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Abstract— The IEEE 1687 standard, commonly called ITAG, 

introduced several innovations. While the hardware-related ones, 

most notably mux-enabled dynamic topologies, are clearly successful 

and are widely adopted, several pans of the standard are still 

unsupported by the EDA vendors and are little known to the general 

public. In particular, the Procedural Description Language (PDL) 

theoretically allows for interactive routines whose outputs and 

control flow can be modified by the data retrieved from the System 

Under Test. However, the traditional Test Flow and Execution 

backend are not able to really support such features. In this paper, 

we present an in-depth analysis of these limitations and propose a 

fully-functional solution able to support true interactive behavior, 

whose features are demonstrated through a Proof-of-Concept.  

KEYWORDS—FUNCTIONAL TEST, IEEE 1687, PDL, INTERACTIVE 

TEST, AUTOMATED TEST ENVIRONMENTS, MAST, PROOF-OF-

CONCEPT       

INTRODUCTION 

 

The IEEE 1687-2014 [1] standard, commonly known as 

IJTAG, is often referred to as a “paradigm shift”: for the first 

time, the focus on of Design-for-Test (DfT) architectures is 

shifted from the Top to the Instrument level: instead of 

prescribing a fixed top-level architecture as in JTAG [2], IEEE 

1687 allows the description of a rich, dynamic topology and its 

operations inside of the Chip, and then “retarget” it (i.e. 

translate and adapt) to the top Level. The hugely successful 

IEEE 1500[3] standard did not go this far, and just proposed to 

replicate the JTAG DfT setup at Chip-level.  

This shift is done in two steps: the first, and more visible, is 

the possibility of describing complex and dynamic DfT 

topologies by using the Instrument Connectivity Language 

(ICL). This allow designers to propose optimized access 

networks, being sure that the Electronic Design Automation 

(EDA) tools will be able to correctly support them.  The second, 

more subtle innovation, is the possibility of describing 

Operations directly at the instrument level, thanks to the 

Procedural Description Language (PDL). In its simplest form, 

the “PDL Level 0” (PDL-0) the language allows users to 

describe vector operations at the Instrument level in the same 

way that this is done at the top-level: data can be written 

(iWrite) to a register, expected data can be set (iRead) and scan 

operations can be performed (iApply). A PDL-0 procedure can 

therefore be “retargeted” through the ICL topology in order to 

obtain the corresponding top-level vectors. Most, if not all, 

EDA vendors focused on these features in order to support IP-

level ATPG and 1687 retargeting to the Top-level.     

On top of it, “PDL Level 1” (PDL-1) is probably the one 

feature with the most disrupting potential: algorithmic 

capabilities are added, allowing the definition of complex 

interactive routines at the Instrument level that can then be 

retargeted and executed from the top-level. By the author’s best 

knowledge, these features have been seldom supported by 

industrial EDA tools, at least in their fullest potential. In 

particular, no real work has been done on the what “Interactive 

Execution” actually entails. The only exceptions are academia-

driven tools like the “Manager for SoC Test” (MAST) [4], 

which focuses on the Functional application of the IEEE 1687 

standard.   

In this paper, we present complete and operation flow for 

dynamic and interactive execution of IJTAG procedures against 

real hardware. First, Section 1 provides a State of the Art of 

IEEE 1687, focusing on the capabilities of PDL-1 and the 

limitation of current approaches when faced with interactive 

execution, while Section 3 introduces the new Interactive Test 

Flow able to overcome them, as well as its implementation 

exploiting the MAST tool, which is then used in Section 4 to 

obtain a complete Proof-of-Concept. Lastly, Section 5 draws 

some conclusions and points out the perspectives opened by 

this work.  

1 STATE OF THE ART 

In this Section, we will focus on the interactive elements of 

IEEE 1687 and on the limitations of the legacy execution flows.   

