each element has a Garside normal form, which for b ∈ B+ is a sequence
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(b1, . . . ,bn) with bi ∈ W such that b = b1 · · ·bn, uniquely defined by the property
that bi is the greatest left-divisor in W of bibi+1 and by the property that no bi

is 1.

Proposition 2.11. For b ∈ B+, let (b1, · · · ,bn) and (i1, · · · , im) be the Garside
normal forms of b and πI(b) respectively. Then, m ≤ n and for 1 ≤ i ≤ m, the
element πI(b1 · · ·bi) left divides i1 · · · ii.
Proof. As a particular case of Proposition 2.6(10) the normal form of πI(b1 . . .bn)
has n terms or less, since the product of n simple braids has not more than n
terms in its normal form. Now by Proposition 2.6(3) we have that πI(b1 · · ·bi)
left-divides i1 · · · im and since it has i simple terms by Proposition 2.6(10), by [9,
III, 1.14] it divides i1 · · · ii. �

The next two propositions assume W finite. In this case B+ is a Garside monoid
with Garside element the lift ∆ ∈ W of the longest element of W . The elements of
W are both the left-divisors and the right-divisors of ∆. Similarly B+

I is a Garside
monoid with Garside element ∆I , the lift of the longest element of WI .

Proposition 2.12. Assume that W is finite. Then for any b ∈ B, I ⊆ S and
i ∈ Z we have πI(b∆

i) = πI(b)∆
i
I .

Proof. One deduces the proposition for i < 0 from the result for −i by writing
πI(b) = πI(b∆

i∆−i) = πI(b∆
i)∆−i

I . The proposition for i ∈ N is obtained by
iterating the case where i = 1, so we assume now i = 1.

We denote by ϕ the automorphism of B induced by conjugating by ∆. De-
fine w by ∆ = ∆Iw; then w = pr(w) is a I-ribbon-ϕ(I). We get πI(b∆) =
πI(∆ϕ−1(b)) = πI(∆Iwϕ−1(b)) = ∆I πI(wϕ−1(b)) = ∆Iϕw(πϕ(I)(ϕ

−1(b)))
where the third equality is by Proposition 2.6(7) and the last by Proposition 2.6
items (5) and (8). Now the automorphism ϕ clearly commutes with πI , that is for
any b ∈ B we have ϕw πϕ(I)(ϕ

−1(b)) = ϕI(πI(b)) where ϕI is automorphism of
BI induced by ∆I . The proposition follows since ∆IϕI(πI(b)) = πI(b)∆I . �

Proposition 2.13. Assume that W is finite. We recall that for b ∈ B we define
sup(b) = min{j | b−1∆j ∈ B+} and inf(b) = max{j | ∆−jb ∈ B+}. We have
sup(πI(b)) ≤ sup(b) and inf(πI(b)) ≥ inf(b).

Proof. The reversed of the word b−1 is inv(b), where inv is as in Proposition 2.6(4),
and ∆ is equal to its reversed, thus the condition b−1∆j ∈ B+ is equivalent to
∆j inv(b) ∈ B+, which is itself equivalent to inv(b)∆j ∈ B+. We have πI(inv(b)∆

j) =

πI(inv(b))∆
j
I = inv(πI(b))∆

j
I ∈ B+

I , the first equality by Proposition 2.6(7) and
the second one by Remark 2.6(4); arguing as at the beginning but in BI the last is

equivalent to πI(b)
−1∆j

I ∈ B+
I , which concludes.

The proof for inf is similar but simpler: we don’t have to use reversing. �

Lemma 2.14. Any b ∈ B can be written piw where p is pure, i ∈ WI (the lift of
WI) and pr(w) is I-reduced; in such a decomposition we have πI(b) = πI(p)i.

Proof. It is clear that any element b ∈ B can be written piw as above. By
Proposition 2.6(7) we have πI(b) = πI(p)πI(i)πI(w) = πI(p)iπI(w) and by
Lemma 2.6(5) πI(w) = 1. �

The following lemma is [2, Proposition 2.3(3)].
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Lemma 2.15. If p is a pure braid then πI(p) is pure.

Proof. We have p = πI(p)tI(p) so it is sufficient to show that tI(p) is pure. By
Lemma 2.9(2) we have pr(tI(p)) = tI(pr(p)) = 1, whence the result. �

The following lemma is [14, Lemma 3.2]

Lemma 2.16. Let I, J be subsets of S and let b ∈ B be such that pr(b) is I-
reduced-J ; then πI(bBJ ) = πI(b)BI1 where I1 = pr(b)J ∩ I.

Proof. Applying Proposition 2.6(9) we get πI(bBJ ) = πI(b)ϕpr(b)(πJ1(BJ )) =

πI(b)ϕpr(b)(BJ1) = πI(b)BI1 where J1 = I
pr(b)
1 . �

The following is [2, Theorem 1.1].

Proposition 2.17. Let I, J be subsets of S and let b ∈ B be such that bBJ ⊆ BI .
Then there exists b′ ∈ BI and K ⊆ I such that bBJ = b′

BK . In other terms a
parabolic subgroup of B lying inside BI is a parabolic subgroup of BI .

Proof. Let w = pr(b). Applying pr we get wWJ ⊆ WI . Write w = iw′j where

i ∈ WI , j ∈ WJ and w′ is I-reduced-J . We still have w′

WJ ⊆ WI and by Lemma 1.1
we have w′

J = K for some K ⊆ I. Lifting i, j, w′ to i, j,w′ ∈ W we can write
b = ipw′j where p is pure. We still have pw′

BJ ⊆ BI , and since w′

J = K we have
w′

BJ = BK . We thus get pBK ⊆ BI . Thus
pBK = πI(

pBK) = πI(p)BK πI(p)
−1,

the last equality from Lemma 3 since p is pure and pr(BK) ⊆ WI . This proves the
statement with b′ = iπI(p). �

The map N. The following proposition is [10, Proposition 2.1]. We recall it here,
as it is unpublished.

Proposition 2.18.

(1) There exists a well defined map N : B → Z[T ] such that

N(sε11 · · · sεkk ) =

i=k∑

i=1

εi
s1···si−1si

for si ∈ S and εi = ±1.
(2) The map N ⋊ pr is group homomorphism from B to Z[T ]⋊W , where the

action of W on Z[T ] extends linearly the conjugation action of W on T .

