
HAL Id: hal-04642058
https://hal.science/hal-04642058v1

Submitted on 11 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

True Interactive Testing based on IJTAG
Michele Portolan

To cite this version:
Michele Portolan. True Interactive Testing based on IJTAG. IEEE Design & Test, In press,
�10.1109/MDAT.2024.3422128�. �hal-04642058�

https://hal.science/hal-04642058v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

1Institute of Engineering Univ. Grenoble Alpes

True Interactive Testing based on IJTAG
Michele Portolan

Univ Grenoble Alpes, CNRS, Grenoble INP1, TIMA, 38000 Grenoble, France

michele.portolan@univ-grenoble-alpes.fr

Abstract— The IEEE 1687 standard, commonly called ITAG,

introduced several innovations. While the hardware-related ones,

most notably mux-enabled dynamic topologies, are clearly successful

and are widely adopted, several pans of the standard are still

unsupported by the EDA vendors and are little known to the general

public. In particular, the Procedural Description Language (PDL)

theoretically allows for interactive routines whose outputs and

control flow can be modified by the data retrieved from the System

Under Test. However, the traditional Test Flow and Execution

backend are not able to really support such features. In this paper,

we present an in-depth analysis of these limitations and propose a

fully-functional solution able to support true interactive behavior,

whose features are demonstrated through a Proof-of-Concept.

KEYWORDS—FUNCTIONAL TEST, IEEE 1687, PDL, INTERACTIVE

TEST, AUTOMATED TEST ENVIRONMENTS, MAST, PROOF-OF-

CONCEPT

INTRODUCTION

The IEEE 1687-2014 [1] standard, commonly known as

IJTAG, is often referred to as a “paradigm shift”: for the first

time, the focus on of Design-for-Test (DfT) architectures is

shifted from the Top to the Instrument level: instead of

prescribing a fixed top-level architecture as in JTAG [2], IEEE

1687 allows the description of a rich, dynamic topology and its

operations inside of the Chip, and then “retarget” it (i.e.

translate and adapt) to the top Level. The hugely successful

IEEE 1500[3] standard did not go this far, and just proposed to

replicate the JTAG DfT setup at Chip-level.

This shift is done in two steps: the first, and more visible, is

the possibility of describing complex and dynamic DfT

topologies by using the Instrument Connectivity Language

(ICL). This allow designers to propose optimized access

networks, being sure that the Electronic Design Automation

(EDA) tools will be able to correctly support them. The second,

more subtle innovation, is the possibility of describing

Operations directly at the instrument level, thanks to the

Procedural Description Language (PDL). In its simplest form,

the “PDL Level 0” (PDL-0) the language allows users to

describe vector operations at the Instrument level in the same

way that this is done at the top-level: data can be written

(iWrite) to a register, expected data can be set (iRead) and scan

operations can be performed (iApply). A PDL-0 procedure can

therefore be “retargeted” through the ICL topology in order to

obtain the corresponding top-level vectors. Most, if not all,

EDA vendors focused on these features in order to support IP-

level ATPG and 1687 retargeting to the Top-level.

On top of it, “PDL Level 1” (PDL-1) is probably the one

feature with the most disrupting potential: algorithmic

capabilities are added, allowing the definition of complex

interactive routines at the Instrument level that can then be

retargeted and executed from the top-level. By the author’s best

knowledge, these features have been seldom supported by

industrial EDA tools, at least in their fullest potential. In

particular, no real work has been done on the what “Interactive

Execution” actually entails. The only exceptions are academia-

driven tools like the “Manager for SoC Test” (MAST) [4],

which focuses on the Functional application of the IEEE 1687

standard.

In this paper, we present complete and operation flow for

dynamic and interactive execution of IJTAG procedures against

real hardware. First, Section 1 provides a State of the Art of

IEEE 1687, focusing on the capabilities of PDL-1 and the

limitation of current approaches when faced with interactive

execution, while Section 3 introduces the new Interactive Test

Flow able to overcome them, as well as its implementation

exploiting the MAST tool, which is then used in Section 4 to

obtain a complete Proof-of-Concept. Lastly, Section 5 draws

some conclusions and points out the perspectives opened by

this work.

1 STATE OF THE ART

In this Section, we will focus on the interactive elements of

IEEE 1687 and on the limitations of the legacy execution flows.

