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ABSTRACT

Context. Pulsars are highly magnetised rotating neutron stars, emitting in a broad electromagnetic energy range. These objects were
discovered more than 55 years ago and are astrophysical laboratories for studying physics at extreme conditions. Reproducing the ob-
served pulsar population helps refine our understanding of their formation and evolution scenarios, as well as their radiation processes
and geometry.
Aims. In this paper, we improve our previous population synthesis by focusing on both the radio and γ-ray pulsar populations, investi-
gating the impact of the Galactic gravitational potential and of the radio emission death line. To elucidate the necessity of a death line,
we implemented our refined initial distributions of the spin period and spacial position at birth. This approach allowed us to elevate
the sophistication of our simulations to the most recent state-of-the-art approaches.
Methods. The motion of each individual pulsar was tracked in the Galactic potential by a fourth-order symplectic integration scheme.
Our pulsar population synthesis took into account the secular evolution of the force-free magnetosphere and magnetic field decay
simultaneously and self-consistently. Each pulsar was evolved from birth to the present time. The radio and γ-ray emission locations
were modelled by the polar cap geometry and striped wind model, respectively.
Results. By simulating ten million pulsars, we found that including a death line allows us to better reproduce the observational trend.
However, when simulating one million pulsars, we obtained an even more realistic P − Ṗ diagram, whether or not a death line was
included. This suggests that the ages of the detected pulsars might be overestimated and so, it sets the need for a death line in pulsar
population studies into question. Kolmogorov-Smirnov tests confirm the statistical similarity between the observed and simulated
P − Ṗ diagram. Additionally, simulations with increased γ-ray telescope sensitivities hint at a significant contribution coming from
the γ-ray pulsars to the GeV excess in the Galactic centre.
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1. Introduction

Pulsars, discovered by Jocelyn Bell Burnell in 1967 (Hewish
et al. 1969), are rotating neutron stars born in a core-collapse
supernova. They are highly magnetised and surrounded by a
plasma-filled magnetosphere emitting regular pulses of radiation
at their spin frequency. Due to the magneto-dipole losses, they
lose rotational kinetic energy and their spin period increases.
Extensive radio surveys have been performed, for instance, by
the Parkes and Arecibo radio-telescopes, with 3700 pulsars dis-
covered thus far (Manchester et al. 2005). In Table 1, we list
the canonical pulsar population defined by isolated pulsars with
periods longer than 20 ms that are not magnetars. Although
pulsars were first observed in radio, they were later found
to be also bright in X-rays, optical, and γ-rays. Large Area
Telescope (LAT) on board the Fermi satellite, has discovered
dozens of radio-quiet γ-ray pulsars as well as millisecond pulsars
(MSPs). Since its launch, the LAT has detected about 300 pulsars
(Abdo et al. 2013; Smith et al. 2019, 2023) and unveiled a new
perspective, expanding our understanding about pulsar emission
mechanisms by increasing the sample of neutron stars detectable

? Corresponding author; matteo.sautron@astro.unistra.fr

through their high energy emission. Moreover, the distinct radi-
ation process involved in high-energy photon production and its
unique beaming properties offer an alternative viewpoint on the
global pulsar population.

With the advent of future surveys such as Square Kilome-
tre Array (SKA1) or Cherenkov Telescope Array (CTA2), many
more pulsars will be detected in both these wavelengths. Those
instruments are scheduled to start collecting data by the end of
the decade. SKA is going to be 50 times more sensitive than cur-
rent telescopes and will survey the sky 10 000 times faster than
any existing imaging radio telescope (McMullin et al. 2020).
CTA is aimed at detecting γ-rays in the energy range from a
few tens of GeV up to hundreds of TeV (Hofmann & Zanin
2023), while Fermi/LAT operates in the energy range from
20 MeV to several hundred GeV3 and the High Energy

1 https://www.skao.int/en/science-users/118/
ska-telescope-specifications
2 https://www.cta-observatory.org/about/
how-ctao-works/
3 https://fermi.gsfc.nasa.gov/science/instruments/
table1-1.html
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Table 1. Number of known canonical pulsars, with spin-down luminos-
ity, Ė, above and below 1028 W, and above 1031 W.

log(Ė) (W) Ntot Nr Ng Nrg

>31 4 0 2 2
>28 150 40 44 66
Total 2193 2020 80 93

Notes. The quantities Nr, Ng, and Nrg are the number of radio-only,
gamma only, and radio-loud γ-ray pulsars, respectively. It should be
noted that we excluded the binary pulsars, the pulsars in the Magel-
lanic clouds and in globular clusters, then we selected the pulsars with
a magnetic field between 6 × 106 T and 4.4 × 109 T. The data have been
taken from the ATNF catalogue from https://www.atnf.csiro.au/
research/pulsar/psrcat/

Stereoscopic System (HESS) operates in the energy range from
0.03 to 100 TeV4.

Pulsar population synthesis (PPS) is a powerful tool for pre-
dicting the discovery rate of new pulsars to better understand
their emission processes and to constrain their overall proper-
ties. In a PPS, pulsars are generated from their birth and evolved
up to the present time. Once the sample of pulsars is generated,
detection criteria can be applied to check whether they can be
detected by current and future telescopes. The detectability of an
individual pulsar in a given energy band, radio, or γ-ray depends
on whether the associated emission beam intersects our line of
sight and on the sensitivity of the corresponding instrument.

Most PPS studies assume that neutron stars are rotating
in vacuum (Faucher-Giguère & Kaspi 2006; Popov et al. 2010;
Johnston et al. 2020) or take only radio or γ-ray emission
into account separately (Watters & Romani 2011; Gullón et al.
2014), or assume a constant magnetic field during the evo-
lution process (Gonthier et al. 2002; Faucher-Giguère & Kaspi
2006; Johnston & Karastergiou 2017). Dirson et al. (2022) mod-
elled, for the first time, the population of both the γ-ray and
radio pulsars, taking into account the state-of-the-art force-
free magnetosphere model in conjunction with a prescription
for the magnetic field decay. The neutron star radiation is
produced by relativistic charged particles flowing within their
magnetosphere. Therefore, the plasma back reaction must be
taken into account in the evolution of the pulsar period and
magnetic inclination angle. While the location of the γ-ray emis-
sion site is still under debate, different regions have been sug-
gested. These are, for instance, the polar cap region (Sturrock
1971; Ruderman & Sutherland 1975; Daugherty & Harding
1982, 1996) at low altitudes, the slot gap along the last open
magnetic field lines (Arons 1983; Muslimov & Harding 2004;
Harding et al. 2008; Harding & Muslimov 2011), or the outer
gaps at high altitudes within the light-cylinder, in the outer
magnetosphere (Cheng et al. 1986; Hirotani 2008; Takata et al.
2011). Emission is also possible outside the light cylinder, in the
so-called striped wind (Pétri 2009, 2011), which was used for the
first time by Dirson et al. (2022) in a PPS study. The radio emis-
sion is described as usual by the polar cap model. In this work, as
in Dirson et al. (2022), we reproduce only the canonical pulsar
population in our Galaxy.

While the study by Dirson et al. (2022) yielded satisfactory
results when simulating a population closely resembling the
observed pulsar population in the P − Ṗ diagram, there was

4 https://www.mpi-hd.mpg.de/HESS/pages/about/

room for improvement regarding the pulsar trajectories within
the Milky Way. Specifically, the Dirson et al. (2022) study was
limited by the assumption that pulsars move in a ballistic motion
depicted by straight lines at a constant speed from their birth to
the present time. A noticeable discrepancy arises when compar-
ing the observed position of pulsars to the predictions, revealing
a significant disparity in both spatial distributions.

Dirson et al. (2022) did not require a death line to reproduce
the P − Ṗ diagram; thus, it was not implemented in their PPS.
However the death line segregates neutron stars generating par-
ticles through pair cascading from those not radiating any more
because of the quenching of this pair avalanche; hence, they are
called dead pulsars. The effect of the death line assumption on
the PPS differs from the PPS performed by Graber et al. (2024),
where the authors did not consider a death line and instead relied
only on as special radio luminosity law to eliminate some pulsars
in the P − Ṗ diagram.

In this paper, we further improve the PPS of Dirson et al.
(2022) by examining the necessity of a death line to explain
the observed canonical pulsar population and discuss the γ-ray
pulsar population in depth. Moreover, our study helps to bet-
ter understand the impact of changing the parameters of our
model as well as their physically meaningful ranges. The paper
is organised as follows. In Sect. 2, we detail our PPS model,
recalling the processes for generation and evolution of the pulsar
sample, as well as the description of the Galactic potential and
the death line, discussing our adopted multi-wavelength detec-
tion criteria. The results are shown in Sect. 3 and discussed in
Sect. 4, followed by a summary in Sect. 5.

2. Description of the PPS model

Our PPS study is based on a self-consistent state-of-the-art evo-
lution of the neutron star geometry of radio and γ-ray emission,
magnetic field, and proper motion within the Milky Way. In this
section, we detail our model by exposing, first, the generation of
individual pulsars, their initial position, magnetic field, and spin
period; second, we considered how these quantities evolve in
time. We also give explicit expressions for the Galactic potential
used in our simulations and introduce the death line before dis-
cussing the radio and γ-ray detection criteria. We stress that the
model parameters used in this section have been carefully chosen
by comparing simulated data with actual observations, varying
the unknown input parameters in sensible physical ranges (see
Appendix C for more details).

2.1. Generation of pulsars

We generated a population of pulsars whose real ages are
selected in ascending order, for example, every X years if the
birth rate is 1/X yr−1, with their age being between 0 yr and
the age of the Milky Way at maximum. The age of the Milky
Way does not significantly differ from the age of the Universe
estimated about tH ≈ 13.8 × 109 yr, therefore, a total number of
tH/X pulsars ought to be simulated. The best value for this birth
rate was found to be 1/41 yr−1, see Appendix C. Our value is con-
sistent with earlier investigations by Faucher-Giguère & Kaspi
(2006), Gullón et al. (2014), Johnston & Karastergiou (2017),
where the authors evaluated the birth rate of pulsars to be in
the range [1/150, 1/33] yr−1. With X = 41 yr we should gen-
erate more than 107 pulsars, however, we chose to emulate only
107 pulsars in a first run and 106 in a second run for the fol-
lowing two reasons. First, the computation time is significantly
decreased, secondly pulsars older than 107 yr are generally not
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Table 2. Parameters of the Milky Way Spiral Arm structure.