Proof. We prove that the map s 7→ (s, s) for s ∈ S extends to a group morphism
f : B → Z[T ]⋊W . Composing this morphism with the first projection will give a
map N which satisfies (1). It is sufficient to show that the braid relations (∗∗) are
satisfied, that is for any s, t ∈ S, we have the equality f(s)f(t) · · · = f(t)f(s) · · · ,
where there are ms,t terms on both sides. In Z[T ] ⋊ W the first component of
(s, s)(t, t) · · · (with ms,t factors) is the sum of all reflections of the dihedral group
generated by s and t and the second component is the longest element of this
dihedral group. So we get the same result by swapping s and t, whence the propo-
sition. �

The map N lifts N to the braid group: for b ∈ B the set N(pr(b)) is the
reduction modulo 2 of N(b). For w ∈ W we can identify N(w) to N(w): one
gets N(w) from N(w) by lifting Z/2Z to {0, 1} ⊆ Z. If we interpret N as a

map B → Z[Φ+], then N(b) is the sum of the sequence ~N(p∗(b)) for any word b
representing b.
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Lemma 2.19. We say that w ∈ W is I-reduced if pr(w) is I-reduced.

• The pure braid group P is generated by PI = P ∩ BI and the elements
iws2w−1i−1 for s ∈ S and i ∈ WI and w ∈ W such that ws is an I-
reduced element.

• The group pr−1(WI) is generated by BI and the elements ws2w−1 with
s ∈ S and ws ∈ W an I-reduced element.

• If s ∈ S and if ws ∈ W is an I-reduced element then πI(ws2w−1) = 1.

Proof. We first prove that P is generated by the wsw−1 with w, s,ws ∈ W: if
in the Reidemeister-Shreier method we take W as representatives of the P -cosets
in B, we get that P is generated by the wsv−1 where w ∈ W and s ∈ S and v ∈ W

is the representative of ws; if ws is in W we have v = w, otherwise w = us for
some u ∈ W and v = u so that wsv−1 = usu−1. We get then the first item of the
lemma by writing w = iv where i ∈ WI and v is I-reduced.

We get the second item from the first using that an element of pr−1(WI) is the
product of an element of BI by a pure braid.

For the third item, by Proposition 2.6(7) we have πI(ws2w−1)πI(ws−1) =
πI(ws), and by Proposition 2.6(5) we obtain πI(ws−1) = πI(ws) = 1. Thus,
πI(ws2w−1) = 1. �

Lemma 2.20. For b ∈ B and s ∈ S, we have N(bs2b−1) = 2t where t =
pr(bsb−1).

Proof. Using that N⋊ pr is a morphism, that is

(N⋊ pr)(bb′) = (N(b) + pr(b)N(b′), pr(bb′)),

and setting b = pr(b), we get

(2.21) (N(bs2b−1), 1) = (N(b), b)(N(s2), 1)(N(b−1), b−1)

From (0, 1) = (N(b), b)(N(b−1), b−1) we have bN(b−1) = −N(b). Using this and
N(s2) = 2s in equation (2.21) we get

(N(bs2b−1), 1) = (N(b) + 2 · bs+ bN(b−1), 1) = (2 · bs, 1) = (2t, 1).

�

Proposition 2.22. The following diagram is commutative:

B
N×pr−−−−→ Z[T ]⋊W

yπI

yprojTI
×πI

BI
N×pr−−−−→ Z[TI ]⋊WI

Proof. Writing an element of b ∈ B as b1b2b3 where b1 is pure, b2 ∈ BI and
b3 ∈ W is I-reduced, and applying Proposition 2.6(7), we can reduce to the case
of an element of one of the above 3 forms.

For an element of BI the proposition is trivial since πI is the identity on BI .
For w ∈ W an I-reduced element, we know the commutativity with pr by

Lemma 2.9(3), and we have πI(w) = 1. All that remains is to prove that N(w)
has trivial coefficients on TI . Since w ∈ W, the lift of N(w) is N(w) and we
conclude since N(w) ∩WI = ∅ by Proposition 2.10.

For a pure braid, we can, using Proposition 2.6(7) and Lemma 2.19, reduce to
an element of the form ws2w−1 where ws is I-reduced. By Lemma 2.20 we have
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N(ws2w−1) = 2t where t = pr(wsw−1). By Lemma 2.19 πI(ws2w−1) = 1 and by
Lemma 1.1 we have t /∈ WI . Thus the commutation holds. �

Closed subsets. For w ∈ W the set N(w) is in bijection with the set Φw = {α ∈
Φ+ | w−1(α) /∈ Φ+} since N(w) = {sα | α ∈ Φw}. We now recall results of [12]. We
say that a set Γ ⊆ Φ+ is closed if for any α, β ∈ Γ and a, b ∈ R>0, if aα+ bβ ∈ Φ
then aα + bβ ∈ Γ. We call closure of Γ, denoted by Γ, the smallest closed set
containing Γ. We say that Γ is biclosed if it is closed and its complement ∁Γ in
Φ+ is closed. Thanks to the bijection between reflections and positive roots we can
use the same words for subsets A ⊆ T (closed, notation Ā for the closure, biclosed
and notation ∁A for the complement in T ). The notion of closed for a set A ⊆ T
can be given in purely group-theoretic terms: a set A is closed if and only if given
any two reflections s, s′ ∈ W , the intersection of A with the dihedral group 〈s, s′〉
is closed. In a dihedral group W = 〈s, s′〉, the group theoretic definition of closed
is as follows: we give a total order on T by s < ss′s < ss′ss′s < . . . < s′ss′ < s′

(exchanging s and s′ gives the opposite order); then a set A is closed if and only if
whenever it contains t, t′ ∈ T with t < t′ it contains any t′′ such that t < t′′ < t′ (see
[13, (2.2)] for the equivalence of the group-theoretic condition with closed assuming
the existence of a reflection order and see [13, Proposition 2.3] for the existence of
a reflection order).

Lemma 2.23. For w,w′ ∈ W it is equivalent that w left-divides w′ in the monoid
B+ or that N(w) ⊆ N(w′).

Proof. The assumption that w left-divides w′ is equivalent in W to the existence
of v ∈ W such that w′ = wv and ℓS(w)+ ℓS(v) = ℓS(w

′). By the formula N(wv) =
N(w) ∪ wN(v) it is clear that left-divisibility implies N(w) ⊆ N(w′). We show
the converse by induction on ℓS(w

′). Let s ∈ S be a left-divisor of w, equivalently
ℓS(sw) = ℓS(w)− 1 or equivalently s ∈ N(w) (see [11, Lemma 2.1.6(ii)]). It follows
that s is also a left-divisor of w′. Let w = sw1 and w′ = sw′

1. From the formulae
N(w) = {s} ∪ sN(w1) and N(w′) = {s} ∪ sN(w′

1) it follows that N(w1) ⊆ N(w′
1)

and we conclude by induction. �

More generally, using that divisibilty in W projects to the weak order in W , we
have

Proposition 2.24 (Dyer).

• A set A ⊆ T is biclosed finite if and only if it is an N(w) for some w ∈ W .
• Let w,w′ ∈ W be two simple braids which have a common right-multiple
in the monoid B+. Then their right-lcm is an element of W such that

N(pr(right-lcm(w,w′))) = N(w) ∪N(w′).

