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Frank Nielsen
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Abstract

In this paper, we introduce a notion of mean on irreducible symmetric cones, based on
the product decomposition between the determinant one hypersurface and the determi-
nant. Irreducible symmetric cones and their determinant on surfaces form an important
class of spaces for statistics and data science, since they encompass positive definite
self-adjoint operators as well as Lorentz cones and hyperbolic spaces. By construction,
log-extrinsic means have similar equivariance properties as those of the Fréchet means.
Moreover, the two means coincide under some symmetry assumption on the distribution.
However, the log-extrinsic mean admits an explicit expression and is much simpler to
compute. Numerical experiments show that the log-extrinsic means are a relevant al-
ternative to log-Euclidean means. Furthermore, along with the log-extrinsic mean, we
introduce a corresponding notion of Gaussian distributions, called log-extrinsic Gaus-
sians. A classification experiment on stereo audio signals demonstrates the practical
interest of the log-extrinsic framework.

Keywords: Symmetric cone; Jordan Euclidean algebra; Fréchet mean; log-Euclidean mean;
equivariance; Gaussian-like distributions

1 Introduction

When considering statistics on a homogeneous space Arvanitogeōrgos (2003)G/H, the equiv-
ariance of statistical objects with respect to the group G is a desirable property. However,
in order to be used in applications, statistical objects should be computed in a reasonable
time. These two considerations often results in a trade-off between these two properties. For
instance, the Fréchet mean on a Riemannian homogeneous space is equivariant with respect
to the isometry group, but it is sometimes replaced by non-equivariant approximations that
are easier to compute, see Arsigny et al. (2006) (log-euclidean mean).

A symmetric cone C is a self-dual convex open subset of an Euclidean vector space V
whose group of linear automorphism G(C) is transitive (see section 2). Symmetric cones are
therefore homogeneous spaces. The most classical examples are the cones of positive definite
symmetric or hermitian matrices and the Lorentz cone.
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In this paper we propose a notion of mean, called log-extrinsic mean, on symmetric cones
which both respects equivariance properties and is easy to compute. Note that the arithmetic
mean on C induced by the vector structure is both equivariant with respect to G(C) and easy
to compute. The automorphism group G(C) can be decomposed as a product group of linear
maps of determinant ±1 and positive scaling factors R>0. Unlike the arithmetic mean, the
Fréchet mean computed from the Riemannian structure of C is not only equivariant with
respect to G(C), but also respects the orbits of the two factors of G(C). This results in a
deeper equivariance property, at the cost of more involved computations.

Given a set of samples x1, . . . , xn ∈ C, the proposed log-extrinsic mean is defined as,

L(x1, . . . , xn) = e
1
rn

∑
i log detxi

∑
i

xi
det(xi)1/r

det
(∑

i
xi

det(xi)1/r

)1/r , (1)

where r is the rank of the symmetric cone. Log-extrinsic means have properties similar
to those of Fréchet means but ensures a low computational cost. In particular, it is shown
that they coincide under some symmetry assumptions on the probability distribution. From
a practical standpoint, the log-extrinsic means can be seen as an equivariant alternative to
log-Euclidean means.

The paper is organized as follows:
Section 2 starts by a brief introduction to symmetric cones. We then describe the product

structure of its automorphism groups and the corresponding orbital decomposition of the
cone, as done in Massam (1994). The section ends with Eq.4, defining the log-extrinsic mean
for arbitrary probability measures.

In section 3, we describe the Riemannian structure of symmetric cones and the cor-
responding Fréchet mean. We describe an invariant metric, making explicit the product
structure on the orbital decomposition. We recall the definition of the Fréchet mean on a
Riemannian manifold and show that all the invariant metrics on a symmetric cones lead to
the same Fréchet mean.

In section 4, we study some properties of the log-extrinsic mean. We show that under a
symmetry assumption on the probability distribution the log-extrinsic mean and the Fréchet
mean are equal. We also provide a central limit theorem for log-extrinsic mean.

In section 5, we propose a type of Gaussian distributions associated with log-extrinsic
means and show some of their properties. These distributions are defined as a product
between a Wishart density conditioned on the hyper-surface of determinant 1 and a log-
normal Gaussian.

In section 6, we show the practical relevance of the log-extrinsic means and corresponding
Gaussians. We provide first convergence curves as well as computation times of empirical log-
extrinsic means, Fréchet means, and log-Euclidean means. We describe then a classification
experiment on the cone of 2 by 2 covariance matrices and compare the classification results
using these different approaches.
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Figure 1: The Lorentz cone L(3) and it determinant one surface S.

2 Log-extrinsic means

This section assumes some knowledge on symmetric cone. The necessary facts about sym-
metric cones are summarized in the appendix 8.1. The log-extrinsic means described at the
end of this section can be defined on arbitrary symmetric cones. However, most of their
properties studied in this paper hold only for irreducible symmetric cones. For the sake of
simplicity, we restrict the scope of this paper to irreducible symmetric cones. Hence in the
rest of the paper, the letter V refers to a finite dimensional real vector space endowed with
an inner product. Unless stated otherwise, the letter C refers to an irreducible symmetric
cone in V . The most important irreducible symmetric cones for applications in statistics
and data sciences are the cones P(n,R) and P(n,C) of symmetric and Hermitian positive
definite matrices of size n× n on R and C as well as Lorentz cones L(n) for n ≥ 3:

L(n) =

{
(x0, . . . , xn−1) ∈ R>0 × Rn−1, x20 >

n−1∑
i=1

x2i

}
.

Lorentz cones are also called second-order cones, quadratic cones, or icecream cones in the
literature, see Fig.1.

Before defining the log-extrinsic mean, let us introduce the so-called orbital parametriza-
tion of C. Recall that the Jordan product associated with a symmetric cone leads to a notion
of rank r of a symmetric cone, and to a determinant function. For matrix cones P(n,R)
or P(n,C), r = n, while for Lorentz cones L(n) the rank r is always 2. The determinant
function obeys the following scaling rule: det(λx) = λr det(x) for any λ ∈ R and x ∈ V , and
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is always real and strictly positive on C.
Let S = {x ∈ C : detx = 1} be the codimension one sub-manifold of determinant one,

and note π the projection on S defined as

π(x) =
x

det(x)
1
r

. (2)

The map ϕ̃ : C → S × R>0 defined by

ϕ̃ (x) = (π(x),det(x))

is a diffeomorphism. Constant coordinate sets of ϕ̃ are shown on Fig.2 on a vertical section
of L(3). Let G(C) be the Lie group of automorphisms of V which leaves C invariant,

G(C) = {g ∈ GL(V ), g(C) = C}.

Write Det(g) the usual determinant of an element g ∈ G(C). The subgroup G(S) of G(C)
preserving S is given by elements g ∈ G(C) such that |Det(g)| = 1. The group G(C) is
isomorphic to G(S)× R>0, and the action of G(C) on C can be decomposed using ϕ̃ as the
product between an action of G(S) on S and an action of R>0 onto itself. These actions are
given by

∀ (g, α) ∈ G(S)× R>0,∀ (x, d) ∈ S × R>0, (g, α)(x, d) = (gx, αrd).

The submanifold S is an orbit of the action of G(S), and fixing the first or the second
coordinate in the product S × R>0 describes respectively an orbit of the action of the R>0

component or of the G(S) component. Hence the decomposition ϕ̃ : C → S × R>0 is called
the orbital parametrization in Massam (1994).

The log-extrinsic mean is defined from the Cartesian product of an equivariant mean on
S with an equivariant mean on R>0. This results in a mean equivariant with respect to the
action of G(C) which respects the orbits of the actions of R>0 and G(S).

In the rest of the paper, let E denote the arithmetic mean or expectation. For a proba-
bility distribution µ on C,

E(µ) =
∫
C
x dµ.

Given a probability distribution µ on S, let E(µ) be the extrinsic mean on S defined as

E(µ) = π (E(µ)) . (3)

Linear maps commute with E, and it is not difficult to see that the action of G(S) commutes
with π. Hence E is equivariant under the action of G(S). This type of extrinsic mean have
been considered in the context of Lorentz cones in Galperin (1993).
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Figure 2: The grey area is the intersection between a Lorentz cone and a plane containing
the coordinate x0. The black, blue and green crosses are respectively the arithmetic mean,
the Fréchet mean, see section 3, and the log-extrinsic mean, see Eq.4, of the four red points.
Recall that the log-Euclidean mean is obtained by linearizing the space using a Riemannian
logarithm. It can be shown that every such plane of a Lorentz cone is a flat manifold for the
invariant Riemannian metrics introduced in section 3, hence the log-Euclidean mean and
the Fréchet mean coincide.
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Recall that a scaling α acts on a determinant d as α.d = αrd. Hence, there exists
a variety of candidates for the mean on determinants, such as so-called power means Mp

which include the geometric mean M0, respectively defined in the finite case by

Mp(d1, . . . , dn) =

(
1

n

∑
i

dpi

)1/p

and M0(d1, . . . , dn) = e
1
n

∑
i log(di),

with p > 0. Due to its link with the Riemannian structures which will be described in
section 3, and its superiority in some classification experiment, see section 6, we focus on
the geometric mean on determinants.

Let H : C → R be the map defined by

H(x) = log(det(x)),

and let ϕ : C → S × R be the diffeomorphism defined by ϕ = (π,H).
Write π∗µ and H∗µ, the pushforwards of µ by π and H respectively. The log-extrinsic

mean on C is then defined by

L(µ) = ϕ−1 (E(π∗µ),E(H∗µ)) = e
1
r
E(H∗µ)E(π∗µ). (4)

Like the arithmetic mean on C, it is easy to check that L is equivariant with respect to
the action of G(C). Indeed, for g ∈ G(S) and α ∈ R>0, the equivariance on both factors of
C ∼ S × R enables to write

L ((αg)∗µ) = ϕ−1 (gE(π∗(µ)), r log(α) + E(H∗µ)) = αgL(µ).