Arm number Name k r0 φ0
(rad) (kpc) (rad)

1 Norma 4.95 3.35 0.77
2 Carina-Sagittarius 5.46 3.56 3.82
3 Perseus 5.77 3.71 2.09
4 Crux-Scutum 5.37 3.67 5.76

Notes. Adapted from Yao et al. (2017).

detected. This approach was also chosen because it allows us
to verify whether our birth rate is realistic, by comparing our
results from the simulation to the observations. Our approach is
different from previous works such as Gullón et al. (2014) and
Johnston & Karastergiou (2017), where they stopped the simu-
lation whenever their detected number of pulsars would equal
the number of observed pulsars.

To describe the position of the pulsars in the Galaxy, we use
the right-handed Galacto-centric coordinate system (x, y, z) with
the Galactic centre at its origin, y increasing in the disc plane
towards the location of the Sun, and z increasing towards the
direction of the north Galactic pole. The initial spatial distribu-
tion of the pulsars is given by Paczynski (1990). He found two
distributions, one describing the radial spread and one the spread
in altitude, however only his distribution in altitude is used in our
work because the radial distribution in the galactic plane is better
depicted in Yusifov & Küçük (2004) by the Milky Way’s pulsar
surface density, defined as

ρ(R) = A
(

R + R1

R� + R1

)a

exp
(
−b

(
R − R�
R� + R1

))
, (1a)

ρz(z) =
e−|z|/hc

hc
, (1b)

where R is the axial distance from the z-axis, and z is the dis-
tance from the Galactic disc. The numerical values for the con-
stants are, A = 37.6 kpc−2, a = 1.64, b = 4.0, R1 = 0.55 kpc,
hc = 180 pc, and R� = 8.5 kpc. These values are in agree-
ment with the distribution of young massive stars in our galaxy
(Li et al. 2019). The purpose of choosing Eq. (1a) to describe
the radial spread is to put neutron stars birth positions within
the spiral arms of the Galaxy. More precisely, the Galactic spiral
structure contains four arms with a logarithmic shape function,
allowing us to obtain the azimuthal coordinate φ as a function of
the distance from the Galactic center:

φ(R) = k ln
(

R
r0

)
+ φ0. (2)

The values of the models describing each arm are given in
Table 2. These values were used by Ronchi et al. (2021) and
taken from Yao et al. (2017) to match the shape of the arms of
the Galaxy. The local arm is not modeled because of its very low
density, much smaller than the four other arms. Each star has
an equal probability to be in one of the four arms, its angular
coordinate, φ, for a given R being deduced from (1a). Further-
more, the Galaxy is not static, and its arms are moving with
an approximated period T = 250 Myr (Skowron et al. 2019).
Since we also know that the Galaxy is rotating in the clock-
wise direction, by knowing the age of a pulsar we can know
its angular position at birth. Following the same procedures as

Ronchi et al. (2021), to avoid artificial features near the Galactic
center, noise is added to both coordinates R and φ. For instance
φcorr = φrand exp(−0.35 R), where φrand is randomly drawn from
a uniform distribution between 0 and 2 π. Then, rcorr will be
taken from a normal distribution with a mean of 0 and a stan-
dard deviation, σcorr = 0.07 R, and we add these two correc-
tions to φ and R, respectively. Therefore, Rbirth = R + rcorr and
φbirth = φ + φcorr +

2 π tage

T , where tage is the age of the pulsar. As
soon as Rbirth and φbirth are known, we can convert these coordi-
nates in x and y Galacto-centric coordinates for each pulsar.

Next, we need to describe the individual properties of each
pulsar, namely, its inclination angle α, which is the angle
between its rotation axis and its magnetic axis, its initial spin
period, P0, and initial magnetic field, B0, at birth. The inclination
angle, α, is assumed to follow an isotropic distribution generated
from a uniform distribution U ∈ [0, 1] and given by α =
arccos(2 U−1). In our work, the initial spin period and magnetic
field follow both a log-normal distribution, as suggested from
the results of a study of 56 young neutron stars by Igoshev et al.
(2022), while other works simply use a Gaussian distribution
for the spin period at birth (Faucher-Giguère & Kaspi 2006;
Gullón et al. 2014; Johnston et al. 2020); whereas for the mag-
netic field, the prescription is the same as ours. Explicitly, the
probability distributions for an initial magnetic field B0 and an
initial period P0 are given by:

p(log(B0)) =
1

σb
√

2π
e−(log B0−log B̄)2/(2σ2

b), (3)

p(log(P0)) =
1

σp
√

2π
e−(log P0−log P̄)2/(2σ2

p). (4)

The distribution for the magnetic field is identical to the
one used in other pulsar population synthesis like for
instance Faucher-Giguère & Kaspi (2006), Gullón et al. (2014),
Johnston et al. (2020), Yadigaroglu & Romani (1995), and
Watters & Romani (2011).

According to Hobbs et al. (2005) a Maxwellian distribution
for the kick velocity at birth best replicates the observations and
is given by

p(v) =

√
2
π

v2

σ3
v

exp
(
− v2

2σ2
v

)
. (5)

The mean velocity of the distribution is related to the stan-
dard deviation by v̄ = σv

√
8/π, with a standard deviation

σv = 265 km/s for pulsars. The velocity value drawn from the
Maxwellian distribution is then distributed along the unit vector
of the rotation axis, which is generated, as detailed in Sect. 2.5.
Moreover compared to the study of Dirson et al. (2022), we
introduce a novelty; namely, the alignment between the kick
velocities at birth and the rotation axis of the pulsar, as suggested
by Rankin (2007).

2.2. Pulsar evolution

The pulsar initial period, P0, inclination angle, α0, and magnetic
field, B0, are evolved in time in a fully self-consistent way taking
into account the spin-down losses and the internal magnetic field
dissipation within the neutron star. The neutron star period is
evolved according to the force-free magnetosphere model, which
takes into account the electric current and charge flowing inside
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the magnetosphere. The spin-down luminosity, Ė, is

Ė =
dErot

dt
= −I Ω Ω̇ = Lffe, (6)

Lffe =
4πR6B2Ω4(1 + sin2 α)

µ0c3 , (7)

where I is the neutron star moment of inertia approximately
equal to I ≈ 1038 kg m2, Ω = 2π/P the rotation frequency of the
pulsar (P is the spin period), Ω̇ its time derivative, and R = 12 km
the typical radius of a neutron star, as found by recent NICER
observations (Riley et al. 2019; Bogdanov et al. 2019). Then, B
is the magnetic field at the magnetic equator, α the inclination
angle, µ0 the vacuum permeability constant, µ0 = 4π×10−7 H/m,
and c the speed of light. The term Lffe for the spin-down lumi-
nosity was given by Spitkovsky (2006) and Pétri (2012). Equa-
tion (6) clearly shows the correlation between the obliquity, the
magnetic field and the rotation frequency. Combining Eqs. (6)
and (7) leads to

Ω̇ = −Kffe Ωn, (8)

Kffe =
4πR6B2(1 + sin2 α)

µ0c3I
, (9)

which is written in a more concise form where n is the braking
index, its value being n = 3 for magnetic dipole radiation.

The integral of motion between Ω and α is also very useful
and is expressed as

Ω
cos2 α

sinα
= Ω0

cos2 α0

sinα0
, (10)

where the quantities with a subscript of 0 indicate their initial
value. Those without a subscript display their current value at
present time.

As shown by Gullón et al. (2014) a decaying magnetic field
better accounts for comparison between pulsar population syn-
thesis and observations. Therefore, we prescribe a magnetic field
decay according to a power law

B(t) = B0(1 + t/τd)−1/αd , (11)

where αd is a constant parameter controlling the rate of
the magnetic field decay and τd the typical decay timescale,
which depends on the initial magnetic field as demonstrated
by magneto-thermal evolution models (Viganò et al. 2013). We
took these results into account by defining the decay timescale,
τ1, for a magnetic field strength, B1, such that τ1 Bαd

1 = τd Bαd
0 .

Thus, τ1 is another magnetic field decay time scale, correspond-
ing to a certain magnetic field value, B1. Three different τ1 val-
ues are considered in this work, randomly chosen for each pulsar
generated: 1.5×105 yr or 3.5×105 yr or 2.5×106 yr. Each of these
timescales corresponds to a magnetic field value, B1, of 1×108 T,
3 × 108 T, and 2 × 109 T. Then the probabilities to get these val-
ues of τ1 and B1 to be adopted for one pulsar are 0.23, 0.46
and 0.31, respectively. These three probabilities actually approx-
imate the probability density function for τ1 and B1, and were
already sufficient to reproduce the canonical population. Find-
ing the complete distribution for τ1 and B1 would require further
investigations not needed in our study. Moreover, the distribu-
tions of τ1 and B1 would physically represent the whole ensem-
ble of trajectories possible in the P − Ṗ diagram for canonical
pulsars as in Fig. 10 of Viganò et al. (2013). Therefore, each
pulsar has three possible evolutionary paths in the simulation,
which is an empirical way of reproducing the P − Ṗ diagram in

Table 3. Constants values used for the different potentials.

Parameters Values

Mh 2.9 × 1011 ± 7.6 × 1010 M�
ah 7.7± 2.1 kpc
ad 4.4± 0.73 kpc
bd 0.308± 0.005 kpc
Md 6.50 × 1010 ± 1.9 × 109 M�
ab 0.0 kpc
bb 0.267± 0.009 kpc
Mb 1.02 × 1010 ± 6.3 × 108 M�
Mn 4 × 106 ± 0.42 × 106 M�

Notes. Solar mass M� = 1.99 × 1030 kg.

a better way than having only one evolutionary path. These par-
ticular choices for the discrete values were only guided by trial
and error. The value of αd can be found in Table 5 of Sect. 3.

In line with the spin-down luminosity, the inclination angle
satisfies another evolution equation, which (after integration)
was found by Philippov et al. (2014) for a spherically symmetric
neutron star with a constant magnetic field. With our decaying
prescription the inclination angle α is found by solving

ln(sinα0) +
1

2 sin2 α0
+ KΩ2

0
cos4 α0

sin2 α0

αdτdB2
0

αd − 2

(1 +
t
τd

)1−2/αd

− 1


= ln(sinα) +

1
2 sin2 α

, (12)

where t is the time representing the age of the pulsar and K =
R6/I c3. The typical decay timescale for a mean magnetic field
of 2.5 × 108 T is 4.6 × 105 yr in Viganò (2013); however, in this
study, the typical decay timescale associated to this magnetic
field is 3.5 × 105 yr. This result is is very close to the estimate
of Viganò (2013) for the same field strength.