• Let w,w′ ∈ W be two simple braids. Then

∁N(pr(left-gcd(w,w′))) = ∁(N(w) ∩N(w′)).

Proof. See [12, 4.1, 1.5]. �

Proposition 2.25. Let w,w′ ∈ W be two simple braids. Then for I ⊆ S we
have πI(right-lcm(w,w′)) = right-lcm(πI(w),πI(w

′)) and πI(left-gcd(w,w′)) =
left-gcd(πI(w),πI(w

′)).
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Proof. By Proposition 2.10, πI(w) is characterised by N(pr(πI(w))) = N(w)∩TI ,
that is (ΦI)πI(w) = Φw ∩ ΦI .

Thus, for the right-lcm, from Proposition 2.24 we have to prove that taking the
closure of a set of positive roots commutes with intersecting with Φ+

I , which is clear
since if for α, β ∈ Φ+ and a, b ∈ R>0, the root aα + bβ is in R≥0ΠI then α and β

also. This can be written as a formula A ∩ TI = A ∩ TI .

For the left-gcd, if we set A = N(w) ∩ N(w′), we have ∁A ∩ TI = ∁A ∩ TI =

∁I(A ∩ TI) where the first equality is the previous observation and in the second
equality ∁I denotes the complement in TI ; this proves the proposition. �

By Proposition 2.6(3), for any positive braids b and b′, right-lcm(πI(b),πI(b
′))

is a left-divisor of πI(right-lcm(b,b′)) and πI(left-gcd(b,b
′)) is a left-divisor of

left-gcd(πI(b),πI(b
′)); but equality does not generally hold for non-simple braids.

For example, in the braid group of S3 with S = {s, t}, taking I = {s}, b = stt

and b′ = t we have πI(b) = s, πI(b
′) = 1, hence right-lcm(πI(b),πI(b

′)) = s but
πI(right-lcm(b,b′)) = πI(ststs) = ss.

A counterexample for the gcd is obtained with b = tts, b′ = s and I = {s}. We
have πI(b) = πI(b

′) = s hence left-gcd(πI(b),πI(b
′)) = s but left-gcd(b,b′) = 1

whose retraction is 1.

3. Retraction on the other side

Definition 1.2 of πI is based on right-cosets WIw ∈ WI\W and the “left I-tail”
tI(w). It is well-behaved regarding the left-divisibility of words: if b ∈ (S±1)∗ is a
prefix of b′ then π̂I(b) is a prefix of π̂I(b

′). Using left-cosets wWI ∈ W/WI and the
counterpart trI(w) of tI(w), we obtain another retraction that we denote by π

r
I . A

natural question is the connection between the two retractions. The next lemma
gives an answer to this question.

Lemma 3.1. We have π
r
I(b) = rev(πI(rev(b))) = (πI(b

−1))−1, where rev is the
unique antiautomorphism of B that fixes S.

Proof. The first equality is clear and the second equality follows from Proposi-
tion 2.6(4) and from the equality b−1 = inv(rev(b)). �

For b ∈ B we define trI(b) = bπ
r
I(b)

−1; it satisfies the counterpart result of
Lemma 2.9.

The right-retraction counterpart of Proposition 2.6(9) is

Proposition 3.2. Let I, J ⊆ S and b ∈ B be such that pr(b) is I-reduced-J ; then
for i ∈ BI and for I1 = I ∩ pr(b)J , we have π

r
J(ib) = ϕ−1

pr(b)(π
r
I1
(i))πr

J(b).

Proposition 3.3. For I, J ⊆ S and b ∈ B be such that pr(b) is an I-ribbon-J , we
have πI(b) = ϕpr(b)(πJ (b

−1))−1, in particular

πI(b) = 1 ⇐⇒ πJ(b
−1) = 1.

Proof. We have 1 = πI(1) = πI(bb
−1) = πI(b)ϕpr(b)(πJ(b

−1)), where the last
equality is by Proposition 2.6(8), whence the proposition. �

Proposition 3.4. Let I, J ⊆ S and b in B be such that pr(b) is reduced-J . Let
J1 = Ipr(b) ∩ J ; then pr(tI(b)) is a ribbon-J1 and for any j ∈ BJ one has

πI(bj) = πI(b)ϕpr(tI (b))(πJ1(j)) = πI(b)πI1(tI(b)j)
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where I1 = pr(tI (b)J1 = Ipr(πI (b)) ∩ pr(tI(b))J . In particular, when πI(b) = 1 we
have πI(bj) = πI1(bj).

Proof. For any s ∈ J1 we have pr(b)s ∈ I. Writing pr(b) = pr(πI(b)) pr(tI(b)) we
deduce that pr(tI(b))s lies in WI , hence in I by Lemma 1.1. Since tI(b) is I-reduced-
J we deduce that it is an I1-ribbon-J1. Writing πI(bj) = πI(b)πI(tI(b)j), we can
apply Proposition 2.6(9) with tI(b) for b, whence πI(bj) = πI(b)ϕpr(tI(b))(πJ1(j)).
The equality ϕpr(tI (b))(πJ1(j)) = πI1(tI(b)j) comes from Proposition 2.6(9) with
tI(b) for b and I1 for I, taking in account the fact that πI1(tI(b)) = 1 by Corol-
lary 1.9. �

The right-counterpart of Proposition 3.4 is

Proposition 3.5. Let I, J ⊆ S and b in B be such that pr(b) is I-reduced. Let
I1 = I ∩ pr(b)J ; then for any i ∈ BI we have πr

J (ib) = πr
J1

(
itrJ(b)

)
πr
J (b), where

J1 = I
pr(trJ (b)
1 = Ipr(t

r
I (b)) ∩ pr(πr

I(b))J . In particular, when πr
J (b) = 1 we have

πr
J(ib) = πr

J1
(ib).

Proposition 3.6. Let I, J ⊆ S and b ∈ B; set b1 = trJ(tI(b)). Then

(1) πI(b1) = π
r
J (b1) = 1. In particular pr(b1) is I-reduced-J .

(2) Let I1 = I ∩ pr(b1)J and J1 = Ipr(b1) ∩ J ; then

π
r
J(b) = ϕ−1

pr(b1)
(πr

I1
(πI(b)))π

r
J (tI(b)).