1.1 PDL-1 primer

In the Standard document [1], the main focus is put on the

ICL language (~100 pages), roughly the double of the space

dedicated to PDL (~50 pages). Of these, PDL-1 is limited to a

mere 10 pages. However, these few pages contain probably the

most disruptive innovation: interactive behavior. Rather than

defining yet another programming language, the Standard

decided to allow PDL to be executed as a subset of TCL

language, which is widely used in EDA shells. In this paper we

focus exclusively on the PDL commands that have a direct

effect on the vectors exchanged with the System-Under-Test

(SUT), and not on the other commands that are rather used for

configuration or other “housekeeping” operations.

As mentioned in the Introduction, PDL Level 0 (PDL-0) has

been designed to replicate at the Instrument level the “Capture-

Shift-Update” cycle typical of Scan operations. This is done

through what is called the iApply cycle, which works in three

main steps:

- “iRead” marks data to be captured, and can also set Expected

values for mismatch check;

- “iWrite” queues data that needs to be Updated to the

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2024.3422128

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Grenoble Alpes. Downloaded on July 11,2024 at 09:23:17 UTC from IEEE Xplore. Restrictions apply.

mailto:michele.portolan@univ-grenoble-alpes.fr

1Institute of Engineering Univ. Grenoble Alpes

Instrument;

- “iApply” acts as a synchronization barrier: the Retargeter

takes all queued iRead and iWrites and generates the set

of scan operations that can realize them.

The parallel with Automated Test Pattern Generation (ATPG)

is immediate and completely intentional: the aim of the

Standard is to provide a seamless transition from IP to Top-

Level for vectors operations. In this, it is undoubtedly

successful.

PDL Level 1 (PLD-1) on the other hand has been designed to

provide the user with the opportunity of retrieving data from the

SUT and act over it. It is only composed of 4 commands

explained in 5 pages in [1], most of which (iGetMiscompares,

iGetStatus, iSetFail) are in fact “house-keeping” commands

aimed at TCL scritping. It does anyway introduce one really

new and disruptive command: “iGetReadData”. It allows a

TCL shell to access the data Captured during the last iApply

cycle and use it inside its own procedures, introducing for the

very first time interactive capabilities at the very heart of the

standard. However, no clear indication is given in the document

on how this interaction is going to be implemented.

1.2 Limitations of the Legacy Test Flow

The problem with vector operations is that they are

completely static: their aim is to provide precise instruction and

data to an Automated Test Equipment (ATE) to perform test as

fast as possible. The classical Test Automation flow is based in

the “Generation vs Application” duality [4] : a big EDA tool

takes care of solving all the constraints of performing a given

operation and generate a set of static patterns that can then be

applied to the SUT to detect the “bad” circuits, as depicted in

Figure 1. As the Generation happens only once, it can be heavy

and Slow if it allows Application, which is performed for each

chip, to be Fast.

Figure 1 The Automated Test Flow [4]

Unfortunately, “Slow/Fast” can also be dubbed as “Smart

Generation vs Dumb Application”: all intelligence is in the

Generation phase, while Application can only push and

compare pre-computed vectors.

2 Algoritmhic Execution

As stated in the introduction, one of the most disruptive

innovations of IJTAG is the introduction of interactive

algorithmic execution thanks to PDL-1. The ability of

modifying the control flow during execution is critical to react

to the state of the SUT. For instance, depending on

configuration options the size of a register in an IP might

change, or the number of times a given set of operations needs

to be applied might need to be adapted. PDL-1 was introduced

to provide such flexibility, but the legacy Automated Test Flow

is not adapted to algorithmic execution [4].

The Execution model was not directly mandated into the

Standard document, but is it implicitly referred to what is

usually called “ATE Bring-Up” or “ATE Debug”, depicted in

Figure 2 : the TCL script containing the PDL-1 code is executed

by the shell of an EDA tool, which is able to communicate to

an ATE in order to push to the SUT the vectors computed from

the iApply operations, and provide to the iGetReadData

commands the data read captured from it. The EDA Tool in the

middle plays an essential role: it is responsible for both sending

and receiving data with the SUT, therefore enabling an

interactive execution loop.

Figure 2 Implicit PDL-1 Execution Model

This is a complex setup, which is proposed by some industrial

vendors [6], but its main aim is not really interactive execution

but rather run-time parametrization. It is possible, for instance,

to read an Identification register and choose a certain subset of

tests to be execute depending on the version of the Chip or IP.