2.3. Description of the Galactic potential

Finally, we need to follow the particle motion within the Galactic
potential. Each pulsar evolves in the gravitational potential Φ
subject to an acceleration ẍ according to

ẍ = −∇Φ. (13)

Equation (13) is integrated numerically thanks to a position-
extended Forest Ruth-like (PEFRL) algorithm (Forest & Ruth
1990), a fourth-order integration scheme, presented in
Appendix A, with a convergence and accuracy study. We
now discuss the galactic potential model used.

The Galaxy is divided in four distinct regions with different
mass distributions and associated gravitational potentials. The
four potentials are: the bulge, Φb, the disk, Φd, the dark matter
halo, Φh, and the nucleus, Φn. The total potential of the Milky
Way Φtot is the sum of these potentials

Φtot = Φb + Φd + Φh + Φn. (14)

The expressions for these potentials are taken from Bajkova &
Bobylev (2021) with parameters given in Table 3. The nucleus
mass was found in Bovy (2015).

The potential for the bulge Φb and for the disk Φd were both
chosen to have the form proposed by Miyamoto & Nagai (1975),
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which are typically used for models of the gravitational potential
of the Milky Way. They are expressed as:

Φi(R, z) = − GMi[
R2 +

(
ai +

√
z2 + b2

i

)2]1/2 , (15)

where R2 = x2 + y2, and i = b is for the bulge and i = d is for
the disk. In those formula, R, depends on the coordinates x and
y, while ai and bi are the scale parameters of the components in
kpc, Mi is the mass (for the disk or the bulge), and G is the grav-
itational constant. The constant values can be found in Table 3.

Solving the pulsar equation of motion requires to compute
the gradient of the potentials, the derivatives of the disk and the
bulge potentials are:

∂Φi

∂x j
=

GMix j[
R2 +

(
ai +

√
z2 + b2

i

)2]3/2 , (16)

∂Φi

∂z
=

GMiz
(
ai +

(
z2 + b2

i

) 1
2
)

[
R2 +

(
ai +

√
z2 + b2

i

)2]3/2 (
z2 + b2

i

)1/2
, (17)

x j being either x or y. Equation (16) is the derivative for the
potential of Miyamoto Nagai, where i = d or i = b depending
on disk or bulge derivative. Equation (17) is the derivative of the
Miyamoto Nagai potential with respect to the z coordinate.

The potential for the dark matter halo Φh, according to the
frequently used potential of Navarro et al. (1997), is expressed
as

Φh(r) = −GMh

r
ln

(
1 +

r
ah

)
, (18)

where Mh is the mass of the halo, r = x2 + y2 + z2, and ah is the
length scale whose values are found in Table 3. The derivative of
Eq. (18) with respect to any coordinate x j (x, y, z) is:

∂Φh

∂x j
=

GMhx j

r2

[
1
r

ln
(
1 +

r
ah

)
− 1

r + ah

]
· (19)

Finally, for the last part of the Galaxy, the nucleus of the
Milky Way is simply represented by a Keplerian potential Φn
such as

Φn(r) = −GMn

r
, (20)

where Mn is the mass of the nucleus. The derivative of Eq. (20)
with respect to any coordinate x j (x, y, z) is given by

∂Φn

∂x j
=

GMn x j

r3 · (21)

2.4. The death line

Several equations for the death line have been proposed
in the literature (Chen & Ruderman 1993; Zhang et al. 2000;
Gil & Mitra 2001; Mitra et al. 2020). The most suitable one in
our study is that of Mitra et al. (2020), where they found an
expression relating P and Ṗ by

Ṗline =
3.16 × 10−19 T 4

6 P2

η2b cos2 αl
· (22)

Fig. 1. P− Ṗ diagram of the canonical pulsars along with the death line,
green solid line, and death valley, shaded green area.

Here, T6 = T/106 K, where T corresponds to the surface tem-
perature of the polar cap. The parameter η = 1 − ρi/ρGJ is the
electric potential screening factor due to the ion flow, where ρi
corresponds to the ion charge density and ρGJ to the Goldreich-
Julian charge density above the polar cap. The quantity b is the
ratio of the actual surface magnetic field to the dipolar surface
magnetic field andαl is the angle between the local magnetic field
and the rotation axis. The parameters we used for this death line
are: αl = 45◦, b = 40, η = 0.15, and T6 = 2. The spread in
the parameter values of the model causes significant variations in
the death line; thus, a death valley rather than a single death line
describes the condition for pulsar extinction in the P− Ṗ diagram.

We allowed for the different parameters for this death valley
to be in the following ranges: αl was drawn from a uniform dis-
tribution between 0◦ and 65◦, T6 was drawn from a uniform dis-
tribution between 1.9 and 2.8, and b was drawn from a uniform
distribution between 30 and 60. The boundary parameter values,
corresponding to the edges of the death valley, were chosen to
traverse the P − Ṗ diagram from the region in the bottom right
quadrant where the number of pulsars starts to decrease (because
this is likely the region where the death of pulsars begins to be
considered, since less pulsars are there) to the detectable pulsar
with the lowest Ṗ and highest P in the same quadrant, as shown
in Fig. 1. To decide whether a pulsar is still active in radio or not
we apply the following criterion: if the pulsar lies in the death
valley then all the parameters mentioned above are taken from
uniform distributions in the ranges of the death valley to com-
pute Ṗnew

line with Equation (22), the critical spin-down rate of the
considered pulsar. Then we compare its actual spin-down rate,
Ṗ, computed from the evolution model, to the Ṗnew

line . For pulsars
that are not in the death valley, their Ṗ is only compared with
the spin-down rate, Ṗline, obtained with the default parameters.
If the pulsar has its Ṗ, which was computed from the evolution
model, below the one computed with the death line, then the pul-
sar is considered to be dead; otherwise, it is considered to still
be emitting photons. These choices were made in order to have
more like a death valley near the death line than a strict condition
of death, because the parameters T6, αl, and b may be different
from one pulsar to another.

2.5. Detection

For each pulsar, we checked whether it fulfilled the detection
criteria, based on on three factors. First, the beaming fraction
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indicates the fraction of the sky covered by the radiation beam
and depends on the considered wavelength; here that is radio or
γ-ray. The beaming fraction varies also with the pulsar spin rate,
geometry and location of the emission regions. Before going on
to describe how the beaming fraction in radio and γ-ray are com-
puted, it is important to define several angles.

The angle between the line of sight and the rotation axis is
denoted by ξ = (n̂Ω, n), where nΩ = Ω/‖Ω‖ is a unit vector
along the rotation axis and n the unit vector along the line of
sight. The inclination angle α = (n̂Ω,µ) is the angle between the
rotation axis and the magnetic moment, µ being the unit vector
along the magnetic moment. Traditionally, the impact angle is
also introduced as the angle between the magnetic moment and
the line of sight β = (µ̂, n). Moreover, it is related to the previous
angles by α + β = ξ.

We chose an isotropic distribution for the Earth viewing
angle, ξ, as well as for the orientation of the unitary rotation vec-
tor. The Cartesian coordinates of the unit rotation vector, nΩ, are
(sin θnΩ

cos φnΩ
, sin θnΩ

sin φnΩ
, cos θnΩ

). We set the Sun’s posi-
tion at (x�, y�, z�) = (0 kpc, 8.5 kpc, 15 pc) (Siegert 2019). The
coordinates for n are

n =

( x − x�
d

,
y − y�

d
,

z − z�
d

)
· (23)

To compute the pulsar distance from Earth, we use the formula
for the distance,

d =

√
(x − x�)2 + (y − y�)2 + (z − z�)2. (24)

2.5.1. Radio detection model

The beaming fraction in radio depends on the half opening
angle of the radio emission cone, ρ, computed according to
Lorimer & Kramer (2004) by

ρ = 3

√
π hem

2Pc
, (25)

where hem is the emission height, P is the spin period
of the pulsar, and c is the speed of light. The emis-
sion height is taken constant with an average value of
hem = 3 × 105 m, estimated from observations of a sam-
ple of pulsars by Weltevrede & Johnston (2008), Mitra (2017),
Johnston & Karastergiou (2019), Johnston et al. (2023). The
cone half-opening angle, ρ, estimated in Eq. (25) holds only for
the last open field lines of a magnetic dipole and can only be
applied for slow pulsars, where the radio emission altitude is
high enough for the multipolar components to decrease signif-
icantly and become negligible.

The pulsar is detected in radio if β = |ξ − α| ≤ ρ or
if β = |ξ − (π − α)| ≤ ρ corresponding to the north and
south hemisphere, respectively. It must also satisfy the condi-
tion α ≥ ρ and α ≤ π − ρ in order to effectively see radio pul-
sation, because the line of sight must cross the emission cone
to observe pulsations. Another useful quantity is the observed
width of the radio profile, wr, which is computed as (see
Lorimer & Kramer 2004):

cos(ρ) = cos(α) cos(ξ) + sin(α) sin(ξ) cos(wr/2). (26)

The second factor for detection is the luminosity, which
is also different between radio and γ-rays. First, concern-
ing the radio flux density, the formula used is the same as
in Johnston et al. (2020) for a pulsar at 1.4 GHz, in order to

model the detection carried out by the Parkes radio telescope in
the southern Galactic plane (Kramer et al. 2003; Lorimer et al.
2006; Cameron et al. 2020) and the Arecibo telescope in the
northern plane (Cordes et al. 2006). We note that these two tele-
scopes do not cover all the sky in the southern and northern
plane, but we did not implemented any filter in the code. The
formula is

Fr = 9 mJy
(

d
1 kpc

)−2 (
Ė

1029 W

)1/4

× 10F j , (27)

where d is the distance in kpc and F j is the scatter term which
is modeled as a Gaussian with a mean of 0.0 and a variance of
σ= 0.2. The detection threshold in radio is set by the signal to
noise ratio defined by

S/N =
Fr

Smin
survey

· (28)

The pulsar is detected if the signal to noise ratio S/N is greater
or equal to 10. Then, Smin

survey is the minimum flux which is related
to the period of rotation P, the width profile of radio emission,
wr, and the sensitivity of the survey which is the last factor for
detection. This will be detailed later. We directly compute the
radio flux, without computing the luminosity in radio that over-
looks the fact that the luminosity received will depend on the
geometry of the beam.

