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Abstract :  

Reproducibility stands as a pivotal pillar of the scientific method, bolstering confidence in research outcomes. When the 

findings of a study cannot be consistently reproduced, it gives rise to concerns regarding the validity of the drawn conclusions. 

This paper delves into an exploration of the Deep Embedded Clustering algorithm. After a first observation of non-

reproducibility, we tried to reconstruct the algorithm and we faced repeatability issues, not being able to obtain identical 

results from run-to-run with the same hardware and exactly the same environment. We have then studied a number of 

avenues, which could lead to such problems. We were finally able to achieve run-to-run repeatability on an identical 

machine, thanks to a particular insight into stochastic parameters and a proper use of hidden pseudorandom number 

generators. However, we observed differences from one machine to another, indicating that portability is not guaranteed 

leading to more investigation. Nevertheless, with repeatability on the same machine, we can initiate a reproducibility study. 
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1 Introduction 

Reproducibility is a crucial element of the scientific method, as Karl Popper, the renowned philosopher 

of science, points out. Since the initial work of Clarebout and his colleagues in 1992, a paper published 

in Plos Medicine in 2005 by Ioannidis explaining “how most research findings are false”, there is a rise 

in realizing that there is a scientific reproducibility crisis. A more recent paper published by Ioannidis 

and his colleagues explains what it means particularly in medicine (Goodman et al. 2016). Gundersen 

and Kjensmo (2018) give a state of the art dealing with reproducibility issues in artificial intelligence, 

and Gundersen proposes a broader approach stepping back to the fundamental principles of 

reproducibility coming from epistemology (Philosophy of Science) in 2021. With the later, we have 

evidence that the polysemy of the term ‘reproducibility’ can be confusing as stated in (Plesser 2018). 

In computer Science, the terms were recently redefined by the ACM in 2020 to match the usage in 

other Scientific Disciplines. In this paper, we use the definitions of reproducibility and replicability 

presented in the National Academies of Science Engineering and Medicine report (NASEM 2019). 

They are consistent with the new ACM definitions (version 1.1) (ARB 2020) which also precise the 

definition of repeatability which is essential in Computer Science for debugging! Computer Science is 

also impacting the majority of other research field, indeed, since more than a decade, a reproducibility 

crisis is identified in many research domains. In the context of research relying on software, researchers 

are now facing more problems when they try to reproduce the results of computational studies. This 

crisis has become a significant concern in various scientific disciplines, including computer science 

(Krishnamurthi and Vitek 2015), and data science (Madduri et al. 2019) which makes an intensive use 

of machine learning tools and frameworks. A recent survey dealing with the policies of Journals for 

Software and Data Management in Scientific Publications is proposed by Hernández and Colom 

(2023).  

Reproducibility reinforces confidence in research findings, because if the results of a study cannot 

be reliably reproduced, this rises concerns about the validity of the drawn conclusions. Scientists rely 

on reproducibility to establish the credibility of findings and ensure the robustness of scientific 

knowledge. For computer programmer, we first need repeatability, which is mandatory for software 

development.  To setup a reliable program, we all have a debugging phase and this implies that the 

developing team is able to obtain the same numerical results from run to run in the same environment. 

For computing applications, this may require bitwise identical results on the same hardware, this is the 

required level of repeatability for debugging. A complete and up to date survey dealing with 

reproducibility and repeatability, with up to date definitions and applications is now available in 

(Antunes and Hill 2024).  

In this paper, we will present how the reproducibility crisis impacts machine learning and what are 

the sources of non-reproducibility. We will outline a catalog of potential issues commonly encountered 
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in machine learning studies. We will then focus particularly on mastering random number sources and 

we will show a small case study where we solved a repeatability and reproducibility problem. This 

problem occurred with an unsupervised and nonlinear neural network analysis (Deep Embedded 

Clustering or DEC) that had been carried out in our laboratory during an internship. We will highlight 

the identified problems with the initial results and present our proposed solution to rectify these issues, 

ultimately showcasing the obtaining of repeatable results on the same machine enabling to start a 

reproducibility study. 