Another example is to measure some reference value/voltage

and use it to calibrate one or more routines. For these Use Cases

the “parameter substitution” features of languages such as TCL

or STIL [9] are more than enough: once the substitution has

taken place, the Vector File becomes static and be Applied as

usual.

However, this is not true for a really interactive setup, where

both the Flow Control and the Applied Data depend on the

status and data read from the System Under Test. Access to an

EDA tool might not always possible during Test Application

(for instance, if testing is done by a third-party company) or its

execution might be impossible by the target platform (for

instance, when performing online testing through an embedded

controller). These use cases are not really addressed by the

existing 1687 tool suites.

2.1 New Usages

The success of IJTAG brought also some complications: new

usages, not foreseen by the Working Group have started

implementing the Standard and trying to use it for application

that are far from traditional ATPG-based testing. Most of these

modes exploit the Functional access to embedded instruments

to retrieve information about the SUT and interactively act on

it.

An example application is analog signal-processing: for

instance, in [7] the authors propose a BIST (Built-In Self-Test)

Automated Testing Ecosystem

Design Circuit
Netlist

Fabrication
Backend

Physical Circuit

Generation Pattern Set
Automated Test

Equipement

« Good » Circuit

« Bad » Circuit

TCL Script

ED
A

 T
o

o
l

PDL-1 Code

PDL-1 Code

iGetReadData

iWrite

iRead

iApply

ATE

A
T

E

C
o

n
tr

o
ll

e
r

SUT

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2024.3422128

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Grenoble Alpes. Downloaded on July 11,2024 at 09:23:17 UTC from IEEE Xplore. Restrictions apply.

1Institute of Engineering Univ. Grenoble Alpes

for an ADC that makes a spectral analysis (Fast Fourier

Transform, FFT) from sampled data, and uses it to finely-tune

the converter. This kind of component is implemented as a self-

enclosed and independent BIST not only to guarantee good

signal quality, but also because of the difficulty of expressing

complex algorithms in vector terms. Modern ATEs are

powerful machines providing programming language

capabilities and could easily execute such algorithms, but those

are ad-hoc solutions, different for each ATE family and

sometimes even between models. There is no direct way for

DfT Designer to transmit such algorithms to the final Test

Engineer, so this solution even though theoretically possible is

actually seldom used. In this context IJTAG is a compelling

alternative: leverage PDL-1 to extract data from the SUT, and

use the overlay TCL to express the processing needs. Even if

this opportunity is promising, no real solution has been

proposed yet: as explained in the previous section, the

Execution Model of Figure 2 does not really target applications

such as Signal Processing applications which are eminently

interactive. Moreover, these types of applications are often used

outside of a pure testing framework, where the usage of a full-

fledged Test Generation Tool might not be possible.

3 A NEW EXECUTION MODEL

The best way to overcome the limitations of the legacy

Automated Test Flow is to break the “Smart Generation/ Dumb

Application” duality and implement an hybrid flow where

intelligence is shared among the two phases, as first presented

in [4], to obtain a Fully Interactive Flow as depicted inFigure 3.

The principle is that instead of resolving all retargeting steps

during the Generation phase to obtain a static set of vectors, the

information collected from ICL and PDL (most noticeably the

algorithmic operation and the calls to PDL) is converted into a

Text Executable, which is then processed at runtime. Vectors

are therefore generated dynamically depending on both the state

of SUT and the results of the algorithmic execution. This way

instead of having an extremely fast but simplistic execution

backend, the flow leverages its computational resources.

At runtime, MAST loads the executable together with

Configuration information (i.e. the ICL file), which is used to

build a Model of the System Under Test. The MAST kernel

then leverages the Operating System running on the Test Host

(Linux or Windows) to take care of launching the Test

Executable. Instead of unrolling and processing the TCL+PDL

procedures offline to obtain a top-level set of vectors that can

be agnostically pushed to the SUT, MAST rather packs the

Procedures code in a binary format, mixing PDL and algorithms

(compiled into assembler instructions) and executes them

against the real SUT [4].