However, unlike the arithmetic mean, L descends to equivariant means on C/R>0 and
C/G(S). Indeed, by construction of L, we have the following commutation diagrams,

P(C) C

P(S) S ∼ C/R>0

L

π∗ π

E

P(C) C

P(R) R ∼ C/G(S)

L

H∗ H

E ,

where P(X) is the set of probability measures of the measurable space X.
Let us make three remarks. First the Jordan product on an irreducible symmetric cone

is unique only up to a scaling factor, and consequently, so is the determinant function. It can
be checked that the definition of log-extrinsic means is independent of this scaling factor.

Second, any section S ′ of C could serve as representatives of the quotient C/R>0, in order
to define an extrinsic mean on C/R>0. Another natural candidate is the section given by
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trace(x) = 1. Though, it can be checked that the extrinsic mean defined in this way on
C/R>0 is not equivariant with respect to the action of linear maps. We conjecture that the
only sections leading to an extrinsic mean which is equivariant with respect to the action of
linear maps, are proportional to S. They correspond to different choice of scaling factors in
the Jordan product and lead to the same log-extrinsic mean.

Third, on cones of positive definite matrices, a notion of geometric mean has been for-
malised in Ando et al. (2004) as those verifying a set of axioms, known as the ALM-axioms.
Our mean does not verify the first axiom (consistency with scalars), and is therefore not
a geometric mean, unlike the Fréchet mean introduced in the next section, see Yamazaki
(2013).

3 Riemannian metrics and Fréchet means

The groups G(C) and G(S) are transitive on C and S respectively. The cone C and the
section S are hence homogeneous manifolds. Beyond homogeneity, it can be proved that
they are simply connected complete Riemannian symmetric spaces of non-positive curvature
Sasaki (1980); Rothaus (1960). Recall that on such spaces, the Riemannian exponentials at
each point are bijections and the Riemannian logarithm is well defined.

Let us start by describing the invariant metrics. The characteristic function φ : C → R
of a homogeneous cone is defined by

φ(x) =

∫
C
e−⟨x,y⟩ dy

where dy is the Lebesgue volume element in V . For g ∈ G(C), we have

φ(gx) =
∣∣det(g)−1

∣∣ ∫
C
e−⟨x,y⟩dy.

Hence φ is invariant under G(S). A calculation shows that the Hessian of log(φ) is positive
definite, see Faraut and Korányi (1994) Proposition I.3.3. Hence its restriction to the sub-
manifold S defines an invariant Riemannian metric on S. Denote dφS the associated distance
function. The following theorem describes the invariant distances on C.

Theorem 1. Let C be an irreducible symmetric cone. Any invariant Riemannian distance
on S is of the form dS = αdφS for some α ∈ R>0. Furthermore, any invariant Riemannian
distance dC on C can be decomposed as a product metric

dC(x, y)
2 = αdφS (π(x), π(y))2 + β(H(x)−H(y))2, (5)

where α, β ∈ R>0.

Though this result should be known, we are not aware of a reference mentioning it and
we provide a proof in appendix 8.2.
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Note that the choice of an arithmetic mean on the logarithm of the determinants in the
previous section, is compatible with the logarithmic behavior of the distance on determi-
nants.

Let us recall the definition of the Fréchet mean on an arbitrary Riemannian manifold
(M, d). Let µ be a probability distribution on M and Fµ : M → R ∪ {∞} be the function
defined by

Fµ(x) =
∫
M
d(x, y)2 dµ(y).

Definition 1. Let F be the functional defined by

F (µ) = argminx∈MFµ(x).

When F (µ) contains a single element m, we abuse notation and write F (µ) = m. F (µ) is
then called the Fréchet mean of µ.

Let s be an isometry of M. Clearly, the Fréchet mean commute with s,

s(F (µ)) = F (s∗µ).

As we will see in the next section, when the distribution µ has enough symmetries, the
above commutation relation enables to determine its mean.

The uniqueness of the mean strongly depends on the geometry of the manifold. When the
curvature is non-positive, the function F has remarkable properties leading to the following
result.

Theorem 2. Let (M, d) be (S, dS) or (C, dC). Let µ be a probability measure on (M, d).
If Fµ(x) has a finite value for some x in M, then it is uniformly convex and has a unique
minimum. Since Fµ is differentiable, the Fréchet mean F (µ) is the only solution of

∇(Fµ)x = 2

∫
M

logx(y)dµ(y) = 0.

The proof of the uniqueness of the Fréchet mean as well as the definition of uniform
convexity can be found in Sturm (2003) (proposition 4.3) in the more general setting of
metric spaces. It shows that when the Fréchet mean exists it can be obtained by a gradient
descent. Recall that the Riemannian logarithms on S and C are defined globally, and that the
gradient of the squared distance function is given by ∇xd(x, y)

2 = 2 logx(y). The expression
of ∇(Fµ)x is obtained by interchanging derivation and integral.

According to theorem 1, the function Fµ can be expressed as the following sum,

Fµ(x) = α

∫
S
dφS (π(x), π(y))2 dπ∗µ(y) + β

∫
R
(H(x)− y)2dH∗µ(y). (6)
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This decomposition of Fµ enables to show that given a probability distribution µ supported
on S, the Fréchet mean computed in S or in C coincide,

argminx∈S Fµ(x) = argminx∈C Fµ(x).

More generally, theorem 1 implies that S is a totally geodesic submanifold of C. Another
consequence infered from Eq.6 is that the Fréchet mean for a measure µ on C is independent
of α and β, and hence of the choice of the invariant Riemannian metric. Finally, it can
be checked using Eq.6 that similarly to the log-extrinsic mean, the Fréchet mean can be
expressed as

F (µ) = ϕ−1 (F (π∗µ),E(H∗µ)) = e
1
r
E(H∗µ)F (π∗µ). (7)

4 Properties of log-extrinsic means

4.1 Extrinsic means on S

4.1.1 Extrinsic means and Fréchet means

Note Kx the subgroup of the identity component of G(C) that leave the point x ∈ C fixed.
The following important result is a direct consequence of proposition III.4.1 of Faraut and
Korányi (1994).

Theorem 3. Let C be an irreducible symmetric cone. For all x, y ∈ C, if y is fixed by Kx,
then there exists α > 0 with y = αx.

Proof. The proposition III.4.1 of Faraut and Korányi (1994) states a similar result in the
context of simple Euclidean Jordan algebras, which are in direct correspondence with irre-
ducible symmetric cones.

As a corollary, we get the following results relating the extrinsic mean and the Fréchet
mean.

Corollary 1. Let C be an irreducible symmetric cone, and µ be a Kx-invariant measure for
some x ∈ S, i.e.,

∀k ∈ Kx, k∗µ = µ.

When the means E(µ) and F (µ) exist

E(µ) = F (µ) = x.

Proof. Being at the same time linear maps and Riemannian isometries, the elements of Kx

commute with the log-extrinsic mean as well as the Fréchet mean. Hence, theorem 3 states
that E(µ) and F (µ) are proportional to x. Since the three elements are of determinant 1,
they must be equal.
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It is known that an homogeneous space G/H, with G a locally compact group and H
a compact subgroup of G, admits a unique G-invariant measure up to a scaling factor (see
Wijsman (1990), Chapter 7, Corollary 7.4.4). It follows that a symmetric cone C, (resp. its
section S), admits a unique G(C)-invariant measure (resp. G(S)-invariant measure) up to a
scaling factor.

The invariant measure on S is easy to construct. Given a measurable set A ⊂ S, note
Ã = {tx, t ∈]0, 1], x ∈ A}. Since the elements of G(S) are of determinant ±1, the Lebesgue
measure in V is G(S)-invariant and vS(A) = Leb(Ã) is an invariant measure. In the rest of
the paper, densities on S are always taken with respect to vS .

Corollary 2. Let C be an irreducible symmetric cone. Let µ be a probability distribution on
S with a density f such that there exists a function h : R+ → R+ and a point x in S with

f(y) = h(dS(x, y)).

When the means exist,

E(µ) = F (µ) = x.

Proof. As a function of y, dS(x, y) is Kx-invariant. Hence the result is implied by corollary
1.

These results are similar to theorem 3.3 of Bhattacharya and Patrangenaru (2003), where
authors consider extrinsic means on a Riemannian manifold embedded in Rn, as the or-
thogonal projection for the Euclidean distance, of the arithmetic mean on the embedding.
Although the projection π on S is not the orthogonal projection for the Euclidean distance,
the result is obtained using similar arguments.

To analyse the symmetries of probability distributions in concrete examples, it is impor-
tant to have characterisations of the automorphism groups for each cone. Let us describe
G(C) and Kx for L(n), P(n,R) and P(n,C).