 

2 Sources of non-reproducibility in machine learning   

2.1 Marching learning and reproducibility issues 

Many factors can cause reproducibility issues in machine learning, Henderson et al. (2018) and 

Gundersen et al. (2022) give for instance overviews of deep reinforcement learning and machine 

learning issues, respectively. Kapoor and Narayanan recently discussed the reproducibility crisis in 

machine learning-based science (2023). In the above references, many other papers will cover issues 

related to reproducibility and machine learning. For example, Pham et al. (2020) and Zhuang et al. 

(2022) cover sources of variability in deep learning methods, the initialization of pseudorandom 

numbers generators (PRNGs) is one of them. Multi-threading is another, but there are several others. 

Only setting what is commonly named ‘seeds’ and thread parameters will not be enough to make the 

result of a neural network deterministic. A study by Nagarajan et al. (2019) found that the portability 

on different kinds of Graphical Processing Units (GPUs) is also influencing the outputs. Though 

setting the initial states of generators can make the computations deterministic when there is no hidden 

randomness in functions of the machine-learning framework, the output generated by different GPUs 

can still differ, and this can be linked to the portability of PRNGs. 

 

2.2 So where should we look? 

Reproducibility in machine learning hinges on three fundamental elements inherent to any learning 

model: data, code and environment. The amalgamation of these essential components constitutes your 

learning model (not only the code and the selected algorithm). The inclusion of new datasets or the 

alterations of the data, for instance by applying a preprocessing step (a normalization, etc.) can 

significantly impact model outcomes. Thus, it is crucial to record dataset versioning and changes to 

maintain reproducibility.  
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Figure 1: Sources of non-repeatability of run-to-run machine learning experiments 

To ensure reproducibility, it is also important to have a meticulous logging and with a proper 

documentation of the underlying code and algorithm enabling the tracking of modifications with a 

versioning tool. Moreover, capturing the characteristics of the project environment during the 

development is essential. This entails documenting framework dependencies, versions, hardware 

specifications, and all other components of the environment, ensuring that they are well-logged and 

easily reproducible. Throughout experimentation, there are many critical parameters like the values of 

hyperparameters, which play a pivotal role and could lead to inconsistencies. The input data is also 

obviously essential, if there is a change in the training data, reproducing identical results will become 

impossible. The addition of new training data to the dataset after the publication of the initial results 

will preclude achieving the same outcome. Furthermore, inaccuracies in data transformations (such as 

cleaning processes) or changes in data distribution will significantly impact the likelihood of achieving 

reproducibility. Updates of libraries or frameworks can also introduce alterations to the outcome. The 

evolving landscape of GPU architectures further complicates reproducibility and needs a tracking of 

hardware settings, software configurations, or compilers options to keep the research results 

reproducible. The pseudorandom parameters and generators, the stochastic choices, are also essential 

elements and are shown below. Figure 1 presents the major sources of non-repeatability for run-to-

run machine learning experiments.  

2.3 A focus on stochastic aspects  

2.3.1  A stochastic context 

Machine learning is replete with stochasticity, a modelling approach using randomness. In this context, 

the mastering of random initializations, the introduction of random noise, random augmentations and 
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bootstrapping techniques, the selection of hidden layers, data shuffling and dropout are different 

aspects were scientists need a reasonable level of mastering of random number generation. For 

instance, dropout prevents the overfitting in neural networks. This occurs when a model learns the 

training data too well, capturing noise or specific patterns that do not generalize well to new, unseen 

data. The dropout technique addresses this issue by randomly setting to zero (“dropping out”) a 

proportion of the neurons or units in a neural network during each training iteration, meaning that 

during training, certain neurons are temporarily removed. This makes the network more robust and 

with better capacities when facing new data. The dropout technique is often applied to neural network 

hidden layers and the dropout rate determines the proportion of neurons that are removed during each 

training iteration.  