This Flow pushed interaction with the SUT at its very heart:

the MAST Kernel only cares about retargeting and is extremely

lightweight and streamlined (especially if compared to a

traditional EDA Test Generation Tool) and can be executed

even in resource-constrained execution backends. The User, in

the left-hand side, prepares his PDL-1 files and compiles them

thanks to the provided Headers. MAST made the choice to use

C/C++ as an overlay language instead of TCL for performance

reasons, even though this is not strictly IEEE 1687-2014

compliant. However, discussions are ongoing in the P1687

Refresh Working Group [5] that might open the Standard to

alternative languages than TCL.

Figure 3 True Interactive Flow with MAST

At Runtime, the Test Executable is loaded by MAST together

with the ICL description, which allows the Kernel to build is

internal System Model representing the actual SUT. When

Execution begins the User can monitor the results through a

terminal, observing the output of the Test Program and, if

needed, extract snapshots of the SUT Topology configuration.

It is a standard computer Science execution and debug flow, so

the User can leverage existing strategies and tools (such as, for

instance, GDB, Eclipses, etc.). The absence of a big EDA tool

in loop, as in Figure 2, makes this his solution much more

streamlined and optimized as legacy setups. As a result,

performances are much higher on traditional desktop setup,

while the setup is completely portable to constrained execution

backends such as ATEs or Embedded Processors [4].

4 EXPERIMENTAL DEMONSTRATOR

To prove the novelty and performances of this new setup, and

its capability to provide true interactive execution, we

developed a Proof-of-Concept Prototype that is at the same time

representative of an interactive signal processing setup as the

one described in [7] and visually compelling: music volume

bars. The setup, depicted in Figure 4, is functionally quite

simple: a 1687 Instrument samples music coming from a stereo

audio source, and the digital samples are collected by a PDL-1

function which performs an FFT to extract the Volume level of

the right and left channels, which are then sent to a visualization

1687 Instrument.

MAST Testing Ecosystem

Test
executable

Test Host

System Under
Test

MAST

Configuration
(ICL)

Terminal

User

Topology
Snapshot

PDL
Headers

gcc

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2024.3422128

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Grenoble Alpes. Downloaded on July 11,2024 at 09:23:17 UTC from IEEE Xplore. Restrictions apply.

1Institute of Engineering Univ. Grenoble Alpes

Figure 4 Functional Specification of the Demo Setup

The key of the PoC is that functionality is split between

hardware and software, rather than being a fully enclosed in

hardware like in traditional BIST. Such a setup is only possible

with a true run-time interaction between the 1687 Software and

the SUT.

4.1 Top-Level Implementation

We implemented the demo using a Xilinx ML505L card [8],

a popular, if somewhat dated, FPGA card that presents several

interesting features:

o Stereo AC97 Audio codec (Analog Devices

AD1981) for input sampling;

o 16-Character x 2-Line LCD Screen (Tianma

TM162VBA6) as output display;

o Fairly-sized FPGA fabric (XC5VLX50T)

o 30+ GPIO for interface and debug

o CompactFlash to program the FPGA at power-

on;

The Prototype schematics specification is shown in Figure 5.

The system-Under-Test (SUT) is programmed inside the PFGA

and its composed by the Input / Output Instruments accessed

through the 1687 Network, whose TAP pins, connected to the

GPIO, are controlled by an FTDI chip providing USB-to-JTAG

conversion [11]. This is used in the Host PC by the MAST

kernel [4] for the communication and synchronization between

the System-Under-Test programmed in the FPGA and the PDL-

1 algorithm.

Figure 5 Prototype Schematics Specification

The aim of this demo is to showcase the dynamic capabilities

of the Standard in terms of software, so the hardware part is

extremely simple: an 1149.1 Test Access Port (TAP) driving

two daisy-chained registers. The first register is read-only and

is connected to the “AC97 Instrument”, which is in fact an FSM

implementing the AC97 Codec to collect the audio samples in

2 times 8-bit values (one per channel) and making them

available as a 16-bit Scan Register. The second register is write-

only and receives 2x8-bit values representing the volume

amplitude level of each channel, which the “LCD Instrument”

uses to visualize two black bars.