The automorphism group G(L(n)) of L(n) is isomorphic to O+(1, n − 1) × R>0 where
O+(1, n− 1) is the group preserving the Minkowski metric of signature (+− . . .−) and the
sign of the first coordinate, and R>0 is the multiplicative group acting as homothety. Denote
o = (1, 0, . . . , 0)T ∈ L(n). It is easy to check that Ko is the group of matrices of the form

M =

(
1 0
0 R

)
where R ∈ SO(n − 1). At an arbitrary point x ∈ L(n), Kx is obtained by a conjugation of
Ko, Kx = gKog

−1, with any g ∈ G(C) such that x = go.
For families P(n,R) and P(n,C), the automorphism groups are fully described by con-

gruence operations. For K = R or C, let Γ be the map defined as

Γ : GL(n,K) → G(P(n,K))

A 7→ (X 7→ AXA∗)
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where ∗ is the transpose or the conjugate transpose. When K = R, G(P(n,R)) is the image
of Γ, see Dolcetti and Pertici (2018); Orlitzky (2024). When K = C, G(P(n,C)) is the
group generated by the image of Γ and the conjugation map, see Schneider (1965); Orlitzky
(2024). At the identity matrix I, it is possible to check that KI is the image by Γ of SO(n)
in the real case, and of SU(n) in complex cases. At an arbitrary X, KX is the image by Γ
of ASU(n)A−1, for any A invertible with X = AA∗. Since X admits a symmetric square

root we can choose A = X
1
2 .

In the particular case where C = L(n), the section

S =

{
(x0, . . . , xn−1) ∈ R>0 × Rn−1, x20 −

n−1∑
i=1

x2i = 1

}
is a hyperbolic space of dimension n (hyperboloid surface). Hyperbolic spaces are symmetric
space with a maximal amount of symmetries. This enables to restate the previous corollaries
with a weaker symmetry hypothesis on the measure µ. For x ∈ S, define sx as a conjugation
of the Jordan inverse by an element g ∈ G(S) such that gx = o,

gsx(y) = (gy)−1,

It can be checked that the Jordan inverse preserves S, hence sx preserves S. Furthermore,
it can be proved that x is the only fixed point of sx and that the definition does not depend
on the choice of g. This involution is often called the “geodesic symmetry” at x because it
reverses the time parameter of the Riemannian geodesics emanating from x,

sx(γ(t)) = γ(−t),

where γ is a geodesic curve with γ(0) = x.

Theorem 4. Let C be a Lorentz cone. Assume that a distribution µ on S is sx-invariant,
for some x ∈ S. When the means exist,

E(µ) = F (µ) = x.

Proof. On a Lorentz cone, the Jordan inverse is given by x−1 =
det(x)−1(x0,−x1, . . . ,−xn−1). Hence on S, the Jordan inverse is the restriction of
the linear map k ((x0, . . . , xn−1)) = (x0,−x1, . . . ,−xn−1). Using the definition of the
determinant given in appendix 8.1, it is clear that k ∈ G(S). Since sx = g−1kg for any g
with gx = o, sx ∈ G(S). Hence sx is an isometry and commutes both with the log-extrinsic
mean as well as the Fréchet mean. Since x is the only fix point of sx, the result holds.

Fig.3 gives an illustration of the result for the average of two points. Note that this
result does not hold on arbitrary cones because the geodesic symmetries on S are usually
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Figure 3: As in Fig.1, consider a vertical section of a Lorentz cone.The black, red and green
curves are weighted averages of the two red points, with weights varying between 0 and 1,
for the arithmetic mean, the Fréchet mean and the log-extrinsic mean respectively. The red
curve described by the Fréchet mean is the Riemannian geodesic. The black segments show
the correspondences between the Fréchet and the log-extrinsic means for identical weights.
The two curves intersect for weights equal to 0.5. In that case, the Fréchet mean is the
mid-point of the Riemannian geodesic, and the distribution is invariant under the geodesic
symmetry at the Fréchet mean. By Theorem 4, the log-extrinsic mean and the Fréchet mean
coincide.

not restrictions of linear maps. This enable to relax the hypothesis of corollary 2, to densities
with an anisotropy encoded by a quadratic form in the tangent space at the mean. Recall
that hyperbolic spaces have a well defined logarithm attached at each point, defined as the
inverse of the exponential map.

Corollary 3. Let C be a Lorentz cone. Let x ∈ S and Q be a positive definite quadratic
form in TxS. Let f be a probability density on S of the form

f(y) = h (Q (logx(y))) ,

where h is a function h : R+ → R+. When the means exist,

E(µ) = F (µ) = x.

Proof. Since sx is a geodesic symmetry, logx(sx(y)) = − logx(y). Hence the density f is
sx-invariant, and the result is a particular case of theorem 4.
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4.1.2 A central limit theorem

The next theorem is a central limit theorem (CLT) for a sequence of i.i.d. random variables
Xi with values in S, without symmetry assumptions about their distribution. The CLT for
random variables valued in a vector space involves a homogeneous dilation of the space by
a factor

√
n, n being the number of random variables. However on manifolds, homogeneous

dilations have no intrinsic definition. That is why, CLT on manifolds are usually expressed
in a coordinate system Bhattacharya and Patrangenaru (2003, 2005).

Since det tx = tr detx for all x ∈ C and t > 0, we have V = TxS
⊕

R.x for all x ∈ S.
Denote Px : V → TxS the projection along R.x onto TxS. To express the CLT, we project
S to the tangent space attached to the extrinsic mean E(Xi).

Theorem 5. Let (Xi)i∈N be a sequence random variables i.i.d. with values in S of law µ
and with extrinsic mean ϵ. Suppose that the Euclidean norms of the variable, ∥Xi∥, are
square integrable and consider the covariance Σ:

Σ =

∫
S
(x− E(µ))⊗ (x− E(µ)) dµ(x).

Denote Σ|T the marginalisation of the covariance Σ on TϵS with respect to the decomposition

V = TϵS ⊕ Rϵ. Let ∆n = 1
n

∑n
i=1 δXi be the empirical measure and let En be the empirical

extrinsic mean,
En = E(∆n).

Then we have,
√
nPϵ(En)

L−→ N
(
0,

Σ|T

det(E(µ))2/r

)
.

where Pϵ is the projection onto TϵS parallel to Rϵ.

The proof is given in appendix 8.3.

4.2 Log-extrinsic means on symmetric cones

As seen in section 2, the log-extrinsic mean on C is constructed from the extrinsic mean on
S and an arithmetic mean on the logarithm of determinants. We do not express explicitly
the CLT of log-extrinsic means on C since it is readily obtained from the CLT for extrinsic
means on S and the CLT for arithmetic means on R. The following points are reformulations
of the results of section 4.1 for the log-extrinsic means. Points 2-3-4) rely on the following
fact. For p, q ∈ R, let sdetp (q) = p + (p − q) be the symmetry with respect to p. For µ a

distribution on C, if H∗µ is sdetp -invariant, then when it exists, E(H∗µ) = p.

1) Let µ be a Kx-invariant measure on a irreducible symmetric cone C, for some x ∈ C,

∀k ∈ Kx, k∗µ = µ.
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When the means exists,

L(µ) = F (µ) = e
1
r
E(H∗µ)π(x). (8)

Eq.8 can be derived from Eq.4, Eq.7 and corollary 1, after noting that Kx = Kπ(x).
Remark : the symmetry under Kx does not impose constraints on the distribution of
determinants. Hence the determinant of the means can be different from the determi-
nant of x.

2) Note λ the canonical Lebesgue measure on R and vC = ϕ−1
∗ (vS ⊗λ). It can be checked

that vC is an invariant measure on C. Let µ be a probability distribution on C, with a
density f of the form

f(y) = h(d(x, y)),

where h : R+ → R+, d is an invariant Riemannian distance on C, and x ∈ C. When
the means exist, Eq. 8 holds since f is Kx-invariant. Using the product decomposition
of invariant Riemannian distances given in Theorem 1, it is possible to check that H∗µ
is sdetH(x)-invariant. Hence E(H∗µ) = H(x) and

L(µ) = F (µ) = x.

3) Let C be a Lorentz cone. For x in C, the geodesic symmetry sCx of the Riemannian
symmetric space C is given by sCx = ϕ−1 ◦ (sπ(x), sdetH(x)) ◦ ϕ, where sπ(x) is the geodesic

symmetry on S at π(x). Assume that a distribution µ on C is sCx-invariant, for some
x ∈ C. We have that H∗µ is sdetH(x) invariant and that π∗µ is sπ(x)-invariant. By theorem

4 and the fact that E(H∗µ) = H(x), when the means exist,

L(µ) = F (µ) = x.

4) Let C be a Lorentz cone, let x ∈ C and let Q be a positive definite quadratic form on
TxC = V . Let f be a probability density on C of the form,

f(y) = h (Q(logx(y))) .

where h is a function h : R+ → R+ and logx is the Riemannian logarithm at x. Recall
that logx(s

C
x (y)) = − logx(y), hence f is sCx-invariant and when the means exist,

L(µ) = F (µ) = x.
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5 Gaussian like distributions

Beyond the CLT, there exists several characterizations of Gaussian distributions on the real
line that are relevant for statistical inference. We state informally two of them:

i) Given the mean and the variance, the Gaussian distribution is the unique distribu-
tion maximizing the differential entropy: The set of Gaussians forms an exponential
family Efron (2022).

ii) At fixed variance, Gaussian distributions form a location family parametrized by the
mean. It is the only location family such that the maximum likelihood estimation of the
location parameter from i.i.d. samples is the empirical mean, see for instance Jaynes
(2003).

Most of the characterizations of Gaussian distributions rely on a notion of mean. We
propose here a family of log-extrinsic Gaussian distributions compatible with i) and ii)
for the log-extrinsic means. We first define extrinsic Gaussian distributions on the section
S, and extend them to the cone by taking a product with a log-Gaussian distribution on
determinants.

5.1 Extrinsic Gaussians on S

Let θ ∈ V . When it exists, define Z(θ) as

Z(θ) =

∫
S
e−⟨θ,x⟩ dvS(x).

Using the definition of vS given in section 4.1.1, we have that

Z(θ) =

∫
S
e−⟨θ,x⟩ dvS(x) ≤

∫
∪0≤t≤1tS

e⟨θ,x⟩ dLeb(x) ≤
∫
C
e−⟨θ,x⟩ dLeb(x).