2.3.2 When non-determinism is in fact deterministic 

When using a Quantum computer, we expect true stochasticity and reproducible results (Hill et al. 

2023). With classical computers, determinism is the rule and the stochastic aspects are simulated with 

deterministic algorithms! Pseudorandom numbers are deterministic by design in order to produce 

stochastic programs with deterministic models of randomness (the pseudorandom number 

generators). The design enables debugging. Deep learning algorithms often use efficiently the 

Stochastic Gradient Descent (SGD) or Monte Carlo methods. Non-determinism is commonly 

obtained with independent replications with the same PRNG with a sound parallelization technique. 

Each kind of generator comes with some initialization constraints and also has preferable 

parallelization techniques (Hill et al. 2013). This forms a tuple which enters in resonance with the 

application (PRNG, Initilalization, Parallelization Technique, Application). A fine setup will help to 

obtain a better exploration of the hyperspace of hyperparameters. The mastering the underlying 

technique is precious for a thorough training phase. The case of deep reinforcement learning is also 

prone to nondeterminism as agents learn from a somewhat nonstationary distribution of experiences 

influenced by non-deterministic environments and policies. Other elements that can impact the results 

are the random network initialization or the size used for mini-batch sampling. We will use our 

expertise in parallel random numbers to identify the problems. When the output varies for the same 

input across different runs for a nondeterministic algorithms, this presents a significant obstacle to 

repeatability and debugging, and then to reproducibility. Deep learning algorithms are using such 

algorithms and their stochastic aspects have to be mastered. When scientists are partially aware that 

their results depend on the initialization of one or many pseudorandom number generators, and that 

they do not know the generators they are using, then come the troubles...  
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3 Reaching software repeatability  

3.1 Algorithm and initial context 

We study the Deep Embedded Clustering (DEC) algorithm presented in article (Xie et al. 2016). It is 

an unsupervised learning technique that combines a neural network and a clustering algorithm. The 

aim of this method is to learn a latent representation (i.e. the innermost hidden representation) from 

the input data in order to perform a linear clustering algorithm on this latent space. This involved 

processing medical data from a medical research group, with the aim of grouping patients suffering 

from chronic pain into coherent groups, across their various symptoms, to enable personalized 

treatment for each group. While the results obtained initially appeared plausible, they lacked both 

reproducibility and repeatability. 

The training set, which was used in the article and on the software implementation we checked, is 

the MNIST dataset, containing a set of 70,000 images of handwritten digits. This MNIST dataset is 

fairly well known, labelled and easy to cluster, allowing us to control the obtained results. The algorithm 

was implemented in Python using the NumPy library, the frameworks scikit-learn and Keras as a high-

level coming with an industry strength Application Programmer Interface (API) of the TensorFlow 

platform. In order to assess the relevance of the partitions provided by the developed models, two 

metrics were used. First, a silhouette coefficient measuring the quality of a partition of a dataset based 

on separability inter-clusters and the compactness of each cluster. The second metric is the Adjusted 

Rand Index (ARI) which evaluates the similarity between two partitions of the same dataset by 

measuring the rate of agreement between them.  

3.2 Absence of repeatability and reproducibility problems  

With the initial code produced during last year internship, we first observed that the partitions obtained 

using the different models obtained with DEC presented most of the time a silhouette coefficient very 

close to 1, this was indicating good data separation. However, when we evaluate the ARI of these 

different partitions against each other, we systematically observe results very close to 0. The partitions 

were therefore very different from one generated model to the other, without a clear reason. In 

addition, numerical results were different from run to run in the same conditions. This lack of 

repeatability was problematic and it was impossible to build on a shifting base. The other aspect we 

encountered is linked to a lack of reproducibility. The resources of the initial internship study did not 

allow us to generate models close to what was obtained. Some of the Python libraries used, such as 