1.1 PDL-1 primer 

In the Standard document [1], the main focus is put on the 

ICL language (~100 pages), roughly the double of the space 

dedicated to PDL (~50 pages). Of these, PDL-1 is limited to a 

mere 10 pages. However, these few pages contain probably the 

most disruptive innovation: interactive behavior. Rather than 

defining yet another programming language, the Standard 

decided to allow PDL to be executed as a subset of TCL 

language, which is widely used in EDA shells. In this paper we 

focus exclusively on the PDL commands that have a direct 

effect on the vectors exchanged with the System-Under-Test 

(SUT), and not on the other commands that are rather used for 

configuration or other “housekeeping” operations.  

As mentioned in the Introduction, PDL Level 0 (PDL-0) has 

been designed to replicate at the Instrument level the “Capture-

Shift-Update” cycle typical of Scan operations. This is done 

through what is called the iApply cycle, which works in three 

main steps:  

- “iRead” marks data to be captured, and can also set Expected 

values for mismatch check; 

- “iWrite” queues data that needs to be Updated to the 
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Instrument; 

- “iApply” acts as a synchronization barrier: the Retargeter 

takes all queued iRead and iWrites and generates the set 

of scan operations that can realize them. 

The parallel with Automated Test Pattern Generation (ATPG) 

is immediate and completely intentional: the aim of the 

Standard is to provide a seamless transition from IP to Top-

Level for vectors operations. In this, it is undoubtedly 

successful. 

PDL Level 1 (PLD-1) on the other hand has been designed to 

provide the user with the opportunity of retrieving data from the 

SUT and act over it. It is only composed of 4 commands 

explained in 5 pages in [1], most of which (iGetMiscompares, 

iGetStatus, iSetFail) are in fact “house-keeping” commands 

aimed at TCL scritping. It does anyway introduce one really 

new and disruptive command: “iGetReadData”. It allows a 

TCL shell to access the data Captured during the last iApply 

cycle and use it inside its own procedures, introducing for the 

very first time interactive capabilities at the very heart of the 

standard. However, no clear indication is given in the document 

on how this interaction is going to be implemented.  

1.2 Limitations of the Legacy Test Flow 

The problem with vector operations is that they are 

completely static: their aim is to provide precise instruction and 

data to an Automated Test Equipment (ATE) to perform test as 

fast as possible. The classical Test Automation flow is based in 

the “Generation vs Application” duality [4] : a big EDA tool 

takes care of solving all the constraints of performing a given 

operation and generate a set of static patterns that can then be 

applied to the SUT to detect the “bad” circuits, as depicted in 

Figure 1. As the Generation happens only once, it can be heavy 

and Slow if it allows Application, which is performed for each 

chip, to be Fast.    

 
Figure 1 The Automated Test Flow [4] 

 

Unfortunately, “Slow/Fast” can also be dubbed as “Smart 

Generation vs Dumb Application”: all intelligence is in the 

Generation phase, while Application can only push and 

compare pre-computed vectors.  

2 Algoritmhic Execution 

As stated in the introduction, one of the most disruptive 

innovations of IJTAG is the introduction of interactive 

algorithmic execution thanks to PDL-1. The ability of 

modifying the control flow during execution is critical to react 

to the state of the SUT. For instance, depending on 

configuration options the size of a register in an IP might 

change, or the number of times a given set of operations needs 

to be applied might need to be adapted. PDL-1 was introduced 

to provide such flexibility, but the legacy Automated Test Flow 

is not adapted to algorithmic execution [4].    

The Execution model was not directly mandated into the 

Standard document, but is it implicitly referred to what is 

usually called “ATE Bring-Up” or “ATE Debug”, depicted in 

Figure 2 : the TCL script containing the PDL-1 code is executed 

by the shell of an EDA tool, which is able to communicate to 

an ATE in order to push to the SUT the vectors computed from 

the iApply operations, and provide to the iGetReadData 

commands the data read captured from it. The EDA Tool in the 

middle plays an essential role: it is responsible for both sending 

and receiving data with the SUT, therefore enabling an 

interactive execution loop.  

 
Figure 2 Implicit PDL-1 Execution Model 

This is a complex setup, which is proposed by some industrial 

vendors [6], but its main aim is not really interactive execution 

but rather run-time parametrization. It is possible, for instance, 

to read an Identification register and choose a certain subset of 

tests to be execute depending on the version of the Chip or IP. 