Since symmetric cones are self dual, it is possible to check that Z(θ) is properly defined if
and only if θ ∈ C. For θ ∈ C, let fθ(x) : S → R+ be the probability density on S defined as

fθ(x) =
1

Z(θ)
e−⟨θ,x⟩. (9)

Denote MS = {fθ, θ ∈ C} the corresponding exponential family. These distributions have
been considered in Massam (1994), as Wishart distributions conditioned by the value of the
determinant with det(X) = 1. Note that Wishart distributions are traditionally defined on
P(n,R) or P(n,C), but they can be defined more generally on arbitrary symmetric cones,
see for instance Faraut and Korányi (1994); Massam (1994); Casalis and Letac (1996). When
C is a Lorentz cone, S is a connected component of the unit sphere for the pseudo inner
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product of signature (+ − . . .−). Hence these are the analogues of the von Mises-Fisher
distributions for the pseudo-inner product of signature (+− . . .−) and have been studied in
Barndorff-Nielsen (1978); Jensen (1981); Barndorff-Nielsen et al. (1982); Massam (1994).

Denote Eθ the usual barycenter

Eθ =
∫
xfθ(x) dvS .

and define
ϵ = E(fθ) = π(Eθ) and s = det(Eθ)

1
r − 1, (10)

where r = rank C. We have then Eθ = (s+1)ϵ. The family of densities fθ form an exponential
family. It follows that the densities fθ can also be parametrized by their expectations, and
hence by ϵ and s.

For g ∈ G(S), note g∗f the pushforward of the density f by g. Note that since g is
vS-preserving, the pushforward of functions and density functions are identical, i.e., g∗f =
f ◦ g−1.

Theorem 6. We have:

1. For all g ∈ G(S)
g∗fθ = fg−1∗θ and g∗fϵ,s = fgϵ,s.

2. The map θ 7→ (ϵ, s) is a bijection from C to S × R>0 with

ϵ = π(θ−1) and s = α(det(θ)
1
r )− 1,

where α : R>0 →]1,∞] is a bijective decreasing function.

The proof is given in appendix 8.4. One the one hand, when s → ∞ it is possible to
check that the volume

∫
A fϵ,sdvS of any compact set A ⊂ S tends to 0. On the other hand,

when s→ 0, the density fϵ,s concentrates around ϵ. Hence ϵ and s play the role of a location
and a scale parameter.

By deriving the integral defining Z(θ), it is easy to check that the expectation (s + 1)ϵ
and θ are related by

(s+ 1)ϵ = −∇ log(Z(θ)).

The expression of the normalizing factor Z(θ) provided in Massam (1994) for an arbitrary
symmetric cone involves a generalized hypergeometric function. In general, deriving or
approximating the function (ϵ, s) 7→ θ might not be a trivial task. It is nonetheless the case
when C = P(2,R) ∼ L(3), where (ϵ, s) 7→ θ admits a remarkably simple expression.

Theorem 7. When C = P(2,R) ∼ L(3),

Z(θ) = det(θ)−1e− det(θ) and θ = (sϵ)−1
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Proof. The expression of Z(θ) can be found in Nielsen and Okamura (2023) and the relation
θ = 1

s ϵ
−1 is derived in appendix 8.5.

The differential entropy of a density f on S is defined as

S(f) =

∫
f(x) log(f(x))dvS(x).

The following theorem shows that the family of densities fϵ,s admits characterizations anal-
ogous to i).

Theorem 8 (Maximum entropy density). Given a location parameter ϵ ∈ S and a scale
parameter s ∈ R>0, the density fϵ,s is the unique maximum of S among probability densities
f on S verifying the constraint

(s+ 1)ϵ =

∫
xf(x) dvS .

This is a general result on exponential families, see for instance Efron (2022). Recall that
in exponential families, the maximum likelihood estimator of the expectation parameter,
given independent samples, is the empirical vector mean. Hence the maximum likelihood
estimators of ϵ and s are readily derived from Eq.10. The characterization ii) of Gaussians
does not involve the full location-scale model of Gaussians but only location models at fixed
scale. For s > 0, consider the location model Ms

S = {fϵ,s, ϵ ∈ S}. The next theorem relates
such models and the characterization ii) of Gaussians. Note ϵ̂MLE the maximum likelihood
estimator (MLE), given independent samples, of the location parameter ϵ.

Theorem 9 (Location family and MLE). Let x1, . . . , xn ∈ S and ∆n = 1
n

∑n
i=0 δxi be the

corresponding empirical measure. The MLE of ϵ in the model Ms is the extrinsic mean,

ϵ̂MLE(x1, . . . , xn) = E (∆n) .

Call location model a set of densities fp parametrized by a point p ∈ S such that for all
g ∈ G(S), fgp = g∗fp. When C is a Lorentz cone, the models Ms

S for s > 0 are the
only location models with continuously differentiable density functions such that the MLE
coincides with the extrinsic mean.

The proof is given in appendix 8.6. We are currently unaware whether or not this is
a characterizing property of Ms when the cone is not Lorentzian. The proof of unique-
ness on Lorentz cones is an adaptation of the Gauss derivation of Gaussians provided in
Jaynes (2003). By turning hyperbolic trigonometric functions into usual trigonometric func-
tions, it is possible to check that the characterisation result also holds for von Mises-Fisher
distributions on spheres. We are not aware of an existing reference showing this character-
ising property, though it is probably not new due to the importance of von Mises-Fisher
distributions for directional statistics.
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5.2 Log-extrinsic Gaussians on symmetric cones

Let gm,σ be the Gaussian density on R,

gm,σ(x) =
1√
2πσ2

e−
(x−m)2

2σ2 .

Building on the exponential family MS , define f(ϵ,s,m,σ) on C as a product between f(ϵ,s)
and a Gaussian on the logarithm of the determinant : f(ϵ,s,m,σ) = ϕ−1

∗ (f(ϵ,s) ⊗ g(m,σ)),

f(ϵ,s,m,σ)(x) = f(ϵ,s) (π(x)) gm,σ (H(x)) . (11)

Defined in this way, f(ϵ,s,m,σ) is a probability density with respect to vC , defined in section
4.2. Without loss of information, the locations parameters ϵ and m can be merged in a
global location parameter l = e

m
r ϵ. It is easy to check that l is the log-extrinsic mean of

f(l,s,σ),
L(f(l,s,σ)) = l.

Since the maximum entropy and the MLE properties holds for both f(ϵ,s) and g(m,σ), theo-
rems 8 and 9 have their counter parts on C.

i) Given l, s and σ, f(l,s,σ) is the maximum entropy distribution on C.

ii) Consider the location model M(s,σ) = {f(l,s,σ), l ∈ C, s, σ ∈ R>0}. Let X1, . . . , Xn,
be i.i.d. random variables valued on C, and let ∆n =

∑n
i=0 δXi be the corresponding

empirical measure. The MLE estimator of l in Ms,σ is the extrinsic mean,

l̂MLE(X1, . . . , Xn) = L (∆n) .

When C is a Lorentz cone, Ms,σ is the only location model which verifies this property.

6 Numerical experiments

6.1 Empirical means convergence curves

We show here convergence curves for the empirical log-extrinsic, Fréchet and log-Euclidean
means in several scenarios. Recall that the log-Euclidean mean of a distribution µ on P(n,R)
is defined as

LEc(µ) = exp

(∫
P(n,R)

log(X)dµ(X)

)
, (12)

where exp and log are the matrix exponential and logarithm. Since the Riemannian loga-
rithm at the identity and the matrix logarithm coincide, the log-Euclidean mean can be seen
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as a linear approximation of the Fréchet mean in the tangent space at the identity matrix.
The log-Euclidean mean is popular for practical applications due to its low computational
complexity.

We focus on two different types of distributions: Wishart distributions and exponential-
wrapped normals on P(n,R), and set the dimension n to 2 and 20.

Define first Wishart distributions on P(n,R) and compute their means. Let (Yi)i∈N be
i.i.d. random vectors on Rn following a normal distribution of mean 0 and covariance Σ. The
Wishart distribution W(Σ, k) is defined as the law of the empirical second order moment

X =
k∑
i=1

YiY
T
i .

When k ≥ n, W(Σ, k) is supported on P(n,R). Recall that the group KI fixing the identity
matrix is given by Γ(SO(n)) where Γ(A)(X) = AXAT . Hence the group KΣ fixing Σ is
given by KΣ = Γ(Σ1/2SO(n)Σ−1/2). Let A ∈ GL(n,R), it is easy to check that

AXAT ∼ W(k,AΣAT ), (13)

which shows that KΣ leaves W(Σ, k) fixed. Hence the log-extrinsic and the Fréchet mean
can be computed using Eq.8:

L(W(Σ, k)) = F (W(Σ, k)) = e
1
n
E(H∗W(Σ,k))π(Σ).

By differentiating the log partition of the Wishart density, a standard calculation gives

E (H∗W(Σ, k)) = n ln(2) + ln(det(Σ)) +

n∑
i=1

ψ

(
k + 1− i

2

)
,

where ψ is the diagama function, i.e. the logarithmic derivative of the gamma function.
Note ψn(

k
2 ) =

∑n
i=1 ψ

(
k+1−i

2

)
the multivariate diagama function. We obtain

L(W(Σ, k)) = F (W(Σ, k)) = 2 det(Σ)1−
1
n eψn(

k
2
)Σ.