The third and last factor is the sensitivity, depending on the
survey; therefore, on the instrument used and on the pulse profile
observed. A pulsar is detected in radio if the signal-to-noise ratio
(S/N) is greater than 10, but this ratio depends on the minimum
flux, another function of the instrumental sensitivity. With the
aim of computing the observed width pulse profile, we use the
same formula as Cordes & McLaughlin (2003)

w̃r =

√
(wr P/2π)2 + τ2

samp + τ2
DM + τ2

scat, (29a)

Smin
survey = S0

√
w̃r

P − w̃r
· (29b)

Equation (29a) takes into account density fluctuations in the
interstellar medium (ISM), the dispersion and scattering during
the propagation of the radio pulse when interacting with the free
electrons. Moreover, the instrumental effect is also taken into
account with τsamp, which is the sampling time of the instrument.
All this mechanisms lead to a broader pulse profile. In order to
determine the influence of the ISM through τDM, the formula of
Bates et al. (2014) can be used,

τDM =
e2∆ fch DM

4 π2 ε0 me c f 3 = 8.3 × 1015 s
∆ fch

f 3 DM. (30)

Here, e is the electron charge, me its mass, ∆ fch the width of
frequency of the instrument channel in Hz, f the observing fre-
quency in Hz, and DM the dispersion measure in pc/cm3. Fur-
thermore, in order to determine the influence of scattering by an
heterogeneous and turbulent ISM through τscat, the empirical fit
relationship from Krishnakumar et al. (2015) is used

τscat = 3.6 × 10−9DM2.2(1 + 1.94 × 10−3DM2). (31)

Both τDM and τscat are given in units of second (s) and depend
on the dispersion measure DM (in units of pc/cm3), which is
found for each pulsar by running the code of Yao et al. (2017)
converting the distance of a pulsar into the dispersion measure
thanks to their state-of-the art model of the Galactic electron
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Table 4. Survey parameters of the Parks Multibeam Pulsar Survey
(PMPS).

∆ fch f τsamp
(kHz) (GHz) (µs)

3000 1.374 250

density distribution. The radio survey parameters used are the
ones from the Parkes Multibeam Pulsar Survey (PMPS) taken
from Manchester et al. (2001), see Table 4.

Concerning Eq. (29b), S0 represents the survey parameters.
Johnston et al. (2020) estimated that S0 should approximately be
equal to 0.05 mJy to have a signal to noise ratio greater than 10
for normal pulsars in this survey. We chose Eq. (29b) to compute
the minimum flux, to decide whether a pulsar will be detected in
radio or not; however, it does not reproduce the whole complex-
ity of this quantity which could be computed more precisely (see
Eq. (24) of Faucher-Giguère & Kaspi 2006; for instance, where
S0 is computed more precisely) even though it remains a good
approximation. In addition we only use the parameters of PMPS
to compute τDM, we could have also used the parameters of The
Pulsar Arecibo L-band Feed Array (PALFA) Survey; however,
the differences in the results in the end are not large if we use
these parameters. Consequently, it continues to serve as a favor-
able approximation to exclusively utilise the parameters delin-
eated by PMPS.

2.5.2. γ-ray detection model

The γ-ray emission model relies on the striped wind model,
describing γ-ray photons production emanating from the current
sheet within the striped wind. To detect the γ-ray, the line of
sight of the observer must remain around the equator plane with
an inclination angle constrained by |ξ−π/2| ≤ α. The γ-ray lumi-
nosity is extracted from a study of Kalapotharakos et al. (2019),
where the authors showed that the luminosity is described by
a fundamental plane. The 3D model depends on the magnetic
field, B, the spin-down luminosity, Ė, and the cut-off energy, εcut.
However, in our PPS the cut-off energy is not computed; there-
fore, we use their 2D version,

Lγ(2D) = 1026.15±2.6 W
( B
108 T

)0.11±0.05 (
Ė

1026 W

)0.51±0.09

, (32)

The spin-down, Ė, is computed with Eq. (6) and the associated
γ-ray flux detected on earth is computed with

Fγ =
Lγ(2D)

4 π fΩ d2 , (33)

where fΩ is a factor depending on the emission model reflecting
the anisotropy. For the striped wind model, Pétri (2011) showed
that this factor varies between 0.22 and 1.90. Nevertheless, an
approximation is made: if α < −ξ + 0.6109, then fΩ = 1.9; oth-
erwise fΩ = 1. As can be observed in Fig. 7 of Pétri (2011), fΩ is
usually equal to one of this two values, depending on the value
of the inclination angle, α; hence this approximation. The pulsar
is detected in gamma depending on the instrumental sensitivity
as described below.

Table 5. Parameters used in the simulations.

τbirth (1/yr) Pmean (ms) Bmean (T) σp σb αd

41 129 2.75 × 108 0.45 0.5 1.5

Table 6. Number of pulsars detected without the implementation of the
death line.

log(Ė) (W) Ntot Nr Ng Nrg

>31 7 0 4 3
>28 161 4 87 63
Total 2491 2169 163 159

The sensitivity in γ-ray is based on the expectation of the
Fermi/LAT instrument5. Two conditions are required to count
the detection, the first condition is that the source must be bright
enough with a sufficiently high flux. If the galactic latitudes of
the pulsar is <2◦, then Fmin = 4 × 10−15 W m−2, and if blind
searches are assumed, we set Fmin = 16 × 10−15 W m−2. Hence,
if the γ-ray flux Fγ is greater than Fmin, the first condition is
fulfilled. The second condition concerns the dispersion mea-
sure. We set a threshold on the dispersion measure, DM (a sim-
ilar approach was done in Gonthier et al. 2018 for millisecond
γ-ray pulsars), because γ-ray canonical pulsars typically origi-
nate from supernova explosions and are associated with regions
of recent star formation, such as supernova remnants or star-
forming regions. These environments can have higher densities
of free electrons, leading to higher DM values for pulsars in these
regions, which is why we use this quantity as a discriminator
for detection. Therefore, the DM threshold chosen is 15 cm−3 pc,
following the lowest value that can be found in the ATNF cata-
logue for high-energy pulsars. Thus, with these two conditions
fulfilled, a pulsar is reported detected in γ-ray.

3. Results

We move to the PPS simulation results. First, we show runs sim-
ulating 10 million pulsars with and without a death line, allowing
us to generate old pulsars with ages up to 4.1 × 108 yr. Then, we
show runs simulating only one million pulsars with ages up to
4.1×107 yr, with and without a death line. We explore a possible
spin-velocity misalignment effect due to the galactic potential
and the impact of the initial spin period distribution, compar-
ing the normal versus log-normal distributions. Finally, the γ-ray
simulations and detection are explained in detail.

3.1. Simulating ten millions pulsars

We begin with a sample containing ten million pulsars, showing
the impact of the death line. A same study will be done for one
million pulsars.

3.1.1. Without a death line

The first set of simulations discarded the death line. The param-
eters used for these runs are given in Table 5. The total number
of pulsars is summarised in Table 6. The quantities Nr, Ng, and

5 https://fermi.gsfc.nasa.gov/ssc/data/analysis/
documentation/Cicerone/Cicerone_LAT_IRFs/LAT_
sensitivity.html
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Fig. 2. Distribution of the observed period taken from the ATNF cat-
alogue, along with the simulations, without the implementation of the
death line. In green, the period of the simulated pulsars with character-
istic age greater than 108 yr.

Nrg are the number of radio-only, γ-only, and radio-loud γ-ray
pulsars, respectively, extracted from our simulation.

Compared to the results obtained by Dirson et al. (2022) at
very high spin-down luminosity (Ė > 1031 W), the detection rate
is almost identical; however, at Ė > 1028 W, substantially fewer
pulsars are detected in radio and radio/γ-ray in our work. There
are probably two causes for this discrepancy in the number of
detected pulsars at high spin-down luminosities, Ė > 1028 W:
firstly, the difference in the spin period distribution at birth. Pul-
sars have a higher probability to start with a higher P0 since the
mean of the distribution is higher (in the previous study the mean
period was 60 ms while we set it to 129 ms); therefore, the slow-
ing down of the pulsars can only decrease their rotation fre-
quency, Ω. Equation (6) shows that Ė depends on Ω. However,
it does not affect the detection rate in γ-rays because usually
canonical γ-ray pulsars possess a high Ṗ and a low P (as they
are young); therefore, their Ė is higher than for radio pulsars.
Secondly, the ISM dispersion and scattering reduces the num-
ber of detected radio pulsars, results without the ISM effect are
not shown but discarding its impact would lead to much more
detected radio pulsars. Nonetheless, in terms of total number of
detected radio pulsars, including the Galactic potential increases
this number compared to Dirson et al. (2022). This result is
expected because of the attractive nature of the potential of the
Galaxy. Moreover, in this latter version, the PPS moved pulsars
in random spatial directions at constant speed. As a result, many
pulsar could not remain bound to the Milky Way in closed orbits
which was an artifact that was especially true for old pulsars
which could have time to leave the Galaxy.

Figure 2 compares the distribution of simulated and observed
spin periods, in red and blue, respectively. However the compari-
son is not satisfactory because of an excess of pulsars detected in
the simulation. Furthermore, this excess is also present in Fig. 3
where the characteristic age of the observed pulsars and the sim-
ulated pulsars are plotted. We note that we employ the charac-
teristic ages defined by

τc =
P

2Ṗ
(34)

because we usually do not know the real ages of the observed
pulsars.

Fig. 3. Distribution of the observed age taken from the ATNF catalogue,
along with the simulations without the implementation of the death line.

Fig. 4. P− Ṗ diagram of the simulated population, along with the obser-
vations, without the implementation of the death line.