Proof. First, πI(tI(b)) = 1 and pr(tI(b)) is I-reduced by Lemma 2.9. For a
similar reason, pr(b1) is reduced-J , hence it is I-reduced-J since it has to left-
divide (be smaller for the weak order than) pr(tI(b)) in W . By definition of b1

we have π
r
J(b1) = 1. Since J1 ⊆ J one has π

r
J1
(b1) = π

r
J1
(πr

J(b1)) = 1. Ap-

plying Lemma 3.1 we get πJ1(b
−1
1 ) = 1 and by Propositions 3.3 and 3.4, we get

that πI1(b1) = 1. Since pr(b1) is I-reduced-J , applying again Lemma 2.9, we
get pr(tI(b1)) = pr(b1) and πI(tI(b1)) = 1. By Proposition 3.4 we deduce that
πI

(
tI(b1)π

r
J(tI(b))

)
= πI1

(
tI(b1)π

r
J(tI(b))

)
, and therefore belongs to BI1 . But

now 1 = πI(tI(b)) = πI

(
πI(b1)tI(b1)π

r
J (tI(b))

)
= πI(b1)πI

(
tI(b1)π

r
J(tI(b))

)
.

So πI(b1) is equal to
(
πI

(
tI(b1)π

r
J(tI(b))

))−1
and belongs to BI1 too. This im-

poses πI(b1) = πI1(πI(b1)) = πI1(b1) = 1, the second equality by Corollary 1.9.
This concludes the proof of (1).

To prove (2) we decompose b as πI(b)b1 π
r
J(tI(b)). Applying π

r
J , we get

π
r
J (b) = π

r
J (πI(b)b1)π

r
J(tI(b)) (since a term in BJ factors out on the right in

π
r
J ) and then we apply Proposition 3.2 with πI(b) for b

′ and b1 for b. �

Corollary 3.7. Let I, J ⊆ S and b ∈ B be such that pr(b) is a I-ribbon-J ; then
πI(b) = ϕpr(b)(π

r
J (b)).

Proof. By Proposition 3.3, we have πI(b) = ϕpr(b)(πJ(b
−1))−1 = ϕpr(b)(π

r
J(b)

−1)−1,
the last equality by Proposition 3.1. �

In general trJ(tI(b)) 6= tI(t
r
J(b)). For instance in the braid group of type A2,

with S = {s, t}, let I = {s} = J and b = st2s. We have trJ(tI(b)) = s−1t2s

and tI(t
r
J (b)) = st2s−1 which differ since s2t2 6= t2s2. In particular the double-

coset BIbBJ generally does not contain a unique element b0 such that πI(b0) =
πJ (b0) = 1.
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Proposition 3.8. Let I, J ⊆ S. Let b0,b1 be in B such that πI(b0) = π
r
J (b0) =

πI(b1) = π
r
J(b1) = 1. Let I1 = I ∩ pr(b0)J and J1 = Ipr(b0) ∩J ; then the following

are equivalent:

(1) BIb0BJ = BIb1BJ .
(2) BI1b0BJ1 = BI1b1BJ1 .

Furthermore for any i ∈ BI and j ∈ BJ such that ib0 = b1j we have i ∈ BI1 ,
j ∈ BJ1 and i = ϕpr(b0)(j).

Proof. It is clear that (2)⇒(1). Assume BIb0BJ = BIb1BJ . Let i in BI and j in
BJ be such that ib0 = b1j. We have j = π

r
J(b1j) = π

r
J(ib0) = ϕ−1

pr(b0)
(πr

I1
(i)), the

last equality by the counterpart of Proposition 2.6(9). In particular, j lies in BJ1 .
Symmetrically i = πI(ib0) = πI(b1j) = ϕpr(b1)(πIpr(b1)∩J(j)) ∈ BI∩pr(b1)J , the last
equality by Proposition 2.6(9). Since pr(b0) and pr(b1) are I-reduced-J elements
in the same double coset of WI\W/WJ they are equal. Thus I ∩ pr(b1)J = I1 and
i is in BI1 . �

Corollary 3.9. Let I, J ⊆ S and b0 ∈ B be such that πI(b0) = π
r
J(b0) = 1. Then

the following are equivalent

(1) pr(b0Jb−1
0 ∩ I) = pr(b0)J ∩ I.

(2) for every b in BIb0BJ , if πI(b) = π
r
J (b) = 1 then b = b0.

(3) for every b in BIb0BJ , one has tI(t
r
J(b)) = trJ (tI(b)) = b0.

Proof. Set w = pr(b0), J1 = Iw ∩ J and I1 = wJ ∩ I. Assume (1) holds. Let b in
B be such that πI(b) = π

r
J (b) = 1 with BIb0BJ = BIbBJ . By proposition 3.8(2)

we get ib0 = bj for some i ∈ BI1 and j ∈ BJ1 such that i = ϕw(j). But by (1), b0

conjugates J1 to I1 thus the conjugation by b0 in B induces the one-to-one map
ϕw from BJ1 to BI1 . So b−1

0 ib0 = j thus b0 = b. Thus (2) holds. Now, (2) implies
(3). Indeed, by Proposition 3.6(1) the element trJ(tI(b)) verifies the assumption
for b in (2), and by symmetry the same holds for tI(t

r
J (b)). Finally assume (3).

Clearly pr(b0Jb−1
0 ∩ I) ⊆ wJw−1 ∩ I always holds. Let s in I1 and s′ in J1 be

such that ws′w−1 = s. Set b1 = s−1b0s
′. We have πI(b1) = s−1

πI(b0s
′) and by

Proposition 1.11 we have πI(b0s
′) = s since tI(pr(b0)) = w. Thus πI(b1) = 1.

Similarly π
r
J(b1) = 1 and therefore b1 = tI(t

r
J (b1)) = b0, the last equality by (3).

Hence, b0 = s−1b0s
′. and s belongs to pr(b0Jb−1

0 ∩ I). �

Remark 3.10. Since one has always pr(b0Jb−1
0 ∩ I) ⊆ pr(b0)J ∩ I, the three items

of Corollary 3.9 are true in the particular case pr(b0)J ∩ I = ∅.
Proof of Proposition 0.3. If pr(b)WJ ∩ WI = {1}, then pr(b0)WJ ∩ WI = {1}. As
pr(b0) is I-reduced-J , by Proposition 1.17 the last equality is equivalent to the
equality pr(b0)J ∩ I = ∅, and we conclude using Corollary 3.9 and the above re-
mark 3.10. �

Lemma 3.11. Let I, J be subsets of S and let w ∈ W be the lift of an I-ribbon-J ;
Then wBJ = BI .

Proof. For j ∈ J we have wj = iw for some i ∈ I. Since w is I-reduced-J , the lift
to W of wj is wj and the lift of iw is iw, thus wj = iw and wj is in I. �

The following proposition shows various reductions of the problem of the in-
tersection of two parabolic subgroups bBJ and BI . (1) shows that we can assume
πI(b) = π

r
J (b) = 1, (2) shows that we can also assume that pr(b) is an I-ribbon-J ,
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(3) shows that we can also assume that b is pure and I = J (see Proposition 0.4)
and (4) shows that if I is finite, then we can assume that BJ is a minimal parabolic
subgroup containing BJ ∩ bBJ .