Keras, had been updated, making some lines of code obsolete. In addition, getting back to grips with 

the project was complex, not least because of a lack of documentation. Here is the link to our Gitlab 

repository: https://gitlab.isima.fr/jedomanski/machine-learning-repeatability-quest . 

https://gitlab.isima.fr/jedomanski/machine-learning-repeatability-quest
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3.3 Trying harder  

In our try to reproduce reliably the DEC results, various methods were applied to identify whether the 

problem lay in the parameter settings. Firstly, according to the DEC article, we set: SGD as optimizer, 

network dimensions d-500-500-2000-10, with ‘d’ the dimension of the starting base, each layer was 

pre-trained during 50000 iterations, with a dropout rate of 20%. The autoencoding is then refined over 

100,000 iterations without dropout. The batch size was 256 and the learning rate was set to 0.1, then 

divided by 10 every 20,000 iterations, and the weight decay method was set to 0. We experimented 

with different mini-batch sizes, going from the original 256 down to just 32, then we tried loading 

weights from previously trained models, in order to identify whether the inconsistency between the 

resulting partitions was due to a learning problem.  

Another approach was to use the SGD minimization function. On the one hand, we studied the 

results of this function using box plots, and on the other, we tried training with a non-stochastic 

gradient descent (the plain Gradient Descent), in an attempt to limit the sources of randomness 

introduced by the SGD. A versioning problem identified earlier has also been studied. Due to the 

Keras library update, lines of code using the optimizer had become obsolete. To keep the algorithm 

running, replacements had to be made, with as few modifications as possible. A neural network model 

analysis tool, “netron.app” was used to identify the initial version used in our project, it was version 

v2.11.0, while the latest version we are now using is v2.13.1. All the tries were still producing 

repeatability issues. 

3.4 Targeting random sources  

The code was not making explicit calls to random sources but we were aware of at least 3 potentially 

hidden sources. The generator used in python is the Mersenne Twister, the default in NumPy is PCG 

(Permuted Congruential Generator) and the one used in TensorFlow is by default Philox (a crypto 

secure generator introduced in 2011 at the Supercompting conference). The original code mixes all 

three generators in its ‘black box’ and did not specify initial states for the 3 pseudorandom number 

generators with common seeding Application Programmer Interface. We then compared models 

generated with the same seed on the same machine for the 3 different generators, and then we made 

the test on a different server, always keeping the same seed (though the generators do not have the 

same internal structures). We studied the 8 possible combinations, with or without seed initialization 

for the 3 generators and observed the repeatability results (Table 1). 

With our "run-to-run" comparisons, we identified two combinations leading to repeatable results 

on the same machine, enabling us to start a reproducibility study even if we don’t find the same results 

on different machines. This point will be investigated in a further study as well as the impact of seed 

initialization. 
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Table 1: Exploring different initializations with the 3 pseudorandom  

number generators found in the software 

Mersenne Twister PCG Philox  Results  

Not initialized Not initialized Not initialized Non repeatable results 

Not initialized Not initialized Initialized Non repeatable results 

Not initialized Initialized Not initialized Non repeatable results 

Not initialized Initialized Initialized Non repeatable results 

Initialized Not initialized Not initialized Non repeatable results 

Initialized Not initialized Initialized Repeatable results 

Initialized Initialized Not initialized Non repeatable results 

Initialized Initialized Initialized Repeatable results 

 

3.5 When seeds are not seeds 

The term ‘seed’ is found confusing by experts. It comes from old generators such as Linear 

Congruential Generators (LCGs). A simple integer number served as the initial state of a generator, 

and it was called a seed. Such generators are statistically weak and cannot be considered seriously for 

scientific applications. Modern generators with strong statistical properties for scientific applications 

have initial states, sometimes called statuses, much larger that a single integer (be it 64 bits). For 

instance the MRG32k3a pseudorandom number generator from Pierre L’Ecuyer has an initial status 

with 6 double precision numbers (6 x 8 bytes = 6 x 8 x 8 bits = 384 bits). Statistically it is a very sound 

generator, designed to be successful at the most stringent battery of statistical tests, TestU01 from 