To verify whether there is a correlation between old pul-
sars and those with a high spin period, we focus on pulsars
with a characteristic age greater than 108 yr, corresponding to
the oldest pulsars of the simulation (shown in green in Fig. 2).
This coincides with the excess found in Fig. 2. We conclude
that canonical pulsars older than 108 yr measured as their real
age in our simulations should be discarded at the end of the
simulation, since the characteristic age overestimates the real
age of pulsars. Indeed, it appears that we are unable to detect
canonical pulsars older than 108 yr. The Galactic potential for-
bids many pulsars to escape from the Milky Way and so, they
remain bound to the Galaxy. This is in contrast to the older pul-
sars found in Dirson et al. (2022) that were escaping the Galaxy
easily because of the absence of this potential. Figure 4 shows
that many pulsars are in what is commonly called the graveyard
of pulsars at the bottom right of the P − Ṗ diagram, the death
valley being shown in Fig. 4 but not implemented. Given this
excess of long period pulsars when neglecting the death line, we
decided to implement it to stick closer to the realistic scenario.

3.1.2. With the death line

Adding a death line decreases the number of pulsars detected in
radio compared to the situation without a death line, see Table 7.
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Table 7. Number of pulsars detected with the death line
implementation.

log(Ė) (W) Ntot Nr Ng Nrg

>31 10 0 5 5
>28 118 7 69 42
Total 2077 1807 116 154

Fig. 5. Distribution of the observed period taken from the ATNF cata-
logue, along with the simulations with the death line implementation.

Fig. 6. P− Ṗ diagram of the simulated population, along with the obser-
vations, with the death line implementation.

The death line improves the fit as seen in Fig. 5 for the distri-
bution of spin period and compared with Fig. 2, even though
there is a slight excess of pulsars which have spin period between
10−0.5 s and 1 s. In Fig. 6, these pulsars in excess lie at Ṗ between
10−18 and 10−17, where there is no data and which correspond to
the oldest pulsars in the simulation. Therefore the oldest pulsars
simulated here do not correspond to any real data. In addition,
too many pulsars end up close to the death line, disagreeing with
the observations. The death line creates a pile up effect not seen
in the observations.

The goodness-of-fit is checked against a density plot of the
P − Ṗ diagram as in Johnston & Karastergiou (2017), instead of
setting points for individual pulsars. To construct these diagrams,
we binned the data evenly in a log scale in P and Ṗ and counted

P − Ṗ

Fig. 7. Density plot of the P − Ṗ diagram in comparison with observa-
tions.

the number of pulsars in each bin. This leads to a 2D histogram
to be compared with the observed density plot 2D histogram.
Because the total number of simulated pulsars Ntotsim is different
from the total number of observed pulsars, Ntotobs, we normalised
the number of pulsars in each bin to compare their proportions.
We therefore introduce the quantity R as follows

R =
Nsim/Ntotsim − Nobs/Ntotobs

Nsim/Ntotsim + Nobs/Ntotobs
· (35)

With this definition, the number R remains in the interval
[−1,+1]. Nsim is the number of pulsar count in a bin of the sim-
ulation, Nobs the number of pulsar detected in a bin of the obser-
vations. A good fit in a bin corresponds to a value of R close to
0, meaning that the simulation results are close to the observa-
tions. Considering Fig. 7, we note a stronger deviation from the
observations at the boundaries of the density plot, confirming,
for instance, the pile up close to the death line. The high values
of R at these boundaries comes from the weak number of pulsars
counted in these bins leading to bad statistics and broad varia-
tions in the proportions, which are side effects of the density plot
approach. The fact that the colors are very dark shows that the
proportion of pulsars in most of the bins are not good.

A Kolmogorov-Smirnov (KS) test (Smirnov 1948) was con-
ducted on both P and Ṗ, which gave p-values substantially below
0.05 for both quantities, when no death line was implemented.
While we obtained p-values of 0.05 for P and well below 0.05
for Ṗ with a death line implementation. The null hypothesis that
observations and simulations originate from the same distribu-
tion for P cannot be rejected (p-value≥ 0.05) only when a death
line is considered, but is clearly rejected for Ṗ in both case.

3.2. Simulating one million pulsars

3.2.1. With the death line

The parameters used for these runs are shown in Table 5. This
new set of simulations is intended to verify if generating pul-
sars younger than 4.1 × 107 yr is sufficient, since older pulsars
are barely observed. The death line is also taken into account.
Without any specifications, in all figures (with the exception of
Figs. 8, 9, and 10), the simulations were performed while con-
sidering the ISM effect.
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Fig. 8. Distance distribution to Earth for observed and simulated popu-
lations (one million pulsars), including the death line implementation.

Fig. 9. Spatial distribution of the simulated pulsars, along with the
observations, projected onto the Galactic plane for one million pulsars
simulated.

Table 8 shows that a few less pulsars were detected in this
simulation compared to the one with the death line and ten mil-
lions pulsars (see Table 7). Moreover, inspecting the histograms
for spin period and spin period derivative respectively in Figs. 11
and 12, we conclude that observations and simulations are very
similar in both histograms. A KS test was conducted for both
distributions, P and Ṗ, and yielded p-values of 0.67 and 0.17
respectively. Therefore, it is impossible to reject the null hypoth-
esis stating that the simulated distributions are similar to the
observed distribution.

Fig. 13 shows the good agreement between simulations and
observations. Furthermore, comparing Figs. 7 and 14, the for-
mer performs better because globally the values of R are close to
zero, highlighting the fact that the proportion of pulsars in each
2D bin are almost alike. In addition, the pile up effect close to
the death line has been removed from the P − Ṗ diagram, which
better fits to the data.

The pulsar distance distribution to Earth is shown in Fig. 8.
The improvement compared to Dirson et al. (2022) is marginal.
Anyway, we recall here that the estimated distances of the
observed pulsars are subject to large uncertainties because of the
distances derived from the dispersion measure values (DM) are
highly uncertain, while the distances for the simulated pulsars

Fig. 10. Distribution of the observed latitude taken from the ATNF cat-
alogue, along with the simulations with the death line implementation
for one million pulsars simulated.

Table 8. Number of pulsars detected with the death line implementation
for one million pulsars simulated.

log(Ė) (W) Ntot Nr Ng Nrg

>31 8 0 7 1
>28 138 6 82 52
Total 1645 1338 165 142

Fig. 11. Distribution of the observed period taken from the ATNF cat-
alogue, along with the simulations with the death line implementation
for one million pulsars simulated.

are correct by construction. As a consequence, the comparison
between the observed and simulated distance distribution is not
a reliable indicator to check the correctness of our model as
the discrepancies are subject to observational uncertainties. For-
tunately, the P − Ṗ improved compared to the previous work.
This could mean the observed pulsars are closer than expected.
Indeed, Fig. 9 shows that the positions of the simulated pulsars
in the X-Y plane of the Galaxy, including the ISM effect. They
are closer to the Sun than the observed pulsars. Surprisingly,
by removing the effect of dispersion and scattering of the ISM
on the radio pulse profile, we were able to obtain very similar
distance distributions between observations and simulations (see
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Fig. 12. Distribution of the observed period derivative taken from the
ATNF catalogue, along with the simulations with the death line imple-
mentation for one million pulsars simulated.

Fig. 13. P−Ṗ diagram of the simulated population, along with the obser-
vations, with the death line implementation for one million pulsars sim-
ulated.

Fig. 8). Therefore, a refinement of the ISM impact on radio pulse
profiles might help getting a more realistic model.

Finally, Fig. 10 compares the Galactic latitude distributions
with the study of Dirson et al. (2022), as displayed in their Fig. 9.
In our work, the simulated distribution better matches the obser-
vations, especially around all the latitudes away from 0◦. There-
fore, the Galactic potential helped tracking the pulsar trajectories
more realistically. We notice also the ISM removes pulsars close
to a latitude of 0◦, because the electron density is highest in the
galactic plane of the Milky Way.

3.2.2. Without a death line

The simulation with one million simulated pulsars did not allow
us to generate pulsars older than 4.1 × 107 yr. We have therefore
undertaken a thorough examination of the usefulness of a death
line in modeling the canonical pulsar population. Upon conduct-
ing simulations with and without a death line (see Table 5 for
the parameter values used in the simulations), we found that the
resultant number of detected pulsars and the corresponding plots
exhibited remarkable similarities. By conducting the KS test on
P and Ṗ between two simulations, one with and one without the
death line, we obtained p-values of 0.20 and 0.16, respectively.

Fig. 14. Density plot of the P− Ṗ diagram in comparison with observa-
tions for one million pulsars simulated.

˙Fig. 15. P − Ṗ diagram of the simulated population, along with the
observations, without death line implementation and with a birth rate
of 1/70 yr−1 for the one million pulsars simulated.

Since both p-values are greater than 0.05, this indicates no sig-
nificant difference between the two simulations, supporting their
similarity. Consequently, our attention turned towards exploring
the impact of lower birth rates to ascertain whether they may
provide a more congruous fit for both the spin period and spin
period derivative distributions.

Running simulations with a birth rate of 1/70 yr−1 or a birth
rate of 1/150 yr−1 (thereby increasing the oldest simulated pul-
sar) conspicuously revealed an insufficient number of detected
pulsars (seen in Figs. 15 and 16). Intriguingly, a discernible
paucity of pulsars congregating in the bottom right quadrant of
the diagram, colloquially known as the pulsar graveyard, per-
sisted even under these conditions. Therefore, regardless of the
birth rates, this casts doubt on the necessity of a death line in
this configuration. Ultimately, our analysis underscores the piv-
otal importance of delineating the maximum real age of simu-
lated pulsars, as elucidated in Sect. 3.1, while the incorporation
of a death line do not seem indispensable for attaining realistic
results when simulating one million pulsars.
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˙Fig. 16. P−Ṗ diagram of the simulated population, along with the obser-
vations, without death line implementation, birth rate of 1/150 yr−1 for
one million pulsars simulated.

Fig. 17. Distribution of the spin-velocity angles for all the detected pul-
sars in the simulation for the one million pulsars simulated.

3.3. Spin-velocity misalignment effect

With the aim of observing the effect of the Galactic potential,
we looked at the alignment of the rotation axis and the proper
motion velocities of the pulsars. The results are taken from the
simulation containing one million pulsars, with the parameters
given in Table 5. Noutsos et al. (2013) showed by studying a
catalogue of 58 pulsars that pulsars younger than 10 Myr keep
their rotation axis and their velocities vector still aligned or anti-
aligned, because they were aligned at birth according to Rankin
(2007). Meanwhile, pulsars older than 10 Myr do not show this
trend anymore. This progressive misalignment effect is due to
the movement through the Galactic potential.