4.2 Software Setup: Signal Processing in PDL-1

The Software side of the Demo exploits MAST’s capability

of dynamically interacting with the SUT: instead of generating

a set of static vectors from an analysis of the PDL inputs as done

by legacy EDA solution, MAST executes the PDL-1 at runtime,

using iApply as synchronization barriers where the data

exchange with the SUT happen. This way, “to SUT” vectors are

generated only when needed and “from SUT” vectors are

dynamically analyzed and their data directly re-injected in the

PDL-1 routines as return data from the iGetReadData

commands. To obtain this result, MAST uses C++ as the PDL-

1 overlay language: the choice of a compiled rather and an

interpreted language both boosts performances and allows the

reuse of existing software libraries.

In this demo we chose to use KissFFT [12] to estimate the

volume level for each channel in a Time Window of 256

samples. To avoid glitches on the output, the Amplitude

displayed an any given cycle is the maximum value of the

amplitudes of each sample in the Time Windows, calculated

using KissFFT.

The pseudo-code is as follows:

1. While (1)

2. {

3. iGetReadData(AC97_Instrument, new_Sample);

4. Extract RightChannelSample and LeftChannelSample

from new_Sample;

5. add RightChannelSample to RightTimeWindow;

6. add LeftChannelSample to LeftTimeWindow;

7. For each Time Window:

8. Use KissFFT to compute amplitude of each sample;

9. Volume = max(Amplitude(TimeWindow)

10. Convert Volume to an 8-bit integer value Volume_8

11. BarValue= Volume_8_left || Volume_8_right

12. iWrite(LCD_Instrument, BarValue);

13. iApply();

14. }

In its simplicity, the proposed algorithm is still representative

of a generic signal processing loop: first data is retrieved from

the system (line 3), then its is processed (lines 4 to 10) and

finally action is taken on the result (lines 11 and 12). The

interleaving of PDL-1 operations and C++ is possible thanks to

1687’s decision of presenting PDL as an API for an overlay

language: a TCL script would look similar, but the execution

would be much slower (and the Signal Processing part much

more cumbersome).

The MAST Kernel uses the ICL description of the SUT to

build its own internal model, which is then used to handle the

execution of the PDL-1 code and generate the necessary SVF

operations [13], which are then passed to a Callback using the

OpenOCD library [14] to control the FTDI USB dongle,

following the principles being developed by the IEEE P1687.1

Stereo
Audio in 1687

Sampling
Instrument

PDL-1
FFT

1687
Visualization
Instrument

Digital

Samples

Volume

Amplitude

Output
Display

Software

Hardware
En

vi
ro

n
m

e
n

t

AD1981

Audio
Jack

AC97
Instrument

LCD
Instrument

TM162VBA6

LCD Screen

FPGA

G
P

IO
 H

ea
d

er

ML505 Board

FTDI dongle

Host PC

USB JTAGMAST

PDL-1
FFT

Speaker
out

16-bit
Register

JT
A

G
 T

A
P

TCK

TMS

TDI

TDO

TRSTn

16-bit
Register

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2024.3422128

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Grenoble Alpes. Downloaded on July 11,2024 at 09:23:17 UTC from IEEE Xplore. Restrictions apply.

1Institute of Engineering Univ. Grenoble Alpes

Working Group [15]. All this heavy-lifting is transparent to the

user, who simply has to provide the PDL and ICL files.

4.3 Proof-of-Concept Prototype

The final demo is shown in Figure 6-a): the FPGA of the

ML505L card is in the middle the picture, the Audio Input

receiving the music is in the top half, while in the bottom half

it is possible to see the LCD screen displaying the volume bars

for the Left and Right channels. The JTAG interface on the

right-hand side: the GPIO header is used to connect the TAP

signals to the design inside the FPGA with the FTDI dongle.

Communication with the Host PC, not displayed, is done

through the USB cable.

Figure 6 Final prototype

The PDL-1 code is executed like a normal program on the

Host PC and can therefore display debug information. Figure 6-

b) shows the output of our demo: in each cycle, the value of the

sampled input data and the estimate volume amplitude for each

channel is displayed on the terminal.

The two outputs demonstrate that our system is effectively

performing a true interactive execution of the PDL-1 code

against the actual hardware.

5 CONCLUSIONS AND PERSPECTIVES

 In this paper, we presented a complete and functional flow

able to dynamically execute PDL-1 against real hardware, and

we proved it thanks to a Proof-of-Concept for a signal-

processing application. It has been realized on a commercial

FPGA for the Hardware part and a generic OS (Linux in this

case) on the Software side which while being Standard-

compliant it still allows free usage of third-party software

libraries. To the author’s best knowledge, it is the first

implementation of this type.