L’Ecuyer and Simard (2006). The famous Mersenne Twister (MT) from Makoto Matsumoto and 

Nishimura Takuji (1998) needs an initialization state (or status) around of 2 kilobytes (more than 2048 

bits). It presents some statistical weaknesses (not crypto secure) but it is 20 times faster than 

MRG32k3a on modern processors and it is equidistributed in 623 dimensions. The latter property is 

very important for space filling problems such as exploring the impact of models with a large number 

of parameters. Recent generators like PCG (the default Numpy generator) is recognized as weak for 

parallel codes. An extension has been proposed: PCG64DXSM. Vigna has recently shown that both 

are weak. There are slower than other older known PRNGs (URL: https://pcg.di.unimi.it/pcg.php ). 

Finally, when a seeding API (Application Programming Interface) proposes a seeding function with 

https://pcg.di.unimi.it/pcg.php
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an integer parameter, scientist have to be aware that this integer is not the PRNG state, there is no 

bijection between a 64 bits integer and the different states that the initial MT can propose (219937). Many 

scientists who did not receive training with pseudorandom numbers are not aware of this. In addition, 

many calls to random sources are hidden in machine learning frameworks, some calls implying parallel 

executions. The techniques used to propose proper parallel stochastic codes are not well known and 

this increases the challenge to obtain repeatable machine learning experiences. A last point will show 

at which extremity we can go in scientific computing: it is not uncommon in many source codes and 

even in reputable Parallel Computing literature, to find the misguided advice to initialize your PRNG 

with “time(NULL)” for “true randomness”. Many generators are sensitive to their initialization states, 

and it should be learned in computer science lectures that this practice is unsuitable for scientific 

purposes. To ensure the repeatability PRNGs, it is crucial to meticulously manage and save the initial 

states and to use the parallelization technique adapted to your generator structure. Choosing an 

appropriate of parallelization technique before running parallel code with pseudorandom numbers 

should be strongly considered (Hill et al., 2013). In the previously cited papers, the techniques 

explained are not complex but are not so commonly known to many scientists who run parallel 

stochastic codes without being aware of it. The usage of complex framework is hiding this aspect. This 

could be a very good point if such parallelization is done properly, but it is mostly not the case since 

the framework software developers are not trained to produce independent parallel stochastic 

computing. Proposed solutions are opaque and do not help to make progress in artificial intelligence 

explainability. 

 

4 Conclusion  

Scientists rely on reproducibility to establish the credibility of findings and ensure the robustness of 

scientific knowledge. In the realm of machine learning programs, we found intricate challenges that 

often render the reproduction of results from scientific papers seemingly almost impossible. It was our 

case when we tried to study an unsupervised and nonlinear neural network analysis known as Deep 

Embedded Clustering. We then started to learn about the different sources of non-reproducibility in 

machine learning and we gave an overview of the potential sources. With our first experiments with 

the MNIST dataset, we even identified a repeatability problem linked to the sources of randomness 

hidden in the language, the libraries and the framework used. We reached run-to-run repeatability with 

a careful initialization of the Python and Keras default pseudorandom generators. Machine learning 

frameworks come with a seeding API, which often causes confusion because the seeds provided by 

programmers are not the states of the generators but merely an index to some of them. Additionally, 

calls to random sources are sometimes hidden within API functions, and the parallelization of the 

default generators (which are sometimes statistically weak) is also unclear. Even if we could reach the 
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repeatability “grail” on the same machine, portability from one server to another remains an issue, 

prompting further investigation. However, with repeatability on the same server, we can at least begin 

to focus on achieving reproducibility. 
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