Another example is to measure some reference value/voltage 

and use it to calibrate one or more routines. For these Use Cases 

the “parameter substitution” features of languages such as TCL 

or STIL [9] are more than enough: once the substitution has 

taken place, the Vector File becomes static and be Applied as 

usual.  

However, this is not true for a really interactive setup, where 

both the Flow Control and the Applied Data depend on the 

status and data read from the System Under Test. Access to an 

EDA tool might not always possible during Test Application 

(for instance, if testing is done by a third-party company) or its 

execution might be impossible by the target platform (for 

instance, when performing online testing through an embedded 

controller). These use cases are not really addressed by the 

existing 1687 tool suites.   

2.1 New Usages 

The success of IJTAG brought also some complications: new 

usages, not foreseen by the Working Group have started 

implementing the Standard and trying to use it for application 

that are far from traditional ATPG-based testing. Most of these 

modes exploit the Functional access to embedded instruments 

to retrieve information about the SUT and interactively act on 

it.  

An example application is analog signal-processing: for 

instance, in [7] the authors propose a BIST (Built-In Self-Test) 
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for an ADC that makes a spectral analysis (Fast Fourier 

Transform, FFT) from sampled data, and uses it to finely-tune 

the converter. This kind of component is implemented as a self-

enclosed and independent BIST not only to guarantee good 

signal quality, but also because of the difficulty of expressing 

complex algorithms in vector terms. Modern ATEs are 

powerful machines providing programming language 

capabilities and could easily execute such algorithms, but those 

are ad-hoc solutions, different for each ATE family and 

sometimes even between models. There is no direct way for 

DfT Designer to transmit such algorithms to the final Test 

Engineer, so this solution even though theoretically possible is 

actually seldom used. In this context IJTAG is a compelling 

alternative: leverage PDL-1 to extract data from the SUT, and 

use the overlay TCL to express the processing needs. Even if 

this opportunity is promising, no real solution has been 

proposed yet: as explained in the previous section, the 

Execution Model of  Figure 2 does not really target applications 

such as Signal Processing applications which are eminently 

interactive. Moreover, these types of applications are often used 

outside of a pure testing framework, where the usage of a full-

fledged Test Generation Tool might not be possible.  

3 A NEW  EXECUTION MODEL 

The best way to overcome the limitations of the legacy 

Automated Test Flow is to break the “Smart Generation/ Dumb 

Application” duality and implement an hybrid flow where 

intelligence is shared among the two phases, as first presented 

in [4], to obtain a Fully Interactive Flow as depicted inFigure 3. 

The principle is that instead of resolving all retargeting steps 

during the Generation phase to obtain a static set of vectors, the 

information collected from ICL and PDL (most noticeably the 

algorithmic operation and the calls to PDL) is converted into a 

Text Executable, which is then processed at runtime. Vectors 

are therefore generated dynamically depending on both the state 

of SUT and the results of the algorithmic execution. This way 

instead of having an extremely fast but simplistic execution 

backend, the flow leverages its computational resources.  

At runtime, MAST loads the executable together with 

Configuration information (i.e. the ICL file), which is used to 

build a Model of the System Under Test. The MAST kernel 

then leverages the Operating System running on the Test Host 

(Linux or Windows) to take care of launching the Test 

Executable. Instead of unrolling and processing the TCL+PDL 

procedures offline to obtain a top-level set of vectors that can 

be agnostically pushed to the SUT, MAST rather packs the 

Procedures code in a binary format, mixing PDL and algorithms 

(compiled into assembler instructions) and executes them 

against the real SUT [4].  

This Flow pushed interaction with the SUT at its very heart: 

the MAST Kernel only cares about retargeting and is extremely 

lightweight and streamlined (especially if compared to a 

traditional EDA Test Generation Tool) and can be executed 

even in resource-constrained execution backends. The User, in 

the left-hand side, prepares his PDL-1 files and compiles them 

thanks to the provided Headers. MAST made the choice to use 

C/C++ as an overlay language instead of TCL for performance 

reasons, even though this is not strictly IEEE 1687-2014 

compliant. However, discussions are ongoing in the   P1687 

Refresh Working Group [5] that might open the Standard to 

alternative languages than TCL. 