Defined now exponential-wrapped normal distributions on P(n,R) as done for instance in
Chevallier et al. (2022). In the rest of the paper, let d be the following invariant Riemannian
distance on P(n,R):

d(A,B) = ∥ log(A− 1
2BA− 1

2 )∥, (14)

and denote gΣ the local metric. Let U be a random vector following a normal distribution
on the tangent space TΣP(n,R), of mean 0 and of covariance Cov. The exponential-wrapped
normal distribution WN (Σ, Cov) is defined as the law of

X = expΣ(U),
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where expΣ is the Riemannian exponential at Σ. By theorem 2, since E(logΣ(X)) = 0, the
Fréchet mean of WN (Σ, Cov) is Σ.

Assume now that the covariance is a multiple of the identity matrix in a gΣ-orthonormal
basis of TΣP(n,R): Cov = v

dimIdim×dim with v > 0 and dim = n(n+1)
2 . It is possible to show

that KΣ leaves WN (Σ, Cov) stable, and Eq.8 enables to relate the log-extrinsic mean to the
Fréchet mean:

L(WN (Σ, v)) = F (WN (Σ, v)) = Σ.

Denote M the Fréchet or log-extrinsic mean of either Wishart or wrapped normal distri-
butions. Let Emp(p) refer to an empirical mean of p i.i.d. samples, and note RRMSE(p)
the Riemannian root mean squared error between the empirical mean and M ,

RRMSE(p) =
√

E (d(M,Emp(p))2).

LetD(n) denote the diagonal matrix with n eigenvalues linearly spaced between 1 and 10.
We estimated the convergence curves of the empirical means for the Wishart distributions
W(D(2), 4), W(D(20), 40). We also considered wrapped normal distributions in dimension
2 and 20, whose means M coincide with those of the Wishart distributions, and whose
covariance matrices are the identity matrix in an orthonormal basis of TMP(n,R).

Due to the invariance of the metric, and the equivariance of the log-extrinsic mean and
of the Fréchet mean, the convergence curves of the empirical means do not depend on the
mean M . The log-Euclidean mean however is not equivariant under G(C). Hence, the curve
shown in Fig.4 would differ for different choices ofM : the closerM is of the identity matrix,
the better the log-Euclidean approximation is.

For each distribution, the curves RRMSE(p) are estimated using Monte-Carlo sampling
using 500 samples and shown on Fig.4. Fig.4 also show the average computing time of
Emp(p) from the i.i.d. samples in each scenario. These curves illustrate the relevance of the
log-extrinsic mean as an alternative to Fréchet means in practical applications.

Fréchet means are computed using the python package Geomstats with NumPy as the
execution backend. In order to take advantage of the symmetric structure of matrices,
the matrix logarithms of the log-Euclidean means are computed from the eigenvalues. In
dimension 2 the eigenvalues are obtained from their close form wile in dimension 20, we used
the NumPy diagonalization algorithm.

6.2 Classification experiment

We performed classification experiments on stereo sound signals. A set of 13 stereo recordings
of the first movement of the moonlight sonata of Beethoven has been gathered. For each
recording, a set of covariance descriptors in P(2,R) is extracted. The task is then to classify
a new descriptor in order to correctly retrieve the corresponding recording. The classification
is performed using G(P(2,R))-equivariant statistical tools.
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Figure 4: These plots show the convergence of empirical means toward the true mean for four
different distributions, see text. On each plot, the red, blue and green curves respectively
correspond to the Fréchet mean, the log-extrinsic mean and the log-Euclidean mean. The
computations are made on a cpu Intel i9-11900K, and the computing time is averaged over
the Monte-Carlo trials.
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It has been mentioned in section 2 that several possible equivariant mean can be consid-
ered on determinants. For this classification experiment we consider only two frameworks:
the geometric mean on determinants, which lead to log-extrinsic means of Eq4, and the
arithmetic mean on determinants, which lead to the following formula,

A(µ) =

(∫
det(X)dµ(X)

) 1
r

E(π∗µ),

and which we will call an arithmetic-extrinsic mean.
The experiment indicate a superiority of the log-extrinsic framework over the arithmetic-

extrinsic framework.

6.2.1 Dataset

Each recording is represented by a 2-dimensional array whose first index refers to the channel
and whose second index refers to time. Given an arbitrary 2-dimensional array s, let ŝ be
the array of same dimensions obtained taking the discrete Fourier transform channel-wise:

ŝ(c, .) = DTF(s(c, .)), c ∈ {1, 2}.

For each frequency k, ŝ(., k) ∈ C2 is a vector of Fourier coefficients. The considered descriptor
is the second order moments of these vectors. At time t, let st be the slice of signal comprised
between time t and t plus one second. The array st is then of dimension 2 × N , with N
depending of the sample rate. The local covariance descriptor is obtained by

Σt =
1

N

N−1∑
k=0

ŝt(., k)ŝt(., k)
T .

Since ŝt(., k) ∈ C2, Σt is a priori a complex matrix. However, ŝt(., 0) = ŝt(., 0) and when
1 ≤ k ≤ N , ŝt(., k) = ŝt(., N − k), hence Σt is a real matrix. It can be shown that provided
that the two microphones have different spatial locations, the matrix Σt is definite. Hence
Σt ∈ P(2,R). This covariance descriptor is inspired by polarization matrices in optics.

For each recording, 100 time indices are uniformly sampled to build a train set of co-
variance descriptors and 100 time indices to build a test set. The dataset of covariance
descriptors is available on the webpage of the first author.

6.2.2 Classification methods and results

Let ∆i be the empirical distribution of the i-th class, ∆i =
∑

j δxij
. We consider several

classification framework. A first group of classifiers is defined by computing centroids for
each class and classifying a new data x ∈ P(2,R) according to the nearest centroid. We
consider the rules
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(R) : c(x) = argmini (d(F(∆i), x))

(LEx) : c(x) = argmini (d(L(∆i), x))

(AEx) : c(x) = argmini (d(A(∆i), x))

where LEx, AEx refer respectively to log-extrinsic and arithmetic extrinsic, and where d
is the invariant metric defined in Eq.14. Note that using an invariant distance on S combined
with an Euclidean distance on determinants would not lead to an invariant distance on C.
Hence classification in the AEx framework is also performed using d.

In the second set of classifiers, the training sets are modeled by Gaussian distributions.
Data are then classified according to the most likely class. Since the classes are equally
represented, it coincides with the maximum a posteriori estimator. Recall that every invari-
ant Riemannian distances can be decomposed as a product between S and R, see Theorem
Eq.1. Since nothing relates apriori the scales of the two factors, there is no intrinsic notion
of isotropic Gaussian on symmetric cones. Hence, the considered Gaussians on P(2,R) are
parametrized by their mean and two scale parameters for their marginals on S and R. We
considered several types of Gaussian distributions.

• (WN ). Exponential-wrapped Gaussians as defined in section 6.1, parametrized by their
mean, a variance on S and a variance on determinants. Parameters are estimated by
empirical means and variances.

• (LEx-N ). Log-extrinsic Gaussians defined in Eq.11. Parameters are estimated by
maximum likelihood.

• (AEx-N ). Gaussians corresponding to arithmetic means are the traditional Gaussian
distributions. Hence arithmetic-extrinsic Gaussian can be defined as a products be-
tween an extrinsic Gaussian on S, and a traditional Gaussian on determinants. Param-
eters are estimated by maximum likelihood. Note that this model is stable under the
action of G(P(2,R)) and does not respect the positive constraint on the determinant.
We nontheless show the corresponding classification results.

• (AEx-Γ). Since AEx-N distributions are not supported on P(2,R), we also consider
modeling the distribution of determinants with a Gamma distribution. Parameters
are fitted by maximum likelihood using the stats package of the SciPy library. Unlike
AEx-N distributions, this model is supported on P(2,R) and is stable under the action
of G(P(2,R)).

Each classification experiment is repeated 100 times. The following table reports the
average classification results ± a standard deviation. All the codes have been written in
Python and are available on the webpage of the first author.
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Method Accuracy (%) Method Accuracy (%)

(R) 35.9± 1.4 (WN ) 43.6± 1.2

(LEx) 35.9± 1.4 (LEx-N ) 43.6± 1.2

(AEx) 25.5± 1.7 (AEx-Γ) 34.2± 1.0

(AEx-N ) 33.2± 1.7

These results suggest that the arithmetic-extrinsic framework is less suited to describe
experimental data than its logarithmic counter part. They also show very similar perfor-
mances for the Riemannian and log-extrinsic framework.

7 Discussion and open problems

The experimental section confirms the relevance of log-extrinsic means for practical appli-
cations. They maintain the equivariance properties of the Fréchet mean, while being more
computationally efficient that log-Euclidean means. Future efforts will focus on the compu-
tation of the normalizing factor of log-extrinsic Gaussians, as well as the relation between
expected and natural parameters. The difficulty of the computations is expected to depend
on the type of the irreducible symmetric cone, the simplest cases being Lorentz cones. In
the numerical experiment presented in section 6, the distance based classification is achieved
using an invariant Riemannian distance. Future works will investigate the possibility of us-
ing non-Riemannian invariant distances based on the log-extrinsic framework, in order to
reduce the computational complexity of the classification.

From a theoretical standpoint, two questions remain open. First, as mentioned at the
end of section 4.2, it would be interesting to determine whether or not the hypersurface S is
the only one which lead to an equivariant mean on C/R>0. Second, a perhaps more difficult
question is to determine whether the characterizing property of extrinsic Gaussians given in
Theorem 9 for Lorentz cones, also holds for other irreducible cones.

Finally, in the spirit of Pálfia (2012), it could be interesting to link the curves formed
by weighted averages between two points, as shown in Fig.3, with an adapted notion of
geodesic.