Proposition 3.12. Let I, J be subsets of S and b ∈ B.

(1) Let b0 = trJ (tI(b)). Then πI(b0) = πr
J (b0) = 1, and bBJ ∩ BI =

πI (b)(b0BJ ∩BI)
(2) Assume πI(b) = πr

J (b) = 1. Then bBJ ∩ BI = bBJ1 ∩ BI1 , where I1 =

I ∩ pr(b)J and J1 = Ipr(b) ∩ J (so that pr(b) is an I1-ribbon-J1).
(3) Assume that πI(b) = 1 and that pr(b) is an I-ribbon-J . Then if w ∈ W

lifts pr(b) and p is the (pure) element such that b = pw, we have πI(p) = 1
and BI ∩ bBJ = BI ∩ pBI = CBI

(p).
(4) For I and p as in item (3); assume I finite, then the intersection BI ∩ pBI

is conjugate in BI to BJ ∩ p′

BJ for some J ⊆ I and p′ ∈ P such that
πJ(p

′) = 1 and such that BJ is a minimal parabolic subgroup containing

BJ ∩ p′

BJ .

Proof. (1) is clear from Proposition 3.6(1).
Let us prove (2). Let j ∈ BJ∩Bb

I and i ∈ BI be such that bj = ib. Since pr(b) is
I-reduced-J (see Proposition 3.6(1)) we can apply Proposition 2.6(9), which gives
πI(bj) = πI(b)ϕpr(b)(πJ1(j)) = ϕpr(b)(πJ1(j)). On the other hand, πI(ib) =
iπI(b) = i. So i ∈ BI1 .

Similarly we may apply Proposition 3.2 to get j = πr
J (bj) = πr

J(ib) = ϕ−1
pr(b)(π

r
I1
(i)),

which proves that j ∈ BJ1 .
We prove now (3). We first prove that πI(p) = 1. By Proposition 2.6(7) we

have 1 = πI(b) = πI(p)πI(w). By Proposition 2.6(5) we have πI(w) = 1, hence
πI(p) = 1.

Now we haveBI∩bBJ = BI∩pwBJ = BI∩pBI , the last equality by Lemma 3.11.
If i is in BI ∩ pBI we have pi = i′p for some i′ ∈ BI . Hence πI(pi) = πI(p)πI(i) =
πI(i) = i and πI(i

′p) = i′πI(p) = i′, so that i = i′ is in CBI
(p).

We prove (4). Let iBJ with J ⊆ I and i ∈ BI be any parabolic subgroup of BI

containing BI ∩ pBI . Then piBJ also contains BI ∩ pBI since this intersection is
centralised by p. We have thus iBJ ∩piBJ ⊇ BI ∩pBI , hence equality

iBJ ∩piBJ =
BI ∩ pBI , that is BI ∩ pBI is conjugate in BI to BJ ∩ p′

BJ where p′ = i−1pi. We
have πI(p

′) = i−1
πI(p)i = 1. If we take iBJ minimal containing BI ∩ pBI we

get (4); such a parabolic exists since I is finite. �

Note that if we assume that the intersection of two parabolic subgroups is a
parabolic subgroup, then in (4) above BJ = BJ ∩ p′

BJ and by the proof of (3) we
have p′ ∈ CP (BJ).

4. Minimal length elements in a conjugacy class

In this section, we first recall a result on elements ofB+ (Proposition 4.5) which is
an important step in proving that in spherical type Artin groups there is a unique
minimal parabolic subgroup containing a given element (see [7, Introduction of
section 6]). We then show that a conjecture (Conjecture 4.14) which generalises
Proposition 4.5 to all conjugacy classes is equivalent in all Artin groups to the
existence of a unique minimal parabolic subgroup containing a given element. We
conclude with a partial result (Proposition 4.17) on conjugacy.
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Positive elements. The goal of this subsection is to introduce the concepts and
results on elements of B+ needed, ending with a proof of Proposition 4.5.

For I ⊆ S and b ∈ B+ we define HI(b) as the longest prefix of b in B+
I ; we say

that an element g ∈ B+ is I-reduced if HI(g) = 1. We say that an element g ∈ B+

is an I-ribbon if it is I-reduced and Ig ⊆ B+. Since ℓZ is constant on a conjugacy
class, this is seen to be equivalent to Ig ⊆ S. For b ∈ B+ we define the support
supp(b) as the smallest subset I ⊆ S such that b ∈ B+

I . This is well defined
since the two sides of a braid relation involve the same elements of S. Note that
the notions of I-reduced element and of I-ribbon in B+ are coherent with the
corresponding definitions in W introduced in Section 1: the element w in W is
I-reduced (resp. a I-ribbon) if and only if pr(w) is. This is not true if w /∈ W.
For instance s2 is not {s}-reduced but pr(s) is, and is even an {s}-ribbon. If s and
t do not commute, then s2t is {t}-reduced but pr(s2t) = t is not.

Recall that the Garside normal form has been introduced in Section 2. For
b ∈ B+ we denote by head(b) the first term of the Garside normal form of b and
define tail(b) = head(b)−1b.

Lemma 4.1.

(1) For b,g ∈ B+, if bg ∈ B+ then bhead(g) ∈ B+

(2) If g ∈ B+ is an I-ribbon, then head(g) is an I-ribbon.
(3) If g ∈ B+ is an I-ribbon, then pr(g) is an I-ribbon.

Proof. For (1), the assumption bg ∈ B+ is equivalent to g left-dividing bg from
which it follows that head(g) left-divides head(bg) = head(b head(g)), in particular
head(g) left-divides b head(g), that is bhead(g) ∈ B+.

For (2), by (1) we get Ihead(g) ⊆ B+. And clearly if g is I-reduced then head(g)
also.

Finally (3) is clear if g ∈ W and the general case follows from (2) by induction
on the number of terms in the Garside normal form of g. �

Lemma 4.2. Let g ∈ B+ be an I-ribbon and let h ∈ B+. Then HI(gh)
g =

HIpr(g)(h) and HI(gh)
−1gh = gHIpr(g)(h)−1h.

Proof. Let s ∈ I and set s′ = sg. Both formulae clearly follow if we show that it is
equivalent that s left-divides gh or that s′ left-divides h.

Now from sg = gs′ it follows that the right-lcm of s and g divides sg, thus
it must be equal to sg, because ℓZ(right-lcm(s,g)) is at least ℓZ(g) + 1 = ℓZ(sg).
Thus s left-dividing gh is equivalent to sg left-dividing gh or equivalently to gs′

left-dividing gh, which is finally equivalent to s′ left-dividing h. �

Proposition 4.3. Let g,b ∈ B+ be such that g is supp(b)-reduced and such that
bg ∈ B+. Then g is a supp(b)-ribbon and we have supp(bg) = supp(b)pr(g).