Figure 17 demonstrates that most pulsars have their rotation
axis aligned or counter-aligned with their velocities, but for spin-
velocity angles between 30◦ and 150◦ the numbers of pulsars
is considerably lower than around alignment 0◦ and counter-
alignment 180◦. On the one hand, for pulsars younger than
10 Myr, shown in blue in Fig. 18, only a small fraction of pulsars
have their spin-velocity angle greater than 30◦ and below 150◦.
On the other hand, for pulsars older than 10 Myr, shown in red
in Fig. 18, their spin-velocity angle becomes greater than 30◦ or
smaller than 150◦.

Fig. 18. Distribution of the spin-velocity angles for the detected pulsars
younger than 10 Myr (blue) and pulsars older than 10 Myr (red) in the
simulation.

Fig. 19. Spin-velocity angles for the detected pulsars in function of the
number of orbits made by the pulsars in this study.

Furthermore, Fig. 19 confirms that, the older the pulsar is, the
better its chance to perform several orbits in the Galaxy, allowing
it to significantly deviate from spin-velocity alignment or anti-
alignment. In addition, even for pulsars that are not as old, their
spin-velocity angle will evolve between 30◦ and 150◦ to give
them the ability to perform many orbits in the Galaxy. This sup-
ports the idea that the Galactic potential is responsible for the
misalignment irrespective of the age of the pulsar. The opposite
is also true, some old pulsars do not perform many orbits (but
most of them are) and, as a consequence, they (approximately)
retain their spin-velocity alignment or misalignment. The previ-
ous plots clearly highlight the influence of the Galactic potential
making pulsars lose their alignment between their rotation axis
and their proper motion velocities through time.

3.4. Log normal vs normal distribution for spin period at birth

To estimate the impact of the spin period distribution at birth, we
compare the results of the log-normal law with the previously
used normal law in Dirson et al. (2022):

p(P0) =
1

σp
√

2π
e−(P0−P̄)2/(2σp)2

. (36)
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Table 9. P-values and total number of pulsars detected (Ndetection)
obtained for simulations with different P̄ for the Gaussian initial dis-
tribution of spin period.

P̄ (ms) σp (ms) p-value (P) p-value (Ṗ) Ndetection

60 30 6.58 × 10−20 3.76 × 10−4 1512
80 30 1.84 × 10−15 0.051 1671
100 30 2.34 × 10−10 0.123 1721
129 30 1.02 × 10−6 0.050 1787
140 30 1.83 × 10−5 0.006 1816

Fig. 20. P − Ṗ diagram of the γ-only pulsars for both the simulations
and the observations, with one million pulsars simulated.

The simulation in this subsection uses the parameters listed in
the two first columns of Table 9 and to be put into Eq. (36).
The Galactic potential and the death line were both taken into
account to compare the influence of the initial spin period distri-
bution on the one million pulsars simulated, see Table 5 for the
parameters used. In Table 9, only the results for σp = 30 ms are
shown because other values have been tried out, namely 10 ms,
20 ms and 40 ms, but gave no higher p-values than for σp =

30 ms. Moreover, we chose P̄ from 60 ms to 140 ms because it is
the range usually used in other work (Faucher-Giguère & Kaspi
2006; Gullón et al. 2014; Dirson et al. 2022).

Table 9 highlights the fact that for P̄ above 60 ms and below
140 ms, an acceptable p-value≥ 0.05 is reached for the Ṗ distri-
bution. However no matter the value of P̄, a satisfying p-value
for the P distribution is not reached in contrary to the log-normal
distribution at birth, for which satisfying p-value for both distri-
butions were obtained. We conclude that the initial distribution
for the spin period found by Igoshev et al. (2022) allows us to
better reproduce the canonical pulsar population.

3.5. γ-ray detection

We go on to focus on the γ-ray pulsar population. First, we note
that the total number of pulsars detected is significantly larger
in our sample (307 detections) compared to the observations
(173 detections), when using the Fermi/LAT instrument sensi-
tivity. However, the simulated γ-ray only and radio loud γ-ray
pulsars are in the expected area of Fig. 20, furthermore, the KS
test gives a p-value of 0.52 and ≈0 for Ṗ and P, respectively. The
null hypothesis can not be rejected for Ṗ but it is rejected for P.

Fig. 21. Distribution of the γ-ray flux of the simulated population along
with the observations from the 3PC catalogue.

Fig. 22. Distribution of the γ-ray peak separation of the simulated pop-
ulation along with the observations from the 3PC catalogue.

However, when the KS test is conducted on the γ-ray population
only we get p-values of 0.03 and 0.14 for Ṗ and P, respectively;
therefore, here the null hypothesis is rejected for Ṗ but not for
P. While for the radio loud γ-ray population p-values of 0.11
and ≈0 are obtained for Ṗ and P, respectively. Thus, we thought
the low p-value obtained for P for both population was probably
because of the seven high-spin period radio loud γ-ray pulsars
(seen in Fig. 20). However, even conducting the KS test without
these pulsars gives a p-value≥ 0.05 for Ṗ and well below 0.05
for P.

In addition, we also compared the γ-ray flux distribution
of the simulated and observed populations. In Fig. 21, we
notice that both distributions peak at the same flux level around
10−13.7 W m−2. Globally, the number of pulsars in the simulation
with a flux greater than 10−13.4 W m−2 is very close to the obser-
vations. However, between 10−14.4 W m−2 and 10−14 W m−2,
there are much more pulsars in the simulation. This bi-modality
in the simulated γ -ray flux distribution is an artefact introduced
by our abrupt condition on the threshold, Fmin, depending on
the radio detection of a pulsar and on a sufficiently low galactic
latitude. However if we smoothly change Fmin from 4 × 10−15

to 16 × 10−15 (the two Fmin values used in this work), the bi-
modality would almost disappear.

Finally, we can compare the simulated and observed γ-ray
light-curve peak separation ∆ in Fig. 22. The separation ∆ is
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computed according to Pétri (2011) by

cos (π∆) = | cot ξ cotα|, (37)

where ξ is the angle between the line of sight and the rotation
axis and α the inclination angle. The distributions are normalised
in order to obtain probability distribution functions (pdf) for both
observations and simulations. The normalisation is performed by
dividing each distribution function by its total number of pulsars,
whether observed or simulated. Moreover, ∆ is constrained to
the interval between 0 and 0.5, because we consider that peak
separations, ∆, larger than 0.5 can be scaled to ∆ = 1 − ∆ by a
phase shift, since the signal is periodic and represents the phase
separation between two peaks and the definition of the first or
main peak is arbitrary. Figure 22 displays a remarkable similarity
between the observed and simulated distributions of the γ-ray
peak separation, meaning the striped wind model captures this
geometric feature very well.

The higher number of detected pulsars in the simulations
could be related to the unidentified sources in the Fourth Fermi-
LAT catalogue of γ-ray sources (4FGL). Since many uniden-
tified Galactic sources are listed in this catalogue, many γ-ray
pulsars might have been observed without being identified as such
yet. Nonetheless, assuming that every unidentified γ-ray pulsar in
this catalogue will be recognised as such by a future more sensi-
tive instrument and that a significant difference between the num-
ber of simulated and observed pulsars subsists, this could hint to
some shortcomings faced by the striped wind model. We note that
some of these possible flaws of geometrical or physical nature.
First the γ-ray beam opening angle could be smaller than the one
used due to some plasma recollimation effect within the striped
wind. This would reduce the number of detected pulsars. Sec-
ondly, the luminosity function could also deviate from the pre-
scription adopted in Eq. (32). Another dependence on B and P or
equivalently on P and Ṗ could be introduced, maybe adding a third
parameter like the cut-off energy to better describe the γ-ray lumi-
nosity. Furthermore, we compare our results with the PPS work
of Pierbattista et al. (2012), where they simulated the young γ-
ray pulsar population with four different models: outer gap (OG),
slot gap (SG), polar cap (PC), and outer polar cap (OPC) models.
To summarise their findings, their best model is the OPC model,
showing almost identical results as ours, P− Ṗ shape and number
of detections, except that we detect γ-ray pulsars a little farther
away from Earth.

To conclude the part about γ-ray pulsars, we predict the num-
ber of pulsars that would be detected by a future instrument, ten
times more sensitive than Fermi/LAT. We asked the question:
what if we run another simulation with the same parameters as
in Table 5, only changing the threshold of detection for γ-ray?
This investigation could help in identifying the nature of the GeV
excess in the Galactic centre. Therefore, we decreased the instru-
ment sensitivity Fmin by a factor 10: if the galactic latitudes of
the pulsar is <2◦, then Fmin = 0.4 × 10−15 W m−2; concerning
blind searches, we set Fmin = 1.6 × 10−15 W m−2.

The γ-ray detected pulsar positions in the X-Y plane of the
Galaxy are shown in Fig. 23. In this simulation, 2492 γ-ray pul-
sars are detected, in green, being γ-ray only or radio-loud γ-ray
pulsars, among them only 350 (really close to the number of
γ-ray and radio/γ-ray pulsars detected in Sect. 3.2) would have
been detected if the same sensitivity as before was kept, in red in
Fig. 23. Therefore we detected seven times more γ-ray pulsars
compared to the number found with the previous sensitivity. Fur-
thermore, the other 2142 pulsars, in green in Fig. 23, detected
with this increased sensitivity highlight several interesting fea-
tures. We obviously detect more pulsars close to Earth, and also

Fig. 23. Spatial distribution of the simulated γ-ray detected pulsars, pro-
jected onto the Galactic plane for one million pulsars simulated, with a
lower Fmin.

many more in the centre of the Galaxy. This result indicates that
the GeV excess in the Galactic centre could be linked to pulsars
not yet identified, while usually the origin of this GeV excess
is attributed to self-annihilating dark matter particles (Hooper
2022). However, millisecond pulsars, not modeled in this work,
could also contribute significantly to this GeV excess.

4. Discussion

For the initial spin period distribution, Igoshev et al. (2022) sug-
gested values for the mean period Pmean in the range from
approximately 57 ms to 129 ms and for its spread, σp, the range
from 0.45 to 0.65. The values Pmean = 129 ms and σp = 0.45
are best educated guesses. However, further investigations on
this work could benefit from an automated method to find the
best set of values. Hence, we are currently working on an opti-
misation algorithm to find the optimal initial parameters for the
population synthesis, not only for the spin period, but for the
whole parameter space presented in Table 5. Our optimisation
algorithm will help to constrain the properties of the Milky
Way pulsar population by constraining parameters such as the
birth rate, which is supposed to be between 1/33 yr−1 and
1/150 yr−1. More details are given in Faucher-Giguère & Kaspi
(2006), Gullón et al. (2014) or Johnston & Karastergiou (2017).