8 Appendix

8.1 Symmetric cones and Jordan algebras

Let V be a finite dimensional real vector space equipped with a scalar product ⟨x, y⟩. Let C
be an open convex cone in V . Call G(C) the set of linear isomorphism u : V → V such that
u(C) = C. The cone C is symmetric if both G(C) acts transitively on C and if C = C∗ where

C∗ = {y ∈ V : ∀x ∈ C \ {0}, ⟨x, y⟩ > 0}.

In that case, the identity component of G(C), noted G(C)0, is also transitive on C.
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A bilinear product on V verifying the following properties,

xy = yx and x((xx)y) = (xx)(xy),

is called a Jordan product, and makes V a Jordan algebra. For x ∈ V , note lx the left
multiplication by x: lx(y) = xy. The Jordan algebra V is called Euclidean if there is an
inner product ⟨., .⟩ such that all the lx are self-adjoint. If C is a symmetric cone, then
(V, ⟨., .⟩) can be endowed with a Jordan product such that

• (V, ⟨., .⟩) is a Euclidean Jordan algebra with a unit element, noted o

• C = {x ∈ V : lx is symmetric positive definite}.

When there are no non-trivial subspaces V1 ⊕ V2 = V and symmetric cones C1 ⊂ V1 and
C2 ⊂ V2 such that C = C1+C2, the cone C is said irreducible. Irreducible symmetric cones can
be classified into four families plus an exceptional cone. Denote by P(n,K) positive definite
self-adjoint matrices with coefficients in K = R, C, H (quaternions) or O (octonions). Every
irreducible symmetric cone is isometric to a cone belonging to the following families

• Lorentz cones for n > 2: L(n) = {(x0, . . . , xn−1) ∈ R>0 × Rn−1, x20 >
∑n−1

i=1 x
2
i }

• P(n,R), P(n,C), P(n,H), with n ≥ 1

• P(3,O).

On Lorentz cones L(n), the product on Rn is usually set as
x0
x1
.
.

xn−1

 ◦


y0
y1
.
.

yn−1

 =


∑n−1

i=0 xiyi
x0y1 + y0x1

.

.
x0yn−1 + y0xn−1


with identity element o = (1, 0, . . . , 0)T . On self adjoint matrices, it is given by

A ◦B =
1

2
(AB +BA),

and the identity element is given by the identity matrix: o = I. Let A be an element of
the symmetric cone P(K, n). Since lA is positive definite, it is invertible. Since lA(A

−1) = I
where A−1 is the matrix inverse, the Jordan inverse coincide with the matrix inverse.

Given an element x ∈ V , let m(x) be the maximal value of k such that the o, x, x2, . . . , xk

form an independent family. Let Vx be

Vx = span{o, x, x2, . . . , xm(x)}.
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The rank r of V is defined as

r = max
x∈V

m(x).

The rank of a symmetric cone is defined as the rank of the underlying Jordan algebra.
Elements x ∈ V such that m(x) = r are called regular elements and are dense in V . For
x ∈ V a regular element, let l̃x be the restriction of lx to Vx. The trace and determinant of
x are then defined as

det(x) = Det(l̃x) and trace(x) = Trace(l̃x),

where Det and Trace refers to the usual determinant and trace. The definitions are extended
by continuity to all element s of V . It can be checked that det(o) = 1 and trace(o) = r. For
matrix cones P(n,K), the Jordan determinant, trace and inverse coincide with the usual
ones. The determinant verifies the following formula,

∀g ∈ G(C),∀x ∈ V,det(g(x)) = |Det(g)|
r

dim(V ) det(x), (15)

see Faraut and Korányi (1994) proposition.III.4.3., where the proof can easily be generalised
to g ∈ G(C). Hence the subgroup of G(C) preserving S, the surface of determinant 1, noted
G(S), is the set of elements g ∈ G(C) with Det(g) = ±1. Recall that the action of G(C)0
is transitive on C. Eq.15 shows that the subsets of constant determinant are the orbits of
G(S). Since the homotheties with strictly positive scaling factor preserve C, it is clear that
G(C) is isomorphic to G(S)× R>0.

On Lorentz cones trace, determinant and inverse are given by

• trace: trace(x) = 2x0

• determinant: det(x) = x20 − x21 − . . .− x2n

• when det(x) ̸= 0, the inverse for the Jordan product is given by: x−1 = (x0,−x1,...,−xn)
det(x) .

It can be checked that the maps

x0x1
x2

 7→
(
x0 + x1 x2
x2 x0 − x1

)
and


x0
x1
x2
x3

 7→
(
x0 + x1 x2 + ix3
x2 − ix3 x0 − x1

)

are respectively Jordan algebra isomorphisms mapping L(3) to P(R, 2) and mapping L(4)
to P(C, 2).
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8.2 Proof of theorem 1

Let C be an irreducible symmetric cone and note G(S)0 the identity component of G(S).
Recall that Ko is defined as the identity component of the subgroup of G(C) fixing o. It is
easy to check that Ko ⊂ G(S)0. We have the following lemma.

Lemma 1. The homogeneous space G(S)0/Ko is an irreducible symmetric space.

Proof. The list of groups G(S)0 and Ko for different irreducible symmetric cones can be
found in Orlitzky (2024). It can be checked in Sasaki (1980) and Lopez et al. (2021) that
each homogeneous spaces G(S)0/Ko corresponds to a an irreducible symmetric spaces.

Let gC be an invariant Riemannian metric on C. At e, the tangent space can be decom-
posed as

TeC = ker(d dete)⊕ ker(dπe) = TeS ⊕ R.e.

Since G(S)0 is transitive on S, S is naturally identified with the quotient G(S)0/Ke,
which shows that S is an irreducible symmetric space. On irreducible symmetric space, the
isotropy representation is irreducible: Ke acts irreducibly on TeS. Then, it can be proved
that the irreducibility of the action implies that there exists only one inner product gSe on
TeS invariant under Ke, up to a constant.

Let W be the orthogonal complement of TeS with respect to gCe . We want to show
that W = Re. Since all g ∈ Ke are isometries with respect to gCe , the one dimensional
subspace W is stable. Since V = TeS ⊕W , there exits u ∈ TeS and w ∈ W unique such
that e = u + w. Therefore, for all g ∈ Ke, we have e = ge = gu + gw with gu ∈ TeS and
gw ∈ W . The uniqueness of the decomposition implies that gu = u for all g ∈ Ke which
in turn implies that u = 0 because the action of Ke is irreducible. Therefore e ∈ W and
W = Re. Hence the orthogonal complement of TeS is R.e, and the inner product gCe is of
the form gCe = αgSe + βgR, where α, β > 0, and gSe and gR are inner products on TeS and
R.e respectively.

For α, β > 0, let dα,β(x, y) = αdS(π(x), π(y))
2 + β(H(x) − H(y))2. It is possible to

check that dα,β is an invariant Riemannian distance whose inner product at identity is
αgSe + βgR. Since invariant Riemannian distance are determined by their inner product at
e, every Riemannian distance is of the form dα,β for some α, β > 0.

8.3 Proof of theorem 5

We shall need two Lemmas. The first is a general result about convergence of probability
measures.

For ω in vector space F and t ∈ R, denote hω,t = hFω,t : F → F the homothety with
center ω and ratio t.

Lemma 2. Let V and W be two finite dimensional vector spaces, let U ⊂ V be an open
set, let g : U → W be a map and let ω ∈ U . Suppose that g is continuous, g(ω) = 0, g is
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differentiable at ω and that dgω(ω) = 0. Let (µn)n be a sequence of probability measures in
V such that µn(U) = 1 for all n and suppose that the sequence (hV

ω,
√
n,∗µn)n converges in law

to a probability measure µ. Then the sequence (hW
0,
√
n,∗g∗µn)n converges in law to (dgω)∗µ.

Proof. It is enough to prove that for any continuous function ϕ : W → R with compact
support, we have

lim
n→∞

∫
ϕ(
√
ng(x))dµn(x) =

∫
ϕ(dgω(x))dµ(x).

First observe that using the convergence in law of the sequence (hV
ω,
√
n,∗µn)n with the

bounded continuous function ϕ ◦ dgω, we have∫
ϕ(dgω(x))dµ(x) = lim

n→∞

∫
ϕ(dgω(ω +

√
n(x− ω)))dµn(x) = lim

n→∞

∫
ϕ(
√
ndgω(x)dµn(x).

Let ε > 0. Let R > 0 be such that µ(BV (ω,R−1) > 1−ε. Since ϕ is uniformly continuous we
can find δ > 0 such that dW (x, y) ≤ δ =⇒ |ϕ(x)−ϕ(y)| ≤ ε. By definition of the differential,
and since g(ω) = dgω(ω) = 0, there exists r > 0 such that dW (g(x), dgω(x)) <

δ
RdV (x, ω)

for all x ∈ BV (ω, r). Let n be any integer such that R/
√
n ≤ r. On the one hand, if

x ∈ BV (ω,R/
√
n) then

dW (
√
ng(x),

√
ndgω(x)) =

√
ndW (g(x),dgω(x)) ≤ δ,

therefore ∣∣∣ ∫
BV (ω,R/

√
n)
(ϕ(

√
ng(x))− ϕ(

√
ndgω(x))dµn(x)

∣∣∣ ≤ ϵ.

On the other hand, since hV
ω,
√
n,∗µn → µ in law,

1− ε ≤ µ(BV (ω,R− 1)) ≤ lim inf
n→∞

µn((h
V
ω,
√
n)

−1(BV (ω,R)))

= lim inf
n→∞

µn(BV (ω,R/
√
n)),

so that µn(BV (ω,R/
√
n)) ≥ 1− 2ε for all n large enough. Therefore,∣∣∣ ∫

U\B(ω,R/
√
n)
(ϕ(

√
ng(x))− ϕ(

√
ndgω(x))dµn(x)

∣∣∣ ≤ 4ε∥ϕ∥∞.

and ∣∣∣ ∫
U
(ϕ(

√
ng(x))− ϕ(

√
ndgω(x))dµn(x)

∣∣∣ ≤ ε(1 + 4∥ϕ∥∞).