Proof. We first show that we can reduce to the case where g is simple, by arguing
by induction on the number of terms of the Garside normal form of g.

By Lemma 4.1(1) we have bhead(g) ∈ B+; and for g to be supp(b)-reduced, we
certainly need head(g) to be supp(b)-reduced.

If we know the theorem in the case where g is simple, it follows that the set
J = Ihead(g), where I = supp(b), is a subset of S; and thus bhead(g) has support
J . We also have that tail(g) is J-reduced by Lemma 4.2 applied with head(g) for
g and tail(g) for h. Since (bhead(g))tail(g) ∈ B+, we conclude by induction on the
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number of terms of the normal form of g that Jtail(g) ⊆ S, whence the result since
Jtail(g) = Ig.

We now show the theorem when g is simple. We write the condition bg ∈ B+

as bg = gu with u ∈ B+.
We proceed by an induction on ℓZ(b). For s ∈ S dividing b, we write b = sb′.

We have that s left-divides bg = gu.
To go on we need the following lemma.

Lemma 4.4. Let g ∈ B+ be simple and let s ∈ S, u ∈ B+ be such that s does not
divide g but s divides gu. Then we have u = u′tu′′ where t ∈ S, u′,u′′ ∈ B+ are
such that sgu′ = gu′t is simple.

Proof. First note that s left-divides head(gu). Let gu1 = head(gu). Since in W
we have ℓS(sgu1) < ℓS(gu1) and ℓS(sg) > ℓS(g) (in other words the reflection s is
in the left descent set of gu1 but not in that of g), we have by the exchange lemma
gu1 = gu′tu2 where t ∈ S and sgu′ = gu′t. Lifting back to B+ we get the lemma
with u′′ = u2 tail(gu). �

We now resume the proof of the proposition. Since s does not divide g, the
lemma gives u = u′tu′′ with t ∈ S and sgu′ = gu′t ∈ W. From bg = sb′g =
gu = gu′tu′′ = sgu′u′′ we deduce b′g = gu′u′′. Thus b′,g satisfy the assumptions
of the theorem, thus by induction on ℓZ(b) we have Kg ⊆ S where K = supp(b′).
We still have to prove that sg ∈ S. This is already proven unless s 6∈ K, which we
assume now.

We write b′g = gb′′ for some b′′ ∈ B. Since sgb′′ = gu = gu′tu′′ = sgu′u′′, we
have b′′ = u′u′′ ∈ B+. Now gyg−1 ∈ K, for any y ∈ supp(b′′) hence the element
v = gu′g−1 is in B+

K . From sgu′ = gu′t we get svg = vgt ∈ W, which we write
as (v−1sv)g = gt. Since g is supp(b)-reduced, its image in W is also and in W
we have 1 + ℓS(g) = ℓS(gt) = ℓS(v

−1svg) = ℓS(v
−1sv) + ℓS(g), the last equality

since v−1sv is in Wsupp(b), whence ℓS(v
−1sv) = 1. Now v and sv are simple since

svg = sgu′, which is simple. Thus v divides sv because l(v) + l(v−1sv) = l(sv)
which implies that vx = sv where x ∈ S lifts v−1sv ∈ S. It follows that v−1sv ∈ S.
But supp(v) ⊂ K so that s /∈ supp(v), hence v−1sv ∈ S implies v−1sv = s, thus
sg = t. �

Proposition 4.5. Let I ⊆ S and let p ∈ B+ be a pure element such that HI(p) =
1; if p commutes with an element in B+ of support I then p centralises BI .

Proof. Let i ∈ B+ have support I. By Proposition 4.3 conjugating by p maps I

into S. Since p is pure applying pr to the equality ps = s′p with s ∈ I, s′ ∈ S we
get pr(s) = pr(s′) hence s = s′. �

General elements. Recall that in the introduction we have defined ℓS±1 : B → N

to be the length function on B with respect to the generating set S±1. For b ∈ B,
it is equal to ℓ(b), the length of a minimal word b ∈ (S±1)∗ representing b.

Definition 4.6. For a word b ∈ (S±1)∗, we call supp(b) the minimal subset I ⊆ S
such that b ∈ (I±1)∗.

The following proposition, which enables the definition of support for all ele-
ments, is the convexity theorem of Charney and Paris [5, Theorem 1.2].



22 FRANÇOIS DIGNE, EDDY GODELLE AND JEAN MICHEL

Proposition 4.7. For b ∈ B, the set supp(b) is independent of the word b of
shortest length representing b. We call it support of b, denoted by supp(b). For
any word b′ representing b we have supp(b′) ⊇ supp(b).

Note that the definition of support for elements of B is compatible with that
given above Lemma 4.1 for elements of B+.

Proof. Let b be a word of minimal length for b and let J be the support of a word
b′ for b. Since π̂J(b) represents b, by minimality we have ℓ(π̂J(b)) = ℓ(b), whence
by Remark 1.3(5), supp(b) ⊆ J , which proves the proposition. �

We denote by Conj(b) the conjugacy class of b in B, or ConjB(b) when we want
to specify B.

Proposition 4.8. Let i, j ∈ B be conjugate elements with respective supports I
and J . Assume ℓS±1(j) minimal in Conj(i). Let g ∈ B be such that ig = gj; then
pr(tI(g)) is a I ′-ribbon-J for some I ′ ⊆ I. If in addition ℓS±1(i) is minimal in
Conj(i), then I ′ = I.

Proof. We have πI(ig) = iπI(g) = πI(gj). By Proposition 1.11 we have πI(gj) =
πI(g)i

′ for some element i′ ∈ BI such that given a minimal word j for j, the

word i′ = p∗−1( ~N( ~N(tI (pr(g))p∗(j)) ∩ΦI)) is a representative for i′. But ℓS±1(i′) ≤
ℓ(p∗−1( ~N( ~N(tI (pr(g))p∗(j)) ∩ ΦI))) ≤ ℓ(j) = ℓS±1(j) ≤ ℓS±1(i′), where the last
inequality comes from the minimality of ℓS±1(j) in its conjugacy class, since i′ is

conjugate to j. Thus we have ℓS±1(i′) = ℓS±1(j) = ℓ(p∗−1( ~N( ~N(tI (pr(g))p∗(j)) ∩
ΦI))). This forces all terms of ~N(tI (pr(g))p∗(j)) to be in ΦI . Using that ~N is an

involution, we get i′ = p∗−1( ~N( ~N(tI (pr(g))p∗(j)))) = p∗−1(tI (pr(g))p∗(j)). But we
know that in the formula for π̂I the roots to which one applies p∗−1 are in Π±1

I .
Hence tI(pr(g)) = pr(tI(g)) is an I ′-ribbon-J where I ′ is the support of i′ (and
i′ = ϕtI (pr(g))(j)).