In the main part of the paper, we abstain from showing out-
comes stemming from simulations featuring a constant mag-
netic field. However, we ran simulations that clearly highlight the
inferior performance of a simulation without magnetic field evo-
lution (see Appendix B). Moreover, Appendix C explores differ-
ent parameter spaces for the PPS, allowing us to meticulously
scrutinise whether the parameters showcased in the main part
of the paper optimally reflect the observational data. This work
demonstrates that even if a substantial number of parameters are
required for the PPS, they can be meaningfully constrained by
such studies with reasonable accuracy.

Furthermore, in Sect. 3.5, we explored the results when the
sensitivity in γ-ray is increased by a factor of 10. We have not
discussed any improvements in the radio detection yet, while we
run a simulation by increasing the sensitivity by a factor of 50
to match approximately the properties of SKA (McMullin et al.
2020). The result of this simulation with an increased sensitiv-
ity led to 52276 pulsars detected (when simulating one million
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pulsars, with a death line), which is approximately 31 times more
than with the sensitivity of Parkes and Arecibo telescopes.

We emphasise that the death valley strongly depends on the
chosen model. For instance the radio luminosity law plays a cen-
tral role, we assumed that Fr ∝ Ėα with α = 1/4 (see Eq. (27))
according to Johnston & Karastergiou (2017) and Johnston et al.
(2020), where they found it to be the best fit to the data. Fol-
lowing their conclusion we decided not to choose α as another
parameter. However it would impact the death valley, but this
effect is not considered in our work. Furthermore, in other works
such as Graber et al. (2024) for instance, they do not explicitly
use a death valley because they use a different radio luminos-
ity law, meaning a different value for α and adjust the magnetic
field decay time accordingly. We stress that this is just another
method to deal with the bottom right corner of the P − Ṗ dia-
gram, where pulsars are likely to stop emitting photons, since
the death valley removes pulsars based on a combination of P
and Ṗ. Graber et al. (2024) PPS is based on a phenomenologi-
cal approach where the radio luminosity is tuned to conform to
observations. In our approach, adding a death valley is based on
more physical grounds, which are related to the micro-physics
close to the neutron star polar cap.

5. Summary

Without the implementation of the Galactic potential, in the PPS
of Dirson et al. (2022), the pulsars were moving in straight lines
along one direction chosen randomly for each pulsar. This evolu-
tion of the proper motion was not realistic, even though the evo-
lution model had already replicated a significant portion of the
canonical pulsar population. However all the new improvements
put into this PPS, meaning the Galactic potential, the effect of
the ISM on the radio pulse profiles and the fact that the decay
timescale of the magnetic field is taken randomly within a certain
range, allow for a more accurate reproduction of the population
in the P − Ṗ diagram.

The first results where we emulate ten millions pulsars
showed an excess of old pulsars detected in the simulation. In the
P − Ṗ diagram we saw that this excess was associated to pulsars
that lie below the death line, and are, thus, no longer creating any
more pairs. With this finding, we realised that it was imperative
to implement the death line. The results obtained with the death
line were then in better agreement with observations when plot-
ting the most relevant distributions, such as period and period
derivative.

Nonetheless, simulating one million pulsars had allowed us
to demonstrate that with or without a death line the results
were alike and therefore, in the case where the oldest simulated
pulsar is 4.1 × 107 yr (its real age), a death line is not neces-
sary to explain the observations. In this paper we showed two
approaches to reproduce the observed canonical pulsar popula-
tion; however, when we consider the approach where the oldest
pulsar simulated is only 4.1 × 107 yr, we state that no older pul-
sars might be detected with our current telescopes in the Galaxy.
Meanwhile, the Milky Way is very much older than this and has
thus been forming pulsars since its beginning. There is appar-
ently no reason not to simulate pulsars that are older than 108 yr.
If there is one, we do not know it, as they become harder to detect
because of their wide pulse profile with their age, but some could
still be detectable. If this is the case, then it means that the death
line is not necessary in pulsar population synthesis to explain
observations. When the simulation is ran with ten millions pul-
sars, the death line becomes a necessity. However this simulation
gives results less similar to observations.

It has also been shown that old pulsars with age larger than
10 Myr have a tendency to lose their alignment between rota-
tion axis and velocity, a direct effect of the Galactic potential as
shown by the observations of Noutsos et al. (2013). This is the
first time it has been done in a simulation.

The striped wind model seems to reproduce the γ-ray popu-
lation of canonical pulsars well according to the p-value of the
KS test greater than 0.05 for Ṗ. However the KS test gives a p-
value lower than 0.05 for P; yet there are several observed radio-
loud γ-ray pulsars that the simulation struggles to reproduce (not
only the ones with high P) but which might explain this low
p-value. However in the simulation a higher number of these
pulsars are detected compared to observations. This probably
indicates that a part of the unidentified sources from the 4FGL
catalogue are pulsars. Testing an instruments with improved sen-
sitivity for the detection of γ-ray pulsars lead us to the conclu-
sion that part of the GeV excess in the Galactic centre could
be young γ-ray pulsars. Moreover, the assumption that millisec-
ond pulsars could also contribute to this excess will be checked
once a PPS model for millisecond pulsars will be available. The
most common picture suppose that only millisecond pulsars are
responsible for this excess, while we demonstrated that young
γ-ray pulsars could also play a significant role.

In summary, the best parameters found for this pulsar popu-
lation synthesis are for Pmean = 129 ms, σp = 0.45 for the log-
normal spin period distribution at birth, Bmean = 2.75 × 108 T,
σb = 0.5 for the magnetic field distribution at birth and for a
birth rate of 1/41 yr−1. Ultimately, this work provides a simu-
lated population of pulsars within the Milky Way that is more
similar to the observations, compared to Johnston et al. (2020)
and Dirson et al. (2022), the two most recent population syn-
thesis considering both radio and γ-ray emission. Moreover,
such investigations are useful for predicting the detection rate of
future radio surveys, such as SKA or New Extension in Nançay
Upgrading the Low Frequency Array (NenuFAR).

The PPS method developed in this paper can be extended
to other pulsar populations in the Milky Way, such as millisec-
ond pulsars and magnetars. Magnetars, for instance, would need
another distribution scenario at birth for their magnetic field that
takes into account the emission in X-rays and with a faster decay
for the magnetic field. The magnetars are located just above the
canonical pulsars in the P − Ṗ diagram, at the top-right of the
diagram. A more complex population is the recycled (or mil-
lisecond pulsars) ‘brought back to life’ by accreting matter from
a companion star. This accretion mechanism spins up the neu-
tron stars moving them from the graveyard of pulsars to the bot-
tom left of the P − Ṗ diagram, crossing again the death line in
the opposite sense and allowing them to be revived by creating
electron-positron pair cascades again. However, they are difficult
to model because their evolution scenario must take into account
their accretion phase and spin-up. We are currently working on
both these populations to reproduce them in a PPS that is based
on the methods and findings in this work.
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Appendix A: The integration scheme used

A.1. The scheme

One of the new aspect in this work is to solve the equation
of motion, Eq. (13), namely, to follow more realistically the
motion of our sample of pulsars. To achieve this objective we
implemented a fourth-order integration scheme called Position
Extended Forest Ruth-Like (PEFRL). This algorithm was cho-
sen because of its high order, allowing for a high precision on the
trajectory of the pulsar. In addition, it is a symplectic algorithm,
meaning that it conserves the total energy of the pulsar (kinetic
plus potential), minimising the error even if the integration is
done for a long time with any orbits. It works in the same way as
a Verlet scheme of second order, the velocities and coordinates
are shifted separately, but in the end they get synchronised. The
different steps of the algorithm are as follows.

rn+ 1
5 = rn + ξhun, (A.1a)

un+ 1
4 = un − (1 − 2λ)

h
2
∇Φ(rn+ 1

5 ), (A.1b)

rn+ 2
5 = rn+ 1

5 + χhun+ 1
4 , (A.1c)

un+ 2
4 = un+ 1

4 − λh∇Φ(rn+ 2
5 ), (A.1d)

rn+ 3
5 = rn+ 2

5 + (1 − 2(χ + ξ))hun+ 2
4 , (A.1e)

un+ 3
4 = un+ 2

4 − λh∇Φ(rn+ 3
5 ), (A.1f)

rn+ 4
5 = rn+ 3

5 + χhun+ 3
4 , (A.1g)

un+1 = un+ 3
4 − (1 − 2λ)

h
2
∇Φ(rn+ 4

5 ), (A.1h)

rn+1 = rn+ 4
5 + ξhun+1. (A.1i)

Here, r is the position vector, u is the velocity vector, h is the time
step,∇Φ is the gradient of the potential and n is the time at which
we compute the position or the velocity. λ, ξ and χ are constants
that are tabulated in Table A.1; see for instance Forest & Ruth
(1990).

Table A.1. Value of the constants used for the PEFRL scheme.

Parameters Values

λ -0.212341831062605
ξ 0.178617895844809
χ -0.06626458266981849

A.2. Precision of the PEFRL algorithm

Before implementing the gravitational potential and the integra-
tion scheme in the whole synthesis, the precision of the tra-
jectory of a single pulsar in the Milky Way was checked. The
initial conditions for the pulsar are the following: x = 5.1 kpc,
y = −1.9 kpc, z = 0.05 kpc, vx = −47.8 km/s vy = 97.0 km/s, and
vz = 22.6 km/s. Those initial conditions were chosen randomly,
the only constrain being to have the pulsar in the Galaxy with
realistic coordinates on the one hand and with realistic speeds
for a pulsar on the other hand. Furthermore, the total integration
time is 1.25 Gyr and the time step used is 105 yr. In order to check
the precision of the scheme, the total energy of the pulsar, sum
of the kinetic plus potential energy, that should be conserved is

computed as

Etot =
v2

x

2
+
v2

y

2
+
v2

z

2
+ Φtot. (A.2)

The trajectory obtained after the integration with the PEFRL
algorithm is shown in Fig. A.1. This trajectory shows that
the pulsar, with these initial conditions, remains bound to the
Galaxy. The pulsar here takes approximately 201.3 Myr to com-
plete an orbit in the Galaxy. The time step chosen is signifi-
cantly smaller than the orbital period (h/Porb = 0.0005), and we
obtain approximately 6 orbits by integrating the trajectory during
1.25 Gyr. Bajkova & Bobylev (2021) showed several trajectories
in their paper, the one obtained here seems coherent compared
to the different trajectories that they got.