Lemma 3. Let ϵ ∈ S. dπϵ = Pϵ where Pϵ is the projection onto TϵS parallel to Rϵ.
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Proof. For any u ∈ V we have,

π(ϵ+ u) =
ϵ+ u

det(ϵ+ u)
1
r

= (ϵ+ u)(1− d(det
1
r )ϵ(u) + o(∥u∥)).

By definition, u ∈ TϵS implies d(det)ϵ(u) = 0 and d(det
1
r )ϵ(u) = 0. Hence dπϵ(u) = u for

all u ∈ TϵS. On the other hand, for all λ > 0, π(λϵ) = π(ϵ) = ϵ, hence dπϵ(ϵ) = 0. It follows
that dπϵ = Pϵ.

Let (Xi)i∈N be a sequence of random variables i.i.d. on S of extrinsic mean ϵ and
covariance Σ:

Σ =

∫
S
(x− E(µ))⊗ (x− E(µ))dµ <∞.

The empirical extrinsic mean is

En = π (X1 + . . .+Xn)

Consider the random variables Yi =
Xi

det(E(µ))1/r and

Sn =
Y1 + . . .+ Yn

n
.

Clearly π(Sn) = En and Sn is a random variable with values in C. Note µn the distribution

of Sn. Since ϵ = E(µ)
detE(µ)1/r is the extrinsic mean of the common law µ of the variables Xi,

we have E(Sn) = ϵ.
The classical central limit theorem gives that hϵ,

√
n,∗µn converges in law towards

N (ϵ, Σ
det(E(µ))2/r ).

By the second lemma, we know that dπϵ = Pϵ. Since Pϵ is a projection d(Pϵ ◦ π)ϵ(u) =
dPϵ ◦ (dπϵ(u)) = Pϵ(Pϵ(u)) = Pϵ(u). Hence Pϵ and Pϵ ◦π both send ϵ to 0 and have the same
differential at ϵ.

We now use the first lemma about the convergence in law with V , W = TϵS, U = C,
ω = ϵ and g = Pϵ ◦ π. We obtain that (hϵ,

√
n,∗(Pϵ ◦ π)∗µn)n converges in law to

Pϵ∗N
(
ϵ, Σ

det(E(µ))2/r

)
= N

(
0,

Σ|T
det(E(µ))2/r

)
, where ΣT is the marginalisation of Σ on TϵS

with respect to Rϵ. Expressed with random variables, we obtain

√
nPϵ(π(Sn)) =

√
nPϵ(En)

L−→ N
(
0,

ΣT

det(E(µ))2/r

)
.

8.4 Proof of theorem 6

1. Let us describe now the action of G(S) on the density fθ. The invariance of the measure
vS shows that for any g ∈ G(S),

Z(θ) =

∫
e−⟨θ,x⟩dvS(x) =

∫
e−⟨θ,g.x⟩dvS(x) =

∫
e−⟨g∗.θ,x⟩dvS(x).
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Hence, Z(θ) = Z(g∗.θ). Since the cone C is self dual, g ∈ G(S) iff g∗ ∈ G(S) and therefore,
Z(θ) = Z(g.θ) for all g ∈ G(S). Furthermore, the pushforward of fθ by g is given by
g∗fθ = fθ ◦ g−1 since vS is g-invariant. We have then

(g∗fθ)(x) =
1

Z(θ)
e−⟨θ,g−1.x⟩ =

1

Z(g−1∗.θ)
e−⟨g−1∗.θ,x⟩ = fg−1∗.θ(x).

Similarly,

g.Eθ =
∫
g.xfθ(x)dvS =

∫
xfθ(g

−1.x)dvS =

∫
xfg−1∗.θ(x)dvS = Eg−1∗.θ.

Since Eθ = (s+ 1)ϵ, g.Eθ = (s+ 1)gϵ and with the two above relations we obtain

g∗fϵ,s = fgϵ,s.

2. In order to prove the 2nd point of theorem 6, we start by assuming that θ is of the form
to, with t > 0, and prove that there is a bijection between t and s. Using the equivariance
properties shown above we can then derive the links between θ, ϵ and s for arbitrary θ.
Recall that o ∈ S and that Ko ⊂ O(V ), see Faraut and Korányi (1994) proposition I.1.9
and Theorem III.3.1. Since for g ∈ Ko, g = g−1∗, Eo is fixed by Ko. By Theorem 3, there is
a function α valued in R>0 such that for t > 0,

Eto =
1

Z(to)

∫
S
xe−t⟨o,x⟩dvS = α(t)o. (16)

By differentiating with respect to t we obtain,

(Eto)′ = α′(t)o = −Z ′(to)

Z(to)2

∫
S
xe−t⟨o,x⟩dvS − 1

Z(to)

∫
S
⟨o, x⟩xe−t⟨o,x⟩dvS

Both integrals are elements of C invariant by the action of Ko, hence by Theorem 3 they are
strictly positive multiples of o. Since Z ′(to) = −

∫
S⟨o, x⟩e

−t⟨o,x⟩dvS < 0, the function α′(t)
is strictly negative and α is strictly decreasing.

According to Proposition III.4.3 and Proposition I.3.3 inFaraut and Korányi (1994), the
function H : x ∈ C 7→ log detx is strictly concave. Since the probability measure with a
density fθ is not supported by a single point, it follows from the Jensen inequality that

H(Eθ) = H

(∫
S
xfθ(x)dvS(x)

)
>

∫
S
H(x)fθ(x)dvS(x) = 0,

where the last equality follows from the fact that detx = 1 on S. Hence detEθ > 1 and
α(t) > 1.

Our aim is to show that the map α : R>0 →]1,+∞] is a bijection. Given 1 < t1 < t2,
denote A1 = {x ∈ S, ⟨x, o⟩ < t1}, A2 = {x ∈ S, t1 ≤ ⟨x, o⟩ < t2} and A3 = {x ∈ S, t2 ≤
⟨x, o⟩}. It can be checked that vS(Ai) > 0, i = 1, 2, 3. Denote
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mi(t) =

∫
Ai

ftodvS and fi,to =
1

mi(t)
fto1Ai ,

where 1Ai is the indicator function of Ai. The function fi,to : S → R is the density fto
conditioned on Ai. Denote also Ei,to the expectation of the conditional density. Since
k(Ai) = Ai for all k ∈ Ko, Theorem 3 implies that Ei,to = αi(t)o with αi(t) > 0.

Let us show that limt→∞ α(t) = 1. Let 1 < t1 < t2. Note first that α(t) = m1(t)α1(t) +
m2(t)α2(t) +m3(t)α3(t). It is easy to check that α1(t), α2(t) ≤ t2 hence

α(t) ≤ (m1(t) +m2(t))t2 +m3(t)α3(t).

Next we prove that limt→∞m3(t) = 0. We have,∫
A1

e−⟨to,x⟩dvS ≥ e−tt1vS(A1) and

∫
A3

e−⟨to,x⟩dvS ≤ e−tt2vS(A3).

Hence,

m3(t)

m1(t)
≤ e−t(t2−t1)

vS(A3)

vS(A1)
.

Since m1(t) ≤ 1, limt→∞m3(t) = 0. The same reasoning as previously tells us that the αi(t)
are decreasing functions of t. Hence limt→∞m3(t)α3(t) = 0. At last, sincem1(t)+m2(t) < 1,
we have for all t > 0,

α(t) ≤ t2 +m3(t)α3(t).

Since t2 can be chosen arbitrarily close to 1, limt→∞ α(t) = 1.
Let us now show that limt→0 α(t) = ∞. Note first that

lim
t→0

∫
A1∪A2

e−⟨to,x⟩dvS < vS(A1) + vS(A2) and lim
t→0

∫
A3

e−⟨to,x⟩dvS = ∞.

Hence limt→0
m1(t)+m2(t)

m3(t)
= 0, and since m1(t) +m2(t) +m(3) = 1, limt→0m3(t) = 1. It is

easy to check that α3(t) ≥ t2. Since t2 can be chosen arbitrarily, the inequality

α(t) = m1(t)α1(t) +m2(t)α2(t) +m3(t)α3(t) ≥ m3(t)α3(t) ≥ m3(t)t2

implies that limt→0 α(t) = ∞. Hence α is a decreasing bijective function from R>0 to
]1,+∞].

Let g ∈ G(S). Theorem III.5.3 of Faraut and Korányi (1994) states that for x ∈ C,
(gx)−1 = g−1∗x−1. Hence,

Eg.to = g−1∗.Eto = α(t)g−1∗.o = α(t)(g.o)−1.
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Note that o = π(to) and recall that π commutes with g ∈ G(S), hence g.o = π(g.to). Since
any θ ∈ C can be written as g.to with g ∈ G(S) and t ∈ R>0, we have

Eθ = α(det(θ)
1
r )π(θ)−1.

Let us show that π commutes with the inverse map, x ∈ C → x−1. If x = gto then

π(x−1) = π(g−1∗(to)−1) = g−1∗π((to)−1) = g−1∗o = (go)−1 = (π(gto))−1 = (π(x))−1.

Hence
Eθ = α(det(θ)

1
r )π(θ)−1 = α(det(θ)

1
r )π(θ−1).

It follows that ϵ(θ) = π(θ)−1 and s(θ) = α(det(θ)1/r)− 1.
Finally, consider the two maps

C −→ S × R>0 S × R>0 −→ S × R>0

θ −→ (π(θ), det(θ)
1
r ) (x, t) −→ (x−1, α(t)− 1)

.