Future evolutions will first focus on leveraging other features

of the IEEE 1687 standard, such as exploiting dynamic

topologies while maintaining full PDL reuse or explore real-

time and concurrency issues. Other directions will be exploiting

the new IEEE P1687.1 proposal to extend IJTAG to interfaces

other than JTAG (ex: SPI or I2C) or enhance the algorithmic

part to cover more complex signal processing problems or adapt

it to RF/Mixed Signal testing. A porting of the prototype on a

more recent FPGA development board, the Zedboard [16], is

also underway.

ACKNOWLEDGMENTS

The author would like to acknowledge the work of Niels

Grataloup and Clément Tardy for developing and

troubleshooting the Proof-of-Concept platform.

REFERENCES

[1] IEEE Std 1687-2014, “IEEE Standard for Access and Control of
Instrumentation Embedded within a Semiconductor Device”, IEEE, USA,
2014

[2] IEEE Std 1149.1-2001, “IEEE Standard Test Access Port and Boundary-
Scan Architecture”, IEEE, USA, 2001.

[3] IEEE std 1500 - Standard for Embedded Core Test - http://grouper.ieee.
org/groups/1500/.

[4] M. Portolan, “The Automated Test Flow, the Present and the Future”,
IEEE Transactions on Computer-Aided Design (TCAD), DOI:
10.1109/TCAD.2019.2961328, December 2019

[5] M. Portolan, M. Keim, J. Rearick and H. Ehrenberg, "Refreshing the
JTAG Family," 2023 IEEE 41st VLSI Test Symposium (VTS), San
Diego, CA, USA, 2023, pp. 1-7, doi: 10.1109/VTS56346.2023.10140015.

[6] Siemens Silicon Insight, https://eda.sw.siemens.com/en-US/ic/
tessent/test/siliconinsight/

[7] M. J. Barragan et al., "A Fully-Digital BIST Wrapper Based on Ternary
Test Stimuli for the Dynamic Test of a 40 nm CMOS 18-bit Stereo Audio
ΣΔ ADC," in IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 63, no. 11, pp. 1876-1888, Nov. 2016, doi:
10.1109/TCSI.2016.2602387.

[8] “ML505/ML506/ML507 Evaluation Platform User Guide” https://docs.
amd.com/v/u/en-US/ug347

[9] "IEEE Standard for Extensions to Standard Test Interface Language
(STIL) (IEEE Std 1450-1999) for Test Flow Specification," in IEEE Std
1450.4-2017 , vol., no., pp.1-190, 9 Feb. 2018, doi: 10.1109/
IEEESTD.2018.8283877.

[10] “Standard Test And Programming Language”, JEDEC Standard no. 71,
1999

[11] FT4232H Mini Module Evaluation Module Datasheet, Future
Technology Devices International Ltd., Reference FT_000115 v 1.8,
2012-08-01

[12] Kiss-FFT homepage, https://github.com/mborgerding/kissfft

[13] “Serial Vector Format Specification”, ASSET InterTech Inc. Revision E,
8 March 1999

[14] Open On-Chip Debugger Homepage, https://openocd.org/

[15] M. Laisne et al., “Modeling Novel Non-JTAG IEEE 1687-Like
Architectures”, 2020 International Test Conference (ITC20), November
2020, Washington DC, US

[16] Zedboard homepage, https://www.avnet.com/wps/portal/us/products/
avnet-boards/avnet-board-families/zedboard/zedboard-board-family

a) b)

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2024.3422128

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Grenoble Alpes. Downloaded on July 11,2024 at 09:23:17 UTC from IEEE Xplore. Restrictions apply.

http://grouper.ieee.org/groups/1500/
http://grouper.ieee.org/groups/1500/
https://eda.sw.siemens.com/en-US/ic/%20tessent/test/siliconinsight/
https://eda.sw.siemens.com/en-US/ic/%20tessent/test/siliconinsight/
https://github.com/mborgerding/kissfft
https://openocd.org/
https://www.avnet.com/wps/portal/us/products/%20avnet-boards/avnet-board-families/zedboard/zedboard-board-family
https://www.avnet.com/wps/portal/us/products/%20avnet-boards/avnet-board-families/zedboard/zedboard-board-family