Fig. A.1. Trajectory of a single pulsar in the Galactocentric frame.

Figure A.2 shows the relative error on the total energy. It is
indeed almost constant along the whole integration of the trajec-
tory. The maximum relative error on the energy is of the order of
10−9, a very good accuracy for this trajectory. Globally, when a
single pulsar has its trajectory integrated in the PPS, the relative
error is at maximum 0.001 and the minimum seen was 10−14.

Fig. A.2. Relative error on the energy of a single pulsar in the Galacto-
centric frame.

Appendix B: Results for a constant magnetic field

Depending on the PPS, the magnetic field will be
considered constant (Johnston & Karastergiou 2017;
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Faucher-Giguère & Kaspi 2006) or decaying (Gullón et al.
2014; Dirson et al. 2022; Jawor & Tauris 2022). The goal is here
is to show the results with a constant magnetic field in order to
see which model is better between the decaying magnetic field
and the constant magnetic field.

Hence, this simulation was run with 30 million pulsar sim-
ulated (meaning the oldest pulsar simulated is 1.23 × 109 yr),
with a death line and without a decaying magnetic field. The
KS test gave p-values of 1.03 × 10−22 and 3.38 × 10−51 for P
and Ṗ, respectively; therefore the null hypothesis is rejected for
both P and Ṗ. Here we simulate more pulsars than in the main
part of the paper, since if we simulate with the same number
of pulsars, it seems the whole P − Ṗ diagram is not covered.
Therefore if a constant magnetic field was the best way to repro-
duce the canonical population, it means we would detect much
older pulsars than with the magnetic field decay prescription.
The parameters used are in Table 5. It gives results less close to
the observations than with a decaying magnetic field. As can be
seen in Fig. B.1, too many pulsars from the simulation appear on
the top right of the diagram and almost none at the bottom. In
Table B.1, we note a total of pulsars which is smaller from what
we found for all of our previous results in Sect. 3. We could
expect to reproduce equally well the population of observed pul-
sars with a constant magnetic field, however compared to the
study of Johnston & Karastergiou (2017) where they used this
assumption for the magnetic field, we do not evolve the braking
index. In our simulations, we have α̇ < 0, Ḃ < 0 and ṅ = 0
whereas in their simulation α̇ < 0, Ḃ = 0 and ṅ , 0. Having
either the braking index or the magnetic field evolve, allows us
to reproduce well the population of pulsars.

Fig. B.1. P − Ṗ diagram of the simulated population, along with the
observations, with the death line implementation and a constant mag-
netic field for each pulsar.

Table B.1. Number of pulsars detected for the simulation with constant
magnetic field for each pulsar and the death line implementation.

log(Ė) (W) Ntot Nr Ng Nrg

>31 42 0 29 13
>28 213 10 127 76
Total 1473 1075 215 183

Appendix C: Influence of the different parameters

This appendix shows that the parameters chosen in the main part
of this paper are meticulously picked and that the uncertainties
brought by the large number of parameters is manageable. Mul-
tiple simulations were conducted by varying parameter values
for the initial distributions, demonstrating that deviations from
the optimal values lead to poor results. The simulations were run
with in the same conditions as Sect. 3.2, with only one parameter
changing between the different sets of simulations and without
implementing the ISM, because it would be too time consum-
ing to perform all these simulations. As a consequence in the
tables from C.1 to C.5), the p-values are low, while when includ-
ing the ISM effect they become larger. Therefore, the results and
conclusions presented in this section are based on this simplifi-
cation, which was primarily used to guide the choice of param-
eters. While these assumptions have helped to identify efficient
parameters, it is important to stress that the proposed values are
not necessarily optimal. They serve primarily as a foundation for
refining the parameters under more realistic conditions. That is
why before validating a parameter we checked that the p-values
were satisfactory when including the ISM. We found each time
a higher p-values.

In order to get an idea on a good range of values for the
parameters, the d-values and p-values obtained thanks to the KS
test are shown in Table C.1, C.2, C.3, C.4, and C.5. For each
parameter, ten simulations were performed in order to get a mean
and a standard deviation for the d-values and p-values associated.
These simulations helped finding the best values for the param-
eters by considering the parameter is well constrained when its
d-values for both distribution of P and Ṗ are below or close to
0.05 (meaning 5% similarity between the observed and simu-
lated distributions), especially if the previous and next param-
eter values have higher d-values and lower p-values. As usual
p-values above 0.05 means that the null hypothesis can not be
rejected, however as explained above, without the ISM effect
taken into account the p-values for the Ṗ distribution do not get
too high here. Even though it is not an optimisation (and there-
fore the results can be improved on that point), it allows us to
conclude that Pmean must be between 120 ms and 135 ms, with
129 ms as best value. Bmean must be between 2.25 × 108 T and
2.8×108 T, with 2.75×108 T as best value. σb is well constrained
between 0.49 and 0.51, with 0.5 as best value. While σp must be
between 0.42 and 0.47, with 0.45 as best value. Finally, the birth
rate must be between 1/37 yr−1 and 1/45 yr−1, with 1/41 yr−1 as
best value.

A349, page 18 of 19



Sautron, M., et al.: A&A, 691, A349 (2024)

Table C.1. D-value for different Pmean.

Pmean (in ms) d-value (Ṗ) d-value (P) p-value (Ṗ) p-value (P)

90 0.072 ± 0.0073 0.058 ± 0.0080 0.0091 ± 0.021 0.038 ± 0.049
100 0.065 ± 0.0069 0.050 ± 0.0064 0.012 ± 0.0089 0.22 ± 0.0086
110 0.065 ± 0.0069 0.038 ± 0.0074 0.0033 ± 0.0022 0.32 ± 0.0076
120 0.055 ± 0.0071 0.030 ± 0.0047 0.0049 ± 0.0060 0.47 ± 0.25
129 0.056 ± 0.0074 0.028 ± 0.0058 0.010 ± 0.014 0.22 ± 0.19
135 0.054 ± 0.0077 0.033 ± 0.0077 0.012 ± 0.015 0.091 ± 0.0095
150 0.057 ± 0.0078 0.039 ± 0.0093 0.011 ± 0.024 0.013 ± 0.0074

Table C.2. D-value for different Bmean.

Bmean (in T) d-value (Ṗ) d-value (P) p-value (Ṗ) p-value (P)

1 × 108 0.11 ± 0.0082 0.20 ± 0.0067 4.4 × 10−16 ± 1.2 × 10−15 8.9 × 10−40 ± 2.4 × 10−39

2 × 108 0.042 ± 0.0046 0.066 ± 0.0070 0.033 ± 0.043 0.0058 ± 0.0072
2.25 × 108 0.046 ± 0.0045 0.045 ± 0.0061 0.011 ± 0.019 0.12 ± 0.076
2.75 × 108 0.056 ± 0.0074 0.028 ± 0.0058 0.010 ± 0.014 0.22 ± 0.19
2.8 × 108 0.058 ± 0.0091 0.030 ± 0.0073 0.0074 ± 0.0055 0.20 ± 0.16
3 × 108 0.065 ± 0.011 0.043 ± 0.0077 8.7 × 10−4 ± 9.0 × 10−4 0.030 ± 0.050
3.25 × 108 0.076 ± 0.0093 0.048 ± 0.0010 0.0040 ± 0.0074 0.0019 ± 0.0034

Table C.3. D-value for different σb.

σb d-value (Ṗ) d-value (P) p-value (Ṗ) p-value (P)

0.45 0.077 ± 0.0067 0.051 ± 0.013 7.2 × 10−4 ± 0.0011 0.0042 ± 0.0078
0.48 0.062 ± 0.0088 0.038 ± 0.0123 0.0063 ± 0.0071 0.0063 ± 0.0071
0.49 0.065 ± 0.0097 0.030 ± 0.0050 0.059 ± 0.057 0.16 ± 0.02437
0.5 0.056 ± 0.0074 0.028 ± 0.0058 0.010 ± 0.014 0.22 ± 0.19
0.51 0.056 ± 0.0073 0.031 ± 0.0070 0.0076 ± 0.0067 0.30 ± 0.18

Table C.4. D-value for different σp.

σp d-value (Ṗ) d-value (P) p-value (Ṗ) p-value (P)

0.4 0.055 ± 0.0024 0.024 ± 0.0056 0.0036 ± 0.0050 0.57 ± 0.24
0.42 0.054 ± 0.0055 0.028 ± 0.0051 0.0050 ± 0.0048 0.38 ± 0.23
0.45 0.056 ± 0.0074 0.028 ± 0.0058 0.010 ± 0.014 0.22 ± 0.19
0.47 0.053 ± 0.0049 0.034 ± 0.0092 0.0096 ± 0.015 0.26 ± 0.21
0.48 0.053 ± 0.0045 0.037 ± 0.0084 0.0060 ± 0.0050 0.17 ± 0.18
0.52 0.053 ± 0.0049 0.043 ± 0.011 0.0082 ± 0.012 0.11 ± 0.14

Table C.5. D-value for different birth rate (BR).

BR (in yr −1) d-value (Ṗ) d-value (P) p-value (Ṗ) p-value (P)

1/33 0.061 ± 0.010 0.031 ± 0.0064 0.013 ± 0.014 0.49 ± 0.17
1/37 0.056 ± 0.0085 0.029 ± 0.0064 0.0086 ± 0.0095 0.48 ± 0.21
1/41 0.056 ± 0.0074 0.028 ± 0.0058 0.010 ± 0.014 0.22 ± 0.19
1/45 0.058 ± 0.0051 0.030 ± 0.0056 0.0055 ± 0.0042 0.18 ± 0.14
1/70 0.069 ± 0.0083 0.034 ± 0.0116 4.3 × 10−4 ± 0.0012 0.048 ± 0.074
1/150 0.12 ± 0.016 0.041 ± 0.0067 5.9 × 10−12 ± 1.2 × 10−11 0.035 ± 0.091
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