They are bijective, the first being a parametrization of C, and the second a product of two
bijections. Therefore, their composition

C −→ S × R>0

θ −→ (π(θ)−1, α(det(θ)
1
r )− 1))

is a bijection.

8.5 Proof of theorem 7

Let C = L(3) ∼ P(2,R) and let θ ∈ C. Let |θ| =
√
det θ =

√
θ20 − θ21 − θ22 be the pseudo norm

of θ = (θ0, θ1, θ2) and θ = (θ0,−θ1,−θ2). Note that |θ| = |θ̄| and recall that θ−1 = |θ|−2θ̂ in
Lorentz cones. When C = L(3), the distribution fθ takes the form

fθ(x) = c|θ|e|θ|e−⟨θ,x⟩,

see for instance Nielsen and Okamura (2023) Eq.(12). Hence Z(θ) = c−1|θ|−1e−|θ| and
ln(Z(θ)) = − ln(|θ|)− |θ| − ln(c). We have

∇|θ| = ∇
√
θ20 − θ21 − θ22 =

1

2
√
θ20 − θ21 − θ22

∇(θ20 − θ21 − θ22) =
1

2
√
θ20 − θ21 − θ22

2θ̄ =
θ

|θ|
,

and

∇ ln(Z) = − θ

|θ|2
− θ̄

|θ|
= −θ1 + |θ|

|θ|2
.

Recall that Eθ = ϵ(s+ 1) = −∇ ln(Z). Hence,
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θ−1(1 + |θ|) = ϵ(s+ 1)

Since ϵ = π(θ−1) and that the rank of L(3) is 2, ϵ = |θ|θ−1. Hence,

1 + |θ| = |θ|(s+ 1).

and s = 1
|θ| , and θ = (sϵ)−1.

8.6 Proof of theorem 9

1. We shall use the following lemma.

Lemma 4. For all x ∈ C ∩ (o+ o⊥), detx < 1 unless x = o.

Proof. Suppose on the contrary that detx ≥ 1 for some x ∈ C ∩ (o + o⊥), x ̸= o. Since
H(x) = log detx is strictly concave on C, the derivative of the function

h : t ∈ [0, 1] → H((1− t)x+ to)

is decreasing. Since h(0) = H(x) ≥ 0 and h(1) = 0, we have h′(1) < 0 which contradicts
that (o+ o⊥) is tangent to S at o by Propostion III.4.2 of Faraut and Korányi (1994).

Let x1, . . . , xn ∈ S. Note

L(θ) =
∏

1≤i≤n
log(fθ(xi)) = −n log(Z(θ))−

∑
1≤i≤n

⟨θ, xi⟩ = −n log(Z(θ))− ⟨θ,
∑

1≤i≤n
xi⟩.

We want to show that the function θ 7→ L(θ) has a maximum under the constraint
det(Eθ)1/r − 1 = s and that this maximum is attained in the unique point θ such that
π(Eθ) = π(

∑
i xi). By Theorem 6, the constraint det(Eθ)1/r − 1 = s can be expressed as

α(det(θ)
1
r )− 1 = s and is hence a level set of the determinant θ → det θ. Let t > 0 be such

that det(Eto)1/r−1 = s, and denote St = tS the set of parameters θ verifying the constraint.
Suppose first that

∑
i xi = λo where λ > 0. Let us show that

argmaxθ∈St
L(θ) = to.

Recall that the level-sets of the determinant are the orbits of G(S). Hence St = {g(to) : g ∈
G(S)}. We showed in 8.4 that for any g ∈ G(S), Z(to) = Z(g(to)). Hence we are reduced
to show that

argminθ∈St
⟨θ, λo⟩ = to

which is equivalent to argminx∈S⟨x, o⟩ = o. Let x ∈ S, x ̸= o. There exists β > 0 such that
y = βx ∈ (o+ o⊥). By the above lemma det y < 1, hence β < 1 which in turn implies that
⟨x, o⟩ = (1/β)⟨y, o⟩ > 1. Therefore argminx∈S⟨x, o⟩ = o.

33



Recall that Eto = α(t)o, see appendix 8.4 Eq (16), hence ϵ̂MLE(x1, . . . , xn) = π(Eto) =
o = π(λo) = π (

∑
i xi).

Suppose now that
∑

i xi = λg(o) where λ > 0 and g ∈ G(S). The sample x′i =
g−1x1, . . . , x

′
n = g−1xn is such that

∑
i x

′
i = λo. By the equivariance properties of The-

orem 6, we have (g−1)∗fθ = fg∗θ. Therefore,

L(g∗θ, g−1x1, . . . , g
−1xn) =

∏
1≤i≤n

log fg∗θ(g
−1xi)

=
∏

1≤i≤n
log((g−1)∗fθ(g

−1xi))

=
∏

1≤i≤n
log fθ(gg

−1xi),

and L(θ, x1, . . . , xn) = L(g∗θ, g−1x1, . . . , g
−1xn). Hence

argmaxθ∈St
L(θ, x1, . . . , xn) = g−1∗(to),

and

ϵ̂MLE(x1, . . . , xn) = π
(
Eg−1∗(to)

)
= g(o) = π(λg(o)) = π

(∑
i

xi

)
.

2. We will now prove that on Lorentz cones this property characterizes the model Ms

among location models. Let C be a Lorentz cone. Let {f̃p} be a set of densities on S
parametrized by p ∈ S such that for all g ∈ G(S), g.f̃p = f̃g.p.

Let o = (1, 0, . . . , 0)T ∈ S. Consider the curve p(t) = (
√
1 + t2, t, 0, . . . , 0)T ∈ S with

t ∈ R and let q(x) = (
√
1 + x2, x, 0, . . . , 0)T ∈ S with x ∈ R. Note gt ∈ G(S) the linear map

with matrix 
√
1 + t2 −t 0

−t
√
1 + t2 0

0 0 I


where the zeros are block matrices and I is the identity matrix. Clearly, gt(p(t)) = o,
hence f̃o(gt(q(x))) = g−1

t .f̃o(q(x)) = f̃p(t)(q(x)). Since gt(q(x)) is in S and since only
the first two coordinates of gt(q(x)) are nonzero, gt(q(x)) is a function of its second co-
ordinate: −t

√
1 + x2 + x

√
1 + t2. Therefore there exist two functions h and g such that

ln
(
f̃p(t)(q(x))

)
= h

(
−t

√
1 + x2 + x

√
1 + t2

)
= g(t, x).

Consider the sample of size n + 1 formed by n times q(−x) and one time q(nx) for
some x ∈ R: (q(−x), . . . , q(−x), q(nx)) ∈ Sn+1. Since the usual empirical mean of the
second coordinates of the sample is 0, the empirical log-extrinsic mean of the sample is o.
A necessary condition for o to maximize the likelihood is

n
∂g

∂t
(0,−x) + ∂g

∂t
(0, nx) = 0
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because the derivative with respect to t of the log-likelihood at o must be 0. We have

∂g

∂t
(t, x) =

(
−
√

1 + x2 +
xt√
1 + x2

)
h′
(
−t
√

1 + x2 + x
√

1 + t2
)
,

hence ∂g
∂t (0, x) = −

√
1 + x2h′(x) and thus the above necessary condition becomes

n
√
1 + x2h′(−x) +

√
1 + (nx)2h′(nx) = 0.

Choosing n = 1, we obtain h′(−x) = −h′(x). Therefore

∀x ∈ R, ∀n ∈ N \ {0}, n
√

1 + x2h′(x) =
√

1 + (nx)2h′(nx).

Since the function ϕ(x) =
√
1 + x2h′(x) is continuous, the condition ϕ(nx) = nϕ(x) for all

x and n implies that ϕ is a linear function: there is a ∈ R such that
√
1 + x2h′(x) = ax.

With an integration, we obtain h(x) = a
√
1 + x2 + b for some b ∈ R, and g(0, x) = h(x) =

a
√
1 + x2 + b. It follows that

f̃o(q(x)) = ea
√
1+x2+b = e⟨ao,q(x)⟩+b. (17)

For any g in the stabilizer G(S)o of o, f̃o = f̃go = g.f̃o = f̃o ◦ g−1. Furthermore, it is
possible to check that any q ∈ S is of the form g−1q(x) for some g ∈ Ko and x ∈ R. Since
Ko ⊂ G(S)o ⊂ O(V ), Eq.17 is valid for any q ∈ S:

f̃o(q) = e⟨ao,q⟩+b.

Let s = α(a)− 1, where α is the function defined in theorem 6. We have then

f̃o = fo,s.

Since a location model is entirely determined by its density at any location, both model
coincide.
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Jacques Faraut and Adam Korányi. Analysis on symmetric cones. Oxford university press,
1994.

G.A. Galperin. A concept of the mass center of a system of material points in the constant
curvature spaces. Communications in Mathematical Physics, 154:63–84, 1993.

Edwin T Jaynes. Probability theory: The logic of science. Cambridge university press, 2003.

Jens Ledet Jensen. On the hyperboloid distribution. Scandinavian Journal of Statistics, 8
(4):193–206, 1981.

Federico Lopez, Beatrice Pozzetti, Steve Trettel, Michael Strube, and Anna Wienhard. Sym-
metric spaces for graph embeddings: A finsler-riemannian approach. In International
Conference on Machine Learning, pages 7090–7101. PMLR, 2021.

Hélène Massam. An exact decomposition theorem and a unified view of some related distri-
butions for a class of exponential transformation models on symmetric cones. The Annals
of Statistics, pages 369–394, 1994.

36



Frank Nielsen and Kazuki Okamura. On the f-divergences between hyperboloid and poincaré
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