 
Figure 3 True Interactive Flow with MAST 

At Runtime, the Test Executable is loaded by MAST together 

with the ICL description, which allows the Kernel to build is 

internal System Model representing the actual SUT. When 

Execution begins the User can monitor the results through a 

terminal, observing the output of the Test Program and, if 

needed, extract snapshots of the SUT Topology configuration. 

It is a standard computer Science execution and debug flow, so 

the User can leverage existing strategies and tools (such as, for 

instance, GDB, Eclipses, etc.). The absence of a big EDA tool 

in loop, as in Figure 2, makes this his solution much more 

streamlined and optimized as legacy setups. As a result, 

performances are much higher on traditional desktop setup, 

while the setup is completely portable to constrained execution 

backends such as ATEs or Embedded Processors [4].  

4 EXPERIMENTAL DEMONSTRATOR 

To prove the novelty and performances of this new setup, and 

its capability to provide true interactive execution, we 

developed a Proof-of-Concept Prototype that is at the same time 

representative of an interactive signal processing setup as the 

one described in [7] and visually compelling: music volume 

bars. The setup, depicted in Figure 4, is functionally quite 

simple: a 1687 Instrument samples music coming from a stereo 

audio source, and the digital samples are collected by a PDL-1 

function which performs an FFT to extract the Volume level of 

the right and left channels, which are then sent to a visualization 

1687 Instrument.   
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Figure 4 Functional Specification of the Demo Setup 

The key of the PoC is that functionality is split between 

hardware and software, rather than being a fully enclosed in 

hardware like in traditional BIST. Such a setup is only possible 

with a true run-time interaction between the 1687 Software and 

the SUT.  

4.1 Top-Level Implementation 

We implemented the demo using a Xilinx ML505L card [8], 

a popular, if somewhat dated, FPGA card that presents several 

interesting features: 

 

o Stereo AC97 Audio codec (Analog Devices 

AD1981) for input sampling; 

o 16-Character x 2-Line LCD Screen (Tianma 

TM162VBA6) as output display; 

o Fairly-sized FPGA fabric (XC5VLX50T) 

o 30+ GPIO for interface and debug 

o CompactFlash to program the FPGA at power-

on; 

The Prototype schematics specification is shown in Figure 5. 

The system-Under-Test (SUT) is programmed inside the PFGA 

and its composed by the Input / Output Instruments accessed 

through the 1687 Network, whose TAP pins, connected to the 

GPIO, are controlled by an FTDI chip providing USB-to-JTAG 

conversion [11]. This is used in the Host PC by the MAST 

kernel [4] for the communication and synchronization between 

the System-Under-Test programmed in the FPGA and the PDL-

1 algorithm.  

 
Figure 5 Prototype Schematics Specification 

The aim of this demo is to showcase the dynamic capabilities 

of the Standard in terms of software, so the hardware part is 

extremely simple:  an 1149.1 Test Access Port (TAP) driving 

two daisy-chained registers. The first register is read-only and 

is connected to the “AC97 Instrument”, which is in fact an FSM 

implementing the AC97 Codec to collect the audio samples in 

2 times 8-bit values (one per channel) and making them 

available as a 16-bit Scan Register. The second register is write-

only and receives 2x8-bit values representing the volume 

amplitude level of each channel, which the “LCD Instrument” 

uses to visualize two black bars.  

4.2 Software Setup: Signal Processing in PDL-1 

The Software side of the Demo exploits MAST’s capability 

of dynamically interacting with the SUT: instead of generating 

a set of static vectors from an analysis of the PDL inputs as done 

by legacy EDA solution, MAST executes the PDL-1 at runtime, 

using iApply as synchronization barriers where the data 

exchange with the SUT happen. This way, “to SUT” vectors are 

generated only when needed and “from SUT” vectors are 

dynamically analyzed and their data directly re-injected in the 

PDL-1 routines as return data from the iGetReadData 

commands. To obtain this result, MAST uses C++ as the PDL-

1 overlay language: the choice of a compiled rather and an 

interpreted language both boosts performances and allows the 

reuse of existing software libraries.  