If ℓS±1(i) is minimal in the conjugacy class of i, we may apply the previous result
to the equality i′ πI(g)

−1 = πI(g)
−1i to conclude that tI′(pr(πI(g)

−1)) is an I ′′-
ribbon-I for some I ′′ ⊆ I ′. But this implies that tI′(pr(πI(g)

−1)) is reduced-I;
since this element is in WI , this implies tI′(pr(πI(g)

−1)) = 1 thus I ′′ = I = I ′. �

Corollary 4.9. Let i, j ∈ B be conjugate elements of respective supports I, J ;
assume that ℓS±1(i) and ℓS±1(j) are equal and minimal in Conj(i). Then

(1) I and J are W -conjugate.
(2) For g such that ig = gj, the element w ∈ W defined by pr(w) = pr(tI(g))

is an I-ribbon-J such that iπI(g)w = j.

Proof. (1) comes (2). (2) comes from the facts in the proof of Proposition 4.8 that
I ′ = I and iπI(g) = i′ = ϕtI (pr(g))(j) = ϕpr(w)(j). �

Proposition 4.10. For I ⊆ S let i ∈ BI . Let g ∈ B be such that ℓS±1(g−1ig)
is minimal in ConjB(i). Then πI(g)

−1iπI(g) ∈ ConjBI
(i) has ℓS±1 minimal in

ConjB(i).

Proof. This is a consequence of the proof of Proposition 4.8 where it is shown that
the element i′ = iπI(g) is has ℓS±1 minimal in ConjB(i). �

From Proposition 4.10, we immediately deduce
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Corollary 4.11. For I ⊆ S and b ∈ B, either ConjB(b) ∩ BI is empty or it
contains an element i such that ℓS±1(i) is minimal in ConjB(b).

Proposition 4.12. Let b ∈ B be such that ℓS±1(b) is minimal in Conj(b). Then
Bsupp(b) is a minimal parabolic subgroup containing b, and any minimal parabolic
subgroup containing b is of the form pBsupp(b) for some element p in CP (b) such
that πsupp(b)(p) = 1.

Proof. We first observe that any minimal parabolic subgroup containing b is of the
form gBI with ℓS±1(bg) = ℓS±1(b) and supp(bg) = I. Indeed if gBI is minimal con-
taining b then we apply by Proposition 4.10 with g−1 for g and bg for i. This shows
that up to replacing g by gπI(g

−1) we may assume that ℓS±1(bg) = ℓS±1(b); and
we certainly have supp(bg) = I otherwise the proper parabolic subgroup Bsupp(bg)

of BI would contain bg and gBI would not be minimal containing b.
Let now gBI be any minimal parabolic subgroup containing b. We may assume

that ℓS±1(bg) = ℓS±1(b) and that supp(bg) = I. It follows by Corollary 4.9(1)
that supp(b) is conjugate to I. So, up to changing g, we could have started with
a parabolic subgroup gBI where I = supp(b) = supp(bg). It also follows from
Corollary 4.9(2) that bg = bπI (g)w where w ∈ W is an I-ribbon-I and where

p = gw−1
πI(g)

−1 is pure. In particular B
πI(g)w
I = BI so gBI = pBI . We

have b ∈ BI ∩ pBI = πI (p)(BI ∩ tI(p)BI) = πI(p)CBI
(tI(p)) = CBI

(pπI(p)
−1),

the second equality by Proposition 0.4, thus b commutes to pπI(p)
−1. Now

pπI (p)
−1

BI = pBI . Replacing p by pπI(p)
−1 we get that any minimal parabolic

subgroup containing b is as in the statement.
To show that these parabolic subgroups are actually minimal it is sufficient to

show that Bsupp(b) is a minimal parabolic subgroup containing b. By what we have
just seen, any minimal parabolic subgroup of Bsupp(b) containing b is of the form
pBsupp(b) with p ∈ Psupp(b) and πsupp(b)(p) = 1, so p = 1. �

Since minimality of parabolic subgroups transfers by conjugation, Proposition 4.12
proves the existence of a minimal parabolic subgroup containing any given element.

If the intersection of two parabolic subgroups is parabolic, there exists a unique
minimal parabolic subgroup containing an element. Thus the validity of the fol-
lowing conjecture is supported by the results of [1, 6, 7, 8, 17]

Conjecture 4.13. There exists a unique minimal parabolic subgroup containing a
given b ∈ B.

The following conjecture generalises Proposition 4.5, replacing HI by πI . Note
that for a positive element, HI is a prefix of πI .

Conjecture 4.14. Let b ∈ B such that ℓS±1(b) is minimal in Conj(b). Then any
p ∈ P which centralises b and is such that πsupp(b)(p) = 1 centralises Bsupp(b).

Remark 4.15. The ℓS±1-minimality assumption in Conjecture 4.14 is necessary.
In the braid group of S4 with S = {s, t,u} take b = st, I = supp(b) = {s, t}, and
p = (u2)t. Then πI(p) = π

r
I(p) = 1 and bp = b but p does not centralise s or t.

Proposition 4.16. Conjectures 4.13 and 4.14 are equivalent.

Proof. Assuming Conjecture 4.13, if b and p are as in 4.14, then by Proposition 4.12
BI and pBI , where I = supp(b), are two minimal parabolic subgroups containing
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b, hence they are equal and by Proposition 0.4 p centralises BI , whence Conjec-
ture 4.14.

We prove the converse. Up to conjugating b, we can assume that ℓS±1(b) is
minimal in ConjB(b). Then, by Proposition 4.12, the minimal parabolic subgroups
containing b are the pBsupp(b) for p in CP (b) such that πsupp(b)(p) = 1. By
Conjecture 4.14, p centralises Bsupp(b). We deduce that Bsupp(b) = pBsupp(b) is
the only minimal parabolic subgroup containing b. �

Given a Coxeter system (W,S) and a pair (I, J) with I, J ⊆ S, we define the
ribbon isomorphism problem in W for (I, J) to be the following problem: determine
all the bijective maps ϕ : J → I that extend to an isomorphism ϕw : WJ → WI

such that w is a I-ribbon-J in W .

Proposition 4.17. Assume Λ is a non-empty set of subsets of S such that for any
I in Λ, the word problem and the conjugacy problem are solvable in BI and the
ribbon isomorphism problem is solvable in W for any pair (I, J) in Λ. Then the
two following problems are solvable.

(1) Given I in Λ and a word b on I±1, decide whether the word b represents
the unity in B.

(2) Given two finite subsets I, J in Λ and words i, j on I±1 and J±1, respec-
tively, decide whether or not i and j represent conjugate elements in B.