In this demo we chose to use KissFFT [12] to estimate the 

volume level for each channel in a Time Window of 256 

samples. To avoid glitches on the output, the Amplitude 

displayed an any given cycle is the maximum value of the 

amplitudes of each sample in the Time Windows, calculated 

using KissFFT. 

The pseudo-code is as follows: 

 
1. While (1) 

2. { 

3. iGetReadData(AC97_Instrument, new_Sample); 

4. Extract RightChannelSample and LeftChannelSample 

from new_Sample;  

5. add RightChannelSample to RightTimeWindow; 

6. add LeftChannelSample to LeftTimeWindow; 

7. For each Time Window: 

8.     Use KissFFT to compute amplitude of each sample; 

9.     Volume = max(Amplitude(TimeWindow) 

10.     Convert Volume to an 8-bit integer value Volume_8 

11. BarValue= Volume_8_left || Volume_8_right 

12. iWrite(LCD_Instrument, BarValue); 

13. iApply(); 

14. } 

In its simplicity, the proposed algorithm is still representative 

of a generic signal processing loop: first data is retrieved from 

the system (line 3), then its is processed (lines 4 to 10) and 

finally action is taken on the result (lines 11 and 12).  The 

interleaving of PDL-1 operations and C++ is possible thanks to 

1687’s decision of presenting PDL as an API for an overlay 

language: a TCL script would look similar, but the execution 

would be much slower (and the Signal Processing part much 

more cumbersome).  

The MAST Kernel uses the ICL description of the SUT to 

build its own internal model, which is then used to handle the 

execution of the PDL-1 code and generate the necessary SVF 

operations [13], which are then passed to a Callback using the 

OpenOCD library [14] to control the FTDI USB dongle, 

following the principles being developed by the IEEE P1687.1 
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Working Group [15]. All this heavy-lifting is transparent to the 

user, who simply has to provide the PDL and ICL files.  

4.3 Proof-of-Concept Prototype 

The final demo is shown in Figure 6-a): the FPGA of the 

ML505L card is in the middle the picture, the Audio Input 

receiving the music is in the top half, while in the bottom half 

it is possible to see the LCD screen displaying the volume bars 

for the Left and Right channels. The JTAG interface on the 

right-hand side: the GPIO header is used to connect the TAP 

signals to the design inside the FPGA with the FTDI dongle. 

Communication with the Host PC, not displayed, is done 

through the USB cable.  

 

 

 
Figure 6 Final prototype 

The PDL-1 code is executed like a normal program on the 

Host PC and can therefore display debug information. Figure 6-

b) shows the output of our demo: in each cycle, the value of the 

sampled input data and the estimate volume amplitude for each 

channel is displayed on the terminal.  

The two outputs demonstrate that our system is effectively 

performing a true interactive execution of the PDL-1 code 

against the actual hardware.  

5 CONCLUSIONS AND PERSPECTIVES 

   In this paper, we presented a complete and functional flow 

able to dynamically execute PDL-1 against real hardware, and 

we proved it thanks to a Proof-of-Concept for a signal-

processing application. It has been realized on a commercial 

FPGA for the Hardware part and a generic OS (Linux in this 

case) on the Software side which while being Standard-

compliant it still allows free usage of third-party software 

libraries. To the author’s best knowledge, it is the first 

implementation of this type.  

Future evolutions will first focus on leveraging other features 

of the IEEE 1687 standard, such as exploiting dynamic 

topologies while maintaining full PDL reuse or explore real-

time and concurrency issues. Other directions will be exploiting 

the new IEEE P1687.1 proposal to extend IJTAG to interfaces 

other than JTAG (ex: SPI or I2C) or enhance the algorithmic 

part to cover more complex signal processing problems or adapt 

it to RF/Mixed Signal testing. A porting of the prototype on a 

more recent FPGA development board, the Zedboard [16], is 

also underway.  
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