Moreover, if the solution to the conjugacy problem in each parabolic subgroup BI

with I ∈ Λ provides a conjugating element, then the solution of problem (2) provides
a conjugating element in B too.

Proof. Solution to problem (1) is clear as BI embeds in B and we have a solution
to the word problem in BI . Given i and j as in (2), denote by i and j the elements
represented by i and j, respectively. By the solution to the conjugacy problem in
the parabolic subgroup BI , by testing for conjugacy the words in (I±1)∗ of length
less than or equal to that of a word for i, we can find a representative word on I±1

for each element i′ ∈ BI that is conjugate to i and such that ℓI±1(i′) is minimal in
ConjBI

(i). By Proposition 4.7, ℓI±1(i′) = ℓS±1(i′) and by Proposition 4.10, ℓS±1(i′)

is also minimal in ConjB(i). Similarly, we can find a representative word on J±1

for an element j′ ∈ BJ that is conjugate to j and such that ℓJ±1(j′) is minimal in
ConjBJ

(j). Again, ℓS±1(j′) is minimal in ConjB(j). Now i and j are conjugate if and
only if some i′ and j′ are. By the proof of Proposition 4.10, some i′ is conjugate to
j′ if and only if they are conjugate by the lift to W of some I ′-ribbon-J ′ in W where
J ′ is the support of j′ and I ′ is the support of i′. Since the ribbon isomorphism
problem is solvable in W for any pair (I, J) in Λ, we are done. �

When S is finite the hypothesis concerning the ribbon isomorphism problem
is always satisfied as stated in the following result. As a consequence, we get
Proposition 0.7.

Proposition 4.18. Assume (W,S) is a Coxeter system with S finite. The ribbon
isomorphism problem is solvable in W for any pair (I, J) with I, J ⊆ S.

Proof. Let I, J ⊆ S. Let Λ denote the set of subsets I ′ ⊆ S whose Coxeter graph
is isomorphic to the Coxeter graph of I, and let s be the number of graph au-
tomorphisms of the Coxeter graph of I. Since S and I are finite it takes finite
time to compute Λ and s. Any one-to-one map ϕ : I ′ → I that extends to an
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isomorphism ϕ : WI′ → WI has to induce a isomorphism of graphs. So the set Λ̃
of pairs (I ′, ϕ) such that ϕ : I ′ → I extends to an isomorphism ϕ : WI′ → WI is
finite and its cardinality is bounded by |Λ| × s. On the other hand, every ribbon
can be decomposed into a finite product of elementary ribbons (I ′, v[s, I ′′], I ′′) (see
[4, Proposition 2.3] and the set of elementary ribbons is finite (its cardinality is
at most |S − I| × |Λ|); the set of associated isomorphisms is easy to determine.

Now, consider the finite oriented labelled graph with vertex set Λ̃ and such that
there is an edge from (I ′, ϕ′) to (I ′′, ϕ′′) labelled by the elementary I ′-ribbon-I ′′ τ
if ϕ′′ = ϕ′ ◦ ϕτ . Then any I-ribbon can be read as a path in this graph based at
(I, Id), and any path without loop has a length of at most |Λ̃|, which is less than
|Λ|×s. So, computing all the isomorphisms that correspond to a path whose length
is no more than |Λ|×s provides an answer to the ribbon isomorphism problem. �

5. A new topological version of the retraction

In this section we assume that S is finite, since we use the results of [19]. We did
not check whether Van der Lek’s results could be extended to infinite S. According
to Lemma 2.14, it is sufficient to define πI on the pure braid group and on simple
braids to define it everywhere. We now give a topological definition of πI restricted
to pr−1(WI).

Let V be the reflection representation of W , and VC be the complexified space.
The set T is in bijection with the reflecting hyperplanes of W . Let Hs be the
hyperplane corresponding to s ∈ T . We define X = V − ⋃

s∈T Hs and similarly

XI = V − ⋃
s∈TI

Hs. Any element of VC is of the form v = v1 +
√
−1v2 where

v1, v2 ∈ V . We write v1 = ℜ(v) and v2 = ℑ(v). Now, following Van der Lek, let
C be the open Tits cone in V and let Y = {v ∈ X | ℑ(v) ∈ C} ([19, II, (3.2)]).
We define similarly YI (note that though the Tits cone of WI is bigger than C its
intersection with XI is the same). Choosing some y0 ∈ Y , the pure braid group is
P = Π1(Y, y0) and similarly the pure braid group of BI is PI = Π1(YI , y0). There
is a natural morphism P → PI (since Y ⊆ YI). We will show that this morphism
is equal to πI . More generally, we have

Lemma 5.1. Π1(Y/WI , y0) ≃ pr−1(WI)

Proof. We have the commutative diagram

1 −−−−→ P −−−−→ B = Π1(Y/W )
pr−−−−→ W −−−−→ 1

∥∥∥
x

x

1 −−−−→ P −−−−→ Π1(Y/WI , y0) −−−−→ WI −−−−→ 1

where each line corresponds to a covering. The vertical map in the middle is
induced by the natural map Y/WI → Y/W ; it is injective since the left one is an
isomorphism. This diagram proves the lemma. �

Proposition 5.2. The natural morphism Π1(Y/WI , y0) → Π1(YI/WI , y0) coin-
cides with the restriction of πI to pr−1(WI).

Proof. We prove that the two morphisms coincide on generators of pr−1(WI). By
Lemma 2.19 this group is generated by BI and the elements ws2w−1 with s ∈ S

and ws ∈ W an I-reduced element. Let C be the fundamental chamber in V , that
is the subset defined by αs(x) > 0 for all s ∈ S where αs is a linear form such that
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Hs = {x ∈ VC | αs(x) = 0}. The chambers are the images of C under W . Let FI

be the facet of C defined by αs(x) = 0 for s ∈ I and αs(x) > 0 for s 6∈ I. As in
[19, II, Definition 4.8], we define Y (I) as the subset of Y formed of elements whose
imaginary part is in FI or in a chamber whose closure contains FI . Then as a
subgroup of Π1(Y/WI , y0), the group BI is the image of Π1(Y (I)/WI , y0), and the
natural morphism to Π1(YI/WI , y0) is an isomorphism since Van der Lek [19, II,
Proposition 4.9] shows that the inclusion induces a homotopy equivalence between
Y (I) and YI .

For the elements ws2w−1, we need to show that their image in Π1(YI/WI , y0)
is trivial. But we claim that the image is already trivial in the pure braid group
Π1(YI , y0). This can be seen from the description in Van der Lek [19, I, Theo-
rem 2.21 and II, Discussion 3.10] of such paths by galleries. The element s2 corre-
sponds to the gallery C, sC,C. If s 6∈ I the chambers C and sC are in the same
chamber of YI so that the gallery becomes trivial in YI . By conjugation, the same
happens to ws2w−1. �
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Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par
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